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H2-Optimal Decentralized Control over Posets:
A State-Space Solution for State-Feedback

Parikshit Shah and Pablo A. Parrilo

Abstract—We develop a complete state-space solution to
H2-optimal decentralized control of poset-causal systems
with state-feedback. Our solution is based on the exploita-
tion of a key separability property of the problem, that
enables an efficient computation of the optimal controller
by solving a small number of uncoupled standard Riccati
equations. Our approach gives important insight into the
structure of optimal controllers, such as controller degree
bounds that depend on the structure of the poset. A
novel element in our state-space characterization of the
controller is an intuitive description of the controller as
an aggregation of local control laws.

I. Introduction
Finding computationally efficient algorithms to

design decentralized controllers is a challenging
area of research (see e.g. [19], [5] and the references
therein). Current research suggests that while the
problem is hard in general, certain classes with spe-
cial information structures are tractable via convex
optimization techniques. In past work, the authors
have argued that communication structures modeled
by partially ordered sets (or posets) provide a rich
class of decentralized control systems (which we
call poset-causal systems) that are amenable to
such an approach [19]. Posets have appeared in
the control theory literature earlier in the context
of team theory [11], and specific posets (chains)
have been studied in the context of decentralized
control [27]. Poset-causal systems are also related
to the class of systems studied more classically
in the context of hierarchical systems [13], [10],
where abstract notions of hierarchical organization
of large-scale systems were introduced and their
merits were argued for.

While it is possible to design optimal decentral-
ized controllers for a fairly large class of systems
known as quadratically invariant systems in the
frequency domain via the Youla parametrization
[16], there are some important drawbacks with such
an approach. Typically Youla domain techniques
are not computationally efficient, and the degree

of optimal controllers synthesized with such tech-
niques is not always well-behaved. In addition to
computational efficiency, issues related to numerical
stability also arise. Typically, operations at the trans-
fer function level are inherently less stable numer-
ically. Moreover, such approaches do not provide
insight into the structure of the optimal controller.
These drawbacks emphasize the need for state-
space techniques to synthesize optimal decentral-
ized controllers. State-space techniques are usually
computationally efficient, numerically stable, and
provide degree bounds for optimal controllers. In
our case we will also show that the solution provides
important insight into the structure of the controller.

In this paper we consider the problem of design-
ing H2 optimal decentralized controllers for poset-
causal systems. The control objective is the design
of optimal feedback laws that have access to local
state information. We emphasize here that different
subsystems do not have access to the global state,
but only the local states of the systems in a sense
that will be made precise in the next section. The
main contributions in the paper are as follows:
• We show a certain crucial separability prop-

erty of the problem under consideration. This
result is outlined in Theorem 2. This makes it
possible to decompose the decentralized con-
trol problem over posets into a collection of
standard centralized control problems.

• We give an explicit state-space solution proce-
dure in Theorem 3. To construct the solution,
one needs to solve standard Riccati equations
(corresponding to the different sub-problems).
Using the solutions of these Riccati equations,
one constructs certain block matrices and pro-
vides a state-space realization of the controller.

• We provide bounds on the degree of the optimal
controller in terms of a parameter σP that
depends only on the order-theoretic structure
of the poset (Corollary 2).

• In Theorem 4 we briefly describe the structural
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form of the optimal controller. We introduce a
transfer function Θ, which we call the differen-
tial filter. The transfer function Θ computes a
notion of generalized differentials of state pre-
dictions at different subsystems. The discussion
related to structural aspects of the controller is
brief and informal in this paper and have been
formalized in the paper [22].

• We state a new and intuitive decomposition of
the structure of the optimal controller into local
control laws. Each local control law computes
constitutes a local gain operating on the gener-
alized differential of the local state predictions.
The overall control law is a superposition of
these local control laws.

A. Related Work

It is well-known that in general decentralized
control is a hard problem, and significant research
efforts have been directed towards its different as-
pects; see for instance the classical survey [17] for
some of the earlier results. More recently, Blondel
and Tsitsiklis [4] have shown that in certain in-
stances, decentralized control problems are compu-
tationally intractable, in particular they show that the
problem of finding bounded-norm, block-diagonal
stabilizing controllers in the presence of output-
feedback is NP-hard. Nevertheless the computation
of distributed controllers for different classes of
problems remains an active and important research
area e.g. [2]. An important development due to
Voulgaris [27], [28] was the observation that in
several cases, decentralized control problems were
amenable to exact convex reparametrization and
therefore computationally tractable. Rotkowitz and
Lall generalized these ideas in terms of a property
called quadratic invariance [16], we discuss connec-
tions to their work later. In past work [19], we have
shown that posets provide a unifying umbrella to de-
scribe these tractable examples under an appealing
theoretical framework.

Partially ordered sets (posets) are very well stud-
ied objects in combinatorics. The associated notions
of incidence algebras and Galois connections were
first studied by Rota [15] in a combinatorics setting.
Since then, order-theoretic concepts have been used
in engineering and computer science; we mention a
few specific works below. In control theory, ideas
from order theory have been used in different ways.

Ho and Chu used posets to study team theory
problems [11]. They were interested in sequential
decision making problems where agents must make
decisions at different time steps. They study compu-
tational and structural properties of optimal decision
policies when the problems have poset structure.
Mullans and Elliot [14] use posets to model the
notions of time and causality, and study evolution
of systems on locally finite posets. Wyman [29]
has studied time-varying linear-systems evolving
on locally finite posets in an algebraic framework,
including aspects related to realization theory and
duality. In computer science, Cousot and Cousot
used these ideas to develop tools for formal verifi-
cation of computer programs in their seminal paper
[8]. Del Vecchio and Murray [26] have used ideas
from lattice and order theory to construct estimators
for continuous states in hybrid systems.

More recently, the authors of this paper have
initiated a systematic study of decentralized control
problems from the point of view of partial order
theory. In [19], we introduce the partial order frame-
work and show how several well-known classes of
problems such as nested systems [27] fit into the
partial order framework. In [20], we extend this
poset framework to spatio-temporal systems and
generalize certain results related to the so called
“funnel causal systems” of Bamieh et. al [3]. In [21],
we show that a class of time-delayed systems known
to be amenable to convex reparametrization [16]
also has an underlying poset structure. In that paper,
we also study the close connections between posets
and another class of decentralized control problems
known as quadratically invariant problems. While
this poset framework provides a lens to view all
these examples in a common intuitive framework, a
systematic study of state-space approaches has been
lacking.

