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Sparse Filter Design Under a Quadratic Constraint:
Low-Complexity Algorithms

Dennis Wei, Charles K. Sestok, and Alan V. Oppenheim

Abstract—This paper considers three problems in sparse filter
design, the first involving a weighted least-squares constraint
on the frequency response, the second a constraint on mean
squared error in estimation, and the third a constraint on signal-
to-noise ratio in detection. The three problems are unified under
a single framework based on sparsity maximization under a
quadratic performance constraint. Efficient and exact solutions
are developed for specific cases in which the matrix in the
quadratic constraint is diagonal, block-diagonal, banded, or has
low condition number. For the more difficult general case, a
low-complexity algorithm based on backward greedy selection
is described with emphasis on its efficient implementation. Ex-
amples in wireless channel equalization and minimum-variance
distortionless-response beamforming show that the backward
selection algorithm yields optimally sparse designs in many
instances while also highlighting the benefits of sparse design.

I. INTRODUCTION

The efficient implementation of discrete-time filters con-
tinues to be of interest given their widespread use in signal
processing systems. In many applications, the cost of im-
plementation is dominated by arithmetic operations and can
therefore be reduced by designing filters with fewer non-zero
coefficients, i.e., sparse filters. Sparse designs are beneficial
not only in terms of computation but also other cost metrics
such as hardware and energy consumption, depending on the
form of implementation. For instance, in an integrated circuit,
multipliers and adders may be deactivated or even eliminated
to save power and area, or the supply voltage may be lowered
to take advantage of a slower computation rate [1]. Sparsity is
also of considerable interest for linear sensor arrays [2], a close
mathematical parallel to discrete-time FIR filters, since the
number of potentially costly array elements can be reduced.

Previous work on sparse filter design has occurred on
several fronts. For the classical problem of approximating
an ideal frequency response, the techniques can be broadly
categorized into two approaches. In the first approach, which
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is applicable mostly to frequency-selective filters, the locations
of zero-valued coefficients are pre-determined in accordance
with the desired frequency response. Interpolated FIR filters
[3], [4] and frequency-response masking [5], [6] can be viewed
in this way since they incorporate a sparse filter with a regular
sparsity pattern cascaded with one or more equalizing filters.
Cascade structures however are not applicable to arrays. Sparse
direct-form designs for approximately nth-band filters were
developed in [7] utilizing the property of nth-band filters of
having every nth impulse response coefficient equal to zero
except for the central coefficient. The second approach is
more general and attempts to optimize the locations of zero-
valued coefficients so as to maximize their number subject
to frequency response constraints. The resulting combinatorial
optimization problem can be solved exactly using integer
programming [8], [9]. The complexity of optimal design has
also motivated the use of low-complexity heuristics, based for
example on forcing small coefficients to zero [10], orthogonal
matching pursuit [11], `1 relaxation or iterative thinning [12].
A non-convex approximate measure of sparsity based on p-
norms has also been proposed with p fixed [2] as well as
gradually decreasing toward zero [13].

All of the references above focus on approximation accord-
ing to a Chebyshev error criterion. In comparison, weighted
least-squares criteria have received less attention. As discussed
in [14], a weighted least-squares metric is employed as an
alternative to a Chebyshev metric because of greater tractabil-
ity and an association with signal energy or power. However,
this tractability is of limited use in designing sparse filters
since the problem is still combinatorial when the weighting is
non-uniform. For weighted least-squares sparse filter design,
approaches based on zeroing small coefficients [15] and subset
selection [16] have been developed.

Discrete-time filters are also used to estimate the values
of a signal from those of another. In the context of sparse
design, a particularly important example is the equalization
of communication channels, which involves the estimation of
transmitted values from received values corrupted by noise and
inter-symbol interference. Several researchers have observed
that the sparse power-delay profiles of many communication
channels can be exploited to design sparse equalizers. Exact
algorithms for minimizing the mean squared estimation error
given a fixed number of equalizer taps are developed in [17]
and [18], the former based on branch-and-bound for discrete-
time equalizers and the latter on nonlinear optimization for
continuous-time tapped-delay-line equalizers. A less complex
heuristic method is to choose the locations of non-zero equal-
izer coefficients to coincide with the locations of large channel



2

coefficients [19]. This approach is refined in [20] and [21],
which predict the locations of large coefficients in conventional
equalizers and allocate taps in sparse equalizers accordingly.
A modified decision-feedback equalizer (DFE) structure is
proposed in [22] to better exploit the sparsity of the channel
response. An alternative class of heuristic methods allocates
taps according to simplified mean squared error (MSE) or
output signal-to-noise ratio (SNR) metrics. The allocation can
be done in a single pass [23], two alternating passes [24], or
one tap at a time using forward greedy selection [25], [26].
The channel sparsity is used in [26] to further reduce the tap
allocation search space.

Signal prediction is a variant of the estimation problem
in which past values of a signal are used to predict future
values. Sparse linear prediction for speech coding is proposed
in [27] using iteratively reweighted `1 minimization to promote
sparsity in the residuals and improve coding performance.

A third context in which filters are used is in the detection of
signals in noisy environments, where the objective of filtering
is to increase the probability of detection. A widely used
performance measure in detection is the SNR of the filter
output, which is well-known to be monotonically related to
the probability of detection in Gaussian noise [28]. The design
of linear detectors that use only a subset of the available
measurements was considered in [29], [30] as a way of
reducing communication costs in distributed systems.

In this paper, we draw from the applications above and
consider three problems in sparse filter design, the first in-
volving a weighted least-squares constraint on the frequency
response, the second a constraint on MSE in estimation, and
the third a constraint on SNR in detection. It is shown that
all three problems can be placed under a common framework
corresponding to the following minimization problem:

min
b

‖b‖0 s.t. (b− c)TQ(b− c) ≤ γ, (1)

where b is a vector of N coefficients, Q is an N × N
symmetric positive definite matrix, c is a vector of length N ,
and γ > 0. We use for convenience the zero-norm notation
‖b‖0 to refer to the number of non-zero components in b.
Our formulation allows for a unified approach in solving not
only the three stated problems but also other problems with
quadratic performance criteria.

It is important to note that the sparse filter design problem
as stated in (1) differs in two key respects from the sparse
linear inverse problem, i.e., the problem of obtaining sparse
approximate solutions to linear equations, and more specif-
ically its manifestations in compressive sensing with noisy
measurements [31]–[34], atomic decomposition in overcom-
plete dictionaries [35], sparsity-regularized image restoration
[36]–[40], and sparse channel estimation [41]–[43]. The sparse
linear inverse problem can be formulated in general as

min
x

‖x‖0 s.t. ‖Φx− y‖22 = (Φx− y)T (Φx− y) ≤ ε,
(2)

where ε is a limit on the residual Φx−y. The first distinction
between (1) and (2) is in the nature of the sets of feasible
solutions. In many applications of (2), the dimension of y is
significantly lower than that of x and the system of equations

is underdetermined. This is deliberately the case in com-
pressive sensing, overcomplete decomposition, and adaptive
channel estimation. As a consequence, the matrix ΦTΦ, which
corresponds to Q in (1), is rank-deficient and the feasible
set is not bounded as in (1) but instead has infinite extent
in certain directions. The second difference between sparse
filter design and sparse linear inverse problems is one of
perspective. In compressive sensing, image restoration, and
channel estimation, sparsity or near-sparsity is assumed to
enable reconstruction from fewer measurements, leading to
a formulation such as (2). However, the actual sparsity level
of a solution to (2) is of secondary importance as long as
the primary goal of accurate reconstruction is achieved. In
contrast, in sparse filter design, maximizing sparsity is the
main objective, while no assumption is made regarding the
expected level of sparsity. An algorithm that produces near-
sparse designs having many small but non-zero coefficients is
not sufficient by itself.

Given the above differences, sparse filter design as con-
sidered in this paper requires a somewhat different set of
approaches than for the sparse linear inverse problem. This
paper focuses on design algorithms that are low in complexity,
which are important when computation is limited, for example
when a filter is redesigned adaptively. In some cases, low-
complexity algorithms are sufficient to ensure optimal solu-
tions to (1). We describe several such cases in which the
matrix Q is diagonal, block-diagonal, banded, or has low
condition number. More generally however, solving (1) is
computationally difficult. For the general case, we discuss
an efficient algorithm based on backward greedy selection,
similar to one of the algorithms in [12] but adapted to
the quadratic performance criterion in (1), and in contrast
to the forward greedy approach of [25], [26]. In backward
selection, coefficients are removed one at a time in such a
way that the performance degradation from one iteration to
the next is minimized. A similar idea has also been proposed
for subset selection in regression [44]. In design examples,
an extensive comparison with an exact branch-and-bound
algorithm shows that the backward selection algorithm often
yields optimal or near-optimal solutions, even for moderately-
sized instances. Compared to other heuristics such as forward
selection, backward selection performs favorably and with
greater consistency. The examples also illustrate the benefits of
sparse design in wireless channel equalization and minimum-
variance distortionless-response (MVDR) beamforming.

