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Abstract In addition to an innate immune system that battles pathogens in a non-specific
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fashion, higher organisms, such as humans, possess an adaptive immune system to combat di-

verse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts

pathogen-specific responses, which can be recalled upon re-infection with the same pathogen. It

is difficult to see how the adaptive immune system can be preprogrammed to respond specifically

to a vast and unknown set of pathogens. Although major advances have been made in under-

standing pertinent molecular and cellular phenomena, the precise principles that govern many

aspects of an immune response are largely unknown. We discuss complementary approaches

from statistical mechanics and cell biology that can shed light on how a key component of the

adaptive immune system, T cells, develop to enable pathogen-specific responses against vast and

diverse pathogens. The mechanistic understanding that emerges has implications for how host

genetics may influence the development of T cells with differing responses to HIV infection.
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1 INTRODUCTION

The immune system of an organism combats invading pathogens, thereby pro-

tecting the host from disease. Jawed vertebrates, such as humans, have an adap-

tive immune system that enables them to mount pathogen-specific immune re-

sponses [1]. The importance of this response for human health is highlighted by

the opportunistic infections that afflict individuals with compromised adaptive

immune systems [e.g., those who have progressed to AIDS after infection with

the human immunodeficiency virus (HIV)]. Many other diseases (e.g., multiple

sclerosis and type I diabetes) are consequences of the adaptive immune system

failing to discriminate between markers of self and non-self. The suffering caused

by autoimmune diseases, and the need to combat diverse infectious agents, has

motivated a great deal of experimental research aimed at understanding how the

adaptive immune system is regulated. These efforts have led to many notable

discoveries [2–10], yet a deep understanding of the principles that govern the

emergence of an immune or autoimmune response has proven elusive. This is

highlighted by the inability to rationally design vaccines against many scourges

on the planet (such as HIV).

An important barrier for the development of mechanistic principles that de-

scribe adaptive immunity is that the pertinent processes involve cooperative dy-

The first two paragraphs of the INTRODUCTION section (with small modifications) are

reprinted with permission from the Annual Review of Physical Chemistry, Volume 61 (c) 2010,

by Annual Reviews, http://www.annualreviews.org.
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namic events. The many participating components must act collectively for an

immune or autoimmune response to emerge. Moreover, these processes span a

spectrum of time and length scales that range from interactions between molecules

in cells to phenomena that affect the entire organism; feedback loops between pro-

cesses on different spatiotemporal scales are also important. It is often hard to

intuit underlying principles from experimental observations because of the com-

plexity of these hierarchically organized collective processes. The importance of

stochastic effects further confounds intuition.

Statistical mechanics provides a conceptual framework and tools (theoretical

models and associated computations) that relate microscopic stochastic events to

emergent complex behavior. When these insights are coupled closely to biological

experiments, underlying physical and chemical mechanisms can be elucidated. In

this review, we describe a project that brings together statistical mechanics and

cell biology to uncover new concepts in immunology.

The adaptive immune system is not preprogrammed to respond to prescribed

pathogens, yet it mounts pathogen-specic responses against diverse microbes, and

establishes memory of past infections (the basis of vaccination). T lymphocytes

(T cells) play an important role in coordinating adaptive immune responses. We

explore how the developmental processes in an organ called the thymus shape

the repertoire of T cells such that adaptive immunity exhibits both remarkable

pathogen specificity and the ability to combat myriad pathogens. For the benefit

of the uninitiated readers, the following bullet points present a minimal intro-

duction to the relevant features of the immune system relevant for our study; the

Appendix provides a slightly expanded description of basic immunology.

• T cells are a type of white blood cell that originate in the bone marrow, mature
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in the thymus (a gland in front of the heart and behind the sternum), and move

to other parts of the body (via blood and lymph vessels) to fight off infections

(pathogens).

• Epitopes are protein fragments (peptides) that constitute the molecular signa-

tures of pathogens recognized by T cells. Both self and pathogen proteins are

routinely chopped into pieces within a cell (by protease enzymes and the protea-

some). Some fragments (typically 8-15 amino acids long [1]) can bind to an other

host protein – major histocompatibility complex (MHC) – and these peptide-

MHC (pMHC) complexes are displayed on the surface of a cell. Each human

inherits several different types of MHC proteins from parents; the differences be-

tween MHC types between individuals are implicated in transplant rejection. T

cells inspect pMHC complexes and initiate immune response if specific foreign

peptides (epitopes) are encountered (see Fig. 1a).

• T cell receptors (TCRs) are proteins expressed on the surface of T cells which

bind to pMHC complexes. The presence of an epitope, and subsequent T cell

response, are determined by the strength of the binding. During synthesis in

the bone marrow, immature T cells (thymocytes) acquire distinct TCR sequences

through a gene shuffling process. Each such sequence can potentially bind strongly

to a small number of complementary peptides, and a large repertoire of T cells

is thus required to ensure proper coverage of the space of potential epitopes.

• Thymic selection: Following synthesis, thymocytes move to the thymus [7, 12–

16]), where they interact with a variety of self-pMHC molecules (few thousands

of different types [13]; see Fig. 2). These self-pMHC are derived from diverse

parts of the host proteome and expressed on the surface of thymic epithelial cells

as well as macrophages and dendritic cells. For a thymocyte to exit the thymus
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and become part of the host’s repertoire of T cells, it must pass two tests: (a)

It must not be negatively selected; i.e. its TCR must not bind to any self-pMHC

molecule it encounters with a binding free energy that exceeds a threshold for

negative selection. (b) It must bind at least one self-pMHC molecule with a

binding free energy that exceeds another threshold for positive selection. It is

thought that negative selection serves to delete dangerous T cells that may be

activated by self pMHCs and cause autoimmune disease. The positive selection

process ensures that TCRs of selected T cells do bind to a host’s MHC (this is

called MHC restriction).

The focus of this review is to understand how developmental processes in the

thymus shape a T cell repertoire that exhibits both remarkable pathogen speci-

ficity, as well as the ability to combat myriad pathogens. This puzzle of speci-

ficity/degeneracy is described in Sec. 2, where we also present a model of the

thymic selection process. Computational studies of this model characterize the

properties of the selected T cell repertoire, which in turn elucidate the mech-

anism behind their specificity/degeneracy for pathogens. In Sec. 3, the above

model of thymic selection is solved analytically by employing methods from sta-

tistical physics, such as extreme value distributions and Hamiltonian minimiza-

tion. Genetic studies show that people with certain types of MHC are more

likely to control HIV infections. We argue that these MHC types may affect

thymic selection in a way that influences the statistical properties of the selected

T cell repertoire, and this may provide one contributing factor (of many) for more

efficient control of HIV infection (Sec. 4).
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2 SPECIFICITY & DEGENERACY OF THE T CELL REPER-

TOIRE

TCR recognition of pathogen-derived pMHC molecules is both highly specific

and degenerate (Fig. 1b). It is specific because if a TCR recognizes a pMHC

molecule, most point mutations of the peptide’s amino acids abrogate recogni-

tion [18, 19]. However, a given TCR can also recognize diverse peptides [9, 20–

24]. This specificity-degeneracy conundrum is made vivid by dividing the world

of peptides into classes, with the members of each class having sequences that

are closely related. For example, peptides within a class could differ by just one-

point mutation. A TCR can discriminate quite well between peptides within a

class of closely related peptide sequences (as point mutants of the peptides it

recognizes are not recognized with high probability). But, at the same time, a

given TCR can recognize some other peptides in other classes, which have quite

distinct sequences.