In an interesting paper by Swigart and Lall [24],
the authors consider a state-space approach to the
H2 optimal controller synthesis problem over a
particular poset with two nodes. Their approach is
restricted to the finite time horizon setting (although
in a subsequent paper [25], they extend this to the
infinite time horizon setting), and uses a particular
decomposition of certain optimality conditions. In
this setting, they synthesize optimal controllers and
provide insight into the structure of the optimal
controller. These results are also summarized in the
thesis [23]. By using our new separability condition
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(which is related to their decomposition property,
but which we believe to be more fundamental) we
significantly generalize those results in this paper.
We provide a solution for all posets and for the
infinite time horizon. In recent work [16], Rotkowitz
and Lall proposed a state-space technique to solve
H2 optimal control problems for quadratically in-
variant systems (which could be used for poset-
causal systems). An important drawback of their
reformulation is that one would need to solve larger
Riccati equations. Our approach for poset-causal
systems is more efficient computationally. More-
over, our approach also provides insight into the
structure of the optimal controllers.

The rest of this paper is organized as follows. In
Section II we introduce the necessary preliminaries
regarding posets, the control theoretic framework
and notation. In Section III we describe our solution
strategy. In Section IV we present the main results.
We devote Section V to a discussion of the main
results, and their illustration via examples.

II. Preliminaries

In this section we introduce some concepts from
order theory. Most of these concepts are well studied
and fairly standard, we refer the reader to [1], [9]
for details.

A. Posets

Definition 1: A partially ordered set (or poset)
P = (P,�) consists of a set P along with a binary
relation � which has the following properties:

1) a � a (reflexivity),
2) a � b and b � a implies a = b (antisymmetry),
3) a � b and b � c implies a � c (transitivity).

We will sometimes use the notation a ≺ b to denote
the strict order relation a � b but a , b.

In this paper we will deal with finite posets (i.e.
|P| is finite). It is possible to represent a poset
graphically via a Hasse diagram by representing the
transitive reduction of the poset as a graph (i.e. by
drawing only the minimal order relations graphi-
cally, a downward arrow representing the relation
�, with the remaining order relations being implied
by transitivity).

Example 1: An example of a poset with three
elements (i.e., P = {1, 2, 3}) with order relations
1 � 2 and 1 � 3 is shown in Figure 1(b).

1 1

1 1

2 2

2 2

3 3

3

4

(a) (b) (c) (d)

Fig. 1. Hasse diagrams of some posets.

Let P = (P,�) be a poset and let p ∈ P. We define
↓p = {q ∈ P | p � q} (we call this the downstream
set). ‡ Let ↓↓p = {q ∈ P | p � q, q , p}. Similarly,
let ↑p = {q ∈ P | q � p} (called the upstream set),
and ↑↑p = {q ∈ P | q � p, q , p}. We define ↓↑p =

{q ∈ P | q � p, q � p} (called the off-stream set); this
is the set of uncomparable elements that have no
order relation with respect to p. Define an interval
[i, j] = {p ∈ P | i � p � j}. A minimal element of
the poset is an element p ∈ P such that if q � p
for some q ∈ P then q = p. (A maximal element is
defined analogously).

In the poset shown in Figure 1(d), ↓1 =

{1, 2, 3, 4}, whereas ↓↓1 = {2, 3, 4}. Similarly ↑↑1 =

∅, ↑4 = {1, 2, 3, 4}, and ↑↑4 = {1, 2, 3}. The set
↓↑2 = {3}.

Definition 2: Let P = (P,�) be a poset. Let R
be a ring. The set of all functions f : P × P → R
with the property that f (x, y) = 0 if y � x is called
the incidence algebra of P over R. It is denoted by
I(P). ∗

When the poset P is finite, the elements in the
incidence algebra may be thought of as matrices
with a specific sparsity pattern given by the order
relations of the poset in the following way. One
indexes the rows and columns of the matrices by
the elements of P. Indeed, if f ∈ I(P) then f has a

‡We have reversed conventions with respect to some of our
conference papers, wherein the Hasse diagrams are drawn with
upward arrows and the set ↑p corresponds to the set {q ∈ P | p � q}.
The present convention has been adopted to make the presentation
more intuitive. For example the downstream set at p corresponds to
elements drawn lower in the Hasse diagram. It also corresponds to
the elements that are “in the future” with respect to p, in keeping with
the intuition that information in a river propagates “downstream”.
∗Standard definitions of the incidence algebra use an opposite

convention, namely f (x, y) = 0 if x � y. Thus, the matrix represen-
tation of the incidence algebra is typically a transposal of the matrix
representations that appear here. For example, while the incidence
algebra of a chain is the set of lower-triangular matrices in this paper,
in standard treatments it would appear as upper-triangular matrices.
We reverse the convention so that in a control theoretic setting one
may interpret such matrices as representing poset-causal maps.
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matrix representation M such that f (i, j) = Mi j. An
example of an element of I(P) for the poset from
Example 1 (Fig. 1(b)) is:

ζP =

 1 0 0
1 1 0
1 0 1

 .
Given two functions f , g ∈ I(P), their sum f + g
and scalar multiplication c f are defined as usual.
The product h = f · g is defined by h(x, y) =∑

z∈P f (x, z)g(z, y). Note that the above definition
of function multiplication is made so that it is
consistent with standard matrix multiplication.

Lemma 1: Let P be a poset. Under the usual
definition of addition and multiplication as defined
in (1) the incidence algebra is an associative algebra
(i.e. it is closed under addition, scalar multiplication
and function multiplication).

Proof: The proof is standard, see for example
[19].
Given i � j, let [i→ j] denote the set of all chains
from i to j of the form {i, i1}, . . . , {ik, j} such that
i � i1 � · · · � ik � j. For example, in the poset
in Fig. 1(c), [1 → 3] = {{{1, 2} , {2, 3}} , {1, 3}}. A
standard corollary of Lemma 1 is the following.

Corollary 1: Suppose A ∈ I(P). Then A is in-
vertible if and only if Aii is invertible for all i ∈ P.
Furthermore A−1 ∈ I(P), and the inverse is given
by:

[A−1]i j =

{
A−1

ii
∑

pi j∈[ j→i]
∏
{l,k}∈pi j

(−AlkA−1
kk ) if i , j

A−1
ii if i = j.

B. Control Theoretic Preliminaries
We consider the following state-space system in

continuous time:

ẋ(t) = Ax(t) + Fw(t) + Bu(t)
z(t) = Cx(t) + Du(t).

