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SUMMARY
Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox

gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immuno-

precipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor

spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling

showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knock-

down impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid pro-

gram. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm

that facilitates the activation of the blood-specific program as development proceeds.
INTRODUCTION

Primitive hematopoietic progenitors arise from the yolk sac

in mammals and generate red blood cells (RBCs), thereby

providing oxygen to the rapidly developing embryos

(Orkin and Zon, 2008). In zebrafish, equivalent cells arise

from the lateral plate mesoderm (LPM), where anteriorly

located cells give rise to myeloid cells and posteriorly

located cells produce mostly RBCs. The first hematopoietic

progenitors appear bilaterally from the 2- to 3-somite stage

and express the transcription factor (TF) genesfli1a, scl, and

lmo2 (Liao et al., 1998; Thompson et al., 1998). By the 5-

somite stage, posterior LPM cells are specified to the RBC

lineage expressing gata1 (Davidson et al., 2003; Detrich

et al., 1995). As embryos develop, these bilateral stripes

merge, creating the intermediate cell mass (ICM) region

(Detrich et al., 1995). By 24 hr postfertilization (hpf), the

embryonic RBCs start circulating.

Cdx4, a member of the caudal family, has been linked

to embryonic hematopoiesis and leukemogenesis (Bansal

et al., 2006; Davidson et al., 2003; Wang et al., 2005). The

Cdx genes encode homeodomain-containing TFs that are

known as master regulators of the Hox genes, and help

establish the anterior-posterior (A-P) axis (Pownall et al.,

1996; Subramanian et al., 1995). Mammals have three

paralogs of the Cdx family (Cdx1, Cdx2, and Cdx4) that

are expressed in the posterior tissues of the embryo (Young
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and Deschamps, 2009). Targeted knockout of Cdx genes

demonstrated their roles in paraxial mesoderm, neurecto-

derm, and endoderm formation in mice (Chawengsakso-

phak et al., 2004; Gao et al., 2009; van den Akker et al.,

2002; vanNes et al., 2006; Young et al., 2009). For example,

Cdx2/4 compound knockout mice show a truncated axial

skeleton, decreased presomitic mesoderm, and defective

caudal hindgut endoderm and placenta, indicating that

Cdx genes function redundantly in mesendodermal tissue

formation (van Nes et al., 2006; Young et al., 2009). Zebra-

fish also have three cdx paralogs: cdx1a, cdx1b, and cdx4.

cdx4�/� embryos display shortened tail and neurectoderm

defects, which are enhanced when cdx1a is also knocked

down (Davidson et al., 2003; Davidson and Zon, 2006;

Shimizu et al., 2006).

Zebrafish cdx4�/� embryos display a severe anemia, with

decreased levels of scl, lmo2, and gata1 expression in the

posterior LPM (Davidson et al., 2003). This function of

Cdx4 in hematopoiesis is conserved in murine embryonic

stem cells (ESCs), where Cdx4 overexpression increases

erythroid, megakaryocyte, granulocyte, and macrophage

lineage formation (Wang et al., 2005). Compound Cdx

knockout in murine ESCs also leads to failures in hemato-

poietic differentiation (Wang et al., 2008). In addition to

embryonic hematopoiesis, Cdx members are implicated

in leukemogenesis, as shown by CDX2 translocations in

acute myeloid leukemia (AML) patients, and leukemia
eports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The Authors 425
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seen in mice with Cdx4 overexpression in bone marrow

(Bansal et al., 2006; Scholl et al., 2007).

Many of the functions of Cdx have been linked to its

ability to regulate Hox gene transcription (Young and

Deschamps, 2009).However, an impact onHox gene regula-

tion does not explain all the defects in Cdx mutants. For

example, conditional Cdx2 knockout mice show defects in

endoderm and presomitic mesoderm formation indepen-

dently of Hox genes (Gao et al., 2009; Savory et al., 2009a).

In addition, overexpression of anterior hox genes does

not rescue the hindbrain defects seen in cdx4�/�/cdx1amo

zebrafish (Skromne et al., 2007). These results suggest that

Cdx function cannot be explained solely by Hox genes,

and there must be other critical downstream genes.

