
MIT Open Access Articles

Incremental sampling-based algorithm
for minimum-violation motion planning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Reyes Castro, Luis I., Pratik Chaudhari, Jana Tumova, Sertac Karaman, Emilio Frazzoli,
and Daniela Rus. “Incremental Sampling-Based Algorithm for Minimum-Violation Motion
Planning.” 52nd IEEE Conference on Decision and Control (December 2013).

As Published: http://dx.doi.org/10.1109/CDC.2013.6760374

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/90595

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90595
http://creativecommons.org/licenses/by-nc-sa/4.0/

Incremental Sampling-based Algorithm for
Minimum-violation Motion Planning

Luis I. Reyes Castro∗ Pratik Chaudhari∗ Jana Tůmová† Sertac Karaman∗ Emilio Frazzoli∗ Daniela Rus∗

Abstract— This paper studies the problem of control strategy
synthesis for dynamical systems with differential constraints
to fulfill a given reachability goal while satisfying a set of
safety rules. Particular attention is devoted to goals that become
feasible only if a subset of the safety rules are violated. The
proposed algorithm computes a control law, that minimizes
the level of unsafety while the desired goal is guaranteed to
be reached. This problem is motivated by an autonomous
car navigating an urban environment while following rules of
the road such as “always travel in right lane” and “do not
change lanes frequently”. Ideas behind sampling based motion-
planning algorithms, such as Probabilistic Road Maps (PRMs)
and Rapidly-exploring Random Trees (RRTs), are employed to
incrementally construct a finite concretization of the dynamics
as a durational Kripke structure. In conjunction with this,
a weighted finite automaton that captures the safety rules is
used in order to find an optimal trajectory that minimizes
the violation of safety rules. We prove that the proposed
algorithm guarantees asymptotic optimality, i.e., almost-sure
convergence to optimal solutions. We present results of simu-
lation experiments and an implementation on an autonomous
urban mobility-on-demand system.

I. INTRODUCTION

From avoiding traffic jams in busy cities to helping the
disabled and elderly on their daily commute, autonomous
vehicles promise to revolutionize transportation. As they be-
gin to transition from experimental projects like the DARPA
Urban Challenge [1] to sharing road infrastructure with
human drivers, we need to ensure that they obey rules of
the road and safety rules. These rules, such as “always stay
in the right lane” and “do not change lanes”, can typically
be expressed in formal languages such as Linear Temporal
Logic (LTL) and deterministic µ-calculus.

The general problem of finding optimal trajectories satis-
fying temporal logic tasks has been studied in a number of
recent works such as [2]–[5]. In fact, as [6] points out, one of
the main challenges of such approaches is the abstraction of
continuous systems into equivalent finite transition systems
for controller synthesis. Moreover, these controllers depend
upon the abstracted finite transition system, and there is no
guarantee that a controller will be found (if one exists), i.e.,
these algorithms are not complete and cannot be applied to,
for example, dynamically changing environments.

On a related note, in the robotics literature, algorithms
based on Probabilistic Road Maps (PRMs) and Rapidly-
exploring Random Trees (RRTs) have been used to syn-

∗The authors are with the Massachusetts Institute of Technology, Cam-
bridge, MA, USA.
† The author is with KTH ACCESS Linnaeus Center, Royal Institute of

Technology, Sweden and was at Masaryk University, Czech Republic when
this work was initiated.

thesize dynamically-feasible trajectories. Algorithms such as
PRM∗ and RRT∗ [7] are computationally efficient counter-
parts of these algorithms that guarantee almost sure asymp-
totic optimality of the returned trajectories. These algorithms
have been primarily used for motion planning, and only
recently, they have been adapted to handle complex task
specifications given in temporal logics [8].

This work focuses on the case when a desired goal is
infeasible, unless some of the rules can be temporarily
broken. Consider, for example, an autonomous car that must
reach its final destination while abiding by rules of the road,
such as avoiding collisions with obstacles and staying in
the right lane. The former should be obeyed at all times
while the latter can be violated in order to reach the goal
when the right lane is blocked. Motivated by these scenarios,
we would like to systematically evaluate control strategies,
quantify the level of unsafety of the trajectory, and minimize
it. In this context, our work is closest in spirit to [9] and
[10], and it extends our previous work in [11], where the
problem of minimum-violation control synthesis for a pre-
defined discrete transition system was considered.

In this paper, using ideas from sampling-based motion
planning algorithms, we concretize a continuous-time dy-
namical system into a finite durational Kripke structure.
We leverage automata-based model checking approaches to
construct a weighted automaton for a given set of prioritized
safety rules, which enables us to quantify the level of
unsafety of finite input words. We next propose an algorithm,
MVRRT∗ (Minimum-Violation RRT∗), that incrementally
constructs the product of the Kripke structure and the
weighted automaton and returns a trajectory of the dynamical
system that, (i) minimizes the level of unsafety among all
trajectories that satisfy the goal, and (ii) minimizes a given
cost function among all trajectories that satisfy (i). We prove
that as the number of states of the Kripke structure goes to
infinity, the solution converges to the optimal trajectory of
the dynamical system that satisfies the same criteria.

This paper is organized as follows. We introduce notation
and preliminaries in Sec. II, followed by the problem for-
mulation in Sec. III. Sec. IV and Sec.V discuss details of
the proposed algorithm. Simulation experiments and results
of an implementation on an autonomous urban mobility-on-
demand system are presented in Sec. VI.