(1)

In this paper we present the continuous time case
only, however, we wish to emphasize that analogous
results hold in discrete time in a straightforward
manner. In this paper we consider what we will
call poset-causal systems. We think of the system
matrices (A, B,C,D, F) to be partitioned into blocks
in the following natural way. Let P = (P,�) be
a poset with P = {1, . . . , p}. We think of this
system as being divided into p sub-systems, with
sub-system i having some states xi(t) ∈ Rni , and

control inputs ui(t) ∈ Rmi for i ∈ {1, . . . , p}. The
external output is z(t) ∈ Rl. The signal w(t) is a
disturbance signal. (To use certain standard state-
space factorization results, we assume that CT D = 0
and DT D � 0, these assumptions can be relaxed
in a straightforward way). The states and inputs
are partitioned in the natural way such that the
sub-systems correspond to elements of the poset
P with x(t) =

[
x1(t)

∣∣∣x2(t)
∣∣∣. . . ∣∣∣xp(t)

]T
, and u(t) =[

u1(t)
∣∣∣u2(t)

∣∣∣. . . ∣∣∣up(t)
]T

. This naturally partitions the
matrices A, B,C,D, F into appropriate blocks so that
A =

[
Ai j

]
i, j∈P

, B =
[
Bi j

]
i, j∈P

, C =
[
C j

]
j∈P

(partitioned

into columns), D =
[
D j

]
j∈P

, F =
[
Fi j

]
i, j∈P

. (We
will throughout deal with matrices at this block-
matrix level, so that Ai j will unambiguously mean
the (i, j) block of the matrix A.) Using these block
partitions, one can define the incidence algebra at
the block matrix level in the natural way. We de-
note by IA(P),IB(P) the block incidence algebras
corresponding to the block partitions of A and B.

We will further assume that F is block diagonal
and full column rank, so that it is left invertible
with a left inverse that is also block diagonal. †

Often, matrices will have different (but compatible)
dimensions and the block structure will be clear
from the context. In these cases, we will abuse
notation and will drop the subscript and simply
write I(P).

We say that a system is P-poset-causal (or simply
poset-causal) if its plant P22 := (sI − A)−1B ∈ I(P).
In this paper we will in fact make a stronger
realizability assumption, namely that A ∈ IA(P)
and B ∈ IB(P). It is known [12] that not every
poset-causal system necessarily has a structured
realization.

Example 2: We use this example to illustrate
ideas and concepts throughout this paper. Consider
the system

ẋ(t) = Ax(t) + Fw(t) + Bu(t)
z(t) = Cx(t) + Du(t)
y(t) = x(t),

†More generally we can assume that for the system under con-
sideration (1), F ∈ I(P) and the diagonal blocks are full column
rank. Operating under this assumption, one can perform an invertible
coordinate transformation T ∈ I(P) on the states so that T−1F is
block diagonal. Since T can be chosen to be in the incidence algebra,
T−1AT,T−1B ∈ I(P). Hence, without loss of generality, we assume
that F is block diagonal.
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with matrices

A =


−0.5 0 0 0
−1 −0.25 0 0
−1 0 −0.2 0
−1 −1 −1 −0.1

 B =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


(2)

C =

[
I4×4

04×4

]
F = I D =

[
04×4

I4×4

]
. (3)

This system is poset-causal with the underlying
poset described in Fig. 1(d). Note that in this system,
each subsystem has a single input, a single output
and a single state. The matrices A and B are in the
incidence algebra of the poset. Furthermore, F = I.

Recall that the standard notion of causality in
systems theory is based crucially on an underlying
totally ordered index set (time). Systems (in LTI
theory these are described by impulse responses)
are said to be causal if the support of the impulse
response is consistent with the ordering of the index
set: an impulse at time zero is only allowed to
propagate in the increasing direction with respect to
the ordering. This notion of causality can be readily
extended to situations where the underlying index
set is only partially ordered. Indeed this abstract
setup has been studied by Mullans and Elliott [14],
and an interesting algebraic theory of systems has
been developed.

Our notion of poset-causality is very much in the
same spirit. We call such systems poset-causal due
to the following analogous property among the sub-
systems. If an input is applied to sub-system i via ui

at some time t, the effect of the input is seen by the
states x j for all sub-systems j ∈ ↓i (at or after time
t). Thus ↓i may be seen as the cone of influence of
input i. We refer to this causality-like property as
poset-causality. This notion of causality enforces (in
addition to causality with respect to time), causality
with respect to the subsystems via a poset. For
most of this paper we will deal with systems that
are poset-causal (with respect to some arbitrary but
fixed finite poset P). Before we turn to the problem
of optimal control we state an important result
regarding stabilizability of poset-causal systems by
poset-causal controllers.

Theorem 1: The poset-causal system (1) is stabi-
lizable by a poset-causal controller K ∈ I(P) if and
only if the (Aii, Bii) are stabilizable for all i ∈ P.

Proof: See Appendix.
In this paper, we make the following important
assumption about the stabilizability of the sub-

systems. By the preceding theorem, this assumption
is necessary and sufficient to ensure that the systems
under consideration have feasible controllers.

Assumption 1: Given the poset-causal system of
the form (1), we assume that the sub-systems
(Aii, Bii) are stabilizable for all i ∈ {1, . . . , p}.
In the absence of this assumption, there is no poset-
causal stabilizing controller, and hence the problem
of finding an optimal one becomes vacuous. This
assumption is thus necessary and sufficient for the
problem to be well-posed. Moreover, in what fol-
lows, we will need the solution of certain standard
Riccati equations. Assumption 1 ensures that all of
these Riccati equations have well-defined stabilizing
solutions. This stabilizing property of the Riccati
solutions will be useful for proving internal stability
of the closed loop system.

Assumption 2: We assume that (C(↓ j), A(↓ j, ↓ j))
have no unobservable modes on the imaginary axis
for all j ∈ {1, . . . , p}.

Assumption 2 is a technical assumption that we
use later in (14) to ensure that the solutions of
certain Riccati equations exist and are unique. The
optimal controller (16) in Theorem 3 will require
these Riccati equations to have well-defined solu-
tions.

The system (1) may be viewed as a map from the
inputs w, u to outputs z, x via

z = P11w + P12u
x = P21w + P22u

where[
P11 P12
P21 P22

]
=

[
C(sI − A)−1F C(sI − A)−1B + D
(sI − A)−1F (sI − A)−1B

]
=

 A F B
C 0 D
I 0 0

 .
(4)

A controller u = Kx induces a map Tzw from the
disturbance input w to the exogenous output z via
Tzw = P11 + P12K(I − P22K)−1P21. Thus, after the
controller is interconnected with the system, the
closed-loop map is Tzw. The objective function of
interest is to minimize the H2 norm [32] of Tzw

which we denote by ‖Tzw‖.

C. Information Constraints on the Controller

Given the system (1), we are interested in design-
ing a controller K that meets certain specifications.
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In traditional control problems, one requires K to
be proper, causal and stabilizing. One can impose
additional constraints on the controller, for exam-
ple require it to belong to some subspace. Such
seemingly mild requirements can actually make
the problem significantly more challenging. This
paper focuses on addressing the challenge posed by
subspace constraints arising from particular decen-
tralization structures. The decentralization constraint
of interest in this paper is one where the controller
mirrors the structure of the plant, and is therefore
also in the block incidence algebra IK(P) (we will
henceforth drop the subscripts and simply refer to
the incidence algebra I(P)). This translates into the
requirement that input ui only has access to x j for
j ∈ ↑i thereby enforcing poset-causality constraints
also on the controller. In this sense the controller
has access to local states, and we thus refer to it as
decentralized.