Advances inchromatin immunoprecipitation sequencing

(ChIP-seq) technology have helped investigators decipher

complex transcriptional networks in many biological sys-

tems in a global manner. In ESCs, ChIP-seq experiments

revealed that Oct4, Nanog, Sox2, and Sall4 share cis-regula-

tory modules and regulate each other to maintain pluripo-

tency (Lim et al., 2008; Loh et al., 2006). Similar global

studies were conducted in developing Drosophila and

zebrafish embryos (Morley et al., 2009; Sandmann et al.,

2006, 2007). Here, we used a genome-wide approach to

identify direct Cdx4 target genes in zebrafish embryos

by implementing ChIP-seq and microarray expression

profiling. We show that the zinc-finger TF gene sall4 is a

downstream target of Cdx4. ChIP-seq analysis of Sall4 simi-

larly demonstrates that it binds to its own promoter and

cdx4 regulatory elements. Gene-expression studies demon-

strate that Cdx4 and Sall4 directly activate hox genes and

hematopoietic genes. Cdx4 and Sall4 genetically interact

during ventral mesoderm development, consistent with a

role for these TFs in the early expression of hematopoietic

TFs. Together, these results suggest that auto- and cross-

regulatory interactions between cdx4 and sall4, as well as

coactivation of common gene targets, establish a key regu-

latory module that directs the transition of the mesoderm

into blood.
RESULTS

Identification of Direct Cdx4 Downstream Target

Genes

To identify direct Cdx4 downstream target genes, we

conducted ChIP-seq using zebrafish embryos in the bud

stage, the stage just prior to the emergence of fli1a+, scl+,

and lmo2+ hematopoietic progenitors. Since ChIP-quality

zebrafish Cdx4 antibodies were not available, a full-

length, C-terminally myc-tagged zebrafish Cdx4 was

overexpressed and myc antibodies were used for immuno-

precipitation. This technique has been used successfully for
426 Stem Cell Reports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The
Nanog ChIP-seq analysis in zebrafish (Xu et al., 2012). To

reduce nonspecific Cdx4 binding, cdx4-myc mRNA was

injected at a dose that rescued cdx4�/� animals but

did not cause morphological changes in cdx4+/� animals

(Figure S1A available online).

Cdx4 ChIP-seq yielded 5,166 binding events, which cor-

responded to 1,343 proximal genes (distance to the tran-

scriptional start site: ±10 kb). De novo motif analysis using

the top 500 bound sequences gave an ATAAAmotif, which

was reported as the Cdx2 consensus DNA-binding motif

(Figure 1A; Nishiyama et al., 2009; Verzi et al., 2010). The

Cdx family members share a highly similar homeodomain

and are functionally redundant (Savory et al., 2009b). The

most well-known targets of the Cdx family members are

Hox genes (Charité et al., 1998; Knittel et al., 1995; Subra-

manian et al., 1995), and strong Cdx4 binding was found

across all seven clusters of hox genes in the zebrafish

genome (Figures 1B and S1B). Cdx4 bound to its own locus,

suggesting possible autoregulation (Figure 1C).

Binding to specific signaling pathways and gene pro-

grams does not necessarily mean that Cdx4 regulates their

transcription at the time of the analysis. To demonstrate

that Cdx4 binding to these loci leads to transcriptional

changes during the LPM-to-hematopoietic transition, we

evaluated gene expression by microarrays. Given the

redundancy between Cdx4 and Cdx1a, we used 2-somite

stage embryos coinjected with cdx4 and cdx1a morpholi-

nos (cdx4mo/cdx1amo) because these embryos display the

most severe loss-of-Cdx-function phenotype (Davidson

and Zon, 2006). To systematically compare the ChIP-seq

target list with the microarray data, we ranked differen-

tially regulated genes in the cdx4mo/cdx1amo microarray

data using the Gene Set Enrichment Analysis (GSEA) and

compared them with Cdx4 binding (Subramanian et al.,

2005). This analysis showed that the Cdx4-bound genes

were highly downregulated in the cdx4mo/cdx1amo microar-

ray (normalized enrichment score [NES] = 1.76, false dis-

covery rate [FDR] = 0.1; Figure S1C), suggesting that Cdx4

works as a transcriptional activator, consistent with data

previously reported with Cdx2 (Nishiyama et al., 2009;

Verzi et al., 2011). For example, 26 of the 44 Cdx4-bound

hox genes and the Cdx4 bound-Wnt pathway genes,

including axin1, axin2, andwnt5b, were all downregulated,

confirming the Cdx4 ChIP-seq data (Figure S1D). These

results suggest that a subset of the Cdx4-binding sites

detected by ChIP-seq is indeed transcriptionally regulated

by Cdx4.

sall4 Is a Direct Downstream Target of Cdx4

spalt-like 4 (sall4) was strongly downregulated in cdx4mo/

cdx1amo and bound by Cdx4 (Figures 1D and S1E). The spalt

gene was first identified in Drosophila, where its mutation

caused homeotic changes in the posterior head and
Authors



Figure 1. Cdx4 and Sall4 Bind to Each
Other’s Genomic Locus
(A) Cdx4-binding sites are enriched for the
ATAAA motif. The most enriched motif was
identified using MEME (Bailey and Elkan,
1994).
(B) Gene track of the hox aa locus, showing
Cdx4 binding at genomic regions along the
x axis and the total number of reads on the
y axis.
(C) Gene track of the cdx4 locus, showing
Cdx4 binding to its own locus.
(D) Gene track of the sall4 locus, showing
Cdx4 binding to sall4 locus.
(E) WISH of sall4 mRNA expression level
in 10-somite stage wild-type embryos and
cdx4mo/cdx1amo. Scale bar = 200 mm.
(F) Sall4-binding sites are enriched for the
ATTTGCAT motif, an Oct4 motif.
(G) Gene track of the pou5f1 locus, showing
Sall4 binding.
(H) Gene track of sall4 and cdx4 loci,
showing Sall4 binding.
See also Figure S1.
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anterior tail region (Frei et al., 1988; Jürgens, 1988). Its