In a companion paper [45], we present an exact algorithm
for the general case in which Q does not have special structure.
Some preliminary results related to the present paper and [45]
were reported in [46]. The present paper builds upon [46]
by significantly expanding the treatment of special cases in
Section III beyond the diagonal case, presenting a backward
selection algorithm for the general case, and demonstrating the
near-optimality of the algorithm and favorable comparisons to
other heuristics in filter design examples. The present paper
differs fundamentally from the companion paper [45] in its
approach: [45] focuses on a higher-complexity exact algorithm
based on branch-and-bound and lower bounding techniques,
in contrast to the lower-complexity algorithms in the present
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paper.
This paper is organized as follows: In Section II, the three

filter design problems considered in this work are formulated
and reduced to (1). In Section III, we present efficient methods
for solving (1) when the matrix Q is diagonal, block diagonal,
banded, or has low condition number. We also indicate briefly
why an extension to the general case of unstructured Q
does not appear to be straightforward. In Section IV, we
describe a low-complexity backward selection algorithm for
the general case. In Section V, the near-optimality of the
backward selection algorithm and its superiority over other
heuristics are validated through design examples.

II. PROBLEM FORMULATIONS AND REDUCTIONS

In this section, we formulate the problems of sparse filter
design for weighted least-squares approximation of frequency
responses, for estimation or prediction under an MSE con-
straint, and for signal detection under an SNR constraint. All
three problems can be reduced to (1), making it sufficient to
focus on (1) alone. More specifically, it is shown that the
performance constraint in each problem can be reduced to the
inequality

bTQb− 2fTb ≤ β, (3)

which is equivalent to the constraint in (1) with f = Qc and
β = γ − cTQc.

This paper focuses on FIR filters. In the FIR case, the
total number of coefficients, N , is usually determined by
the maximum allowable number of delay elements or array
length. Thus we refer to N as the length of the filter, with the
understanding that the final design may require fewer delays
if coefficients at the ends of the vector b are zero.

A. Weighted least-squares filter design

The first problem is to design a causal FIR filter with
coefficients b0, . . . , bN−1 and frequency response

H(ejω) =

N−1∑
n=0

bne
−jωn (4)

chosen to approximate a desired frequency response D(ejω)
(assumed to be conjugate symmetric). Specifically, the
weighted integral of the squared error is constrained to not
exceed a tolerance δ, i.e.,

1

2π

∫ π

−π
W (ω)

∣∣H(ejω)−D(ejω)
∣∣2 dω ≤ δ, (5)

where W (ω) is a non-negative and even-symmetric weighting
function. The number of non-zero coefficients is to be mini-
mized. Substituting (4) into (5), expanding, and comparing the

result with (3), we can identify

Qmn =
1

2π

∫ π

−π
W (ω) cos

(
(m− n)ω

)
dω,

m = 0, . . . , N − 1, n = 0, . . . , N − 1, (6a)

fn =
1

2π

∫ π

−π
W (ω)D(ejω)ejωn dω, n = 0, . . . , N − 1,

(6b)

β = δ − 1

2π

∫ π

−π
W (ω)

∣∣D(ejω)
∣∣2 dω. (6c)

The matrix Q defined by (6a) is symmetric, Toeplitz, and
positive definite, the last property holding as long as W (ω)
is non-zero over some interval. The fact that Q is Toeplitz is
relatively unimportant as we will often work with submatrices
extracted from Q, which in general are no longer Toeplitz.

In the present case, the parameter γ is given by

γ = δ −
(

1

2π

∫ π

−π
W (ω)

∣∣D(ejω)
∣∣2 dω − cTQc

)
.

It can be seen from (3) and (5) that c = Q−1f corresponds
to the minimum-error design and the quantity in parentheses
above is the minimum error. Hence γ is the amount of
additional error permitted relative to the optimal non-sparse
design.

B. Estimation, prediction, and equalization

A second problem that can be reduced to the formulation
in (1) is the estimation of a random process x[n] from
observations of a random process y[n] under the assumption
that x[n] and y[n] are jointly WSS. The estimate x̂[n] is
produced by processing y[n] with a causal FIR filter of length
N ,

x̂[n] =

N−1∑
m=0

bmy[n−m]. (7)

The goal is to minimize the number of non-zero coefficients
bm while keeping the mean-squared estimation error below a
threshold δ, i.e.,

E
{

(x̂[n]− x[n])
2
}
≤ δ. (8)

Substituting (7) into (8), expanding, and comparing with (3),
we find

Qmn = φyy [|m− n|] , (9a)
fn = φxy[n], (9b)
β = δ − φxx[0], (9c)

where the cross-correlation is defined as φxy[m] = E{x[n +
m]y[n]}. The matrix Q is again symmetric, Toeplitz, and
positive definite since it corresponds to an auto-correlation
function. In the estimation context, the vector c = Q−1f corre-
sponds to the causal Wiener filter of length N , φxx[0]−cTQc
is the corresponding error, and γ is again equal to the allowable
excess error.

The problem of p-step linear prediction is a special case of
the estimation problem with x[n] = y[n+ p] and p a positive
integer. Equation (9a) remains unchanged while φxy[n] is
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replaced with φyy[n + p] in (9b) and φxx[0] with φyy[0] in
(9c).

An important application of the basic estimation problem
above is to the equalization of communication channels. In
channel equalization, x[n] represents a transmitted sequence,
and in the case of linear equalization, y[n] represents the
received sequence and can be modelled according to

y[n] =

∞∑
k=−∞

h[k]x[n− k] + η[n],

where h[k] represents the overall impulse response due to
the combination of the transmit pulse, channel, and receive
filter, and η[n] is additive noise, assumed to be zero-mean,
stationary with autocorrelation φηη[m], and uncorrelated with
x[n]. Under this channel model, the auto-correlation and cross-
correlation in (9) can be expressed as

φyy[m] =
∞∑

k=−∞

φhh[k]φxx[m− k] + φηη[m], (10a)

φxy[m] =

∞∑
k=−∞

h[k]φxx[m+ k], (10b)

where φhh[k] is the deterministic autocorrelation of h[n].
The formulation in this subsection can be extended straight-
forwardly to more elaborate equalization techniques such
as decision-feedback equalization, channel shortening, and
MIMO; see [47] for more details on these extensions.

Under the complex-baseband equivalent channel model for
quadrature-amplitude modulation (QAM), all of the quanti-
ties above become complex-valued, including the equalizer
coefficients bn, and Q becomes Hermitian positive definite.
We can accommodate complex coefficients within our real-
valued framework by interleaving the real and imaginary
parts of b to create a 2N -dimensional real-valued vector
b̃ =

[
Re(b1) Im(b1) Re(b2) Im(b2) . . .

]T
. The vector

c, which is still equal to Q−1f , is transformed similarly, and Q
is transformed by replacing each complex-valued entry Qmn

with the 2× 2 submatrix[
Re(Qmn) − Im(Qmn)
Im(Qmn) Re(Qmn)

]
.

The zero-norm
∥∥∥b̃∥∥∥

0
now measures the number of non-zero

real and imaginary components of b counted separately as
opposed to the number of non-zero components of b as
a complex vector. Counting real and imaginary components
separately is a reasonable metric because the cost of imple-
mentation is usually determined by the number of operations
on real numbers, even for complex-valued filters.

C. Signal detection

The design of sparse filters for signal detection can also
be formulated as in (1). We assume that a signal s[n] is to
be detected in stationary zero-mean additive noise η[n] with
autocorrelation φηη[m]. The received sequence r[n] equals
s[n] + η[n] when the signal is present and η[n] alone when

the signal is absent. The sequence r[n] is processed with an
FIR filter of length N and sampled at n = N − 1 to yield

y[N − 1] =

N−1∑
n=0

bnr[N − 1− n].

The filter coefficients bn are chosen to ensure that the SNR
exceeds a pre-specified threshold ρ, where the SNR is defined
as the ratio of the mean of y[N − 1] given that the signal
is present to the standard deviation of y[N − 1], the latter
contributed by noise alone. Defining s ∈ RN and R ∈ RN×N
according to sn = s[N − 1 − n] and Rmn = φηη [|m− n|],
the problem of sparse design can be expressed as

min
b

‖b‖0 s.t.
sTb√
bTRb

≥ ρ. (11)

While the SNR constraint in (11) cannot be rewritten
directly in the form of (3), problems (11) and (1) can be made
equivalent in the sense of having the same optimal solutions.
To establish the equivalence, we determine conditions under
which feasible solutions to (1) and (11) exist when a subset of
coefficients, represented by the index set Z , is constrained to
have zero value. Given bn = 0 for n ∈ Z and with Y denoting
the complement of Z , (3) becomes

bTYQYYbY − 2fTY bY ≤ β, (12)

where bY is the |Y|-dimensional vector formed from the
entries of b indexed by Y (similarly for other vectors), and
QYY is the |Y|×|Y| matrix formed from the rows and columns
of Q indexed by Y (similarly for other matrices). We consider
minimizing the left-hand side of (12) with respect to bY . If
the minimum value is greater than β, then (12) cannot be
satisfied for any value of bY and a feasible solution with
bn = 0, n ∈ Z cannot exist. It is straightforward to show by
differentiation that the minimum occurs at bY =

(
QYY

)−1
fY ,

and consequently the condition for feasibility is

−fTY (QYY)
−1

fY ≤ β. (13)

We refer to an index set Y (equivalently its complement Z)
as being feasible if (13) is satisfied.

Similarly for problem (11), a subset Y is feasible if and
only if the modified constraint

sTYbY√
bTYRYYbY

≥ ρ

is satisfied when the left-hand side is maximized. The max-
imizing values of bY are proportional to (RYY)

−1
sY and

correspond to the whitened matched filter for the partial signal
sY (a.k.a. the restricted-length matched filter in [30]). The
resulting feasibility condition is

sTY (RYY)
−1

sY ≥ ρ2 (14)

after squaring. Condition (14) is identical to (13) for all Y with
the identifications Q = R, f = s, and β = −ρ2. It follows
that an index set Y is feasible for problem (11) exactly when
it is feasible for problem (1), and therefore the optimal index
sets for (1) and (11) coincide.
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One application of the basic detection problem above is
in minimum-variance distortionless-response (MVDR) beam-
forming in array processing [48]. In this context, the target
signal s is defined by a direction of interest, R is the
correlation matrix of the array output, and the mean-squared
value of the array output is minimized subject to a unit-gain
constraint on signals propagating in the chosen direction. To fit
the present formulation, the mean-squared output is bounded
instead of minimized, which is equivalent to bounding the
SNR as in (11), and the number of non-zero array weights
is minimized.