These diverse, specific/degenerate, (Fig. 1b) as well as a largely self-tolerant

TCR repertoire is designed during T cell development in the thymus (Fig. 2; [7,

12–16])). Signaling events, gene transcription programs, and cell migration dur-

ing T cell development in the thymus have been extensively studied [7, 12, 13,

15, 16, 25–30]. Experiments by Huseby et al. [18, 19] provide important clues

about how interactions with self-pMHC complexes in the thymus shape the pep-

tide binding properties of selected TCR amino acid sequences, such that mature

T cells exhibit their special properties. These experiments contrasted T cells

developed in conventional mice that display a diverse array of self-pMHC com-

Some parts of Sec. 2 are reprinted with permission from Ref. [17] (c) 2011, by Springer

Science+Business Media.
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plexes (few thousands of types) in the thymus to mice engineered to express only

one type of peptide in their thymus. For T cells developing in conventional mice,

recognition of antigenic pMHC was found to be sensitive to most point mutations

of a recognized foreign peptide’s amino acids. In contrast, T cells selected in mice

with only one type of peptide in the thymus were much more peptide-degenerate,

with some T cells being tolerant to several point mutations of recognized for-

eign peptide amino acids. The thymic selection model [17, 31–33] presented next

explains these results, and also sheds light on the broader question of how the thy-

mus designs diverse TCR sequences that mediate specific/degenerate pathogen

recognition.

2.1 Thymic Selection Model

The key initiating event in T cell activation is the binding of a TCR to a pMHC

complex. The binding interface of a TCR is composed of a more conserved

region that is in contact with the MHC molecule, and a highly variable (CDR3)

region that makes the majority of contacts with the peptide [1]. Accordingly, we

divide the TCR/pMHC interaction free energy into two parts: a more conserved

part represented by a continuous variable, and a part that explicitly depends

on the variable TCR peptide contact residues and peptide sequences of amino

acids. The former is given a value Ec, which may be varied to describe different

TCRs and MHCs. The latter is obtained by aligning the TCR and pMHC amino

acids that are treated explicitly and adding (in the simplest incarnation of the

model) pairwise interactions between corresponding pairs (see, Fig. 3a). If the

amino acid sequences of the TCR and the peptide are represented by strings ~t ≡
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(t1, t2, · · · , tN ) and ~s ≡ (s1, s2, · · · , sN ) respectively, the interaction free energy is

Eint(Ec,~t, ~s ) = Ec +

N
∑

i=1

J(ti, si). (1)

The contribution from the ith amino acid of the TCR (ti) and the corresponding

peptide residue (si), is indicated by the matrix element J(ti, si). For numerical

purposes we use the Miyazawa-Jernigan amino acid interaction matrix [34] de-

veloped in the context of protein folding, but as emphasized later, the qualitative

results do not depend on the form of J . The length of the variable TCR-peptide

region is taken to be N ∼ 5. This is the typical number of peptide amino acids in

contact with the TCR; the remaining peptide residues are important for binding

to the MHC groove and/or are buried within the groove.

Earlier versions of such “string models” of TCR–pMHC interactions were used

to study thymic selection [28, 29, 35], but they did not make an explicit treatment

of amino acids (e.g., a formal string of numbers, bits, etc. was used). These

studies provided estimates for certain properties of the selected TCR repertoire

(for example, the number of selected TCRs activated by a foreign peptide or a

foreign MHC – as in an organ transplant) that are consistent with experimental

estimates. They also showed that negative selection in the thymus increases TCR

specificity for foreign peptides, but did not suggest any mechanistic explanation.

Other string models of TCR-pMHC interactions [36–38], with analogies to spin-

glass models, were used also to study vaccination strategies for viral diseases and

cancers (for a review see Ref. [39]).

To model thymic selection, we first construct a set S ≡{~s } of M peptides of

length N representing the self peptides encountered in the thymus. Each self

peptide is generated as a sequence of N amino acids, each randomly and inde-

pendently picked with frequencies corresponding to the human proteome [31, 40]
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(using the mouse proteome does not change the qualitative results [31]). We next

generate many candidate sequences for the peptide contact residues of TCRs,

~t, also randomly with the same amino acid frequencies. To mimic thymic se-

lection, TCR sequences that bind to any of the M self-pMHC too strongly

(Eint < En, with more negative free energies corresponding to stronger bind-

ing) are deleted (negative selection). However, a TCR must also bind sufficiently

strongly (Eint < Ep ) to at least one self-pMHC to receive survival signals and

emerge from the thymus (positive selection). Recent experiments show that the

difference between the thresholds for positive and negative selection is relatively

small (a few kBT [27]). The threshold for negative selection (En) is quite sharp,

while the threshold for positive selection (Ep) is soft [27, 41]. Replacing soft

thresholds with perfectly sharp thresholds at En and Ep does not change the

qualitative behavior of the selected T cell repertoire [17, 31].

To completely specify the interaction free energy between a TCR and pMHC,

the value of Ec needs to be discussed. Selected TCRs are expected to bind

moderately to MHCs, because binding too strongly to MHC (large |Ec|) would

result in negative selection with any peptide, while too weak (small |Ec|) results

in TCR not being positively selected. Each human can have up to 12 different

MHC types. A TCR that binds strongly to more than one MHC type is likely

to be eliminated during negative selection. Therefore, only TCRs binding to a

particular MHC type are considered. This is consistent with the fact that there

are no firm reports of a TCR restricted by more than one MHC type within a

single human. Variations in Ec for selected TCRs are expected to be small. A

rough estimate on the bounds is obtained from the condition that the average

interaction free energy between TCR and pMHC for selected TCRs should be
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between the thresholds for positive and negative selection, i.e.

En < Ec + NJ < Ep, (2)

where J is the average value of interaction between amino acids. The two bounds

(Ec,max = Ep − NJ and Ec,min = En − NJ) ensure that average interactions

enable a TCR to survive both positive and negative selection. Since it is enough

that a TCR sequence is positively selected by any one of many self peptides,

and not negatively selected by all M self peptides, the precise bounds for Ec

are different, but one expects that the range of Ec values is still small; viz.,

Ec,max − Ec,min ∝ Ep − En. Note that TCRs whose interactions with MHCs are

too weak are unlikely to be properly positioned on MHCs, and hence will be

unable to interact with the peptide. Thus, one cannot tune Ec to very low values

to escape negative selection. We thus assign to every TCR sequence a random

value of Ec chosen uniformly from the interval (Ec,min, Ec,max), and then proceed

with computing the consequences of the selection process.