II. PRELIMINARIES

A. Durational Kripke Structures for Dynamical Systems

For a set of atomic propositions, Π, let the cardinality and
the powerset of Π be denoted by |Π| and 2Π, respectively.

ar
X

iv
:1

30
5.

11
02

v2
 [

cs
.R

O
]

 6
 N

ov
 2

01
3

Consider a dynamical system given by,

ẋ(t) = f(x(t), u(t)), x(0) = xinit (1)

where X ⊂ Rd and U ⊂ Rm are compact sets and xinit is the
initial state. Trajectories of states and controls are denoted
by x : [0, T]→ X and u : [0, T]→ U respectively, for some
T ∈ R≥0.

We assume that f(·, ·) is Lipschitz continuous in both
its arguments and u is Lebesgue measurable, to guarantee
existence and uniqueness of solutions of Eqn. (1). Let Lc :
X → 2Π be a function that maps each state to atomic
propositions that are true at that state.

For a trajectory x, let D(x) = {ti | Lc(x(ti)) 6=
lims→t−i

Lc(x(s))} be the set of discontinuities of Lc(x(·)).
We assume that D(x) is finite for any x. A trajectory
x : [0, T] → X with D(x) = {t1, . . . , tn} produces the
finite timed word

ω(x) = (`0, d0), (`1, d1), . . . , (`n−1, dn−1), (`n, dn),

where (i) `i = Lc(x(ti)), for all 0 ≤ i < n, with t0 = 0 and
di = ti+1− ti, and (ii) `n = Lc(x(tn)) and dn = T − tn. A
word produced by this trajectory is defined to be the finite
sequence w(x) = `0, `1, . . . , `n−1, `n.

Definition 1 (Durational Kripke Structure) A durational
Kripke structure is a tuple K = (S, sinit,R,Π,L,∆), where
S is a finite set of states, sinit ∈ S is the initial state,
R ⊆ S × S is a deterministic transition relation, Π is a
set of atomic propositions, L : S → 2Π is a state labeling
function and ∆: R → R≥0 is a function assigning a time
duration to each transition.

A trace of K is a finite sequence of states r = s0, s1, . . . , sn,
such that s0 = sinit and (si, si+1) ∈ R, for all 0 ≤ i < n. It
produces a finite timed word ω(r) = (`0, d0), . . . , (`n, dn),
where (`i, di) = (L(si),∆(si, si+1)), for all 0 ≤ i < n, and
(`n, dn) = (L(sn), 0). The word produced by r is w(r) =
`0, `1, . . . , `n. Given a word w(r), let I = {i0, i1, . . . , ik}
be the unique set of indices such that i0 = 0, `ij =
`ij+1 = . . . = `ij+1−1 6= `ij+1

for all 0 ≤ j ≤ k − 1
and `k = `k+1 = . . . = `n. Define an operator destutter
to remove repeated consecutive elements of a timed word
as, destutter(w(r)) = `i0 , `i1 , . . . , `ik−1

, `ik . Let 〈r〉 denote
the duration of a trace, i.e., 〈r〉 =

∑n
i=0 di. The following

definition is used to concretize a continuous-time dynamical
system into a Kripke structure.

Definition 2 (Trace-Inclusive Kripke Structure) A dura-
tional Kripke structure K = (S, sinit,R,Π,L,∆) is called
trace-inclusive with respect to the dynamical system in
Eq. (1) if (i) S ⊂ X , (ii) sinit = xinit, (iii) if (s1, s2) ∈ R,
there exists a trajectory x : [0, T]→ X such that x(0) = s1,
x(T) = s2, T = ∆(s1, s2) and |D(x)| ≤ 1, i.e., Lc(x(·))
changes its value at most once.

The following lemma then easily follows from the definition
above and relates the trajectories of the dynamical system to
traces of a durational Kripke structure.

Lemma 3 For any trace r of a trace-inclusive Kripke struc-
ture K, there exists a trajectory of the dynamical system, say
x : [0, T]→ X , such that, destutter(w(r)) = w(x).

B. Finite Automata

Definition 4 (Finite Automaton) A non-deterministic finite
automaton (NFA) is a tuple A = (Q, qinit,Σ, δ, F), where
Q is a finite set of states; qinit ∈ Q is the initial state; Σ
is an input alphabet; δ ⊆ Q×Σ×Q is a non-deterministic
transition relation; F ⊆ Q is a set of accepting states.

The semantics of finite automata are defined over finite
words produced by durational Kripke structures (see Def. 1).
In this work, the alphabet Σ is chosen to be 2Π×2Π. A tuple
τ = (q1, (σ1, σ2), q2) ∈ δ corresponds to a transition labeled
with (σ1, σ2) ∈ 2Π × 2Π from q1 to q2. A run ρ of a timed
automaton over a finite word w = `0, . . . , `n is a sequence
q0, . . . , qn of states, such that q0 = qinit, and there exists a
transition (qi, (`i, `i+1), qi+1) ∈ δ, for all 0 ≤ i ≤ n− 1. A
word w is accepted iff there exists a run ρ = q0, . . . , qn over
w, such that qn ∈ F and rejected otherwise. L(A), called as
the language of A, is the set of all words accepted by A.

An automaton A is called non-blocking if, for all q ∈ Q,
and `1, `2 ∈ Σ, there exists a transition (q, (`1, `2), q′) ∈ δ.
Let us note that every blocking automaton can be trivially
converted to a non-blocking automaton by adding transitions
to a new state qnew /∈ F .