In the problems discussed in this section, the assumption of
stationarity is not necessary for equivalence with problem (1).
In the absence of stationarity, the values of Q, f , and β may
vary with time, resulting in a succession of instances of (1).

We have shown in this section that several sparse filter de-
sign problems can be reduced to the form of (1). Accordingly,
in the remainder of the paper we focus on the solution of (1).
To apply the methods to a specific design problem, it suffices
to determine the values of the parameters Q, f , β or Q, c, γ
using the expressions provided in this section.

III. EXACT ALGORITHMS FOR SPECIAL CASES

In general, problem (1) is a difficult combinatorial opti-
mization problem for which no polynomial-time algorithm is
known. Efficient and exact solutions exist however when the
matrix Q has special structure. In this section, we discuss
several specific examples in which Q is diagonal, block
diagonal, banded, or has low condition number.

The methods in this section solve (1) by determining for
each K = 1, 2, . . . whether a feasible solution with K zero-
valued coefficients exists. A condition for the feasibility of
such solutions can be derived from (13), which specifies
whether a solution exists when a specific subset Z of coeffi-
cients is constrained to have zero value. Condition (13) can be
generalized to encompass all subsets of a given size using an
argument similar to that made in deriving (13). Specifically, if
the minimum value of the left-hand side of (13) taken over all
subsets Y of size N−K is greater than β, then no such subset
Y is feasible and there can be no solution with K zero-valued
entries. After a sign change, this gives the condition

max
|Y|=N−K

{
fTY (QYY)−1fY

}
≥ −β (15)

for the feasibility of solutions with K zero-valued components.
The number of subsets Y of size N −K is

(
N
K

)
, which can

be very large, and in the general case a tractable way of
maximizing over all choices of Y is not apparent. However,
for the special cases considered in this section, (15) can be
evaluated efficiently.

We will find it convenient to express conditions (13) and
(15) in terms of the set Z rather than Y , especially when Z
is smaller than Y . With bn = 0 for n ∈ Z , the constraint in
(1) becomes

(bY − cY)TQYY(bY − cY)

− 2cTZQZY(bY − cY) + cTZQZZcZ ≤ γ, (16)

where QZY denotes the submatrix of Q with rows indexed
by Z and columns indexed by Y . As in the derivation of (13),
we minimize the left-hand side of (16) with respect to bY to
obtain a condition for feasibility. The minimum is achieved
with bY − cY = (QYY)−1QYZcZ , resulting in

cTZ(Q/QYY)cZ ≤ γ, (17)

where Q/QYY = QZZ − QZY(QYY)−1QYZ =((
Q−1

)
ZZ

)−1
is the Schur complement of QYY [49]. Con-

dition (17) is equivalent to (13). Similarly, the counterpart to
(15) is

min
|Z|=K

{
cTZ(Q/QYY)cZ

}
≤ γ. (18)

A. Diagonal Q

The first example we consider is the case of diagonal Q.
This special case arises in least-squares filter design when the
weighting is uniform, i.e., W (ω) = 1 in (5), implying that
Q = I from (6a). In the estimation problem, if the observations
y[n] are white, then Q in (9a) is proportional to I. Similarly,
R is proportional to I in the detection problem when the noise
is white.

When Q is diagonal, Q/QYY = QZZ and (18) simplifies
to

min
|Z|=K

{∑
n∈Z

Qnnc
2
n

}
≤ γ. (19)

The solution to the minimization is to choose Z to correspond
to the K smallest values of Qnnc2n. Denoting this subset by
Z1(K), (19) becomes ∑

n∈Z1(K)

Qnnc
2
n ≤ γ. (20)

Problem (1) can now be solved by checking condition (20)
for different values of K. The minimum zero-norm is given
by N − K∗, where K∗ is the largest value of K for which
(20) holds. One particular optimal solution results from setting
bn = cn for n corresponding to the N−K∗ largest Qnnc2n, and
bn = 0 otherwise. This solution has an intuitive interpretation
in the context of the problems discussed in Section II. In least-
squares filter design with W (ω) = 1, we have fn = d[n] from
(6b) and cn = fn. Thus the solution matches the N − K∗

largest values of the desired impulse response d[n] and has
zeros in the remaining positions. In the estimation problem
with white observations, cn ∝ fn = φxy[n], and hence
the cross-correlation plays the role of the desired impulse
response. Similarly, in the detection problem with white noise,
the largest values of the signal s[n] are matched. If y[n] or
η[n] is white but non-stationary, the matrices Q and R remain
diagonal and the solution takes into account any weighting due
to a time-varying variance.

B. Low condition number

In Section III-A, it was seen that when Q is diagonal,
the solution to the minimization (18) is the subset Z1(K)
corresponding to the K smallest values of Qnnc2n. This section
presents sufficient conditions related to the conditioning of Q
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for Z1(K) to remain the solution to (18) when Q is non-
diagonal.

To derive the conditions, we express Q as the product
Q = DTD, where D is a diagonal matrix with non-zero
diagonal entries Dnn =

√
Qnn and T is a positive definite

matrix with unit diagonal entries. The non-singularity of D and
positive definiteness of T follow from the positive definiteness
of Q. Straightforward algebra shows that the Schur comple-
ment Q/QYY is transformed into DZZ(T/TYY)DZZ . Thus
the quadratic form in (18) can be rewritten as gTZ(T/TYY)gZ ,
where g = Dc and the components of g satisfy g2

n = Qnnc
2
n.

In terms of the rescaled parameters T and g, the subset
Z1(K) can be interpreted as the subset that minimizes the
norm ‖gZ‖2 over all subsets Z of size K. When Q is
diagonal, T = I and Z1(K) also minimizes the quadratic form
gTZ(T/TYY)gZ . By definition, Z1(K) continues to minimize
gTZ(T/TYY)gZ in the non-diagonal case if

gTZ1(K)(T/TY1(K)Y1(K))gZ1(K) ≤ gTZ(T/TYY)gZ

∀ Z : |Z| = K, Z 6= Z1(K), (21)

where Y1(K) denotes the complement of Z1(K). Inequality
(21) is in general difficult to verify. A stricter but more easily
checked inequality can be obtained through a lower bound on
the right-hand side of (21). Let λmin(T) denote the smallest
eigenvalue of T. Given that λmin(T) is a lower bound on the
smallest eigenvalue of any Schur complement T/TYY [49],
it follows that gTZ(T/TYY)gZ ≥ λmin(T) ‖gZ‖22 for any Z
[29], [30]. Hence a sufficient condition for the minimality of
Z1(K) is

gTZ1(K)(T/TY1(K)Y1(K))gZ1(K) ≤ λmin(T) ‖gZ‖22
∀ Z : |Z| = K, Z 6= Z1(K). (22)

Inequality (22) depends on Z only through the norm ‖gZ‖22
and can therefore be reduced to

gTZ1(K)(T/TY1(K)Y1(K))gZ1(K) ≤ λmin(T)
∥∥gZ2(K)

∥∥2

2
,

(23)
where Z2(K) is the subset corresponding to the second-
smallest value of ‖gZ‖2. Evaluating (23) requires only that
the components of g be sorted by magnitude instead of a full
combinatorial search.

The sufficient condition (23) can be related to the condition
number of T by bounding the left-hand side of (23) from
above in terms of the largest eigenvalue λmax(T) (and thus
further strengthening the inequality). Using the definition of
the condition number κ(T) = λmax(T)/λmin(T), we obtain

κ(T) ≤
∥∥gZ2(K)

∥∥2

2∥∥gZ1(K)

∥∥2

2

,

which suggests that (23) is more likely to be satisfied when
κ(T) is low and the ratio of the norms is large, i.e., when g
has K components that are much smaller than the rest. On the
other hand, if all components of g are of the same magnitude,
the condition cannot be satisfied unless κ(T) = 1 implying
T ∝ I.

In summary, it is optimal to set bn = 0 for indices n corre-
sponding to the smallest Qnnc2n, just as in the diagonal case,

provided that inequality (23) is satisfied. The arguments in this
section remain valid for any choice of non-singular diagonal
matrix D, with corresponding changes in the definitions of the
minimizing subsets Z1(K) and Z2(K) and the matrix T.

C. Block-diagonal Q

A generalization of the diagonal structure in Section III-A
is the case of block-diagonal matrices. It was seen in Section
II that Q often corresponds to a covariance matrix and is
therefore block-diagonal if the underlying random process can
be partitioned into subsets of variables such that variables from
different subsets are uncorrelated. This may occur for example
in a sensor array in which the sensors are arranged in clusters
separated by large distances.

We assume that Q is block-diagonal with B diagonal
blocks:

Q =

Q1

. . .
QB

 ,
where the bth block Qb is of dimension Nb ×Nb and indices
have been permuted if necessary to convert Q to block-
diagonal form. For every index set Y , let Yb be the intersection
of Y with the indices corresponding to the bth block. Then

QYY =

QY1Y1

. . .
QYBYB


is also block diagonal. Hence the maximization in (15) can be
rewritten as

max

B∑
b=1

fTYb
(QYbYb

)−1fYb
s.t.