homologs are highly expressed in the developing tail tip

region in both chickens and frogs (Barembaum and Bron-

ner-Fraser, 2004; Neff et al., 2005). In addition, SALL4

transgenic mice develop AML, reminiscent of mice that

were transplanted with mCdx4-transduced bone marrow

(Bansal et al., 2006; Ma et al., 2006). Because the cdx homo-

log, caudal, is involved in homeotic switches in Drosophila

and is highly enriched in the posterior region, the sall4

gene made an excellent candidate to act downstream of

cdx4.

To validate the microarray data indicating that a loss

of Cdx function leads to decreased sall4 transcription, we

conducted whole-mount in situ hybridization (WISH)

was conducted in 10-somite stage cdx4mo/cdx1amo embryos.

sall4 expression was downregulated in these embryos,

consistent with the Cdx factors directly regulating sall4

transcription (Figure 1E). We also found that cdx4 and

sall4 are spatially and temporally coexpressed (Figure S1F).

Taken together, these results strongly suggest that Cdx4

regulates sall4 transcription during zebrafish development.

Sall4 Binds to the cdx4 Locus

To examine Sall4 downstream target genes, we conducted

ChIP-seq on bud-stage zebrafish embryos injected with

100 pg of sall4-myc mRNA, which does not cause morpho-

logical defects (Figure S1G). Sall4 ChIP-seq resulted in

9,747 binding events that corresponded to 1,832 proximal
Stem Cell R
genes. De novo motif analysis gave the ATTTGCAT motif,

which is known as the Oct4 motif (Figure 1F; Loh et al.,

2006). In addition, Sall4-myc bound to the oct4/pou5f1

locus, consistent with reports showing that Sall4 is a part

of the core ESC complex with Oct4 (Figure 1G; Rao et al.,

2010; van den Berg et al., 2010;Wu et al., 2006). Sall4 binds

to its own locus, suggesting autoregulation, and to the cdx4

locus, indicating cross-regulatory interactions between

Sall4 and Cdx4 (Figures 1H and S1H).

Cdx4 and Sall4 Coregulate Genes Responsible for the

Mesoderm-to-Blood Transition

The Sall4 ChIP-seq analysis showed a substantial overlap in

binding sites with Cdx4 across the genome (Figure 2A).

When we compared the Cdx4-Sall4 cobound sites with

the bud-stage zebrafish histone ChIP-seq data, we found

that 44% of these sites overlapped with H3K27ac-enriched

domains, whereas only 1.4% overlapped with H3K4me3-

enriched domains. This indicates that Cdx4 and Sall4

cobinding corresponds to active enhancers (Figure 2B;

Rada-Iglesias et al., 2011). A Gene Ontology (GO) analysis

of the Cdx4-Sall4 cobound gene list revealed that the

cobound group is enriched with genes associated with

pattern specification and embryonic morphogenesis

(Figure 2C).

To determine whether Cdx4 and Sall4 cobinding leads to

a cooperative transcriptional output, we obtained gene-

expression data from cdx4mo, sall4mo, and cdx4mo/sall4mo
eports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The Authors 427



Figure 2. Cdx4 and Sall4 Coregulate Downstream Target Genes
(A) Genome-wide Cdx4 and Sall4 binding events. The two columns show enrichment over all Sall4 and Cdx4 binding sites, where the blue
shading corresponds to the ChIP-seq read count in the region.
(B) Cdx4- and Sall4-bound regions are associated with H3K27ac histone marks. The bar graph shows the relative overlap of Cdx4-bound,
Sall4-bound, and Cdx4-Sall4-cobound regions with H3K27ac (enhancer) and H3K4me3 (promoter) marks compared with background
expectation. The overlap enrichment score calculates the percentage of bound sites that overlap (or are within 100 bp of) a chromatin mark
domain and normalizes by the percentage of 10,000 random genomic sites that overlap (or are within 100 bp of) the same chromatin mark
domains.
(C) GO Analysis of the Cdx4-Sall4 Cobound Genes
(D) Heatmap demonstrating the top 1,000 genes that show cooperation between the cdx4 and sall4 knockdown at the 10-somite stage.
Genes that are only moderately affected in either single morphant show significantly greater effects in the 10-somite stage cdx4mo/sall4mo.
(E and F) GSEA-based comparison between cdx4mo/sall4mo and known hematopoietic gene signatures.
(E) Comparison between cdx4/sall4 and the GFP+ population from t10-somite stage Tg(fli1a:GFP) embryos.
(F) Comparison with genes downregulated in the 5-somite stage sclmo. In both cases, the hematopoietic signature is strongly enriched in
cdx4mo/sall4mo compared with control embryos.
See also Figure S2.
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embryos. To examine whether knockdown of both genes