2.2 Abundance of Weak Interactions in TCRs Selected Against

Many Self Peptides

First, we summarize the results of computational analyses regarding how thymic

selection shapes TCR sequences and TCR interactions with MHC. The peptide

contact residues of TCR sequences selected against many self peptides in mouse

and humans (M ∼ 103 [13]) are statistically enriched with weakly interacting

amino acids (Fig. 3b; [17, 31, 32]), and TCRs with weaker binding to MHC (within

the allowed range) are more likely to get selected (Fig. 3c; [17]). This is because

negative selection imposes a strong constraint. When selected against many

self peptides, TCR sequences with peptide contact residues containing strongly
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interacting amino acids (e.g., hydrophobic amino acids or those with flexible

side chains), or TCRs that bind strongly to MHC, are more likely to have strong

binding with at least one encountered self-pMHC and thus be negatively selected.

This qualitative result is independent of details of the interaction potential J , or

the sharpness of the thresholds for positive and negative selection (see Sec. 3; [17,

31, 32]). Using different interaction potentials only changes the identities of

the amino acids that interact weakly or strongly, or the criterion used to define

interaction strength.

The conclusion that the peptide contact residues of selected TCRs are enriched

in weakly interacting amino acids is supported by the analysis of available crys-

tal structures of TCR-pMHCs [31]: amino acid frequencies of peptide contacting

residues on TCRs in these crystal structures were determined and compared to

amino acid frequencies in the human proteome (assumed to be the relevant fre-

quencies for TCRs before thymic selection [31]). Measured amino acid frequencies

in the TCRs’ peptide contact residues were found to be smaller than in the hu-

man proteome for the most strongly (IVYWREL, Ref. [42]) interacting amino

acids and larger for the weakly (QSNTAG, Ref. [42]) interacting amino acids.

2.3 Selection Against Many Self Peptides Leads to Pathogen-

Specific T Cells

Does the selected T cell repertoire lead to specific recognition of a pathogenic pep-

tide? To study the specificity of mature T cells in peptide recognition, selected

TCR sequences were challenged with a collection of many randomly generated

pathogenic peptides whose amino acid frequencies correspond to Listeria mono-

cytogenes [31, 43], a pathogen that infects humans and is cleared by a T cell
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response. TCR recognition of pathogenic peptide occurs if TCR-pMHC binding

is sufficiently strong (Eint < Er), where the recognition threshold in mouse ex-

periments is such that Er ∼ En [44]. For each TCR that recognizes a particular

pathogenic peptide sequence, the specificity of recognition was tested as follows:

Each site on the peptide was mutated to all other 19 possibilities, and recognition

of the mutated sequence by the original TCR was assessed. If more than half

the mutations at a particular site abrogated recognition by the same TCR, the

site was labeled an “important contact.” For each TCR-pMHC pair for which

recognition occurred, the number of important contacts was determined, and the

resulting histogram is plotted in Fig. 4a. The higher the number of important

contacts, the more specific is the TCR recognition of pathogenic peptide. Small

numbers of important contacts correspond to cross-reactive TCRs that are able

to recognize many pathogenic peptide mutants.

In agreement with experiments [18, 19], this model finds that TCRs selected

against many different self peptides are very specific, while TCRs selected against

only one self peptide are more cross-reactive (Fig. 4a). Based on the amino acid

composition of selected TCRs, we can provide a mechanistic explanation for the

specificity/degeneracy of pathogen recognition (Fig. 4b). Because TCR peptide

contact residues are enriched with weakly interacting amino acids, they can in-

teract sufficiently strongly for recognition to occur only with pathogenic peptides

that are statistically enriched in amino acids that are the stronger binding com-

plements of the peptide contact residues of the TCR (Fig. 3d). Such TCR-peptide

pairs rely on many weak to moderate interactions which sum up to provide suffi-

cient binding strength for recognition. Each interaction contributes a significant

percentage of the total binding affinity. If there is a mutation to an amino acid
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of a recognized peptide, it is likely to weaken the interaction it participates in (as

recognized peptides are statistically enriched in amino acids that interact strongly

with the TCR’s amino acids). Weakening an interaction that contributes a signif-

icant fraction of the binding free energy is likely to abrogate recognition because

the recognition threshold is sharply defined [27].

In contrast, TCR sequences selected against only one type of self-peptide have a

higher chance of containing strongly interacting amino acids (Fig. 3). Such TCRs

can recognize a lot more pathogenic peptides including those composed of weakly

or moderately interacting amino acids. In many cases mutating such amino acids

on the peptide does not prevent recognition of the same TCR because a small

number of strong contacts dominate recognition (Fig. 4a and experiments [19]).

Unless these specific contacts are disrupted by mutations to the peptide, recog-

nition is not abrogated. Accordingly, TCR recognition of pathogenic peptides is

more cross-reactive. When selected against fewer types of self-peptides, TCRs

that bind strongly to MHC can escape (Fig. 3c). Thus in this case the escape of

TCRs that bind strongly or moderately to more than one MHC type (or MHC

with mutations) might also be possible, leading to more cross-reactivity to MHC

types (or substitutions of MHC amino acids [18]).

This mechanism for TCR-pMHC specificity is distinct from Fischer’s [45] lock-

and-key metaphor. Interactions between the TCR and the MHC dock the TCR

over its ligand in essentially the same orientation [46, 47] – this may be analo-

gous to shape complementarity, but it is not peptide specific. The complemen-

tary residues of the TCR then scan the peptide to assess if there is a sufficient

number of moderate interactions to mediate recognition (Fig. 4b). An appropri-

ate metaphor may be that the TCR peptide contact residues scan a bar code,



15

and if there are a sufficient number of lines of moderate width (moderate TCR-

peptide interactions), then recognition is posible. This statistical view of TCR

specificity for pathogen may describe the initial step of binding, which may then

allow modest conformational adjustments, leading to stronger binding [20]. This

view is consistent with experiments suggesting a two-stage model for TCR-pMHC

binding [48].

The statistical view of TCR-pMHC recognition also make degeneracy or cross-

reactivity to peptides with different sequences the flip side of the coin. Although

point mutations can abrogate recognition with high probability, making a number

of changes to the peptide sequence such that a sufficient number of moderate

interactions is still obtained will allow recognition by the same TCR (Fig. 4b).

This may also be why two peptides with different sequences and conformations

in the MHC groove can be recognized by the same TCR [20].