B∑
b=1

|Yb| = N −K.

(24)
A similar and equivalent decomposition could be obtained
from (18) since Q−1 is also block diagonal.

The maximization in (24) can be solved via dynamic
programming. To derive the dynamic programming recursion,
define Vg(M) to be the maximum value over all subsets Y of
size M that are confined to the first g blocks, i.e.,

Vg(M) = max

g∑
b=1

fTYb
(QYbYb

)−1fYb

s.t.
g∑
b=1

|Yb| = M, g = 1, . . . , B.

The maximum value in (24) is thus VB(N −K). Also define
vb(Mb) to be the maximum value over subsets of size Mb

restricted to the bth block,

vb(Mb) = max
|Yb|=Mb

fTYb
(QYbYb

)−1fYb
,

b = 1, . . . , B, Mb = 0, 1, . . . , Nb. (25)

It follows that V1(M) = v1(M). For g = 2, . . . , B, Vg(M)
may be computed through the following recursion:

Vg(M) = max
Mg=0,1,...,min(M,Ng)

{vg(Mg) + Vg−1(M −Mg)} ,
(26)
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which corresponds to optimally allocating Mg indices to the
gth block, optimally allocating the remaining M−Mg indices
to the first g−1 blocks, and then maximizing over all choices
of Mg between 0 and the lesser of M and Ng , the dimension
of the gth block.

Dynamic programming decomposes the maximization in
(15) into B smaller problems (25) of dimension Nb, together
with a recursion (26) to compute the overall maximum. This
results in a significant decrease in computation since the
complexity of exhaustively evaluating (15) for a number of K
values proportional to N is at least exponential in N , whereas
the complexity of (25) is only exponential in Nb. The de-
composition is particularly efficient when the blocks are small
in an absolute sense. The computational complexity added by
the recursion is comparatively modest. Each evaluation of (26)
requires at most Ng+1 additions and comparisons. Assuming
in the worst case that Vg(M) is computed for all g = 2, . . . , B
and M = 0, . . . , N , the total number of operations in the
recursion is
B∑
g=2

N∑
M=0

(Ng + 1) = (N + 1)(N −N1 +B − 1) ∼ O(N2).

D. Banded Q

Another generalization of the diagonal case is to consider
banded matrices, i.e., matrices in which the non-zero entries
in row n are confined to columns n − w to n + w. Banded
structure implies that the submatrices QYY are block-diagonal
for certain subsets Y . As in Section III-C, an exhaustive
search for the best subset can be simplified with dynamic
programming. In this paper, we focus on tridiagonal matrices
(w = 1). Detailed analysis of higher-bandwidth matrices is
presented in [29], [50].

For the tridiagonal case, consider expressing a subset Y as
a union of subsets Y1, . . . ,YC such that all indices in each
subset Yc are consecutive and each subset is separated from
all others by at least one index. In this case, QYY is block-
diagonal and the quadratic form in (15) can be decomposed
as

fTY (QYY)−1fY =

C∑
c=1

fTYc
(QYcYc

)−1fYc
. (27)

The dynamic programming recursion based on (27) is slightly
different than the recursion for block-diagonal matrices in
Section III-C. The elementary quantities are quadratic forms
for sets of consecutive indices, expressed as

wi(p) = fTYc
(QYcYc)−1fYc where Yc = {i− p+ 1, . . . , i}.

In addition, the quadratic form for an empty index set is
defined as wi(0) = 0. The state variables for the dynamic
program are the best subsets of given size and upper bound on
the indices in the subset, and the associated quadratic forms.
These are defined as

Wi(M) = max fTY (QYY)−1fY

s.t. |Y| = M and j ≤ i ∀ j ∈ Y.

These definitions imply that Wi(i) = wi(i) since the only set
of i indices with maximum index i is Y = {1, . . . , i}.

The dynamic program proceeds in stages defined by the
maximum index i with i increasing from 1 to N . At the end
of the computation, the left-hand side in the feasibility test
(15) is given by WN (N −K). The states Wi(i) are already
given by wi(i). The states Wi(1) to Wi(i− 1) are computed
from Wj(M) for j < i using the following recursion:

Wi(M) = max
p=0,...,M

{wi(p) +Wi−p−1(M − p)} . (28)

The first term on the right-hand side corresponds to fixing a
final subset {i− p+ 1, . . . , i} of p consecutive indices. Given
this final run, the remaining M − p indices are restricted to
the range 1, . . . , i − p − 1, and the optimal choice of these
M − p indices yields the second term Wi−p−1(M − p). Since
the index i − p is not included, the two terms simply add as
in (27). The sum is then maximized over all choices of p. For
p = 0, the right-hand side of (28) reduces to Wi−1(M), i.e.,
the last index is not used.

The computational complexity of the algorithm is controlled
by the number of elementary subsets. In the tridiagonal case,
these subsets are composed of consecutive indices. There are
O(N2) subsets of this type. For each such subset, the dynamic
programming algorithm computes the associated quadratic
form wi(p), requiring O(N3) operations in the worst case.
The cost of computing all of the wi(p) values exceeds the
cost of updating the Wi(M) variables [29], and hence the
total computational complexity of the dynamic program is
O(N5) for tridiagonal matrices. As noted in Section III-C,
the complexity of an exhaustive search algorithm is at least
exponential in N .

For general banded matrices, the elementary subsets are
composed of indices separated by fewer than w places. For
each subset, the associated quadratic form is computed and
the state variables for the dynamic program are updated. As
shown in [50, App. A.1], the number of elementary subsets
is proportional to 2M0 , where M0 is the largest value of
N−K. If M0 is proportional to N , the dynamic programming
algorithm considers an exponential number of subsets, just as
an exhaustive search does.

A variation on the banded case is that of Q−1 being banded.
Unlike in the diagonal or block-diagonal cases, Q having
a low bandwidth does not imply that Q−1 has the same
bandwidth, and vice versa. If Q−1 is tridiagonal, we may work
with condition (18) instead of (15). The above algorithm then
applies with Q replaced by Q−1, f by c, and maximization
by minimization. The number of zero coefficients K is incre-
mented instead of the number of non-zero coefficients M .

E. Challenges in generalizing to unstructured Q

In Sections III-A–III-D, we discussed several special cases
of problem (1) in which the structure of the matrix Q allows
for an efficient solution. It is natural to ask whether these
special cases can be generalized. In particular, the fact that any
symmetric matrix can be diagonalized by a unitary transforma-
tion suggests the possibility of exploiting such transformations
to reduce the general problem to the diagonal case of Section
III-A. Unfortunately, this approach to generalization does not
appear to be straightforward.
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One way of reducing an instance to the diagonal case is
to apply whitening. In the estimation problem, the whitening
is done on the observations y[n], while in the detection
problem, it is the noise η[n] that is whitened. The process of
whitening however requires additional processing of the input,
for example with a prefilter. The task then shifts to designing a
whitening prefilter that does not significantly increase the total
implementation cost. Moreover, since the whitening is likely to
be imperfect, further measures may be needed. There are also
applications in which cascade structures are not applicable,
e.g. arrays.

A different approach is to solve problem (1) by first trans-
forming the feasible set into one that is easier to optimize
over, for example a set corresponding to a diagonal matrix,
and then inverting the transformation to map the solution
found in the transformed space to one in the original space. It
is necessary for the transformation to preserve the ordering
of vectors by their zero-norm to ensure optimality in the
original space. As shown in [50, App. A.2], the only invertible
linear transformations that preserve ordering by zero-norm in
a certain global sense are composed of invertible diagonal
scalings and permutations. These operations cannot transform
a dense Q matrix into a diagonal, block-diagonal, or banded
matrix. It appears therefore that (1) in its general form is not
reducible to one of the special cases and hence remains a
difficult problem. Nevertheless, the special case solutions in
Sections III-A–III-D can provide the basis for approximations,
for example in [45] to derive bounds on the optimal cost.

IV. LOW-COMPLEXITY ALGORITHM FOR THE GENERAL
CASE

In this section we consider the more general case in which
the matrix Q does not have any of the properties identified
in Section III. In keeping with the focus in this paper on
low-complexity algorithms, we discuss a heuristic algorithm
for solving (1) based on backward greedy selection. We give
an overview of the algorithm before describing an efficient
implementation in detail. Optimal algorithms for the general
case are treated in a companion paper [45].

The backward selection algorithm iteratively thins a pre-
designed non-sparse filter by constraining more and more
coefficients to zero while re-optimizing the remaining non-zero
coefficients to compensate. Each new zero-valued coefficient is
chosen to minimize the increase in the quadratic error (the left-
hand side of the constraint in (1)), and zero-value constraints
once added are never removed. The algorithm can be viewed as
a simplification of the exact method described at the beginning
of Section III, which involves evaluating (18) for K = 1, 2, . . ..
For K = 1, the algorithm carries out the minimization in
(18) exactly, yielding a minimizing subset (in this case a
single index) that we denote as Z(1). For K > 1, the subsets
Z considered in the minimization are constrained to contain
Z(K−1), the minimizer for the previous value of K, thus
limiting the search to adding a single index to Z(K−1). The
algorithm terminates when the minimum value corresponding
to Z(K+1) exceeds γ for some K, at which point the last
feasible subset Z(K) is taken to be the final subset of zero-
valued coefficients. Since the number of subsets explored in

the Kth iteration is at most N −K + 1 (corresponding to the
N − (K − 1) choices for the index to be added to Z(K−1)),
and the number of iterations is at most N , the total number of
subsets grows only quadratically with N . In comparison, an
exhaustive evaluation of (18) for K = 1, 2, . . . would involve
an exponential number of subsets in total.