D. Problem Statement
Given the poset-causal system (4) with poset P =

(P,�), |P| = p, solve the optimization problem:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖
2

subject to K ∈ I(P)
K stabilizing.

(5)

The main problem under consideration is to solve
the above stated optimal control problem in the
controller variable K. The feasible set is the set
of all rational proper transfer function matrices that
internally stabilize the system (1). In the absence
of the decentralization constraints K ∈ I(P) this
is a standard, well-studied control problem that has
an efficient finite-dimensional state-space solution
[32]. The main objective of this paper is to construct
such a solution for the poset-causal case.

E. Notation
Given a matrix Q, let Q( j) denote the jth column

of Q. We denote the ith component of the vector
Q( j) to be Q( j)i. For a poset P with incidence
algebra I(P), if M ∈ I(P) then recall that M is
sparse, i.e. has a zero pattern given by Mi j = 0
if j � i. We denote the sparsity pattern of the jth

column of the matrices in I(P) by I(P) j. Let v ∈ Rp

and vi denote its ith component.

I(P) j := {v ∈ Rp|vi = 0 for j � i} .

In the above definition v is understood to be a
vector composed of |P| blocks, with sparsity being
enforced at the block level.

Given the data (A, B,C,D), we will often need
to consider sub-matrices or embed a sub-matrix
into a full dimensional matrix by zero padding.
Some notation for that purpose we will use is the
following:

1) Define Q↓ j = [Qi j]i∈↓ j (so that it is the jth

column shortened to include only the nonzero
entries).

2) Also define A(↓ j) = [A(i)]i∈↓ j so that it is
the sub-matrix of A containing exactly those
columns corresponding to the set ↓ j.

3) Define A(↓ j, ↓ j) = [Akl]k,l∈↓ j so that it is the
(↓ j, ↓ j) sub-matrix of A (containing exactly
those rows and columns corresponding to the
set ↓ j).

4) Given a block |↓ j| × |↓ j| matrix we will need
to embed it into a block matrix indexed by the
original poset (i.e. a p× p matrix) by padding
it with zeroes. Given K (a block |↓ j| × |↓ j|
matrix) we define the embedded matrix K̂
with elements given by:

[K̂]l,m =

{
Klm if l,m ∈ ↓ j
0 otherwise.

5) Ei = [ 0 . . . I . . . 0 ]T be the tall block
matrix (indexed with the elements of the
poset) with an identity in the ith block row.

6) Let S ⊆ P. Define ES to be the matrix whose
columns are Ei for i ∈ S . Note that given a
block p × p matrix M, ME↓ j = M(↓ j) is a
matrix containing the columns indexed by ↓ j.

7) Given matrices Ai, i ∈ P, we define the block
diagonal matrix:

diag(Ai) =


A1

. . .

Ap

 .
Recall that every poset P has a linear extension (i.e.
a total order on P that is consistent with the partial
order �). For convenience, we fix such a linear
extension of P, and all indexing of our matrices
throughout the paper will be consistent with this
linear extension (so that elements of the incidence
algebra are lower triangular).

Example 3: Let P be the poset shown in Fig.
1(d). We continue with Example 2 to illustrate
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notation. (Note that ↓2 = {2, 4}). As per the notation
defined above,

A↓2 =

[
−.25
−1

]
A(↓2) =


0 0
−0.25 0

0 0
−1 −0.1


A(↓2, ↓2) =

[
−0.25 0
−1 −0.1

]
.

Also, if K(↓2, ↓2) =

[
1 2
3 4

]
, then

̂K(↓2, ↓2) =


0 0 0 0
0 1 0 2
0 0 0 0
0 3 0 4

 .
III. Solution Strategy

In this section we first remind the reader of a stan-
dard reparametrization of the problem known as the
Youla parametrization. Using this reparametrization,
we illustrate the main technical idea of this paper
using an example.

A. Reparametrization
Problem (5) as stated has a nonconvex objective

function. Typically [16], [19], this is convexified
by a bijective change of parameters given by R :=
K(I − P22K)−1 (though one typically needs to make
a stability or prestabilization assumption). When
the sparsity constraints are poset-causal (or quadrat-
ically invariant, more generally), this change of
parameters preserves the sparsity constraints, and R
inherits the sparsity constraints of K. The resulting
infinite-dimensional problem is convex in R.

For poset-causal systems with state-feedback we
will use a slightly different parametrization. We
note that for poset-causal systems, the matrices A
and B are both in the block incidence algebra.
As a consequence of (4), P21 and P22 are also in
the incidence algebra. This structure, which follows
from the closure properties of an incidence algebra,
will be extensively used. Since P21, P22 ∈ I(P) the
optimization problem (5) maybe be reparametrized
as follows. Set

Q := K(I − P22K)−1P21. (6)

Note that P21 is left invertible, and a left inverse is
given by

P†21 = F†(sI − A),

where F† is the pseudoinverse of F, so that F†F = I
(note also that the pseudoinverse is block diagonal
and hence in I(P)). As a consequence, given Q, K
can be recovered using

K = QP†21(I + P22QP†21)−1. (7)

Since I, P21, P
†

21, P22 all lie in the incidence algebra,
K ∈ I(P) if and only if Q ∈ I(P). Using this
reparametrization the optimization problem (5) can
be relaxed to:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(8)

Remarks 1) We note that P†21, and hence (7)
may potentially be improper. However, we
will prove that for the optimal Q in (8), this
expression is proper and corresponds to a
rational controller K∗ ∈ I(P).

2) For the objective function to be bounded, the
optimal Q would have to render P11 + P12Q
stable. However, one also requires that the
overall system is internally stable. We relax
this requirement on Q and later show that K∗

is nevertheless internally stabilizing. Thus (8)
is in fact a relaxation of (5). We show that the
solution of the relaxation actually corresponds
to a feasible controller.

We would like to emphasize the very important
role played by the availability of full state-feedback.
As a consequence of state-feedback, we have that
P21 = (sI−A)−1F. Thus P21 is left invertible (though
the inverse is improper), and in the (block) incidence
algebra. It is this very important feature of P21

that allows us to use this modified parametrization
mentioned (6) in the preceding paragraph. This
parametrization enables us to rewrite the problem in
the form (8). This form will turn out to be crucial
to our main separability result (Theorem 2), which
enables us to separate the decentralized problem into
a set of decoupled centralized problems.