leads to a greater transcriptional change compared with

single knockdowns, we compared the expression level in

the double morphants with that in the single morphants

(see Experimental Procedures for details). In both the 3-

and 10-somite stage embryos, the double morphants

exhibited enhanced down- or upregulation of mRNA

expression compared with the single morphants (Figures
428 Stem Cell Reports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The
3D and S2A). At the 10-somite stage, the top ten most

downregulated genes from double morphants included

hox genes, indicating that in addition to being cobound

to the hox gene loci, Cdx4 and Sall4 cooperate to regulate

the hox gene transcriptional program (Figure S2B). In addi-

tion, these double morphants exhibit downregulation

of non-hox gene members such as gfi1.1 and morc3b

(Figure S2B).
Authors



Figure 3. sall4 Cooperates with cdx4 in Zebrafish Hemato-
poiesis
(A) gata1 WISH of 18-somite-stage wild-type or cdx4�/� embryos
that were uninjected or sall4mo injected. sall4 knockdown in the
cdx4�/� background leads to a decrease in gata1+ cells (note the
high-powered view).
(B) o-Dianisidine staining of 3 dpf wild-type or cdx4�/� embryos
that were uninjected or sall4mo injected. cdx4�/�/sall4mo embryos
have fewer hemoglobinized RBCs. Arrows point to the stained RBCs
in the embryos. Scale bar, 200 mm.
See also Figure S3.
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We noted that a number of genes affected in the double

morphants were those that are typically associated with

primitive hematopoiesis (e.g., gata1, gfi1.1, and znfl2) (Det-

rich et al., 1995; Galloway et al., 2008; Wei et al., 2008). To

globally address whether double morphants show defects

in hematopoiesis, we used GSEA to compare the genes

affected in cdx4mo/sall4mo with the gene signatures of

hematopoietic cells subjected to fluorescence-activated
Stem Cell R
cell sorting (FACS) or morphants deficient in blood. The

gene signature of the fli1a:GFP+ cells (the sorted popula-

tion from the 10-somite stage Tg(fli1a:GFP) that express

GFP in both blood and endothelial cells; Lawson andWein-

stein, 2002) was highly enriched in the cdx4mo/sall4mo

gene-expression set (NES = 2.50, FDR = 0.0; Figure 3D).

Genes that were downregulated in the sclmo (which lacks

a hemangioblast population; Dooley et al., 2005; Patterson

et al., 2005) were also strongly enriched in the cdx4mo/

sall4mo (NES = 1.87, FDR = 0.0; Figure 3E). To determine

whether the cdx4mo/sall4moenrichment was specific to

blood, was conducted additional GSEAs using endothelial

(Wong et al., 2009), renal (O’Brien et al., 2011; Wingert

and Davidson, 2011; Wingert et al., 2007), muscle (de la

Serna et al., 2005), and neuron (Lein et al., 2007) gene

sets (Figures S2C–S2F). Among these, only the endothelial

gene set showed significant enrichment (NES = 2.47,

FDR = 0.0; Figure S2C). This result is not surprising, because

blood and endothelial populations share common TFs,

especially during primitive hematopoiesis (Davidson and

Zon, 2004). In contrast, the enrichment scores for other

gene sets were not significant, indicating that cdx4mo/

sall4mo embryos show more specific defects in the heman-

gioblast population (Figures S2D–S2F). Taken together, the

ChIP-seq and microarray data indicate that Cdx4 and Sall4

coregulate a set of genes involved in both embryonic

pattern formation and primitive hematopoiesis.

sall4 and cdx4 Functionally Interact during the

Formation of RBCs

To demonstrate that sall4 functionally interacts with

cdx4 during embryonic hematopoiesis, sall4 was knocked

down in cdx4�/� embryos. cdx4+/� zebrafish were crossed

and sall4mo was injected into one-cell-stage embryos

(Davidson et al., 2003; Harvey and Logan, 2006). Knock-

down of sall4 in either a cdx4+/+ or cdx4+/� background

resulted in a slight shortening of the A-P axis by 28 hpf,

but had no effect on erythropoiesis.

Because cdx4�/� have fewer gata1+ cells in the ICM

region and fewer RBCs later, we examined these pheno-

types in sall4 knockdowns in the background of cdx4+/+,

cdx4+/�, and cdx4�/� embryos. At the 18-somite stage, the

cdx4/sall4mo embryos had fewer gata1+ cells compared

with the uninjected cdx4�/� embryos (Figure 3A). The

cdx4+/+/sall4mo or cdx4+/�/sall4mo embryos did not show a

decrease in gata1. Although the hematopoietic defect in

the cdx4�/�/sall4mo embryos was not as severe as that

shown in the cdx4mo/cdx1amo embryos that completely

lack gata1 (Davidson and Zon, 2006), these studies indicate

that Sall4 and Cdx4 functionally interact during erythroid

progenitor formation (Figure 3A).