3 THYMIC SELECTION AS EXTREME VALUE PROBLEM

Interestingly, the thymic selection model presented in Sec. 2.1 can be solved

exactly in the limit of long peptide sequences (N → ∞) [17, 32]. A T cell

expressing TCR with string ~t is selected in the thymus if its strongest interaction

with a set S of M self-pMHCs is between the thresholds for negative and positive

selection, i.e.

En < min
~s∈S

{Eint

(

Ec,~t, ~s
)

} < Ep. (3)

Equation (3) casts thymic selection as an extreme value problem [49], enabling

us to calculate the probability Psel(Ec,~t ) that a TCR sequence ~t is selected in

Parts of Sec. 3 are reprinted with permission from Ref. [32] (c) 2009, by American Physical

Society, and from Ref. [17] (c) 2011, by Springer Science+Business Media.
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the thymus. Let us indicate by g(x|Ec,~t ) the probability density function (PDF)

of the interaction free energy between the TCR ~t and a random peptide. The

PDF Π(x|Ec,~t ) of the strongest (minimum) of the M independent random free

energies is then obtained by multiplying g with the probability of all remaining

(M − 1) free energy values being larger, i.e.

Π
(

x|Ec,~t
)

= M g
(

x|Ec,~t
) (

1 − P
(

E < x|Ec,~t
))M−1

, (4)

where P (E < x|Ec,~t ) is the cumulative probability, and noting the multiplicity

M of a particular interaction free energy being lowest. The probability that TCR

~t is selected is then obtained by integrating Π(x|Ec,~t ) over the allowed range, as

Psel

(

Ec,~t
)

=

∫ Ep

En

Π
(

x|Ec,~t
)

dx. (5)

For M ≫ 1, this extreme value distribution (EVD) converges to one of three pos-

sible forms, [49] depending on the tail of the PDF for each entry. Equation (1)

indicates that in our case, as each interaction free energy is the sum of N contri-

butions, g(x|Ec,~t ) should be a Gaussian for large N , in which case the relevant

EVD is the Gumbel distribution [49].

To obtain an explicit form for Π(x|Ec,~t ), we model the set of self-peptides as

M strings in which each amino acid is chosen independently. The probability fa

for selecting amino acid a at each site is taken to be the frequency of this amino

acid in the self-proteome. For a specific TCR sequence ~t, the average interaction

free energy with self peptides then follows from Eq. (1) as

Eav(Ec,~t ) = Ec +
N
∑

i=1

E(ti), (6)

with E(ti) = [J(ti, a)]a, where we have denoted the average over self amino acid

frequencies by [G(a)]a ≡
∑20

a=1 faG(a). Similarly, the variance of the interaction
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free energy is

V (Ec,~t ) =

N
∑

i=1

V(ti), (7)

where V(ti) =
[

J(ti, a)2
]

a
− [J(ti, a)]2a.

For very long peptide sequences (large N), we can approximate g(x|Ec,~t ) with

a Gaussian PDF with the above mean and variance. From standard results for

the Gumbel distribution [49], we conclude that in the limit of M ≫ 1, the peak

of the distribution Π(x|Ec,~t ) drifts to lower values as

E0

(

Ec,~t
)

= Eav

(

Ec,~t
)

−
√

2V
(

Ec,~t
)

ln M , (8)

while its width is reduced to

Σ0(Ec,~t ) =

√

π2V (Ec,~t )

12 ln M
. (9)

(Since the PDF g(x|Ec,~t ) originates from a bounded set of free energies, it is

strictly not Gaussian in the tails. Hence, once the extreme values begin to probe

the tail of the distribution, the above results will no longer be valid. Indeed, in

the limit when M ∼ O(20N ), the EVD will approach a delta-function centered

at the M–independent value corresponding to the optimal binding free energy.)

From Eq. (8) and the selection condition in Eq. (3) we see that as the num-

ber of self peptides, M , increases, the chance of negative selection does too. To

counterbalance this pressure for large M , TCRs are enriched with weakly in-

teracting amino acids in their peptide contact residues (small E(ti) values), and

with weaker interactions with MHC (small Ec value) (see Fig. 3). A similar effect

relates to the variance of interactions (avoiding negative selection against many

self peptides picks out TCRs with amino acid that exhibit a smaller variance in

their interactions with other amino acids), but this tendency is less pronounced

because of the square root. The preference for weak binding is independent of the
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potential J between contacting amino acids; different potentials merely reorder

weak and strong amino acids.

Statistical mechanics suggests an analytic expression for the probability that a

TCR sequence, ~t, is selected according to Eq. (3) in the limit of large N and M .

Remarkably the results seem to be accurate even for short peptides [17, 32]. A

proper thermodynamic limit is obtained when {Ec, Ep, En} ∝ N , and ln M ∝ N .

The latter ensures that the peak of the EVD distribution, E0(Ec,~t ) in Eq. (8), is

proportional to N . The same condition also implies that the width Σ0(Ec,~t ) in

Eq. (9) is sharp and independent of N . The relation ln M = αN can be justified

from the expectation that M should grow proportionately to the proteome size

P , while N ∝ ln P to enable encoding the proteome. (The number of distinct

peptide sequences of length N grows as 20N , thus enabling encoding of proteomes

with P ≤ 20N .) In this large N limit, the EVD is sufficiently narrow that the

value of the optimal free energy can be precisely equated with the peak E0(Ec,~t ),

and Eq. (3) for the selection condition can be replaced with

En < E0

(

Ec,~t
)

< Ep. (10)

The above thymic selection condition can now be interpreted as defining a micro-

canonical ensemble of sequences ~t, which are accepted if the value of the ‘Hamil-

tonian’ E0

(

Ec,~t
)

falls on the interval (En, Ep). In the large N limit, canonical

and micro-canonical ensembles are equivalent and the probability is given by

the Boltzmann weight of this Hamiltonian. More formally, the probability for

TCR selection, Psel

(

Ec,~t
)

, is obtained by using the least biased estimate, i.e.

maximizing the entropy

S =
∑

Ec,~t

Psel

(

Ec,~t
)

ln
[

Psel

(

Ec,~t
)]

, (11)
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subject to a constraint that the average free energy

〈

E0(Ec,~t )
〉

=
∑

Ec,~t

Psel

(

Ec,~t
)

E0(Ec,~t ), (12)

is restricted to the interval (En, Ep). This leads to a probability for TCR selection

governed by the Boltzmann-like weight [17, 32]

Psel

(

Ec,~t
)

∝

(

N
∏

i=1

fti

)

ρ(Ec) exp
[

−βE0(Ec,~t )
]

. (13)

Here {fa} and ρ(Ec), are the prior frequencies of amino acids, and the distribution

of Ec values before selection, whereas the effect of thymic selection is captured by

the Boltzmann weight, with a Lagrange multiplier β determined by the condition

En <
〈

E0(Ec,~t )
〉

< Ep. Since the allowed values of E0(Ec,~t ) are bounded from

above and below, the Lagrange multiplier β can be either negative or positive.