A main step in our solution strategy will be to re-
duce the optimal control problem to a set of standard
centralized control problems, whose solutions may
be obtained by solving standard Riccati equations.
The key result about centralized H2 optimal control
is as follows.
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Lemma 2: Consider a system H given by

H =
[

H11 H12

]
=

[
AH FH BH

CH 0 DH

]
along with the following optimal control problem:

minimize
Q

‖H11 + H12Q‖2

subject to Q stable.
(9)

Suppose the pair (AH, BH) is stabilizable, (CH, AH)
has no unobervable modes on the imaginary axis,
and CT

HDH = 0, and DT
HDH � 0. Then the Hamilto-

nian matrix associated to this problem (denoted by
H(H)) is such that H(H) ∈ dom(Ric) [31, Chap.
13] and its associated Riccati equation:

AT
HX +XAH−XBH(DT

HDH)−1BT
HX +CT

HCH = 0 (10)

has a stabilizing, symmetric and positive semidef-
inite solution X = Ric(H(H)) determined by the
invariant subspaces of the Hamiltonian.

Let L be obtained from this solution via:

L = (DT
HDH)−1BT

HX. (11)

Then the optimal solution to (9) is given by:

Q =

[
AH − BHL FH

−L 0

]
. (12)

(We will often refer to the trio of equations (10),
(11), (12) by (L,Q) = H

opt
2 (H).)

Remark Since the above Riccati equation is in
dom(Ric) [31, Chap. 13.2], it has a unique canonical
solution determined by the invariant subspaces of
the Hamiltonian [31, Chap. 13.2]. In this paper, we
will always use this unique canonical solution.

Proof: The proof is based on standard tech-
niques and can be argued via a completion-of-
squares argument. In particular, it follows from
the solution to the standard H2 optimal control
problem [31, Theorem 14.7]. Using Theorem 14.7,
the solution to the H2 optimal control problem for
the standard problem with the data

G =

[
G11 G12

I 0

]
=

 AH FH BH

CH 0 DH

0 I 0


gives the required formula.

Note that to use this theorem, the four assump-
tions stated in [31, pp. 376] need to be verified.
The first part of assumption (i) on pp. 376 is

clearly satisfied since (AH, BH) is assumed to be
stabilizable. The second part of (i) on pp. 376
can be ignored. This assumption is required to
ensure that the “observer” Riccati equation (defined
by J2 on pp. 376) has a solution. This Riccati
equation does not play a role in our analysis since
its solution Y2 does not enter into the formula of
the optimal controller in our case. Condition (ii)
on pp. 376 is satisfied since DT

HDH � 0 (we can
relax the unitariness assumption by modifying the
Riccati equation). Condition (iii) is satisfied because
(CH, AH) is assumed to have no unobservable imag-
inary modes. By [31, Lemma 13.9] and the follow-
ing remark (Remark 13.3, pp.332), it follows that
(CH, AH) having no unobservable imaginary modes
in addition to CT

HDH = 0 implies that condition (iii)
is satisfied. Finally condition (iv) is also irrelevant,
since it is needed only to ensure that the Riccati
equation corresponding to J2 has a well-defined
solution.

B. Separability of Optimal Control Problem

We next illustrate the main solution strategy via a
simple example. Consider the decentralized control
problem (5) for the poset in Fig. 1(b). Using the
reformulation (8) the optimal control problem (5)
may be recast as:

minimize
Q

∥∥∥∥∥∥∥∥P11 + P12

 Q11 0 0
Q21 Q22 0
Q31 0 Q33


∥∥∥∥∥∥∥∥

2

Note that P12(↓1) = P12, P12(↓2) = P12(2) (second
column of P12), and P12(↓3) = P12(3). Similarly
Q↓1 =

[
QT

11 QT
21 QT

31

]T
, Q↓2 = Q22, and Q↓3 =

Q33. Due to the column-wise separability of the H2

norm, the problem can be recast as:

minimize
Q

∥∥∥∥∥∥∥∥P11(1) + P12(↓1)

 Q11
Q21
Q31


∥∥∥∥∥∥∥∥

2

+

‖P11(2) + P12(↓2)Q22‖
2 + ‖P11(3) + P12(↓3)Q33‖

2 .

Since the sets of variables appearing in each of
the three quadratic terms are disjoint, the problem
now may be decoupled into three separate sub-
problems, each of which is a standard centralized
control problem. For instance, the solution to the
second sub-problem can be obtained by noting the
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realizations of P11(2) and P12(↓2) and then using
(12). In this instance,

(L22,Q22) = H
opt
2

([
P11(2) P12(↓2)

])
= H

opt
2

([
A22 F22 B22

C(2) 0 D(2)

])
.

In a similar way, the entire optimal solution matrix
Q∗ can be obtained, and by design Q∗ ∈ I(P) (and
is stabilizing). To obtain the optimal K∗, one can
use (7). In fact, it is possible to give an explicit
state-space formula for K∗, this is the main content
of Theorem 3 in the next section.

IV. Main Results

In this section, we present the main results of the
paper. The proofs are available in Section VI.

A. Problem Decomposition and Computational
Procedure

Theorem 2 (Decomposition Theorem): Let P be
a poset and I(P) be its incidence algebra. Consider
a poset-causal system given by (4). The problem (8)
is equivalent to the following set of |P| independent
decoupled problems:

minimize
Q↓ j

‖P11( j) + P12(↓ j)Q↓ j‖2 ∀ j ∈ P. (13)

Theorem 2 is essentially the first step towards a
state-space solution. The advantage of this equiv-
alent reformulation of the problem is that we now
have p = |P| sub-problems, each over a different
set of variables (thus the problem is decomposed).
Moreover, each sub-problem corresponds to a par-
ticular standard centralized control problem, and
thus the optimal Q in (5) can be computed by simply
solving each of these sub-problems.

The subproblems described in (13) have the fol-
lowing interpretation. Once a controller K, or equiv-
alently Q is chosen, a map Tzw from the exogenous
inputs w to the outputs z is induced. Let us denote
by Tzw(1) to be the map from the first input w1 to all
the outputs z (this corresponds to the first column
of Tzw). Similarly, the map from wi to z for i ∈ P
is given by Tzw(i). These subproblems correspond
to the computation of the optimal maps T ∗zw(i) for
all i ∈ P from the ith input wi to the output z.
The decomposability of the H2 norm implies that
these maps may be computed separately, and the

performance of the overall system is simply the
aggregation of these individual maps.

Our next theorem provides an efficient computa-
tional technique to obtain the required state-space
solution. To obtain the solution, one needs to solve
Riccati equations corresponding to the sub-problems
we saw in Theorem 2. We combine these solutions
to form certain simple block matrices, and after
simple LFT transformations, one obtains the optimal
controller K∗.

Before we state the theorem, we introduce some
relevant notation.

Definition 3: We define the operator Hopt
2 (↓ j)

for j ∈ P by:

H
opt
2 (↓ j) := Hopt

2

([
A(↓ j, ↓ j) E1F j j B(↓ j, ↓ j)

C(↓ j) 0 D(↓ j)

])
.