The injected embryos were grown to 3 days postfertiliza-

tion (dpf), and o-dianisidine staining was conducted to
eports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The Authors 429



Figure 4. scl and lmo2 Are Responsible for the Loss of RBCs Seen in cdx4�/�;sall4mo Embryos.
(A and B) scl (A) and lmo2 (B) WISH at the 10-somite stage wild-type or cdx4�/� embryos that are either uninjected or sall4mo injected.
Embryos were flat-mounted, with the anterior end pointing to the left and the posterior end pointing to the right.
(C) fli1a, draculin, pax2a, myoD, and tbx16 WISH in 10-somite stage wild-type, cdx4mo, sall4mo, cdx4mo/sall4mo embryos. All scale bars,
200 mm.
(D and E) Gene track of the scl (D) and lmo2 (E) loci, showing Cdx4 and Sall4 binding.
See also Figure S4.
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examine hemoglobinized RBCs (Ransom et al., 1996).

As previously reported (Davidson et al., 2003), cdx4�/�

embryos showed a decreased number of hemoglobinized

RBCs compared with wild-type or cdx4+/� embryos. When

sall4mo was injected, these cdx4�/� embryos showed even

fewer hemoglobinized RBCs, consistent with sall4 cooper-

ating with cdx4 during erythropoiesis (Figure 3B, arrow).

The posterior mesoderm was also critically affected in

cdx4�/�/sall4mo embryos, as evidenced by the size of the

tail (Figure S3).

Loss of scl and lmo2 Is Responsible for the Lack of RBCs

in cdx4�/�/sall4mo Embryos

The loss of RBCs seen in the cdx4�/�/sall4mo embryos could

be caused by an earlier defect in LPM differentiation. The
430 Stem Cell Reports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The
TF Scl and its cofactor Lmo2 are key determinants of

hematopoietic precursors that are expressed as bilateral

stripes in the LPM at the 3-somite stage (Liao et al., 1998;

Thompson et al., 1998). Loss of scl or lmo2 in the zebrafish

leads to a lack of RBCs (Dooley et al., 2005; Patterson et al.,

2005, 2007). At the 10-somite stage, cdx4�/� embryos dis-

played only a few posterior scl+ and lmo2+ cells, whereas

cdx4�/�/sall4mo embryos showed no detectable scl or lmo2

expression (Figure 4A). This suggests that early hematopoi-

etic progenitors do not form properly in cdx4�/�/sall4mo

embryos. In contrast, cdx4mo/sall4mo embryos have fli1a+

and draculin+ cells in the LPM, indicating that the general

lateral mesoderm is present in these embryos. myoD

(somite), pax2a (kidney), and tbx16 (presomitic mesoderm)

expression is minimally affected, showing that cdx4 and
Authors



Figure 5. Overexpression of scl and lmo2 Rescues the Loss of
RBCs in the cdx4mo/sall4mo Embryos
(A) DNA-mediated overexpression scheme using Tg(lcr:GFP) em-
bryos that express GFP in globin+ RBCs. When the embryos reached
the 18-somite stage, mCherry+ embryos were selected and their GFP
expression and gata1 expression were examined.
(B) cdx4mo/sall4mo/Tg(lcr:GFP) embryos that were control plasmid
injected (top), ubi:scl injected (middle), or ubi:scl; ubi:lmo2
injected (bottom). The mCherry+ cells show the mosaicism. Note
the GFP+ cells in the ICM (white arrow) in the bottom row.
The numbers indicate the number of embryos with GFP signal in
the ICM.
(C) gata1 WISH of embryos shown in (B). The numbers indicate the
number of embryos with gata1 signal in the ICM.
All scale bars, 200 mm. See also Figure S5.
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sall4 specifically affect early hematopoietic progenitors

(Figure 4B; Kimmel et al., 1989; Majumdar et al., 2000;

Weinberg et al., 1996). In accordance with a putative regu-

latory role in scl and lmo2 transcription, both the Cdx4 and

Sall4 ChIP-seq profiles showed both factors binding near

the scl and lmo2 loci, which was confirmed by ChIP-PCR

analysis (Figures 5C, 5D, and S4).