C. Finite LTL

Finite automata can capture a large class of properties
that are exhibited by traces of a transition system. However,
some specification languages with similar expressive power,
such as regular expressions or variants of Linear Temporal
Logic (LTL) interpreted over finite runs, provide a more user-
friendly means to express these properties (see [12], [13] for
details). We demonstrate in Sec. VI, how rules of the road
and safety rules can be conveniently captured by a slight
modification of Finite LTL [14] without the next operator,
called FLTL−X and defined below.

Definition 5 (FLTL−X) A FLTL−X formula φ over the set
of atomic propositions Π is defined inductively as follows:

1) every pair of atomic propositions, (a, a′) ∈ Π×Π is a
formula,

2) if φ1 and φ2 are formulas, then φ1 ∨φ2, ¬φ1, φ1 Uφ2,
Gφ1, and Fφ1 are each formulas,

where ¬ (negation) and ∨ (disjunction) are standard Boolean
connectives, and U, G, and F are temporal operators.

Unlike the well-known standard LTL (see e.g., [13]),
FLTL−X is interpreted over finite traces, as those generated
by the durational Kripke structure from Def. 1. Informally,
(a, a′) holds true on a trace `0, `1, . . . , `n if a ∈ `0, and
a′ ∈ `1. The formula φ1 Uφ2 states that there is a future
moment when formula φ2 is true, and formula φ1 is true at
least until φ2 is true. The formula Gφ states that formula φ
holds at all positions of a finite trace, and Fφ states that φ

holds at some future time instance. An FLTL−X formula can
also be algorithmically translated into a finite automata [15].

D. Level of Unsafety

Let A be the automaton for a safety rule with priority
$(A). The priority function $: A → N assigns priorities
to each rule A. We assume here that an empty trace by
convention always satisfies the safety rule given by any A.

Definition 6 (Level of Unsafety for a safety rule) Let
w = `0, . . . , `n be a word over 2Π, for any index set
I = {i1, . . . , ik} ⊂ {0, . . . n}, define

vanish(w, {i1, . . . ik}) = `0, . . . , `ij−1, `ij+1, . . . `n,

where 1 ≤ j ≤ k, i.e., the finite sequence obtained from w by
erasing states indexed with i1, . . . , ik. The level of unsafety
λ(w,A) of w with respect to a safety rule expressed as a
finite automaton A is,

λ(w,A) = min
I| vanish(w,I)∈L(A)

∑
i∈I

$(A).

The level of unsafety for a timed word ω(x) =
(`0, d0), (`1, d1), . . . , (`n−1, dn−1), (`n, dn) produced by a
trajectory x of the dynamical system is,

λ(x,A) = min
I|vanish(w(x),I)∈L(A)

di ·$(A).

For a trace r = s0, . . . , sn+1 of the Kripke structure K, it is

λ(r,A) = min
I|vanish(w(r),I)∈L(A)

∑
i∈I

∆(si, si+1)$(A).

Consider a sequence of non-empty sets of safety rules Ψ =
(Ψ1, . . . ,Ψn) with each rule ψj ∈ Ψi, for all 1 ≤ i ≤ n
given in the form of a finite automaton Ai,j . The ordered
set Ψ together with the priority function $ is called a set
of safety rules with priorities (Ψ, $). We now extend the
definition of the level of unsafety for a word w and a trace
r to a set of safety rules with priorities (Ψ, $) as follows.

Definition 7 (Level of Unsafety for a set of rules) The
level of unsafety of a word with respect to a set of rules Ψi,
λ(w,Ψi) and the level of unsafety with respect to a set of
rules with priorities (Ψ, $) are defined as,

λ(w,Ψi) =
∑
Ai,j∈Ψi

λ(w,Ai,j),

λ(w,Ψ) =
(
λ(w,Ψ1), . . . , λ(w,Ψn)

)
Level of unsafety for a trajectory of the dynamical system and
a trace r of K with respect to a set of rules with priorities
is defined similarly. The standard lexicographic ordering is
used to compare the level of unsafety of two traces r1, r2.

III. PROBLEM FORMULATION

For a compact set S ⊂ Rd, define sinit ∈ S to be the
initial state and a compact subset Sgoal ⊂ S as the goal
region. Given the dynamical system in Eq. (1), define a task
specification Φ to be, “traveling from sinit to Sgoal”. The
word produced by a trajectory x : [0, T] → X , w(x) =

`0, `1, . . . , `n is said to satisfy the task Φ if `0 = sinit and
`n ∈ Sgoal. Similarly, a trace of the Kripke structure, r =
s0, . . . , sn satisfies Φ if s0 = sinit and sn ∈ Sgoal. We
assume in this work that this task is feasible.

Problem 8 Given a dynamical system as shown in Eq. (1),
a task specification Φ, a set of safety rules with priorities
(Ψ, $) and a continuous function c(x) that maps a tra-
jectory x of the dynamical system to a non-negative cost,
find a trajectory x∗ : [0, T] → X producing a timed word
ω(x∗) = (`0, d0) . . . (`n, dn) and a word w(x) such that,

(i) w(x) satisfies the task specification Φ,
(ii) x∗ minimizes the level of unsafety, λ(x′,Ψ), among all

trajectories x′ that satisfy condition (i),
(iii) x∗ minimizes c(x′′) among all trajectories x′′ that

satisfy conditions (i) and (ii).

The solution of this problem as defined above exists if
the task Φ is feasible. In this work, we restrict ourselves
to minimum-time cost functions, i.e., c(x) =

∫ T

0
1dt. The

algorithm described here however applies to a much wider
class of functions including discounted cost as well as state
and control based cost functions with minor changes. In order
to develop an algorithmic approach for Prob. 8, we convert
it to the following problem defined on a trace-inclusive
durational Kripke structure. Thm. 16 connects the solutions
of Prob. 9 to those of Prob. 8.