A difference compared to the standard micro-canonical ensemble is that the

average free energy is constrained to an interval, rather than a precise value,

necessitating a discussion on the choice of β. The possible values for E0(Ec,~t )

span a range from Emin to Emax, and the corresponding number of states form

a bell-shaped curve between these extremes with a maximum at some Emid. If

Emid > Ep, to maximize entropy we must set
〈

E0(Ec,~t )
〉

= Ep, and choose β

accordingly. In this case, β > 0, positive selection is dominant and stronger amino

acids are selected. If Emid < En, we must set β such that
〈

E0(Ec,~t )
〉

= En,

β < 0, negative selection is dominant and weaker amino acids are selected. For

En < Emid < Ep, we must set β = 0 and there is no modification due to thymic

selection.

Finally, we note that due to the appearance of
∑N

i=1 V(ti) under the the square

root term, Eq. (8) corresponds to an interacting Hamiltonian in which variables

at different sites are apparently not independent. This is, however, not the case
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as the ‘interaction’ is easily removed by standard procedures such as Legendre

transforms or Hamiltonian minimization [50], as follows: We need to solve a

‘Hamiltonian’ H(U, V ) which depends on two extensive quantities U =
∑N

i=1 E(ti)

and V =
∑N

i=1 V(ti). The corresponding partition function can be decomposed

as Z =
∑

U,V Ω(U, V )e−βH(U,V ), but can be approximated with its largest term.

Note that the same density of states Ω(U, V ) ≡ eS(U,V )/kB appears, irrespective

of the specific form of H(U, V ). In particular, the choice

H0(U, V ) = Ec + U − γV −
ln M

2γ
= Ec +

N
∑

i=1

[(E(ti) − γV(ti)] −
ln M

2γ
, (14)

corresponds to a set of non-interacting variables, with

Psel

(

Ec,~t
)

∝ ρ(Ec) exp[−βEc]
N
∏

i=1

{fti exp [−β (E(ti) − γV(ti))]} , (15)

for which thermodynamic quantities (such as entropy) are easily computed. By

judicious choice of γ we can then ensure that the same average free energy appears

for H0(Ec,~t ) and our E0(Ec,~t ). Using Legendre transforms, which is equivalent

to minimizing H0(Ec,~t ) with respect to γ, one finds that the required E0(Ec,~t )

is obtained by setting

γ(β) =

√

ln M

2N 〈V〉
, (16)

where 〈· · ·〉 refers to the average with the non-interacting weights in Eq. (15).

In practice we determine parameters β and γ as follows: Since the average free

energy
〈

E0(Ec,~t )
〉

is a monotonic function of β, we use a bisection method to

find the appropriate β that correspond to the specified value of the average. In

order to do that, we need to discuss how to evaluate the average free energy for

a particular β. First we use a bisection method to find a self-consistent value of

γ from Eq. (16), and then calculate the average free energy using the Boltzmann

weight in Eq. (15). We thus find βp and βn corresponding to
〈

E0(Ec,~t )
〉

= Ep
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and
〈

E0(Ec,~t )
〉

= En respectively. Based on earlier discussion, we set β = βp,

when 0 < βp < βn; β = 0, when βp < 0 < βn; and β = βn, when βp < βn < 0.

Figure 5a depicts the variation of β as a function of ln(M)/N and the threshold

for negative selection En, with (Ep − En)/N = 0.5kBT . With the thus obtained

parameters β and γ we find the amino acid frequencies of selected TCRs as

f (sel)
a =

fa exp [ − β(E(a) − γV(a))]
∑20

b=1 fb exp [ − β(E(b) − γV(b))]
, (17)

and the distribution of selected TCRs’ interactions with MHCs as

ρ(sel)(Ec) =
ρ(Ec) exp[−βEc]

∫ Ec,max

Ec,min

ρ(E) exp[−βE]dE
. (18)

The above analytic expressions agree very well with numerical results from com-

puter simulations of short peptides (N = 5) presented in the previous Sec. [17, 32].

3.1 Nature of Foreign Peptides Recognized by T Cells

After T cells complete thymic selection, a set T of TCRs, K in number, is avail-

able to respond to pathogens. A T cell recognizes infected cells when its TCR

binds sufficiently strongly (Eint < En) to foreign pMHC. This means that a for-

eign peptide of sequence ~s is recognized by some TCR if its strongest interaction

with the set of TCRs exceeds the threshold for recognition, i.e.

min
~t∈T

{

Eint

(

Ec,~t, ~s
)}

< En, (19)

where the minimization is over the set of K TCRs (each with given Ec and ~t )

selected in the thymus.

Equation (19) casts recognition of foreign peptides as another extreme value

problem. If we model the set T as K strings in which each amino acid is chosen

independently with frequencies f
(sel)
a (i.e. ignoring correlations among different
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positions on one string, and also between strings), then in the limit of large

K ≫ 1, the extreme value distribution is sharply peaked around [17]

E∗
0 (~s ) = 〈Ec〉 +

N
∑

i=1

E∗(si) −

√

√

√

√(2 ln K)

[

〈E2
c 〉c +

N
∑

i=1

V∗(si)

]

, (20)

and its width is

Σ∗
0(~s ) =

√

√

√

√

π2
[

〈E2
c 〉c +

∑N
i=1 V

∗(si)
]

12 ln K
. (21)

As ln K ∝ N → ∞, the distribution becomes vary narrow and the condition for

recognition of foreign peptides becomes

E∗
0 (~s ) < En. (22)

The mean E∗(si) and the variance V∗(si) of the amino acid interaction free en-

ergies are obtained as in the previous section after replacing fa with f
(sel)
a . The

mean 〈Ec〉 and the variance 〈E2
c 〉c = 〈E2

c 〉 − 〈Ec〉
2 of selected TCR interactions

with MHCs are obtained using 〈X〉 =
∫ Ec,max

Ec,min
Xρ(sel) (Ec) exp [−βEc] dEc, with

ρ(sel) (Ec) given in Eq. (18).

Repeating the reasoning of the previous section, the probability for a se-

quence ~s to be recognized is governed by the Boltzmann weight Prec(~s ) ∝

(

∏N
i=1 f̃si

)

exp [−β∗E∗
0 (~s )], where

{

f̃a

}

are prior frequencies of amino acids in

the pathogen proteome, while the effect of TCR recognition is captured by the

parameter β∗. As before, we introduce a new Hamiltonian H∗
0 (~s ) = 〈Ec〉 −

γ∗〈E2
c 〉c +

∑N
i=1 [E∗(si) − γ∗V∗(si)]− lnK/ (2γ∗), and to ensure the same average

free energies, 〈E∗
0 (~s )〉 = 〈H∗

0 (~s )〉, we set γ∗ (β∗) =
√

ln K/ (2〈E2
c 〉c + 2N〈V∗〉).

Finally, β∗ is determined by constraining 〈E∗
0 (~s)〉 < En, while maximizing en-

tropy. If β∗ > 0, only foreign peptides with stronger amino acids are recognized.