To determine whether this early block in scl and lmo2

expression is responsible for the RBC loss in cdx4�/�/sall4mo

embryos, we overexpressed scl and lmo2 in transgenic

zebrafish carrying the globin lcr:GFP reporter (Ganis et al.,

2012; Figure 5A). The scl and lmo2 genes, together with

a control plasmid, were driven under the control of the

ubi promoter (Mosimann et al., 2011) and injected

into cdx4
mo

/sall4mo/Tg(lcr:GFP) embryos. The ubi:mCherry

plasmid was used as an additional control to assess injec-

tion mosaicism. As expected, injection of these plasmids

led to ubiquitous expression of transgenes (Figure S5). In

line with our previous results, cdx4mo/sall4mo/Tg(lcr:GFP)

embryos lacked lcr:GFP expression, which could not be

rescued with control plasmid injection or ubi:scl injection

(Figure 5B, top and middle rows). In contrast, ubi:scl;

ubi:lmo2 double injection in cdx4mo/sall4mo embryos led

to lcr:GFP expression in the ICM (n = 9/21; Figure 5B, bot-

tom row), as well as gata1 expression (n = 23/49; Figure 5C),

indicating that scl and lmo2 can rescue the erythropoietic

defects caused by Cdx4 and Sall4 deficiency. Taken

together, these results reveal that cdx4 and sall4 genetically

interact in a regulatory circuit involving cross- and autore-

gulation to control the expression of TFs involved inmeso-

dermal and hematopoietic lineage specification.
DISCUSSION

Our findings illustrate a transcriptional circuit involving

Cdx4 and Sall4 that is required for the developmental tran-

sition from mesoderm to blood formation in zebrafish. By

integrating ChIP-seq and expression profiling data from

zebrafish embryos, we show that Sall4 shares multiple com-

mon target genes with Cdx4, including the TFs themselves,

hox genes, scl, and lmo2. Consistent with this finding,

the cdx4�/�/sall4mo embryos exhibit enhanced defects in

embryonic hematopoiesis comparedwith cdx4�/� embryos,

which can be overcome by scl and lmo2 overexpression.

sall4 deficiency alone does not affect embryonic erythro-

poiesis, but it cooperates with the cdx4 mutant phenotype

as shown by microarray, loss of RBCs, and severe tail trun-

cation (Figures 2, 3, S2A, and S3). Similarly, the cdx1amo has

a mild phenotype, but cdx4�/�/cdx1amo embryos show a

more severe axial truncation and a complete loss of eryth-

ropoiesis compared with cdx4�/� (Davidson and Zon,

2006). This finding is attributed to redundancy between
eports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The Authors 431



Figure 6. Model
Cdx4 and Sall4 autoregulate and cross-regulate each other (Sall4-
to-Cdx4 regulation is dotted because it is unclear whether Sall4
regulates Cdx4 transcription). They regulate the LPM-to-blood
transition in two ways: (1) they regulate hox genes for mesoderm
specification, and (2) they regulate scl and lmo2 for blood
specification.
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Cdx1a and Cdx4, given that Cdx paralogs compensate for

each other (Savory et al., 2009b). Sall4 shares activities

with the Cdx factors, and Sall4 binding likely enhances

the transcriptional activity of Cdx-containing complexes

on cobound target genes (Figure 2). Sall4 activates target

genes synergistically with other TFs, such as Tcf4 and

beta-catenin in gastrula-stage mouse embryos, and with

Tbx5 in the heart and forelimb field (Koshiba-Takeuchi

et al., 2006; Uez et al., 2008). In addition, Sall4 physically

binds with Cdx2 in murine ESCs (Nishiyama et al., 2009),

potentially supporting a model whereby Cdx factors and

Sall4, each bound to their respective DNA consensusmotifs

on common targets, are able to form an enhanceosome

(Nishiyama et al., 2009). Our ChIP-seq data demonstrate

cobinding on DNA, suggesting that this interaction regu-

lates the transition from mesoderm to the blood lineage.

The transcriptional program in the mesoderm adapts

to the progressive development of the final descendant

organs. During zebrafish development, cdx4 is highly ex-

pressed in the future mesodermal progenitor cells during

the early gastrula stage, and its expression overlaps with

that of hematopoietic genes at the 3-somite stage. By the

5-somite stage, cdx4 is expressed in the paraxial mesoderm,

diverging from that of hematopoietic genes. Our ChIP-seq

result suggests that during the gastrula stage, a Cdx4-Sall4

circuit regulates genes (e.g., hox genes) that drive cells to

adopt a posterior mesodermal fate, which by the late gas-

trula stage allows Cdx4 to drive the expression of hemato-

poietic genes (Figure 2). Although the mild decrease in the

expression of nonhematopoietic genes such as pax2a and

tbx16 in cdx4mo/sall4mo embryos raises the question as to

whether cdx4 and sall4 specifically affect hematopoietic

tissues, these embryos still have a normal amount of

fli1a+ draculin+ cells, indicating that the LPM formation

is normal (Figure 4).