Greedy selection is guaranteed to result in a maximally
sparse solution when the matrix Q is diagonal. From Section
III-A, the solution to the minimization in (18) in the diagonal
case is to choose Z to correspond to the K smallest Qnnc2n.
Since the subset of the K smallest Qnnc2n is contained in the
subset of the K + 1 smallest, the nesting property assumed
by the algorithm is satisfied and the algorithm finds the true
minimizing subsets. In other cases however, backward greedy
selection does not appear to guarantee an optimal solution.
Nevertheless, the examples in Section V demonstrate that the
algorithm often yields optimal or near-optimal designs.

To describe the algorithm in more detail, we use Z(K)

as above to represent the subset of coefficients that are
constrained to zero in iteration K. The complement of Z(K),
previously denoted Y(K), is now partitioned into two subsets
U (K) and F (K). The subset U (K) consists of those coeffi-
cients for which a zero value is no longer feasible because
of zero-value constraints imposed on coefficients in Z(K),
which shrink the feasible set. It will be seen shortly that the
coefficients in U (K) can be eliminated to reduce the dimension
of the problem. The subset F (K) consists of the remaining
coefficients.

Each iteration of the algorithm is characterized by the
partitioning of the variables into the subsets Z(K), U (K),
and F (K). We assume for simplicity that no coefficients are
constrained to zero in the beginning, i.e., Z(0) = U (0) = ∅
and F (0) = {1, . . . , N}; other initializations are possible. In
subsequent iterations, both Z(K) and U (K) grow while F (K)

shrinks, giving rise to increasingly constrained versions of
the original problem that we refer to as subproblems. Each
subproblem can be reduced to a lower-dimensional instance of
the original problem (1), a fact that simplifies the algorithm.
Specifically, it is shown in the Appendix that a subproblem
defined by (Z,U ,F) can be reformulated as a minimization
over bF only:

min
bF

|U|+ ‖bF‖0

s.t. (bF − ceff)
T

Qeff (bF − ceff) ≤ γeff ,
(29)

where

Qeff = QFF −QFU (QUU )
−1

QUF , (30a)

ceff = cF + (Qeff)−1
(
QFZ −QFU (QUU )−1QUZ

)
cZ ,
(30b)

γeff = γ − cTZ
((

Q−1
)
ZZ

)−1
cZ . (30c)

The variables bn for n ∈ Z are absent from (29) because they
have been set to zero. The variables bn, n ∈ U have also been
eliminated, with the term |U| accounting for their contribution
to the zero-norm. This reduction allows each iteration of the
algorithm after the first to be treated as if it were the first
iteration applied to a lower-dimensional instance of (1).
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In the sequel, we use a superscript K to label the parameters
of the subproblem in iteration K, namely Q(K), c(K), and
γ(K). We also define P(K) =

(
Q(K)

)−1
and will find it more

convenient to specify the computations in terms of P rather
than Q. Assuming that the algorithm starts with no zero-value
constraints, P(0) = Q−1, c(0) = c, and γ(0) = γ.

The first task in each iteration is to update the subset U (K)

by adding to it any coefficients in F (K) that no longer yield
feasible solutions when constrained to a value of zero. Such
coefficients can be identified by specializing condition (17) to
subsets consisting of a single index, Z = {n}. Condition (17)
simplifies to (

c
(K)
n

)2
P

(K)
nn

≤ γ(K), (31)

where we have substituted the parameters for the Kth (i.e.,
current) subproblem. The indices n for which (31) is not
satisfied correspond to coefficients for which a zero value is
infeasible. Hence these indices are removed from F (K) and
added to U (K), i.e.,

U (K+1) = U (K) ∪

{
n ∈ F (K) :

(
c
(K)
n

)2
P

(K)
nn

> γ(K)

}
. (32)

If no indices remain in F (K) after this removal, the filter
cannot be thinned further and the algorithm terminates. Oth-
erwise, an index m is removed from F (K) and added to
Z(K) to form Z(K+1). As discussed earlier, m is chosen to
minimize the left-hand side of (18) over Z(K+1) of the form
Z(K+1) = Z(K) ∪ {m}. This is equivalent to choosing

m = arg min
n∈F(K)

(
c
(K)
n

)2
P

(K)
nn

.

The indices remaining in F (K) after removing m form the
new subset F (K+1).

To calculate the values of the new parameters P(K+1),
c(K+1), and γ(K+1) from the current parameters P(K), c(K),
and γ(K), we make use of (30) with the current parameters
playing the role of Q, c, and γ, Z = {m} to represent the
new zero-value constraint, U composed of the indices added
to U (K) in (32), and F = F (K+1). With these replacements,
(30a) gives Q(K+1) in terms of Q(K). It can be shown that
the equivalent recursion for P is

P(K+1) = P
(K)

F(K+1)F(K+1) −
1

P
(K)
mm

P
(K)

F(K+1),m
P

(K)

m,F(K+1) .

(33)
Similarly, (30b) can be rewritten in terms of P instead of Q
to yield

c(K+1) = c
(K)

F(K+1) −
c
(K)
m

P
(K)
mm

P
(K)

F(K+1),m
. (34)

Neither (33) nor (34) require matrix inversion. Lastly, (30c)
gives the following recursion for γ:

γ(K+1) = γ(K) −
(
c
(K)
m

)2
P

(K)
mm

. (35)

This completes the operations in iteration K.

Once the algorithm has terminated with a final subset
Z(f) of zero-valued coefficients, it remains to determine the
values of the non-zero coefficients bY(f) . We choose bY(f)

specifically to maximize the margin in the quadratic constraint
subject to bn = 0 for n ∈ Z(f), i.e., to minimize the left-hand
side of (16). The solution as given in Section III is

bY(f) = cY(f) + (QY(f)Y(f))
−1

QY(f)Z(f)cZ(f) .

The most computationally intensive step in the iterative
part of the algorithm is the update of P in (33), an O(N2)
operation. The total complexity is O(N3) since the number
of iterations is linear in N and the initialization of P(0) and
computation of the final solution are both O(N3).

V. DESIGN EXAMPLES

In this section, two filter design examples are presented,
the first demonstrating the design of sparse equalizers for a
wireless communication channel, and the second the design of
non-uniformly spaced beamformers for detection. The back-
ward selection algorithm of Section IV is compared to three
algorithms: the forward selection algorithm used (with some
variations) in [25], [26], a heuristic based on ordering the
coefficients of the optimal non-sparse solution c (similar in
spirit to [20], [21]), and an exact branch-and-bound algorithm
[45]. The comparisons reveal that backward selection con-
sistently outperforms the other two heuristics and produces
optimally sparse or near-optimal designs in many instances.
The examples also highlight the potential gains of sparse
design in these applications.

A. Wireless channel equalization

In the first example, sparse equalizers are designed for a
test channel used to evaluate terrestrial broadcast systems for
high-definition television. This example was also considered in
[21], [22]. To facilitate the comparison with the branch-and-
bound algorithm, the channel is simplified by reducing the
multipath delays by half and converting complex amplitudes
to real amplitudes with the same magnitude. The modified
multipath parameters are shown in Table I. We emphasize that
this simplification would be unnecessary for comparing the
heuristic algorithms alone. The effective discrete-time channel
response is given by

h[n] =

5∑
i=0

aip(n− τi),

where the sampling period is normalized to unity and the
pulse p(t) is the convolution of the transmit and receive filter
responses, each chosen to correspond to a square-root raised-
cosine filter with excess bandwidth parameter β = 0.115
following [21], [22]. The transmitted sequence x[n] and noise
η[n] are assumed to be white with φxx[m] = σ2

xδ[m] and
φηη[m] = δ[m] so that the input SNR is σ2

x. The translation
of channel parameters into problem parameters Q, c, and γ
is as described in Section II-B, specifically in (10) and (9)
together with the relations c = Q−1f and γ = β + cTQc.

In our simulations, the equalizer length N is varied between
L + 1 and 2L + 1, where L = 54 is the largest delay in the
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TABLE I
NOMINAL MULTIPATH PARAMETERS FOR THE EQUALIZATION EXAMPLE.

i 0 1 2 3 4 5
τi 0 4.84 5.25 9.68 20.18 53.26
ai 0.5012 −1 0.1 0.1259 −0.1995 −0.3162
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Fig. 1. Number of non-zero equalizer coefficients resulting from the
backward selection algorithm as a function of the MSE ratio δ/δmin for
equalizer lengths (a) N = 55 and (b) N = 109.

channel (rounded up). The allowable MSE δ is varied between
the minimum MSE δmin = σ2

x− cTQc and 2 dB above δmin.
We also introduce a delay ∆ into the estimate, i.e., x[n] in
(8) is changed to x[n−∆], to accommodate the causality of
the channel and the equalizer. Equations (9b) and (10b) are
modified accordingly to yield fn = φxy[n − ∆] = σ2

xh[∆ −
n]. The MSE performance depends weakly on ∆; for these
simulations a value of ∆ = 0.8L+0.2N is a reasonably good
choice.