(14)
(We remind the reader that in the above E1 is the
block |↓ j|×1 matrix which picks out the first column
corresponding of the block |↓ j| × |↓ j| matrix be-
fore it.) We define K(↓ j, ↓ j) via (K(↓ j, ↓ j),Q( j)) =

H
opt
2 (↓ j) for j ∈ P. Note that these quantities are

well-defined by Assumptions 1 and 2 and Lemma
2. We introduce two matrices related to the above
solution, namely:

A = diag(A(↓ j, ↓ j) − B(↓ j, ↓ j)K(↓ j, ↓ j))
K = diag(K(↓ j, ↓ j)).

We will see later on that A is the closed-loop state
transition matrix under a particular indexing of the
states.

It will be convenient to introduce this particular
indexing of the states now. At the jth subsystem,
denote the local plant state by x j. Recall that ni

denotes the degree of the ith sub-system in (1). Let
nmax = maxi ni be the largest degree of the sub-
systems, and Np =

∑
i∈P ni be the total degree of the

plant. Let n(↓↓i) =
∑

j∈↓↓i n j. The controller states
associated to the jth subsystem will be denoted by
q( j) ∈ Rn(↓↓ j). (The subsystems downstream of j is
precisely the set ↓↓ j, and for each i ∈ ↓↓ j subsystem
j has a controller state qi( j) ∈ q( j) to track the
plant states of each of these subsystems, see Fig.
2.) We further define Nq =

∑
i∈P n(↓↓i), this is the

total degree of the controller. Let N = Np+Nq be the
total degree of the closed-loop. Let σP =

∑
j∈P |↓↓ j|

(note that this is a purely combinatorial quantity,
dependent only on the poset).
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Fig. 2. Example illustrating the matrices Πx and Πq.

Using this notation we introduce a vector v ∈ RN

(to be thought of as an indexing of the states for
the closed loop system) and a pair of linear maps
Πx : RN → RNp and Πq : RN → RNq which act as
projection operators as described below:

v =



x1
q(1)
x2

q(2)
...

xp

q(p)


Πxv =


x1

x2
...

xp

 = x Πqv =


q(1)
q(2)
...

q(p)

 = q.

It will be convenient to think of Πx and Πq via their
natural matrix representations in which they are 0−1
matrices. The action of these projection operators
onto the x (plant states) and q (controller states)
components of v are illustrated in Fig. 2. The linear
maps x = Πxv and q = Πqv have natural adjoints,
with the adjoint operators ΠT

x : RNp → RN and ΠT
q :

RNq → RN representing embeddings as follows:

ΠT
x x =



x1

0
x2

0
...

xp

0


ΠT

q q =



0
q(1)

0
q(2)
...
0

q(p)


.

In addition, one can also define Πxi : RN
p → Rni such

that Πxiv = xi, and similarly Πq(i) : RN → Rn(↓↓i)

such that Πq(i)v = q(i). Their adjoints are embedding
operators in the usual way. We now introduce one
more operator Σ : RN → RNp which acts on v by

taking partial sums along the poset:

Σv =


x1 +

∑
k∈↓↓1 q1(k)

x2 +
∑

k∈↓↓2 q2(k)
...

xp +
∑

k∈↓↓p qp(k)

 .
As a consequence of this relation we have:

ΣΠT
q q = ΣΠT

q Πqv =


∑

k∈↓↓1 q1(k)∑
k∈↓↓2 q2(k)

...∑
k∈↓↓p qp(k)

 .
Note that from the above two relations it is easy to
deduce that ΣΠT

q Πq +Πx = Σ. The optimal controller
and other related objects can be expressed in terms
of the following matrices:

AΦ = ΠqAΠT
q , BΦ = ΠqAΠT

x . (15)

Theorem 3 (Computation of Optimal Controller):
Consider the poset-causal system of the form (4),
such that Assumptions 1 and 2 are satisfied.
Consider the following Riccati equations:

(K(↓ j, ↓ j),Q( j)) = H
opt
2 (↓ j) ∀ j ∈ P.

Then the optimal solution to the problem (5) is given
by the controller:

K∗ =

[
AΦ − BΦΣΠT

q BΦ

−ΣK(ΠT
q − ΠT

x ΣΠT
q ) −ΣKΠT

x

]
. (16)

Moreover, the controller K∗ ∈ I(P) and is internally
stabilizing.

As we mentioned in the introduction, one of the
advantages of state-space techniques is that they
provide graceful degree bounds for the optimal
controller. As a consequence of Theorem 3 we have
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Fig. 3. Example illustrating Σ operating on v and q.

the following:
Corollary 2 (Degree Bounds): The degree dK∗ of

the overall optimal controller is bounded above by

dK∗ ≤
∑
j∈P

n(↓↓ j) = Nq.

In particular, dK∗ ≤ σPnmax. Moreover, the degree
of the controller implemented by subsystem j is
bounded above by n(↓↓ j).

B. Ingredients of the Optimal Controller

Having established the computational aspects, we
now turn to some structural aspects of the optimal
controller. Note that the dynamic equations of the
controller (16) are the following:

q̇ = (AΦ − BΦΣΠT
q )q + BΦx

u = −ΣK(ΠT
q − ΠT

x ΣΠT
q )q − ΣKΠT

x x

= −ΣK
(
ΠT

q q + ΠT
x (x − ΣΠT

q q)
)
.

This controller may be more readily understood via
a block diagram representation as shown in Fig. 4.

We next examine the role of the controller states.
Let us introduce the transfer function Θ with LFT
realization:

Θ =

[
AΦ − BΦΣΠT

q BΦ

ΠT
q − ΠT

x ΣΠT
q ΠT

x

]
. (17)

Note that by (16), K∗ = −ΣKΘ, so that the states
of Θ are precisely q(i), the controller states. In
particular, Θ is a N × Np transfer function and thus
has a natural partition as:

Θ =


Θ(1)
...

Θ(p)

 ,

where each
Θ(i) =

[
Πxi

Πq(i)

]
Θ.

is a (n(i) + n(↓↓i)) × Np sized transfer function. By
zero-padding, one can embed Θ(i) into a transfer
function matrix of size Np × Np, this is done by
defining

Θ̂(i) = E↓iΘ(i).

We also introduce

Θ̂ =


Θ̂(1)
...

Θ̂(p)

 .
One can show that Θ (and equivalently Θ̂, which

is just a zero-padded version of Θ), in fact, cor-
responds to a specific filter called the differential
filter. At a high level, the controller at subsystem
i predicts the unknown states downstream in the
poset. For example, in Fig. 1(a), if x1(t) is the state at
subsystem 1, subsystem 1 constructs a prediction of
state x2(t) locally. As one proceeds “downstream”
through the poset, more information is available,
and consequently the prediction of the global state
becomes more accurate.