If β∗ = 0, recognized peptides are not enriched or attenuated in strongly inter-

acting amino acids. Note that unlike the parameter β for thymic selection of T
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cell receptors, β∗ cannot be negative as there is no lower free energy bound for

recognition in Eq. (22). The amino acid frequencies of recognized foreign peptides

are then

f̃ (rec)
a =

f̃a exp [−β∗(E∗(a) − γ∗V∗(a))]
∑20

b=1 f̃b exp [−β∗(E∗(b) − γ∗V∗(b))]
. (23)

Figure 5b depicts variation of β∗ as a function of the number of selected TCRs

(K), the number of self peptides (M) against which TCRs were selected, and the

threshold for negative selection En with (Ep − En)/N = 0.5kBT . Notice, that

in order for selected TCRs to recognize many foreign peptides (i.e. small value

of β∗), we must have K ≫ M (i.e. a lot more selected TCRs than self-peptides

presented in the thymus). This is consistent with biological values of K ∼ 109 T

cells [1] and M ∼ 103 self peptides [13] in humans.

Equation (23) does not agree as well with the numerical results of computer

simulations for short peptides (N = 5), as the corresponding ones for the selected

TCR sequences presented before. The reason for the discrepancies is likely in the

incorrect assumption that the selected TCR sequences are uncorrelated for small

N = 5 [17]. However, the qualitative behavior of the parameter β∗ as other model

parameters are varied is expected to remain valid (Fig. 5b).

4 AN ASPECT OF THE ROLE OF HOST GENETICS IN CON-

TROL OF HIV THAT MAY BE RELATED TO THYMIC

DEVELOPMENT

Each individual inherits a particular set of MHC molecules (up to six types of

each MHC class I and class II protein) from their parents. Insights in to how

Some parts of Sec. 4 are reprinted with permission from Ref. [33] (c) 2010, by Nature

Publishing Group.
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thymic development shapes the T cell repertoire suggest a previously unknown

aspect of how these differences in host genetics can influence the ability of hu-

mans to combat infectious diseases (such as HIV). HIV is a highly mutable and

rapidly replicating virus that infects human T cells (among other cell types).

HIV infection initially leads to acute high level viremia (the measurable presence

of virus in the bloodstream), which is subsequently reduced to lower levels by

the immune system. Without therapy, most patients experience a subsequent in-

crease in viral load, and ultimately the development of AIDS. AIDS is associated

with the occurrence of opportunistic infections because of the degradation of the

immune system (T cells). Viremia levels and time to disease vary widely, and

the differences correlate with the expression of different MHC class I molecules

(as reviewed in Ref. [51]). Rare individuals (“elite controllers”) maintain very

low levels of HIV without therapy, thereby making disease progression and trans-

mission unlikely. Certain MHC types appear more in elite controllers, with the

highest association observed for the so-called HLA-B57 [52, 53]. While many

complex factors may be at play, this fact suggests the involvement of T cells

in viral control, since T cells activated by MHC bound viral peptides play an

important role during various phases of disease [54–59]. T cells in people with

different MHC genes could influence viral control in diverse ways. For example,

it is known that MHC molecules associated with control present peptides derived

from the HIV proteome that are vulnerable to mutations [51], especially because

of collective effects of multiple simultaneous deleterious mutations [60]. Thus, T

cells in people with these MHC molecules are thought to target more vulnera-

ble regions of HIV, thereby hindering mutational escape from the host immune

pressure.
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A puzzling finding is that the MHC molecules most associated with enhanced

control of HIV, HLA-B57 and HLA-B27, are also associated with increased pro-

clivity for certain autoimmune disorders. Indeed, HLA-B57 has been associated

with autoimmune psoriasis [61] and hypersensitivity reactions [62], and HLA-

B27 with ankylosing spondilytis [63]. The understanding of the role of thymic

development in shaping the T cell repertoire that has emerged from experimental

and theoretical studies (vide supra) may explain the mechanistic origins of these

observations.

Bioinformatics algorithms [64] based on experimental data predict whether a

particular peptide will bind to a given MHC molecule [33]. Using these algo-

rithms, the fraction of peptides derived from the human proteome [65] that bind

to various MHC molecules were computed. Of the roughly 107 unique peptide

sequences, only 70,000 are predicted to bind to HLA-B57, while 130,000 bind to

a typical HLA-B molecule, and 180,000 bind to HLA-B7 (an MHC type that is

associated with faster progression to AIDS) [33].

The intrinsic differences in self-peptide binding among MHC molecules can be

important during development of immature T cells in the thymus. As fewer self

peptides are able to bind to HLA-B57 molecules, a smaller diversity of self pMHC

are encountered by HLA-B57–restricted T cells in the thymus. Thus, as described

earlier, HLA-B57–restricted T cells are likely to be more cross-reactive to point

mutants of targeted viral peptides than T cells restricted by MHC types that

present a greater diversity of self peptides (Fig. 4a). This finding is supported

by experiments measuring the cross-reactivity of T cells from people with diverse

MHCs for HIV peptides [66–68].

A model of host–HIV dynamics showed that a repertoire of T cells more cross-
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reactive to point mutants of targeted epitopes results in better control of HIV

infection [33]. This is because such T cells can exert immune pressure on the

infecting strain and mutants that rapidly emerge to escape the immune pressure

more effectively. Thus, it was predicted that HIV-infected individuals with MHC

types that bind fewer self peptides are more likely to control viral loads to low

values. Supporting these predictions, in a large cohort of HLA-typed individuals,

experiments showed that the relative ability of HLA-B MHC types to control HIV

infection correlates with their peptide-binding characteristics that affect thymic

development (Fig. 6; [33]). Furthermore, there is also evidence that the immune

response in individuals with the HLA-B27 gene that control HIV exhibits greater

proportion of cross-reactive T cells than HLA-B27 positive individuals who do

not control HIV [69]. Even though we do not fully understand why individuals

with the HLA-B27 gene exhibit different proportions of activated cross-reactive

T cells upon HIV infection, its effects on the control of HIV support our con-

clusions. Undoubtedly, many complex factors influence the relationship between

MHC type and disease outcome. The effect of the factor related to differential

thymic selection should be greatest for MHC molecules that bind relatively few

(for example, HLA-B57) or many (for example, HLA-B7, -B35, -B8) self peptides.

Superior control of viral load due to the greater precursor frequency and cross-

reactivity of T-cell repertoires restricted by MHC molecules that bind to few self

peptides (for example, HLA-B57), should also confer protection against diseases

caused by other fast-mutating viruses. Indeed, HLA-B57 is protective against

hepatitis C virus, HCV [70], another highly mutable viral disease in which T cells

are important. Also, HLA-B8, which binds a greater diversity of self peptides [33],
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is associated with faster disease progression in HCV [71] and HIV [66]. Thus, the

correlation between the diversity of peptides presented in the thymus during T-

cell development and control or progression of disease may be general.