Problem 9 Given a durational Kripke structure K =
(S, sinit,R,Π,L,∆) that is trace-inclusive for the dynami-
cal system in Eq. (1), a task specification Φ, a set of safety
rules with priorities (Ψ, $) and a cost function c(x), find a
finite trace r∗ = s0, s1, . . . , sn of K such that,

(i) r∗ satisfies Φ,
(ii) r∗ minimizes λ(r′,Ψ) among all traces r′ of K that

satisfy condition (i),
(iii) r∗ minimizes 〈r〉 among all traces r′′ satisfying (i), (ii).

IV. ALGORITHM

This section describes an algorithm for finding minimum-
constraint violation trajectories for a dynamical system. We
then propose an algorithm, based on RRT∗, to incrementally
construct a product of the Kripke structure and automata
representing safety rules. Roughly, the shortest path in the
product uniquely maps to a trace of the Kripke structure that
minimizes the level of unsafety. Let us note that the algorithm
returns a trajectory that satisfies all rules and minimizes the
cost function if it is possible to do so.

A. Weighted Product Automaton

First, we augment each automaton Ai,j ∈ Ψ with new
transitions and weights, such that the resulting weighted
automaton also accepts all words w that do not satisfy the
rule Ai,j ; the weights are picked such that the weight of an
accepting run over w determines the level of unsafety of w
with respect to Ai,j (see Def. 10). Second, we combine all
the weighted automata into a single weighted automatonAΨ;

the weights of this automaton capture the level of unsafety
with respect to a set of safety rules with priorities (Ψ, $)
(see Def. 12). Third, we build the product of the durational
Kripke structure K and the automaton AΨ (see Def. 14);
weights of this product correspond to the level of unsafety
of traces of K.

We now proceed to describe each of these steps in detail
and summarize the purpose of each construction in a lemma
(see Def. 10–14 and Lem. 11–15). The material presented in
this section is a slight modification of our earlier algorithm
for finding a trace of a weighted transition system that
minimizes the level of unsafety [11]. For the sake of brevity,
proofs of these lemmas are omitted and can be found in [11].

Definition 10 (Weighted Automaton) For a non-blocking
finite automaton A = (Q, qinit, 2

Π, δ, F), the weighted finite
automaton is defined as A = (Q, qinit, 2

Π, δ, F,W), where,
δ = δ ∪ {(q, (σ, σ′), q′) | q, q′ ∈ Q, (σ, σ′) ∈ 2Π2},

W
(
τ) =

{
0 if τ ∈ δ
$(A) if τ ∈ δ \ δ.

Lemma 11 For a rule ψi,j given as an automaton Ai,j ,
any word over 2Π is accepted by Ai,j and the weight of the
shortest accepting run is equal to λ(w,ψi,j).

A single weighted automaton AΨ is created by combining
all automata Ai,j , where Ai,j ∈ Ψi ∈ Ψ. This captures the
level of unsafety with respect to the whole set of safety rules
with priorities (Ψ, $) through its weight function.

Definition 12 (Automaton AΨ) The weighted automaton
AΨ = (Q, qinit, 2

Π, C, δ, F ,W) is defined as follows:
• Q = Q1,1 . . .× . . . Q1,m1 . . .× . . . Qn,1 . . .× . . . Qn,mn ;
• qinit = (qinit,1,1, . . . , qinit,n,mn

);
• (p, (σ, σ′), p′) ∈ δ if

– p = (q1,1, . . . , qn,mn
), p′ = (q′1,1, . . . , q

′
n,mn

), and
– (qi,j , (σ, σ

′), q′i,j) ∈ δi,j , for all i ∈ {1, . . . , n}, j ∈
{1, . . .mi}.

Also, W((p, (σ, σ′), p′)) = (x1, . . . , xn), where xi =∑mi

j=1Wi,j(qi,j , (σ, σ
′), q′i,j);

• F = {(q1,1, . . . , qn,mn) | qi,j ∈ F i,j , for all
i ∈ {1, . . . , n}, j ∈ {1, . . .mi}}

Lemma 13 Any word w over 2Π is accepted by AΨ and the
weight of the shortest accepting run of AΨ over w is equal
to the level of unsafety λ(w,Ψ).

Definition 14 (Weighted Product Automaton P) We
build the weighted product automaton,

P = K ⊗ AΨ = (QP , qinit,P , δP , FP ,WP)

of the Kripke structure K = (S, sinit,R,Π,L,∆) and the
augmented automaton AΨ = (Q, qinit, 2

Π, δ, F ,W) as,
• QP = S ×Q is a set of states;
• qinit,P = (sinit, qinit) is the initial state;

• δP ⊆ QP × QP is a non-deterministic transition
relation, where ((s, q), (s′, q′)) ∈ δP if (s, s′) ∈ R,
and there exists a transition (q, (L(s),L(s′)), q′) ∈ δ.
Then also,

WP
(
(s, q), (s′, q′)

)
= (x1 ·∆(s, s′), . . . , xn ·∆(s, s′)),

where (x1, . . . , xn) =W(q,L(s),L(s′), q′) and,
• FP = (S ∩ Sgoal)× F is a set of accepting states.

A product automaton is in fact, a finite automaton extended
with weights. A run of a product automaton is a sequence
ρ = p0, . . . , pn, such that p0 = qinit,P , and (pi, pi+1) ∈ δP ,
for all 0 ≤ i < n and it is accepting if pn ∈ FP . The weight
of a runWP(ρ) is the tuple obtained by component-wise sum
of the weights associated with the transitions executed along
the run. The shortest run over w is then a run ρ minimizing
the weight WP(ρ) in the lexicographical ordering.