In Fig. 1, we plot the number of non-zero equalizer coeffi-
cients given by the backward selection algorithm as a function
of the MSE ratio δ/δmin for equalizer lengths N = 55 and 109
and input SNR σ2

x = 10, 25 dB. The SNR required for digital
television reception can reach 25 dB for severe multipath
channels [51]. The MMSE equalizers achieve MSE values
(normalized by σ2

x) of −5.74 and −7.30 dB for N = 55 and
σ2
x = 10, 25 dB, and −6.80 and −9.76 dB for N = 109 and

the same SNR values. The number of non-zero coefficients
decreases steeply as the MSE increases from its minimum,
e.g. for N = 55 and σ2

x = 10 dB the number is nearly
halved with only a 0.1 dB increase in MSE. Implementation
losses of a few tenths of a dB are usually acceptable for
wireless receivers [52], [53]. Less sparsity is seen at the higher
SNR value. This behavior is consistent with previous findings
(e.g. in [26]).

Table II compares the backward selection algorithm against
the other algorithms, both for the nominal channel in Table I
with 10 dB SNR and a modified channel with a0 changed
to −0.95. Backward selection consistently outperforms the
largest-coefficients algorithm, which chooses the support to
correspond to the M largest coefficients of the optimal non-
sparse equalizer with M decreasing until the MSE constraint
can no longer be satisfied. The forward selection algorithm
starts with the all-zero equalizer and iteratively adds in a
greedy fashion the coefficient resulting in the greatest MSE
reduction until a feasible solution is obtained. Backward selec-
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Fig. 2. Total excess with respect to the backward selection algorithm as a
function of channel amplitudes a0 (a) and a3 (b).

tion performs at least as well or better than forward selection
in all but two instances, and the differences can be significant
for the modified channel at longer lengths. Backward selection
also matches the cost achieved by branch-and-bound in a large
majority of instances, with the difference never exceeding 2.
Five of the N = 109 instances are very difficult to solve
to optimality and the branch-and-bound algorithm did not
converge within the allotted solution time (105 sec), yielding
instead an interval containing the true optimal cost. The upper
end of the interval represents the sparsest solution found by
branch-and-bound, which in 4 out of the 5 instances does
not improve upon the backward greedy solution. Our results
suggest therefore that backward selection can often produce
optimal designs with much lower complexity than branch-and-
bound.

Fig. 2 shows a further comparison of the heuristic algo-
rithms in which one of the channel amplitudes is varied while
all other parameters are fixed at their nominal values in Table
I. The total excess is a summary statistic and refers to the
sum of the differences in non-zero coefficients between either
the largest-coefficients or forward selection algorithms and the
backward selection algorithm, where the sum is taken over all
N and δ/δmin in Table II. Fig. 2 shows that backward selection
consistently performs at least as well or better than the other
heuristics. Plots for variations in other amplitudes are similar.
This suggests that backward selection is a more robust choice
when there is uncertainty or variation in the channel, as is
often the case in wireless communication.

Table III shows average execution times and numbers
of iterations for MATLAB implementations of the heuristic
algorithms running on a 2.4 GHz Linux computer with 4
GB of memory. The averages are taken over all MSE ratios
and channel amplitudes. The largest-coefficients and forward
selection algorithms are implemented using rank-1 updates as
in (33)–(35), and hence all of the heuristics are very efficient.
In this particular equalization example, backward selection
requires more iterations and correspondingly longer times
because of the relatively high sparsity levels.

B. MVDR beamforming

The second example concerns the design of non-uniformly
spaced MVDR beamformers, an application of the detection
problem in Section II-C. The beamformers are non-uniform
in the sense that the element positions are constrained to an
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TABLE II
NUMBERS OF NON-ZERO COEFFICIENTS RETURNED BY THE LARGEST-COEFFICIENT (LC), FORWARD SELECTION (FS), BACKWARD SELECTION (BS),

AND BRANCH-AND-BOUND (BB) ALGORITHMS IN THE EQUALIZATION EXAMPLE.

nominal channel (Table I) modified (a0 = −0.95)
N δ/δmin [dB] LC FS BS BB LC FS BS BB
55 0.02 44 45 43 43 40 38 38 38

0.05 38 37 36 36 34 34 34 34
0.1 30 28 28 28 30 29 30 29
0.2 22 20 20 20 26 22 22 22
0.4 15 14 13 13 16 18 16 16
0.7 10 8 9 8 14 11 11 11
1.0 5 5 5 5 8 7 7 7
1.5 3 3 3 3 3 3 3 3
2.0 2 2 2 2 2 2 2 2

82 0.02 65 64 63 63 64 64 62 62
0.05 57 56 55 55 59 64 57 57
0.1 48 48 47 47 54 58 51 51
0.2 36 34 34 34 46 47 44 42
0.4 25 22 22 22 33 31 30 29
0.7 17 14 14 14 21 22 20 20
1.0 14 11 10 10 18 16 16 15
1.5 7 5 5 5 9 9 9 9
2.0 4 3 3 3 6 6 6 6

109 0.02 87 86 85 85 85 85 83 83
0.05 78 78 76 76 76 77 75 74
0.1 69 70 67 [64, 67] 69 75 68 68
0.2 58 56 56 [50, 56] 61 67 59 [53, 58]
0.4 46 38 38 [35, 38] 49 45 43 [37, 43]
0.7 29 26 25 25 29 28 27 27
1.0 20 18 17 17 22 20 20 20
1.5 14 10 10 10 15 13 13 13
2.0 6 5 5 5 8 7 7 7

TABLE III
AVERAGE EXECUTION TIMES AND NUMBERS OF ITERATIONS FOR THE

LARGEST-COEFFICIENT (LC), FORWARD SELECTION (FS), AND
BACKWARD SELECTION (BS) ALGORITHMS IN THE EQUALIZATION

EXAMPLE.

N time [ms] iterations
LC FS BS LC FS BS

55 1.1 1.4 3.5 15.7 15.1 38.9
82 2.5 5.1 8.7 26.3 25.3 55.9
109 9.4 8.6 14.5 39.1 37.5 70.8

underlying uniform grid but only a subset of the positions are
used.

As in Section V-A, the backward selection algorithm is
compared to other heuristics and an exact branch-and-bound
algorithm. To apply the branch-and-bound algorithm in partic-
ular, we focus on a real-valued formulation of the beamform-
ing problem as opposed to the more conventional complex-
valued formulation. Although the reduction in Section II-C
of the sparse detection problem to (1) can be generalized to
the complex case with minor modifications, some parts of
the branch-and-bound algorithm assume real values and their
complex-valued generalization is a subject for future study.
We assume that a signal at an angle θ0 from the array axis is
to be detected in the presence of discrete interferers at θ1 and
θ2 and isotropic (white) noise η. The received signal at the
nth array element is

yn = cos(nπ cos θ0) +

2∑
i=1

Ai cos(nπ cos θi) + ηn,

n = ±1

2
,±3

2
, . . . ,±N − 1

2
,

assuming a half-wavelength spacing between elements. The
interferer amplitudes A1 and A2 are modelled as zero-mean
random variables with variances σ2

1 and σ2
2 . We use the

nominal values cos θ1 = 0.18, cos θ2 = 0.73, σ2
1 = 10 dB,

σ2
2 = 25 dB, the last two values being relative to the white

noise power σ2
η . The target angle is swept from cos θ0 = 0

to cos θ0 = 1 and the target amplitude is normalized to unity.
With si denoting the array manifold vector with components
cos(nπ cos θi), the covariance of the array output is given by
R = σ2

ηI + σ2
1s1s

T
1 + σ2

2s2s
T
2 .

We fix the number of active elements M at 30 and consider
array lengths N = 30, 40, 50, 60. For each N and target angle
θ0, the output SNR, defined as the ratio of the mean of the
array output to the standard deviation, is maximized. For N =
30, the SNR is maximized by the non-sparse MVDR solution,
i.e., b ∝ R−1s0. For N > 30, we use the sparse design
algorithms to perform a search over SNR values, i.e., values
of ρ in (11), starting at the maximum SNR for the next lowest
value of N , which is always achievable, and increasing in
0.05 dB increments. For each ρ, the algorithm is run in an
attempt to obtain a feasible solution to (11) with M non-zero
coefficients. The algorithm can be terminated as soon as such a
solution is found. The highest SNR achieved by each algorithm
is recorded.

In Fig. 3, we compare the SNR as a function of θ0 for non-
sparse MVDR beamformers of lengths 30, 40, and 60, and
sparse beamformers of lengths 40 and 60 designed using the
backward selection algorithm. The SNR values are normalized
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Fig. 3. Panel (a): Normalized SNR as a function of target angle θ0 for
MVDR beamformers of length 30 (dotted black), sparse beamformers of
length 40 designed by the backward selection algorithm (solid blue), and
MVDR beamformers of length 40 (dashed red). Panel (b): Same as (a) except
that the two upper curves represent beamformers of length 60.

so that 0 dB corresponds to the maximum SNR for a length
30 MVDR beamformer subject to white noise alone, i.e.,
σ2

1 = σ2
2 = 0. With the addition of interference, the SNR

for the length 30 MVDR beamformer falls below 0 dB at
all angles, with deep notches at cos θ0 = cos θ1 = 0.18
and cos θ0 = cos θ2 = 0.73 where the target coincides with
an interferer. As the array length increases, so too does the
angular resolution and consequently the notch widths decrease.
Moreover, the sparse beamformers achieve nearly the same
interference rejection as the MVDR beamformers of the same
lengths despite having only three-quarters or one-half as many
active elements. Increasing the array length also improves
the SNR away from the interferers. The length 40 sparse
beamformer nearly matches the SNR improvement of the
length 40 MVDR beamformer due to judicious placement of
the 30 active elements, while the same is true to a lesser extent
for the length 60 beamformers. Significant gaps exist only
around cos θ0 = 0 and cos θ0 = 1/2. The array manifold
vectors at these angles have components of equal or nearly
equal magnitude, and hence a beamformer with more active
elements can collect appreciably more energy from the target
direction.