The results we summarize above also point to a mechanistic explanation for the

previously unexplained associations between HLA alleles that confer protection

against HIV and autoimmune diseases. T cells restricted by MHC types that

bind to few self peptides are subject to less stringent negative selection in the

thymus, and should therefore be more prone to recognizing self peptides. This

may explain the enhanced proclivity for autoimmune disorders in people with

MHC genes that are also associated with superior control of HIV infections.

5 FUTURE PROSPECTS

In this review we address how simple statistical mechanical models can be used to

shed light on certain aspects of the immune response. However, due to the highly

complex characteristics of the adaptive immune system, many basic questions

remain unresolved. The richness and intricacy of the problem invites a multitude

of approaches from the physical and life sciences to uncover new principles. Below

we discuss some additional questions pertinent to development and actions of the

T cell repertoire where models similar to the ones presented here could lead to

new insights.

Thymic selection attempts to remove dangerous T cells that could cause au-

toimmune disease. But thymic selection is not perfect and some autoreactive T

cells may escape, possibly due to the fact that all possible self-peptide types are

not expressed in the thymus, and that immature T cells spend a finite time in the

thymus. The immune system thus has other protective mechanisms, e.g. certain
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‘regulatory T cells’ suppress immune responses directed against self tissues. Are

T cells that do not encounter certain self peptides in the thymus just as reactive

to these peptides as those derived from pathogens? If so, how is autoimmunity

suppressed, but not reactivity to pathogens? Most times, the immune system is

very efficient at preventing autoimmune diseases, but what leads to a higher fre-

quency of escape of autoreactive T cells which target cells of the nervous system

and the pancreas in the case of autoimmune diseases like multiple sclerosis and

type I diabetes? Why do the escaping autoreactive T cells attack only partic-

ular tissues? By adapting the thymic selection model to include the variability

in expression levels of different types of self peptides in the thymus, one could

potentially get insights into the last two questions. The escape probability of

autoreactive T cells from the thymus can also be studied as diffusion in a random

field of immobile traps [72].

Autoimmune diseases are correlated to a combination of genetic and environ-

mental factors. People who express certain genes have a higher propensity for

certain autoimmune diseases, but not everyone with these genes develops disease;

e.g., most people with the inflammatory disease ankylosing spondylitis express

HLA-B27 (a type of MHC), but most people expressing HLA-B27 do not de-

velop ankylosing spondylitis. Certain genes and viral infections are known to

increase the risk of triggering multiple sclerosis. Insights into these puzzles could

emerge from stochastic dynamical models of host-pathogen interactions coupled

with models of T cell development.
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A Appendix: BASIC IMMUNOLOGY

Higher organisms are constantly exposed to infectious microbial pathogens, yet

rarely develop disease. This is because the variety of cells that comprise the in-

nate immune system are efficient in controlling pathogenic microorganisms. The

components of the innate immune system respond to common features of diverse

microorganisms, but are not specific for individual pathogens. Some bacteria

and many viruses can evade or overcome the innate mechanisms of host defense.

The adaptive immune system mounts pathogen-specific responses against such

invading microorganisms. Adaptive immunity also establishes memory of past

infections, thereby conferring the ability to mount rapid immune responses to

pathogens encountered previously. This immunological memory is the basis for

vaccination.

A.1 The Two Arms of the Adaptive Immune System

The adaptive immune system has two arms, called cellular and humoral immu-

nity. T lymphocytes (T cells) and B lymphocytes (B cells) are the key regulators

of cellular and humoral immunity, respectively. T cells and B cells express im-

munoglobulin proteins on their surfaces, which are called T cell receptors (TCRs)

and B cell receptors (BCRs), respectively. The genes encoding these receptors

are inherited as gene segments that stochastically recombine during the synthesis

of T cells and B cells in the bone marrow. Each gene assembled in a given lym-

phocyte is thus likely to be distinct, enabling the generation of a great diversity

of T cells and B cells expressing different receptors. Different lymphocytes can

Parts of this Appendix are reprinted with permission from the Annual Review of Physical

Chemistry, Volume 61 (c) 2010, by Annual Reviews, http://www.annualreviews.org.
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potentially respond to specific pathogens as distinct receptors can potentially rec-

ognize (i.e., bind sufficiently strongly to) molecular signatures of specific foreign

invaders. While the adaptive immune system can mount pathogen-specific re-

sponses against varied microbes, the number of possible pathogens suggests that

one T cell (or B cell) for every possible pathogen is an unlikely scenario.

The diverse lymphocytes bearing different TCRs and BCRs generated in the

bone marrow do not all become part of an organism’s army of T cells and B

cells. Rather, T cells and B cells undergo development processes that allow only

a small fraction of the generated cells to become part of an organism’s repertoire

of lymphocytes. T cells develop the thymus (the T stands for thymus); B cells

develop in the bone marrow (the B stands for bone marrow) and also, upon

activation, in lymphoid organs.

A.2 The T Cell Recognition Process

Cells of the innate immune system (e.g., dendritic cells, macrophages) engulf

pathogens (also called antigens) present in different parts of an organism’s body.

These cells are called antigen-presenting cells (APCs) because they express molec-

ular signatures of the ingested antigens on their surface. Extracellular fluid from

tissues, which contains pathogens or APCs harboring pathogens, drains into lym-

phoid organs (e.g., lymph nodes, spleen) via the lymphatic vessels. In lymphoid

organs, lymphocytes can interact with pathogen-bearing APCs and pathogens

and recognize them as foreign.

If a lymphocyte recognizes pathogens in a lymph node, a series of intracellular

biochemical reactions occurs (called signaling) that results in gene transcription

programs that cause the lymphocyte to become activated; i.e., it begins to prolif-
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erate and acquire the ability to carry out functions that can mediate an immune

response. Activated lymphocytes thus generated, bearing receptors specific for

the infecting pathogen, then leave the lymph node and enter the blood via lym-

phatic vessels. The lymphatic vessels enable lymphocytes to circulate among the

blood, lymphoid organs, and tissues. When activated lymphocytes encounter the

same pathogen’s molecular markers in the blood or tissues (see below), they can

carry out effector functions to eliminate the infection.

The BCRs and TCRs expressed on B cells and T cells can bind to molecular

markers called ligands. B cells protect against pathogens in blood or extracel-

lular spaces. The ligands of the BCR include proteins, fragments of proteins,

and molecules on the surface of viruses or bacteria. T cells evolved to combat

intracellular pathogens. Proteins synthesized by intracellular pathogens are cut

up into short peptide fragments (typically 8-15 amino acids long [1]) by enzymes

in cells harboring the pathogen. These peptide fragments may bind to the host’s

“major histocompatibility complex (MHC)” proteins. There are two kinds of

MHC proteins, called class I and class II. Typically, a human will have up to

six types of MHC class I proteins, and up to six types of MHC class II proteins.