Lemma 15 The shortest accepting run (in the lexicograph-
ical ordering with respect to WP), p0 . . . pn of P from the
state p0 = qinit,P to a state pn ∈ FP projects onto a trace
r = s0, . . . sn of K that minimizes the level of unsafety.

B. Incremental Weighted Product Automaton

In this section, we incrementally construct the weighted
product automaton (see Def. 14) and maintain the trace that
minimizes the level of unsafety for a set of safety rules Ψ. A
few preliminary procedures of the algorithm are as follows :

1) Sampling: The Sample procedure samples an indepen-
dent, identically distributed state s from a uniform distribu-
tion supported over the bounded set S .

2) Nearest neighbors: The Near procedure returns the set,

Snear(s) = {s′| ||s′ − s||2 ≤ γ (log n/n)
1/d

; s′ ∈ S}

where n = |S| and γ is a constant given in Thm. 16.
3) Steering: Given two states s, s′, the Steer(s′, s) pro-

cedure computes the pair (x, T) where x : [0, T] → X is a
trajectory such that, (i) x(0) = s′, (ii) x(T) = s and, (iii)
x minimizes the cost function c(x) = T . If a trajectory x is
found, return true, else return false.

4) Connecting: For a state s′ ∈ Snear, if Steer(s′, s)
returns true, for all nodes z′ = (s′, q′) ∈ QP , for all
(z′, (s, q)) ∈ δP , the procedure Connect(s′, s) adds the state
z = (s, q) to the set QP , adds (z′, z) to δP and calculates
WP(z′, z). If s ∈ Sgoal and q ∈ F , it adds (s, q) to FP .

5) Updating costs: The procedure Update(s) updates the
level of unsafety Ja(z) and the cost Jt(s) from the root for
a node z = (s, q) as shown in Alg. 2 using the sets,

Ssteer(s) = {s′ | s′ ∈ Snear(s); Steer(s′, s) returns true},

Zsteer(s) = {(s′, q′) | s′ ∈ Ssteer(s); (s′, q′) ∈ QP}.

6) Rewiring: In order to ensure asymptotic optimality, the
Rewire procedure recalculates the best parent Par(s′) for all
states s′ ∈ Snear(s) as shown in Alg. 3. The complexity of
this procedure can be reduced by noting that s′ only needs
to check if the new sample can be its parent by comparing
costs Ja, Jt, otherwise its parent remains the same.

Finally, Alg. 1 creates the weighted product automaton as
defined in Def. 14 incrementally. It also maintains the best
state z∗ = (s∗, q∗) ∈ FP . The trace r∗ = s0, s1, . . . , sn of
the Kripke structure K that minimizes the level of unsafety
and is a solution to Prob. 9 can then be obtained from
z∗ by following Par(s∗). Since K is trace-inclusive, the
continuous-time trajectory x∗ can be obtained by concatenat-
ing smaller trajectories. Let (xi, Ti) be the trajectory returned
by Steer(si, si+1) for all states si ∈ r∗. The concatenated
trajectory x∗ : [0, T] → X is such that T =

∑n−1
i=0 Ti and

xn(t+
∑i−1

k=0 Tk) = xi(t) for all i < n.

Algorithm 1: Create Product

1 Input : n, S, AΨ;
2 P ← ∅; QP ← qinit

P ; Ja(sinit)← 0; Jt(sinit)← 0;
3 i← 0;
4 for i ≤ n do
5 s← Sample;
6 for s′ ∈ Near(s) do
7 if Steer(s′, s) then
8 Connect(s′, s);

9 Par, Ja, Jt ← Update(s);
10 P, Ja, Jt ← Rewire(s);

11 Pn ← (QP , q
init
P , δP , FP ,WP);

12 return Pn

Algorithm 2: Update(s,P)

1 for z = (s, q) ∈ QP do
2 Ja(z)← min

z′∈Zsteer

WP(z′, z) + Ja(z
′);

3 Z∗ ← arg min
z′∈Zsteer

WP(z′, z) + Ja(z
′);

4 Jt(s)← min
z′∈Z∗

c(s′, s) + Jt(s
′);

5 Par(z)← arg min
z′∈Z∗

c(s′, s) + Jt(s
′);

6 return Par, Ja, Jt

Algorithm 3: Rewire(s,P)

1 for s′ ∈ Ssteer(s) do
2 if Steer(s, s′) then
3 Connect(s, s′);

4 Ja, Jt ← Update(s′);

5 return P

V. ANALYSIS

In this section, we analyze the convergence properties
of Alg. 1. In particular, we prove that the continuous-
time trajectory xn given by the algorithm after n iterations
converges to the solution of Prob. 8 as the number of
states in the durational Kripke structure Kn goes to infinity,
with probability one. A brief analysis of the computational
complexity of the algorithm is also carried out here. Due to
lack of space, we only sketch the proofs.