Scl and Lmo2 are key hematopoietic TFs whose deficiency

cause severe anemia (Dooley et al., 2005; Patterson et al.,

2005; Shivdasani et al., 1995; Warren et al., 1994). As scl
432 Stem Cell Reports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The
overexpression could not rescue the gata1 loss seen in

cdx4�/�, it has been hypothesized that Cdx4 acts to make

the posterior mesoderm competent to respond to genes

that specify the hematopoietic fate (Davidson et al.,

2003). An alternative model would include the possibility

that other Cdx4 target genes participate in hematopoietic

induction. One intriguing possibility is that Scl is insuffi-

cient to rescue the cdx4�/� because it lacks the Scl cofactor,

Lmo2. Our ChIP-seq and ChIP-PCR data demonstrate that

scl and lmo2 genes are bound by Cdx4 and Sall4, and

expression of scl and lmo2 is reduced in cdx4�/�/sall4mo (Fig-

ures 4A, 4C, 4D, and S4). Our rescue data show that scl in

combination with lmo2 can drive erythropoiesis genes in

the cdx4mo/sall4mo, indicating that lmo2 is another key fac-

tor that is responsible for the loss of RBCs (Figure 5). The

lack of gata1 rescue to the wild-type level shows that there

could be other additional Cdx4 and Sall4 targets. A recent

ChIP study showed that Lmo2 transcription in hematopoi-

etic cells is regulated by HoxA9 (Huang et al., 2012). Our

results suggest that Cdx4 and Sall4 regulate hoxa9a tran-

scription in zebrafish (Figure S2B). This suggests that lmo2

could be regulated in a tightly controlled manner during

the differentiation of LPM to blood, directly by Cdx4 and

Sall4, and secondarily by another Cdx4 and Sall4 target

gene, Hoxa9a. We speculate that this type of transcrip-

tional loop ensures a robust activation of the blood

program.

Our ChIP-seq data indicate that Cdx4 and Sall4 engage in

auto- and cross-regulatory loops. Such regulatory circuits

are frequently seen during embryonic development. For

example, during segmentation of rhombomere 4 in the

mouse hindbrain, retinoic acid signaling first turns on

HoxB1, followed by HoxB1, HoxB2, and HoxA2, maintain-

ing their expression through tight auto- and cross-regulato-

ry loops (Agarwal et al., 2011; Gavalas et al., 2003; Tümpel

et al., 2007). The Cdx4-Sall4 circuit during zebrafish devel-

opment may function in an analogous way with upstream

regulators such as Wnt, BMP, and FGF, activating expres-

sion of Cdx4 and Sall4, followed by the stabilization of

their expression by auto- and cross-regulatory loops. We

hypothesize that a stable Cdx4-Sall4 circuit is required to

make the mesoderm competent for the specification of

posterior tissue lineages such as blood by turning on the

hematopoietic master TFs Scl and Lmo2 (Figure 6).

Our current model also gives insights into leukemogen-

esis. Previously, Hox gene misregulation was the main

focus of attempts to understand the mechanism behind

Cdx genes causing leukemia (Bansal et al., 2006; Scholl

et al., 2007). Our current model suggests another possibil-

ity, i.e., that Cdx genes directly regulate Scl and Lmo2. As

mutation of both of these genes has been linked to various

leukemias, such as T cell acute lymphoblastic leukemia

(Bash et al., 1995; Boehm et al., 1991; Royer-Pokora et al.,
Authors
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1991), the model raises the possibility that these two genes

may be aberrantly regulated in leukemias that are caused by

Cdx or Sall4 mutation.

In conclusion, our data establish a Cdx4-Sall4 circuit that

acts in the posterior mesoderm to facilitate blood cell for-

mation and axial elongation. We propose that during the

early gastrula stage, Cdx4 and Sall4 are activated by up-

stream regulators such as Wnt, and their auto- and cross-

regulation act to stabilize the mesoderm state. At the end

of gastrulation, Cdx4 and Sall4 bind to scl and lmo2 to

induce the hematopoietic program in the mesoderm. As

upstream signaling dissipates, the Cdx4-Sall4 regulatory

loops are disrupted, with a concomitant reduction in cdx4

and sall4 expression, and further blood differentiation is

driven by factors such as Scl and Lmo2 (Figure 6). This

model is likely applicable to the formation of other tissues

and provides a molecular framework to understand how

Cdx and Sall factors induce leukemia.
EXPERIMENTAL PROCEDURES

Zebrafish
Zebrafish were maintained according to Institutional Animal Care

andUseCommittee guidelines. TheAnimalCare andUseCommit-

tee of Boston Children’s Hospital approved all of the animal proto-

cols. Wild-type (Tu) and cdx4+/� incrossed embryos were collected

at the one-cell stage and injected with mRNA or morpholino for

further experiments.

ChIP
ChIP was performed as previously described (Lee et al., 2006;

Lindeman et al., 2009). For detailed information, see the

Supplemental Experimental Procedures. myc (abcam ab9132),

H3K4me3 (Millipore 07-473), and H3K27ac (abcam ab4729) anti-

bodies were used at 5 mg per ChIP sample.