Pathogen-derived peptides (p) bound to MHC proteins are ultimately expressed

on the surface of APCs (encountered by T cells in lymph nodes prior to activa-

tion) and infected cells (encountered by T cells patrolling blood and tisues); see

Fig. 1a.

T cell recognition of a particular pathogen-derived pMHC implies that its TCR

binds to it sufficiently strongly, leading to productive intracellular signaling and

activation. The T cell signaling network does not respond progressively to increas-

ing the stimulus (e.g., TCR-pMHC binding strength); rather, it only responds
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strongly above a threshold stimulus level [27, 41]. In the lymph nodes, T cells

activated by peptides presented by MHC class II proteins proliferate and differ-

entiate into many cell types called T helper cells, as they help activate B cells

and perform other important functions. T cells activated by peptides presented

by MHC class I molecules are called cytotoxic T lymphocytes (CTLs). When

activated CTLs encounter cells in tissues that express the pMHC molecules that

originally activated them, they can kill these cells by secreting various chemicals.
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Figure 1: T cell recognition of signatures of pathogens. (a) Antigen-presenting

cells (APCs) engulf pathogens and process their proteins into short peptides,

which are bound to major histocompatibility complex (MHC) proteins and pre-

sented on the surface. T cell receptors (TCRs) bind to peptide-MHCs, and suf-

ficiently strong binding enables intracellular signaling and gene transcription,

leading to T cell activation. APCs also present self-peptides derived from self-

proteins, but typically T cells are not activated by them. (b) TCR recognition

of pathogen-derived pMHC molecules is both highly specific and degenerate. It

is specific because if a TCR recognizes (black check-mark) a peptide (green),

most point mutations of the peptide’s amino acids (red) abrogate recognition

(red cross). However, a given TCR can also recognize diverse peptide sequences

(green, blue, yellow). Panel (a) is adapted from Figure 1a in Ref. [11].

Figure 2: Immature T cells (thymocytes) develop in the thymus. Thymocytes

migrate through the thymus and interact with diverse self peptide–major histo-

compatibility complexes (self-pMHCs) presented on the surface of thymic antigen

presenting cells (APCs). A T cell’s receptor (TCR) must bind to at least one

of these self-pMHCs moderately to exit the thymus and become a part of the

individual’s T cell repertoire (positive selection). A T cell with a TCR that

binds to any self-pMHC with an affinity that exceeds a sharply defined threshold

dies in the thymus (negative selection). This figure is adapted from Figure 3a in

Ref. [11].
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Figure 3: Effects of thymic selection on the characteristics of TCRs selected

against M types of self peptides. (a) Schematic representation of the interface

between TCR and pMHCs. The region of the TCR contacting the peptide is

highly variable and is modeled by a string of amino acids of length N ∼ 5.

The peptide is also treated similarly. The binding free energy between the TCR

and the entire pMHC is computed as described in the text. (b) Amino acid

composition of selected TCRs. TCRs selected against many types of self-peptides

in the thymus have peptide contact residues that are enriched in amino acids that

interact weakly with other amino acids. (c) Probability density distribution of Ec

values (strength of TCR binding to MHC) of TCRs selected against M types of

self peptides. TCRs selected against many types of self peptides are more likely

to bind weakly to MHC. (d) Amino acid composition of pathogenic peptides that

are recognized by at least one of the selected TCRs. TCRs selected against many

types of self peptides recognize only pathogenic peptides that are enriched with

strongly interacting amino acids. Amino acids on the abscissa in (b) and (d) are

ordered according to their largest interaction strength with other amino acids in

the interaction matrix, J . This figure is adapted from Figs. 1 and 4 in Ref. [17].
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Figure 4: Mechanism for specificity and degeneracy of TCR recognition of anti-

genic peptides: (a) Histogram of the number of important contacts (defined in

text) with which T cells recognize pathogenic peptides. T cells selected against

many self peptides recognize pathogenic peptides via many important contacts

and are thus specific. In contrast, T cells selected against few types of self pep-

tides recognize pathogenic peptides with only a few important contacts and are

thus cross-reactive. (b) The weakly interacting amino acids (brown) on the TCR

bind to strongly interacting amino acids (red, blue) on antigenic peptides re-

sulting in multiple moderate scale interactions that add up to a total binding

free energy that is large enough for recognition. Because antigen recognition is

mediated by multiple interactions of moderate value, each contact makes a signif-

icant contribution to the total interaction free energy necessary for recognition.

Therefore, disrupting any interaction by mutating one of the strongly interacting

amino acids on the peptide results (shown as a change from red to yellow color)

in abrogation of recognition. At the same time TCR recognition of antigenic pep-

tides is degenerate, because there are many combinatorial ways of distributing

strongly interacting amino acids (red, blue) along the peptide, which results in a

sufficiently strong binding with TCR for recognition. This figure is adapted from

Fig. 3d in Ref. [11] and Fig. 4a in Ref. [17].
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Figure 5: Representation of the dependency of the parameters (a) β, a measure

of amino acid composition of selected TCRs, and (b) β∗, a measure of amino

acid composition of pathogenic-peptides recognized by selected TCRs, on the

number of selected TCRs (K), the number of self peptides (M) against which

TCRs were selected, and the threshold for negative selection En. In (a) the region

between the black lines corresponds to β = 0, to the right (left) of which negative

(positive) selection is dominant, and weak (strong) amino acids are selected. The

blue dashed lines in (a) and (b) indicate the relevant parameter values for thymic

selection in mouse. In (b) solid black lines separate regions with β∗ > 0 (only

foreign peptides with strongly interacting amino acids are recognized) and β∗ = 0

(every foreign peptide is recognized). The region below the black dashed line in

(b) correspond to β = 0 (every TCR is selected). In (b) the threshold for negative

selection (En) is fixed. This figure is adapted from Figs. 2 and 4 in Ref. [17].
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Figure 6: HLA-B alleles associated with greater ability to control HIV correlate

with smaller self-peptide binding propensities. A large group of HIV infected

people were divided into a controller cohort (low levels of HIV RNA) and a pro-

gressor cohort (high levels of HIV RNA). The odds ratio is defined as pw/pwo

cw/cwo
,

where pw and pwo (cw and cwo) are the numbers of individuals in the progressor

cohort (the controller cohort) with and without this HLA, respectively. People

with HLA alleles associated with an odds ratio value greater or less than one are

more likely to be progressors or controllers, respectively. The fraction of peptides

derived from the human proteome that bind to a given HLA allele was deter-

mined with predictive bioinformatics algorithms [33]. The error bars represent

the 95% confidence intervals for odds ratio. The dotted line corresponds to equal

odds for an allele being associated with progressors and controllers. Included are

only those HLA-B alleles that were statistically significantly associated with HIV

control or progression. This figure is adapted from Fig. 3 in Ref. [33].
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