Theorem 16 The probability that Alg. 1 returns a durational
Kripke structure Kn and a trajectory of the dynamical system
xn, that converges to the solution of Prob. 8 in the bounded
variation norm sense, approaches one as the number of states

in Kn tends to infinity, i.e.,

P
(
{ lim
n→∞

||xn − x∗||BV = 0}
)

= 1

Proof: (Sketch) The proof primarily follows from the
asymptotic optimality of the RRT∗ algorithm (see Theorem
34 in [7]). Let x∗ : [0, T] → X be the solution of Prob. 8
that satisfies the task Φ and minimizes the level of unsafety.
For a large enough n, define a finite sequence of overlapping
balls Bn = {Bn,1, . . . , Bn,m} around the optimal trajectory
x∗. The radius of these balls is set to be some fraction of
γ(log n/n)1/d such that any point in s ∈ Bn,m can connect
to any other point s′ ∈ Bn,m+1 using the Steer(s, s′)
function. It can then be shown that each ball in Bn contains
at least one state of Kn with probability one. In such a case,
there also exists a trace rn = s0, s1, . . . , sn of Kn such
that every state si lies in some ball Bn,m. Also, for a large
enough n, the level of unsafety of rn, λ(rn,Ψ) is equal to
the level of unsafety of the word generated by the trajectory
x∗, λ(ω(x∗),Ψ), i.e., MVRRT∗ returns the trace with the
minimum level of unsafety among all traces of the Kripke
structure K satisfying the task φ. Finally, it can be shown
that the trajectory xn constructing by contanetating smaller
trajectories joining consecutive states of r, i.e., s0, s1, . . .
converges to x∗ almost surely as n→∞.

In this proof, γ > 2 (2 + 1/d)
1/d

(µ(S)/ζd)
1/d, where

µ(S) is the Lebesgue measure of the set S and ζd is the
volume of the unit ball of dimensionality d.

The following lemma is an immediate consequence of
Thm. 16 and the continuity of the cost function c(x).

Lemma 17 The cost of the solution converges to the optimal
cost, c∗ = c(x∗), as the number of samples approaches
infinity, almost surely, i.e, P ({limn→∞ c(xn) = c∗}) = 1.

Let us now comment on the computational complexity
of MVRRT∗. Note that there are an expected O(log n)
samples in a ball of radius γ(log n/n)1/d. The procedure
Steer is called on an expected O(log n) samples while
because the automaton AΨ is non-deterministic, the proce-
dure Connect adds at most m2 new states in the product
automaton per sample. The procedure Update requires at
most O(m2 log n) time call. The Rewire procedure simply
updates the parents of the O(log n) neighboring samples
which take O(m2 log n) time. In total, the computational
complexity of MVRRT∗ is O(m2 log n) per iteration.

VI. EXPERIMENTS

In this section, we consider an autonomous vehicle mod-
eled as a Dubins car in an urban environment with road-
safety rules and evaluate the performance of MVRRT∗ in a
number of different situations.

A. Experimental Setup

Consider a Dubins car, i.e., a curvature-constrained vehicle
with dynamics, ẋ = v cos(θ), ẏ = v sin(θ) and θ̇ = u. The
state of the system is the vector [x, y, θ]T , and the input
is u(t), where |u(t)| ≤ 1 for all t ≥ 0. The vehicle is

Fig. 1: Partitions of the working domain S. The transition from s1 to
s2 is labeled with, for example, {(rl, ll), (rl,¬dir), (rl, dotted)}.

assumed to travel at a constant speed v. As shown in [16],
time-optimal trajectories for this system in an obstacle-free
environment can be easily calculated.

We partition the working domain S into compact non-
empty subsets Sobs which is the union of obstacled regions,
Ssw which represents the sidewalk and Srl, Sll which are
the right and left lanes, respectively, as illustrated in Fig. 1.
Sobs is empty if there are no obstacles. Based on this
partitioning, we define the set of atomic propositions as, Π =
{sw, rl, ll, dir, dotted, solid}. A proposition p ∈ {sw, rl, ll}
is true at a state s ∈ S, if s ∈ Sp with rl, ll being mutually
exclusive. dir is true iff the heading of the car is in the correct
direction, i.e., if s is such that the car heading forwards and
rl is true. Atomic propositions, dotted and solid, depict the
nature of lane markers. Note that obstacles are not considered
while constructing Π since we do not desire a trajectory
that goes over an obstacle. The Steer procedure in Sec. IV,
instead, returns false if any state along the trajectory lies in
Sobs. This change does not affect the correctness and the
overall complexity of MVRRT∗.

B. Safety Rules

Given a task Φ such as finding a trajectory from sinit
to the goal region Sgoal, we require the vehicle to follow
the following rules: (i) do not travel on sidewalks (sidewalk
rule), (ii) do not cross solid center lines (hard lane changing),
(iii.a) always travel in the correct direction (direction rule),
(iii.b) do not cross dotted center lines (soft lane changing).

We describe the rules with the following FLTL−X formulas
and corresponding finite automata in Fig. 2. Note that we
use 2-tuples of atomic propositions from Π as the alphabet
for both formulas and the automata, to specify not only
properties of individual states, but also of transitions. The two
components capture the atomic propositions of the starting
and the ending state respectively.

(i) Sidewalk: Do not take a transition that ends in Ssw.

ψ1,1 = G
∧
∗∈2Π

¬(∗, sw)

(ii) Hard lane change: Do not cross a solid center line.

ψ2,1 = G
(
¬
(
(rl, solid) ∧ (rl, ll)

)
∨
(
(ll, solid) ∧ (ll, rl)

))
(iii.a) Direction: Do not travel in the wrong direction.

ψ3,1 = G
∨
∗∈2Π

(∗, dir)

(iii.b) Soft lane change: Do not cross a dotted center line.