ChIP-Seq Analysis
Sequence reads were aligned to the genome (danRer6) using Bow-

tie version 0.12.7with options ‘‘-q–best–strata -m1 -p 4–chunkmbs

1024’’ (Langmead et al., 2009). Only uniquelymapping reads were

analyzed further. Binding events were detected using GPS as previ-

ously described (Guo et al., 2010). For detailed information on

ChIP-seq analysis, see the Supplemental Experimental Procedures.

The ChIP-seq data have been deposited in the GEO database under

accession number GSE48254.

ChIP-PCR Analysis
Primers were designed for cdx4, sall4, scl, and lmo2 loci (listed in

Table S1). Quantities are expressed as fold change compared with

input controls.

Morpholinos
One-cell-stage embryos were injected with sall4mo (2 ng; Harvey

and Logan, 2006), cdx4mo (1.5 ng), or cdx1amo (0.5 ng).
Stem Cell R
mRNA
cdx4 and sall4 cDNA was described previously (Davidson et al.,

2003; Harvey and Logan, 2006). mRNA was generated by the

mMessagemMachine kit and injected into one-cell-stage embryos.

Microarray Analysis
Embryos were injected with either cdx4 or sall4, or bothmorpholi-

nos together. Injected embryos, along with uninjected control

embryos, were harvested at the 3- or 10-somite stage and RNA

was prepared for microarray. For the arrays in these experiments,

we used the prerelease Affymetrix Zebrafish 2.0 array, which was

developed in the Zon laboratory in cooperation with Affymetrix.

The cdx4mo/cdx1amo data set was generated on the Affymetrix

Zebrafish 1.0 array. Detailed information on microarray analysis

can be found in the Supplemental Experimental Procedures.

GSEA Analysis

Enrichment of Cdx4-Bound Genes in the cdx4/cdx1a

Double-Morphant Gene-Expression Set

The fli1a:GFP or sclmo gene lists were used as input to GSEA for

queries into the entire cdx4mo/sall4mo microarray data set. In this

case, because the cdx4mo/sall4mo arrays were performed using the

Zebrafish Affymetrix 2.0 arrays, we used the Zv9 gene identifier

as the input for GSEA. For endothelial, kidney, muscle, and neuron

gene sets, the annotated gene list was probed. Enrichment of the

double morphant compared with control embryos was calculated

using the NES and FDR as described above. Detailed information

regarding the gene list sources can be found in the Supplemental

Experimental Procedures.

WISH and o-Dianisidine Staining
WISH and o-dianisidine staining were performed as previously

described (Ransom et al., 1996; Thisse et al., 1993). The gata1,

sall4, scl, lmo2, fli1a, myoD, draculin, pax2a, tbx16, and morc3b

probes were described in previous publications (Detrich et al.,

1995; Kimmel et al., 1989; Liao et al., 1998; Majumdar et al.,

2000; Thompson et al., 1998; Weinberg et al., 1996).

DNA Injection
For DNA injection, 1 nl of a 16 ng/ml DNA mixture was injected

into one-cell-stage embryos. For detailed information on the plas-

mids used, see the Supplemental Experimental Procedures and

Table S2.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, five figures, and two tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2013.10.001.

ACKNOWLEDGMENTS

We thankmembers of the Zon laboratory for helpful discussions, J.

Ganis for providing Tg(lcr:GFP), and M. Logan for providing the

sall4 cDNAconstruct.We also thank theWhiteheadGenome Tech-

nology Core for data production and analysis support. Microarray
eports j Vol. 1 j 425–436 j November 19, 2013 j ª2013 The Authors 433

http://dx.doi.org/10.1016/j.stemcr.2013.10.001
http://dx.doi.org/10.1016/j.stemcr.2013.10.001


Stem Cell Reports
A Cdx4-Sall4 Module in Embryonic Hematopoiesis
studies were performed by the Molecular Genetics Core Facility at

Children’s Hospital Boston, supported byNIH grants P50-NS40828

and P30-HD18655. This work was supported by grants from the

NHLBI (5R01HL048801-21 to L.I.Z. and 5P01HL32262-31),

NIDDK (5P30 DK49126-19, DK53298-15, and R24 DK092760-

02), and HHMI (to L.I.Z.). L.I.Z. is a founder and stockholder of

Fate, Inc., and Scholar Rock, and a scientific advisor for Stemgent.

Received: February 26, 2013

Revised: October 1, 2013

Accepted: October 2, 2013

Published: November 7, 2013
REFERENCES

Agarwal, P., Verzi, M.P., Nguyen, T., Hu, J., Ehlers, M.L., McCulley,

D.J., Xu, S.M., Dodou, E., Anderson, J.P., Wei, M.L., and Black, B.L.

(2011). TheMADS box transcription factor MEF2C regulates mela-

nocyte development and is a direct transcriptional target and part-

ner of SOX10. Development 138, 2555–2565.

Bailey, T.L., and Elkan, C. (1994). Fitting amixturemodel by expec-

tation maximization to discover motifs in biopolymers. Proc. Int.

Conf. Intell. Syst. Mol. Biol. 2, 28–36.
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