Remark We remark that the term “prediction” in
common usage is employed to describe outcomes
likely to happen in the “temporal future”. In the
context of this paper, when the term prediction
is used, it is with reference to “spatial future” as
defined by the poset P that captures causality among
the subsystems, rather than a temporal notion of
causality.

The transfer function Θ plays the role of com-
puting the generalized differential in the prediction
of the global state. This is precisely the role of
the differential filter: to compute these generalized

11
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Fig. 4. Block diagram representation of the controller. The block marked Θ performs the role of computing the generalized differentials of
the predicted state. The transfer function from x to γ is called Φ−1, and plays a role in controller factorization.

finite differences of predictions that capture “local
improvements” in the local predictions. We remark
that we use the nomenclature “generalized differ-
ential” since it is intimately related to the notion
of Möbius inversion on a poset, a generalization of
differentiation to posets. We briefly discuss these
ideas in the ensuing discussion.

Theorem 4 (Structure of Optimal Controller):
The optimal controller (16) is of the form:

u(t) = −ΣKΘx(t)

= −
∑
j∈P

̂K(↓ j, ↓ j)Θ̂( j)x(t).

Remark Let us denote the vector e( j) = Θ̂( j)x. We
will interpret e( j) as the generalized differential in
the prediction of the global state x at subsystem j.
Denoting ̂K(↓ j, ↓ j) by K j, note that the control law
takes the form u(t) =

∑
j∈P K je( j). This structural

form suggests that the controller uses the general-
ized differentials at the different subsystems as the
atoms of local control laws, and that the overall
control law is an aggregation of these local control
laws.

C. State Prediction, Differentiation, and Integration

Due to the information constraints in the problem,
at subsystem j only states in ↑ j are available, states
of other subsystems are unavailable. A reasonable
architecture for the controller would involve pre-
dicting the unknown states at subsystem j from
the available information. This is illustrated by the
following example.

Example 4: Consider the system shown in Fig. 5

with dynamics ẋ1

ẋ2

ẋ3

 =

 A11 0 0
0 A22 0

A31 A32 A33


 x1

x2

x3

 +

 B11 0 0
0 B22 0

B31 B32 B33


 u1

u2

u3

 .
Note that subsystem 1 has no information about

1 2

3




0
x2

x3(2)







x1

0
x3(1)







x1

x2

x3




Fig. 5. Local state information at the different subsystems. The
quantities x3(1) and x3(2) are partial state predictions of x3.

the state of subsystem 2. Moreover, the state x1

or input u1 do not affect the dynamics of 2 (their
respective dynamics are uncoupled). Hence the only
sensible prediction of x2 at subsystem 1 (which we
denote by x2(1)) is x2(1) = 0. Subsystem 1 also
does not have access to the state x3. However, it
can predict x3 based on the influence that the state
x1 has on x3. (Note that both the states x1, x2 and
inputs u1, u2 affect x3 and u3.) Let us denote x3(1) to
be the prediction of state x3 at subsystem 1. Since
x2 and u2 are unknown, the state x3(1) is a partial
prediction of x3 (i.e. x3(1) is the prediction of the
component of x3 that is affected by subsystem 1).
Similarly, subsystem 2 maintains a prediction of x3

denoted by x3(2), which is also a partial prediction
of x3. Each subsystem thus maintains (possibly
partial) predictions of unknown downstream states,
as shown in Fig. 5.
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In this paper we will not discuss how the state
predictions are computed, a detailed discussion of
the same is available in [18, Chapter 5], [22].

The next notion that is intimately related to the
structure of the controller is that of generalized
integration and differentiation with respect to posets.
These concepts can be formalized via the notions of
µ and ζ functions of posets. We will not explore
these concepts formally here, but rather explain
them in the context of Example 4. Suppose we
have a function z : P → R which is expressed
as a vector z =

[
z1 z2 z3

]
. One can define a

generalized integral along the poset in Example 4
as ζ(z) =

[
z1 z2 z1 + z2 + z3

]
. One can similary

define a notion of a generalized differential on the
poset as µ(z) =

[
z1 z2 z3 − z1 − z2

]
as the inverse

operation of ζ.
An interesting aspect of the controller is that Θ

plays the role of Möbius inversion (i.e. the com-
putation of µ) with respect to the partial state pre-
dictions. On the other hand, the operator Σ defined
earlier plays the role of generalized integration. We
define variables qk(i) which correspond to the gen-
eralized differentials of predicted states for k ∈ ↓↓i.
At subsystem j the true state x j becomes available
for the first time (with respect to the subposet ↑ j).
The quantity Θ j( j)x = x j −

∑
i≺ j q j(i) measures the

generalized differential in the knowledge of state
x j, i.e. the difference between the true state x j and
its best prediction from upstream information. We
let q(i) = [q j(i)] j∈↓↓i, so that q(i) corresponds to the
generalized differential in state predictions at the ith

subsystem. This q(i) is a vector of length |↓↓i|.

D. Structure of the Optimal Controller
Using Theorem 4, the optimal control law can be

expressed as:

u = −
∑
i∈P

̂K(↓i, ↓i)Θ̂(i)x. (18)

As explained above, Θ(i)x is a vector containing
the generalized differential in the prediction of the
global state at subsystem i. Each term ̂K(↓i, ↓i)Θ̂(i)x
may be viewed as a local control law acting on the
local generalized differential in the predicted state.
The overall control law has the elegant interpretation
of being an aggregation of these local control laws.

Example 5: Let us consider the poset from Fig.
1(d), and examine the structure of the controller.
(For simplicity, we let K j = − ̂K(↓ j, ↓ j), the gains

obtained by solving the Riccati equations). The con-
trol law may be decomposed into local controllers
as:

u = K1Θ̂1x + K2Θ̂2x + K3Θ̂3x + K4Θ̂4x

=K1


x1

q2(1)
q3(1)
q4(1)

 + K2


0

x2 − q2(1)
0

q4(2)

 + K3


0
0

x3 − q3(1)
q4(3)

 +

K4


0
0
0

(x4 − q4(1)) − q4(2) − q4(3)

 .

Each term in the above expression has the natural
interpretation of being a local control signal cor-
responding to generalized differential in predicted
states, and the final controller can be viewed as an
aggregation of these.

Note that zeros in the above expression imply
no improvement on the local state. For example,
at subsystem 2 there is no improvement in the pre-
dicted value of x3 because the state x2 does not affect
subsystem 3 due to the poset-causal structure. There
is no improvement in the predicted value of state
x3 at subsystem 4 either, because the best available
prediction of x3 from downstream information ↑↑4
is x3 itself. While this interpretation has been stated
informally here, it has been made precise in [18,
Chapter 5], [22].