ψ3,2 = G
(
¬
(
(rl, dotted)∧(rl, ll)

)
∨
(
(ll, dotted)∧(ll, rl)

))
The finite automata for rules (i)-(iii.b) are all of the same
form (see Fig. 2).

q1 (`, `′)

Fig. 2: Rule iii.b : For the sake of brevity, the transition above
represents all transitions, where (i) `, `′ ⊆ 2Π, such that rl ∈ ` and
dotted, ll ∈ `′, or ll ∈ ` and dotted, rl ∈ `, and (ii) `, `′ ⊆ 2Π,
such that rl ∈ ` and solid, ll ∈ `′, or ll ∈ ` and solid, rl ∈ `.

While it is quite natural to disobey the direction and the
soft lane change rules, a solid line should not be crossed.
This gives three different priority classes

(Ψ1,Ψ2,Ψ3), $) = (({ψ1,1}, {ψ2,1}, {ψ3,1, ψ3,2}), $),

where $(ψ1,1) = $(ψ2,1) = $(ψ3,1) = 1 and $(ψ3,2) =
10. Note that costs for ψ2,1 and ψ3,2 are incurred only once
per crossing and do not depend upon the duration of the
transition. Within the third class, we put higher priority on
the soft lane change rule to avoid frequent lane switching, for
instance in case two obstacles are very close to each other
and it is not advantageous to come back to the right lane for
a short period of time, e.g., see Fig. 4.

C. Simulation Experiments

MVRRT∗ was implemented in C++ on a 2.2GHz processor
with 4GB of RAM for the experiments in this section. We
present a number of different scenarios in the same environ-
ment to be able to quantitatively compare the performance.
In Fig. 4, the Dubins car starts from the lower right hand
corner while the goal region marked in green is located in the
lower left hand corner. Light grey denotes the right and left
lanes, Srl and Sll. A sidewalk Ssw is depicted in dark grey.
The dotted center line is denoted as a thin yellow line while
solid center lines are marked using double lines. Stationary
obstacles in this environment are shown in red.

a) Case 1: First, we consider a scenario without any
safety or road rules. The MVRRT∗ algorithm then simply
aims to find the shortest obstacle-free trajectory from the
initial state to the goal region. Note, that in this case,
MVRRT∗ performs the same steps as the RRT∗ algorithm.
The solution computed after 40 seconds has a cost of 88.3
and is illustrated in Fig. 3 together with the adjoining tree.

b) Case 2: Next, we introduce the sidewalk rule ψ1,1

and the direction rule ψ3,1. Without any penalty on frequent
lane changing, the car goes back into the right lane after
passing the first obstacle. It has to cross the center line again
in order to pass the second obstacle and reach the goal region.
Fig 4a depicts the solution that has a cost of 122.3 along with
a level of unsafety of 46.4 for breaking ψ3,1.

Upon introducing the rule ψ3,2, the vehicle does not go
back into the right lane after passing the first obstacle.
Figure 4b shows this solution with a level of unsafety of
84.1 for breaking both ψ3,1 and ψ3,2 whereas the level of
unsafety in this case for the trajectory in Fig. 4a is 87.4.

Fig. 3: MVRRT∗ tree after 40 sec. on an example without any
safety rules. States of the Kripke structure are shown in yellow
while edges are shown in white. The shortest trajectory shown in
red to the goal region avoids obstacles but uses the sidewalk.

(a)

(b)

Fig. 4: Fig. 4a shows the solution after 60 secs. for sidewalk and
direction rules. Upon introducing the soft lane changing rule in
Fig. 4b, the vehicle does not return to the right lane after passing
the first obstacle.

c) Case 3: Fig 5a shows a run for the sidewalk,
direction and soft lane changing rules after 60 secs. of
computation time with a level of unsafety of (0, 0, 28.3).
In Fig. 5b, with 120 secs. of computation, the solution has
a much higher cost (215.8) but a significantly lower level of
unsafety (0, 0, 1.6) because it only breaks the direction rule
slightly when it turns into the lane. This thus demonstrates
the incrementality and anytime nature of the algorithm.

d) Case 4: In our last example, we introduce hard and
soft lane changing rules along with sidewalk and direction
rules. After 15 secs., MVRRT∗ returns the solution shown
in Fig. 5c, which breaks the hard lane changing rule twice,
thereby incuring a level of unsafety of (0, 2, 48.1) for the
three rules. On the other hand, after about 300 secs., the
solution converges to the trajectory shown in Fig. 5d which
breaks the hard lane changing rule only once, this has a level
of unsafety of (0, 1, 25.17).

D. Implementation

In this section, we present results of our implementation
of MVRRT∗ on an autonomous golfcart shown in Fig. 6
as a part of an urban mobility-on-demand system in the
National University of Singapore’s campus. The golfcart was
instrumented with two SICK LMS200 laser range finders and
has drive-by-wire capability. The algorithm was implemented
inside the Robot Operating System (ROS) [17] framework.

Let us briefly describe the setup and note some major

(a) (b)

(c) (d)

Fig. 5: Fig. 5a and 5b show the solution of MVRRT∗ after 60
and 120 secs. respectively, with the sidewalk, direction and soft
lane changing rules. Note that the algorithm converges to a long
trajectory which does not break any rules. Fig. 5c shows a solution
after 20 secs. which breaks the hard lane changing rule twice.
After 120 secs., the algorithm converges to the solution shown in
Fig. 5d, which features only one hard lane change and three soft
lane changes.

implementation details. Traffic lanes and sidewalk regions
are detected using pre-generated lane-maps of the campus
roads, while obstacles are detected using data from laser
range-finders. We use the sidewalk, direction and soft-lane
changing rules for the experiments here. For an online
implementation of MVRRT∗, we incrementally prune parts
of Kripke structure that are unreachable from the current
state of the golfcart. The algorithm adds new states in every
iteration (Lines 5-10 in Alg. 1) until the change in the
level of unsafety of the best trajectory is within acceptable
bounds between successive iterations. This trajectory is then
passed to the controller that can track Dubins curves. We use
techniques such as branch-and-bound and biased sampling to
enable a fast real-time implementation and the golfcart can
travel at a speed of approximately 10 kmph while executing
the algorithm. Fig. 6 gives a snapshot of the experimental
setup while Fig. 7 shows an instance of the golfcart going
into the incoming lane in order to overtake a stalled car in
its lane. Note that traffic in Singapore drives on the left hand
side of the road.