Table IV summarizes the relative performance of the algo-
rithms. On the left, the interferer parameters are set to their
nominal values and the percentage of instances (corresponding
to different θ0 values) in which the heuristic algorithms agree
with the branch-and-bound algorithm is recorded. On the right,
additional instances are generated by varying cos θ1 between
0 and 1 while using nominal values for the other parameters,
and also varying σ2

1 between 1 and 40 dB in the same manner,
for a total of over 19000 instances. The largest-coefficients
and forward selection algorithms are then compared to the
backward selection algorithm in terms of SNR achieved. As
in Section V-A, backward selection is optimal in almost all
instances and consistently performs as well or better than the
other heuristics, with the differences becoming more apparent
as N increases. In the instances in which the other heuristics
are better, the SNR difference is never more than 0.05 dB
(a single increment). In the other direction, the differences
are larger but rarely exceed a few tenths of a dB in this
beamforming example.

In Table V, we report average execution times per instance

TABLE IV
PERFORMANCE OF THE LARGEST-COEFFICIENT (LC), FORWARD

SELECTION (FS), BACKWARD SELECTION (BS), AND
BRANCH-AND-BOUND (BB) ALGORITHMS IN THE BEAMFORMING

EXAMPLE.

% in agreement with BB
(cos θ1 = 0.18, σ2

1 = 10 dB)

N LC FS BS
40 89.3 97.9 100
50 70.0 87.1 98.6
60 48.6 67.1 97.9

% relative to backward selection (all θ1 and σ2
1)

largest-coefficients forward selection
N better same worse better same worse
40 � 0.1 91.1 8.9 0.1 98.8 1.2
50 � 0.1 71.8 28.2 0.3 81.0 18.7
60 < 0.1 50.7 49.3 0.8 65.3 33.9

TABLE V
AVERAGE EXECUTION TIMES IN MILLISECONDS FOR THE HEURISTIC

ALGORITHMS IN THE BEAMFORMING EXAMPLE.

N largest-coefficients forward selection backward selection
40 1.0 1.6 1.9
50 1.3 2.3 2.6
60 1.6 3.5 4.3

of (11) for the heuristic algorithms. As in Table III, all of the
heuristics are comparable and very efficient.

We note that there is partial theoretical support for the near-
optimality of the backward selection algorithm observed in
this section. In [54], Couvreur and Bresler prove that for full-
rank sparse linear inverse problems, the solution produced by
backward selection is optimal if the associated residual (the
value of the quadratic form (b− c)TQ(b− c) in the present
context) is smaller than a threshold. Unfortunately, computing
the threshold requires combinatorial optimization in its own
right, so the result in [54] does not yield a practical test for
optimality.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that the problems of sparse filter design
for least-squares frequency response approximation, for signal
estimation, and for signal detection can be unified under the
single framework of quadratically-constrained sparsity maxi-
mization. This framework is quite general and has potential
applications beyond filter design, for example in subset se-
lection for linear regression [44] and cardinality-constrained
portfolio optimization [55]. Several special cases were identi-
fied, namely those with diagonal, block-diagonal, banded, or
well-conditioned Q matrices, in which the main optimization
problem (1) admits efficient and exact solutions. These special
case solutions could be extended to yield approximations in
more general cases, and the deviation from optimality could
perhaps be quantified if the required conditions for exactness
(diagonality, etc.) are approximately satisfied. In [45], we
explore one such approximation based on the diagonal case
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for the specific purpose of obtaining bounds for use in branch-
and-bound.

For the general case, we focused in this paper on a low-
complexity backward selection algorithm with attention paid
to its efficient implementation. We consider exact algorithms
in a companion paper [45]. Design experiments demonstrated
that backward selection consistently outperforms the largest-
coefficients and forward greedy heuristics and often results
in optimal or near-optimal designs. Our results therefore lend
confidence to the use of backward selection in settings where
computation is limited. It would be instructive in future work
to identify instances in which backward selection is far from
optimal to indicate where further improvements can be made.

APPENDIX

In this appendix, we show that an arbitrary subproblem
defined by subsets (Z,U ,F) can be reduced to the problem
in (29) with parameters given by (30) in terms of the original
parameters Q, c, and γ. The subsets Z , U , and F are as
defined in Section IV.

The reduction can be carried out in the two steps
(∅, ∅, {1, . . . , N}) −→ (Z, ∅,Y = U ∪ F) −→ (Z,U ,F).
In the first step, the constraints bn = 0 for n ∈ Z reduce the
zero-norm ‖b‖0 to ‖bY‖0 and the quadratic constraint in (1)
to (16). By completing the square, (16) can be rewritten as[

bU − c′U
bF − c′F

]T [
QUU QUF
QFU QFF

] [
bU − c′U
bF − c′F

]
≤ γeff , (36)

where Y has been partitioned into U and F , c′U = cU +(
(QYY)−1QYZcZ

)
U , c′F = cF +

(
(QYY)−1QYZcZ

)
F , and

γeff is as defined in (30c).
In the second step (Z, ∅,U ∪ F) −→ (Z,U ,F), the

infeasibility of zero values for bn, n ∈ U allows the cost
‖bY‖0 to be rewritten as |U| + ‖bF‖0. Since bU no longer
has any effect on the cost, its value can be freely chosen, and
in the interest of minimizing ‖bF‖0, bU should be chosen as
a function of bF to maximize the margin in constraint (36),
thereby making the set of feasible bF as large as possible.
This is equivalent to minimizing the left-hand side of (36)
with respect to bU while holding bF constant. Similar to the
minimization of (16) with respect to bY , we obtain

b∗U = c′U − (QUU )
−1

QUF (bF − c′F ) (37)

as the minimizer of (36). Substituting (37) into (36) results
in the constraint in (29) except with c′F in place of ceff . By
expressing (QYY)−1 in terms of the block decomposition of
QYY in (36), it can be shown that c′F = ceff , thus completing
the reduction.

REFERENCES

[1] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[2] R. M. Leahy and B. D. Jeffs, “On the design of maximally sparse
beamforming arrays,” IEEE Trans. Antennas Propag., vol. 39, pp. 1178–
1187, Aug. 1991.

[3] Y. Neuvo, C.-Y. Dong, and S. Mitra, “Interpolated finite impulse
response filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32,
pp. 563–570, Jun. 1984.

[4] T. Saramaki, T. Neuvo, and S. K. Mitra, “Design of computationally
efficient interpolated FIR filters,” IEEE Trans. Circuits Syst., vol. 35,
pp. 70–88, Jan. 1988.

[5] Y. C. Lim, “Frequency-response masking approach for the synthesis of
sharp linear phase digital filters,” IEEE Trans. Circuits Syst., vol. 33,
pp. 357–364, Apr. 1986.

[6] Y. C. Lim and Y. Lian, “Frequency-response masking approach for dig-
ital filter design: complexity reduction via masking filter factorization,”
IEEE Trans. Circuits Syst. II, vol. 41, pp. 518–525, Aug. 1994.

[7] J. L. H. Webb and D. C. Munson, “Chebyshev optimization of sparse FIR
filters using linear programming with an application to beamforming,”
IEEE Trans. Signal Process., vol. 44, pp. 1912–1922, Aug. 1996.

[8] J. T. Kim, W. J. Oh, and Y. H. Lee, “Design of nonuniformly spaced
linear-phase FIR filters using mixed integer linear programming,” IEEE
Trans. Signal Process., vol. 44, pp. 123–126, Jan. 1996.

[9] Y.-S. Song and Y. H. Lee, “Design of sparse FIR filters based on branch-
and-bound algorithm,” in Proc. Midwest Symp. Circuits. Syst., vol. 2,
Aug. 1997, pp. 1445–1448.

[10] J.-K. Liang, R. de Figueiredo, and F. Lu, “Design of optimal Nyquist,
partial response, Nth band, and nonuniform tap spacing FIR digital
filters using linear programming techniques,” IEEE Trans. Circuits Syst.,
vol. 32, pp. 386–392, Apr. 1985.

[11] D. Mattera, F. Palmieri, and S. Haykin, “Efficient sparse FIR filter
design,” in Proc. ICASSP, vol. 2, May 2002, pp. 1537–1540.

[12] T. Baran, D. Wei, and A. V. Oppenheim, “Linear programming algo-
rithms for sparse filter design,” IEEE Trans. Signal Process., vol. 58,
pp. 1605–1617, Mar. 2010.

[13] D. Wei, “Non-convex optimization for the design of sparse FIR filters,”
in IEEE 15th Workshop on Statistical Signal Processing, Sep. 2009, pp.
117–120.

[14] J. W. Adams, “FIR digital filters with least-squares stopbands subject to
peak-gain constraints,” IEEE Trans. Circuits Syst., vol. 39, pp. 376–388,
Apr. 1991.

[15] M. Smith and D. Farden, “Thinning the impulse response of FIR
digital filters,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, vol. 6, 1981, pp. 240–242.

[16] R. J. Hartnett and G. F. Boudreaux-Bartels, “On the use of cyclotomic
polynomial prefilters for efficient FIR filter design,” IEEE Trans. Signal
Process., vol. 41, pp. 1766–1779, May 1993.

[17] S. A. Raghavan, J. K. Wolf, L. B. Milstein, and L. C. Barbosa, “Non-
uniformly spaced tapped-delay-line equalizers,” IEEE Trans. Commun.,
vol. 41, no. 9, pp. 1290–1295, Sep. 1993.