VII. CONCLUSIONS

This paper considered the problem of synthesizing
minimum-violation control strategies for continuous dynam-
ical systems that obey a set of safety rules and satisfy a
given reachability task. We focused on the case when the
task is infeasible without breaking some of the safety rules.
Ideas from sampling-based motion-planning algorithms and
automata-based model checking approaches were utilized to
propose an incremental algorithm to generate a trajectory of
the dynamical system that systematically picks which safety
rules to violate and minimizes the level of unsafety. The

(a) (b) (c)

Fig. 6: Fig. 6a shows the Yamaha golfcart instrumented with laser range-finders and cameras. Fig. 6c shows the online implementation of
MVRRT∗ in ROS. Red particles depict the estimate of the current position of the golfcart using laser data (shown using colored points)
and adaptive Monte-Carlo localization on a map of a part of the NUS campus shown in Fig. 6b. Trajectories of the dynamical system,
that are a part of the Kripke structure are shown in white while the trajectory currently being tracked is shown in green.

(a) (b)

(c) (d)

Fig. 7: The autonomous golfcart comes back into the correct lane
after overtaking a stalled vehicle inspite of the road curving to
the right. Note that the optimal trajectory without road-safety rules
would cut through the incoming lane to reach the goal region.

algorithm was demonstrated in simulation experiments and
also implemented on an experimental autonomous vehicle.

VIII. ACKOWLEDGEMENTS

This work is supported in part by Michigan/AFRL Collab-
orative Center on Control Sciences AFOSR grant FA 8650-
07-2-3744, US-NSF grant CNS-1016213, NSF-Singapore
through FM SMART IRG, Nissan Motor Company and by
the grant LH11065 at Masaryk University, Czech Republic.

REFERENCES

[1] John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Camp-
bell, Gaston Fiore, Luke Fletcher, Emilio Frazzoli, Aalbert Huang,
Sertac Karaman, et al. A perception-driven autonomous urban vehicle.
Journal of Field Robotics, 25(10):727–774, 2008.

[2] Xu Chu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. MDP
optimal control under temporal logic constraints. In Proc. of IEEE
Conf. on Decision and Control and European Control Conference
(CDC-ECC), pages 532–538, 2011.

[3] Paulo Tabuada and George J Pappas. Linear time logic control of
discrete-time linear systems. IEEE Transactions on Automatic Control,
51(12):1862–1877, 2006.

[4] Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus. Optimal
path planning for surveillance with temporal-logic constraints. The
International Journal of Robotics Research, 30(14):1695–1708, 2011.

[5] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, and Calin Belta. Ro-
bust multi-robot optimal path planning with temporal logic constraints.
In Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pages
4693–4698, 2012.

[6] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray.
Receding horizon control for temporal logic specifications. In Proc. of
the 13th ACM Int. Conf. on Hybrid systems: Computation and Control,
pages 101–110, 2010.

[7] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. International Journal of Robotics Research,
30(7):846–894, 2011.

[8] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning with deterministic µ-calculus specifications.
In Proc. of American Control Conference (ACC), 2012.

[9] Vasumathi Raman and Hadas Kress-Gazit. Automated feedback for
unachievable high-level robot behaviors. In Proc. of IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 5156–5162, 2012.

[10] Kris Hauser. The minimum constraint removal problem with three
robotics applications. In Proc. of Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2012.

[11] Jana Tumova, Gavin C. Hall, Sertac Karaman, Emilio Frazzoli, and
Daniela Rus. Least-violating control strategy synthesis with safety
rules. In Proceedings of the 16th ACM international conference on
Hybrid systems: computation and control. ACM, 2013. To appear.

[12] Michael Sipser. Introduction to the Theory of Computation. Course
Technology, 3rd edition, 2012.

[13] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[14] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer, 1995.

[15] Elsa L. Gunter and Doron Peled. Temporal debugging for concurrent
systems. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 431–444.
Springer-Verlag, 2002.

[16] Lester E Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents. American Journal of Mathematics, pages 497–516, 1957.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: An open-source
Robot Operating System. In Workshop on Open-Source Software,
ICRA, 2009.

	I Introduction
	II Preliminaries
	II-A Durational Kripke Structures for Dynamical Systems
	II-B Finite Automata
	II-C Finite LTL
	II-D Level of Unsafety

	III Problem Formulation
	IV Algorithm
	IV-A Weighted Product Automaton
	IV-B Incremental Weighted Product Automaton
	IV-B.1 Sampling
	IV-B.2 Nearest neighbors
	IV-B.3 Steering
	IV-B.4 Connecting
	IV-B.5 Updating costs
	IV-B.6 Rewiring

	V Analysis
	VI Experiments
	VI-A Experimental Setup
	VI-B Safety Rules
	VI-C Simulation Experiments
	VI-D Implementation

	VII Conclusions
	VIII Ackowledgements
	References