[18] I. Lee, “Optimization of tap spacings for the tapped delay line decision
feedback equalizer,” IEEE Commun. Lett., vol. 5, no. 10, pp. 429–431,
Oct. 2001.

[19] M. Kocic, D. Brady, and M. Stojanovic, “Sparse equalization for real-
time digital underwater acoustic communications,” in IEEE OCEANS,
vol. 3, Oct. 1995, pp. 1417–1422.

[20] A. A. Rontogiannis and K. Berberidis, “Efficient decision feedback
equalization for sparse wireless channels,” IEEE Trans. Wireless Com-
mun., vol. 2, no. 3, pp. 570–581, May 2003.

[21] F. K. H. Lee and P. J. McLane, “Design of nonuniformly spaced
tapped-delay-line equalizers for sparse multipath channels,” IEEE Trans.
Commun., vol. 52, no. 4, pp. 530–535, Apr. 2004.

[22] I. J. Fevrier, S. B. Gelfand, and M. P. Fitz, “Reduced complexity decision
feedback equalization for multipath channels with large delay spreads,”
IEEE Trans. Commun., vol. 47, no. 6, pp. 927–937, Jun. 1999.

[23] S. Ariyavisitakul, N. R. Sollenberger, and L. J. Greenstein, “Tap-
selectable decision-feedback equalization,” IEEE Trans. Commun.,
vol. 45, no. 12, pp. 1497–1500, Dec. 1997.

[24] M. J. Lopez and A. C. Singer, “A DFE coefficient placement algorithm
for sparse reverberant channels,” IEEE Trans. Commun., vol. 49, no. 8,
pp. 1334–1338, Aug. 2001.

[25] H. Sui, E. Masry, and B. D. Rao, “Chip-level DS-CDMA downlink
interference suppression with optimized finger placement,” IEEE Trans.
Signal Process., vol. 54, no. 10, pp. 3908–3921, Oct. 2006.

[26] G. Kutz and D. Raphaeli, “Determination of tap positions for sparse
equalizers,” IEEE Trans. Commun., vol. 55, no. 9, pp. 1712–1724, Sep.
2007.

[27] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and
M. Moonen, “Sparse linear prediction and its applications to speech
processing,” IEEE Audio, Speech, Language Process., vol. 20, no. 5,
pp. 1644–1657, Jul. 2012.

[28] H. L. V. Trees, Detection, Estimation, and Modulation Theory. New
York: John Wiley & Sons, 2004, vol. 1.



14

[29] C. K. Sestok, “Data selection in binary hypothesis testing,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA,
Dec. 2003.

[30] ——, “Data selection for detection of known signals: The restricted-
length matched filter,” in Proc. ICASSP, vol. 2, May 2004, pp. 1085–
1088.

[31] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.

[32] ——, “Stable signal recovery from incomplete and inaccurate measure-
ments,” Comm. Pure Appl. Math., vol. 59, pp. 1207–1223, Aug. 2006.

[33] J. J. Fuchs, “Recovery of exact sparse representations in the presence of
bounded noise,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3601–3608,
Oct. 2005.

[34] J. A. Tropp, “Just relax: Convex programming methods for identifying
sparse signals in noise,” IEEE Trans. Inf. Theory, vol. 52, pp. 1030–
1051, Mar. 2006.

[35] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, Aug. 1998.

[36] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Comm.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

[37] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Model. Simul., vol. 4, no. 4, pp. 1168–
1200, Nov. 2005.

[38] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A varia-
tional formulation for frame-based inverse problems,” Inverse Problems,
vol. 23, no. 4, pp. 1495–1518, Jun. 2007.

[39] M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak,
“Majorization-minimization algorithms for wavelet-based image restora-
tion,” IEEE Trans. Image Process., vol. 16, no. 12, pp. 2980–2991, Dec.
2007.

[40] P. L. Combettes and J.-C. Pesquet, “A proximal decomposition method
for solving convex variational inverse problems,” Inverse Problems,
vol. 24, no. 6, pp. 65 014–65 040, Dec. 2008.

[41] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching
pursuit with application to equalization,” IEEE Trans. Commun., vol. 50,
no. 3, pp. 374–377, Mar. 2002.

[42] C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel
estimation for multicarrier underwater acoustic communication: From
subspace methods to compressed sensing,” IEEE Trans. Signal Process.,
vol. 58, no. 3, pp. 1708–1721, Mar. 2010.

[43] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. D. Nowak, “Compressed
channel sensing: A new approach to estimating sparse multipath chan-
nels,” Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, Jun. 2010.

[44] A. J. Miller, Subset selection in regression, 2nd ed. Boca Raton, FL:
Chapman & Hall/CRC, 2002.

[45] D. Wei and A. V. Oppenheim, “A branch-and-bound algorithm for
quadratically-constrained sparse filter design,” IEEE Trans. Signal Pro-
cess., to appear.

[46] ——, “Sparsity maximization under a quadratic constraint with appli-
cations in filter design,” in Proc. ICASSP, Mar. 2010, pp. 117–120.

[47] A. Gomaa and N. Al-Dhahir, “A new design framework for sparse FIR
MIMO equalizers,” IEEE Trans. Commun., 2011, to appear.

[48] D. H. Johnson and D. E. Dudgeon, Array signal processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1993.

[49] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge,
UK: Cambridge University Press, 1994.

[50] D. Wei, “Design of discrete-time filters for efficient implementation,”
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
MA, May 2011.

[51] Y. Wu, X. Wang, R. Citta, B. Ledoux, S. Lafleche, and B. Caron,
“An ATSC DTV receiver with improved robustness to multipath and
distributed transmission environments,” IEEE Trans. Broadcast., vol. 50,
pp. 32–41, Mar. 2004.

[52] A. Chini, Y. Wu, M. El-Tanany, and S. Mahmoud, “Filtered decision
feedback channel estimation for OFDM-based DTV terrestrial broad-
casting system,” IEEE Trans. Broadcast., vol. 44, no. 1, pp. 2–11, Mar.
1998.

[53] K. Manolakis, A. Ibing, and V. Jungnickel, “Performance evaluation of
a 3GPP LTE terminal receiver,” in Proc. 14th Eur. Wireless Conf., Jun.
2008, pp. 1–5.

[54] C. Couvreur and Y. Bresler, “On the optimality of the backward greedy
algorithm for the subset selection problem,” SIAM J. Matrix Anal. Appl.,
vol. 21, no. 3, pp. 797–808, 2000.

[55] D. Bertsimas and R. Shioda, “Algorithm for cardinality-constrained
quadratic optimization,” Comput. Optim. Appl., vol. 43, pp. 1–22, May
2009.

Dennis Wei (S’09–M’11) received S.B. degrees in
electrical engineering and in physics in 2006, the
M.Eng. degree in electrical engineering in 2007, and
the Ph.D. degree in electrical engineering in 2011,
all from the Massachusetts Institute of Technology.
He is currently a post-doctoral research fellow in the
Department of Electrical Engineering and Computer
Science at the University of Michigan. His research
interests lie broadly in signal processing, optimiza-
tion, and statistical inference and learning. Areas of
focus include adaptive sensing and processing, filter

design, and non-uniform sampling. Dr. Wei is a member of Phi Beta Kappa,
Sigma Xi, Eta Kappa Nu, and Sigma Pi Sigma. He has been a recipient of
the William Asbjornsen Albert Memorial Fellowship at MIT and a Siebel
Scholar.

Charles K. Sestok (M’99) received the S.B. degree
in physics, the S.M. degree in electrical engineering,
and the Ph.D. degree in electrical engineering from
the Massachusetts Institute of Technology (MIT) in
1997, 1999, and 2003 respectively. He is currently a
member of the Texas Instruments Systems and Ap-
plications Research and Development Center, where
his research interests include signal processing, com-
munication theory, and digitally enhanced analog
systems. Dr. Sestok has been issued eight patents in
these areas. He received a National Science Foun-

dation Graduate Research Fellowship in 1997 and is a Member of Sigma Pi
Sigma and Phi Beta Kappa.

Alan V. Oppenheim (M’65–SM’71–F’77–LF’03)
was born in New York, New York on November
11, 1937. He received S.B. and S.M. degrees in
1961 and an Sc.D. degree in 1964, all in Electrical
Engineering, from the Massachusetts Institute of
Technology. He is also the recipient of an honorary
doctorate from Tel Aviv University.

In 1964, Dr. Oppenheim joined the faculty at MIT,
where he is currently Ford Professor of Engineering.
Since 1967 he has been affiliated with MIT Lincoln
Laboratory and since 1977 with the Woods Hole

Oceanographic Institution. His research interests are in the general area of
signal processing and its applications. He is coauthor of the widely used
textbooks Discrete-Time Signal Processing (now in its third edition), Signals
and Systems and Digital Signal Processing. He is also editor of several
advanced books on signal processing and coauthor of the text Signals,
Systems, and Inference, published online through MITs OpenCourseWare.

Dr. Oppenheim is a member of the National Academy of Engineering,
a fellow of the IEEE, and a member of Sigma Xi and Eta Kappa Nu. He
has been a Guggenheim Fellow and a Sackler Fellow. He has received a
number of awards for outstanding research and teaching, including the IEEE
Education Medal, the IEEE Jack S. Kilby Signal Processing Medal, the IEEE
Centennial Award and the IEEE Third Millennium Medal. From the IEEE
Signal Processing Society he has been honored with the Education Award,
the Society Award, the Technical Achievement Award and the Senior Award.
He has also received a number of awards at MIT for excellence in teaching,
including the Bose Award, the Everett Moore Baker Award, and several awards
for outstanding advising and mentoring.