V. Discussion and Examples

A. The Nested Case

Consider the poset on two elements P =

({1, 2} ,�) with the only order relation being 1 � 2
(Fig. 1(a)). This is the poset corresponding to the
communication structure in the “Two-Player Prob-
lem” considered in [24]. We show that their results
are a specialization of our general results in Section
IV restricted to this particular poset.

We begin by noting that from the problem of
designing a nested controller (again we assume
F = I for simplicity) can be recast as:

minimize
Q

∥∥∥∥∥∥P11 + P12

[
Q11 0
Q21 Q22

]∥∥∥∥∥∥2

.
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By Theorem 2 this problem can be recast as:

minimize
Q

∥∥∥∥∥∥P1
11 + P12

[
Q11

Q21

]∥∥∥∥∥∥2

+
∥∥∥P2

11 + P2
12Q22

∥∥∥2
.

We wish to compare this to the results obtained
in [24]. It is possible to obtain precisely this same
decomposition in the finite time horizon where the
H2 norm can be replaced by the Frobenius norm and
separability can be used to decompose the problem.
For each of the sub-problems, the corresponding
optimality conditions may be written (since they
correspond to simple constrained-least squares prob-
lems). These optimality conditions correspond ex-
actly to the decomposition of optimality conditions
they obtain (the crucial Lemma 3 in their paper).
We point out that the decomposition is a simple
consequence of the separability of the Frobenius
norm.

Let us now examine the structure of the optimal
controller via Theorem 4. Note that ↓1 = {1, 2} and
↓2 = {2}. Based on Theorem 3, we are required
to solve (K,Q(1)) = H

opt
2 (↓1), and (J,Q(2)) =

H
opt
2 (↓2). A straightforward application of Theorem

4 yields the following:

u1(t) = −(K11 + K12Θ2(1))x1(t)
u2(t) = −(K21 + K22Θ2(1))x1(t) − J(x2(t) − Θ2(1)x1(t)),

which is precisely the structure of the optimal
controller given in [24], [25]. It is possible to show
(as Swigart et. al indeed do in [24]) that Θ2(1) is an
predictor of x2 based on x1. Thus the controller for
u1 predicts the state of x2 from x1, uses the estimate
as a surrogate for the actual state, and uses the
gain K21 in the feedback loop. The controller for u2

(perhaps somewhat surprisingly) also estimates the
state x2 based on x1 using x̂2 = Θ2(1)x1 (this can
be viewed as a “simulation” of the controller for
u1). The prediction error for state 2 is then given by
e2 := x2 − x̂2 = x2 −Θ2(1)x1. The control law for u2

may be rewritten as

u2 = −(K21x1 + K22 x̂2 + Je2).

Thus this controller uses predictions of x2 based on
x1 along with prediction errors in the feedback loop.
We will see in a later example, that this prediction
of states higher up in the poset is prevalent in such
poset-causal systems, which results in somewhat
larger order controllers.

Analogous to the results in [24], it is possible to

derive the results in this paper for the finite time
horizon case (this is a special case corresponding
to FIR plants in our setup). We do not devote
attention to the finite time horizon case in this paper,
but just mention that similar results follow in a
straightforward manner.

B. Discussion Regarding Computational Complex-
ity

Note that the main computational step in the
procedure presented in Theorem 3 is the solution of
the p sub-problems. The jth sub-problem requires
the solution of a Riccati equation of size at most
|↓ j|nmax = O(p) (when the degree nmax is fixed).
Assuming the complexity of solving a Riccati equa-
tion using linear algebraic techniques is O(p4) [7]
the complexity of solving p of them is at most
O(p5). We wish to compare this with the only other
known state-space technique that works on all poset-
causal systems, namely the results of Rotkowitz
and Lall [16]. In this paper, they transform the
problem to a standard centralized problem using
Kronecker products. In the final computational step,
one would be required to solve a single large Riccati
equation of size O(p2), resulting in a computational
complexity of O(p8).

C. Discussion Regarding Degree Bounds
It is insightful to study the asymptotics of the

degree bounds in the setting where the sub-systems
have fixed degree and the number of sub-systems p
grows. As an immediate consequence of the corol-
lary, the degree of the optimal controller (assuming
that the degree of the sub-systems nmax is fixed)
is at most O(p2) (since n(↓ j) ≤ p). In fact, the
asymptotic behaviour of the degree can be sub-
quadratic. Consider a poset ({1, . . . , p} ,�) with the
only order relations being 1 � i for all i. Here
|↓1| = p, and |↓i| = 1 for all i , 1. Hence,∑

j |↓ j| − p ≤ p, and thus d∗ ≤ snmax. In this sense,
the degree of the optimal controller is governed by
the poset parameter σP.

VI. Proofs of theMain Results
Proof of Theorem 1: Note that one direction

is trivial. Indeed if the (Aii, Bii) are stabilizable,
one can pick a diagonal controller with diagonal
elements Kii such that Aii + BiiKii is stable for all
i ∈ P. This constitutes a stabilizing controller.
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For the other direction let

K =

[
AK BK

CK DK

]
be a poset-causal controller for the system. We
will first show that without loss of generality, we
can assume that AK , BK ,CK ,DK are block lower
triangular (so that K has a realization where all
matrices are block lower triangular).

First, note that since K ∈ I(P), DK ∈ I(P).
Recall, that we assumed throughout that the indices
of the matrices in the incidence algebra are labeled
so that they are consistent with a linear extension of
the poset, so that DK is lower triangular. Note that
the controller K is a block p × p transfer function
matrix which has a realization of the form:

K =


AK BK(1) . . . BK(p)

CK(1) DK(1, 1) . . . DK(1, p)
...

...
. . .

CK(p) DK(p, 1) . . . DK(p, p)


Since the controller K ∈ I(P), we have that K jp = 0
for all j , p (recall that p is the cardinality of the
poset). This vector of transfer functions (given by
the last column of K with the (p, p) entry deleted)
is given by the realization:

K̄p :=


CK(1)
...

CK(p − 1)

 (sI−AK)−1BK(p) +


DK(1, p)

...
DK(p − 1, p)

 = 0.

Since this transfer function is zero, in addition
to DK( j, p) = 0 for all j = 1, . . . , p − 1, it must
also be the case that the controllable subspace of
(AK , BK(p)) is contained within the unobservable
subspace of

([
CK(1)T . . . CK(p − 1)T

]T
, AK

)
.

By the Kalman decomposition theorem [6, pp. 247],
there is a realization of this system of the form:

K̄p =

[
Ā B̄
C̄ D̄

]
, where (Ā, B̄, C̄, D̄) are of the form:

Ā =

 A11 0 0
A21 A22 0
A21 A32 A33

 B̄ =

 0
0
B3


C̄ =

[
C1 0 0

]
D̄ = 0.

(19)

As an aside, we remind the reader that this decom-
position has a natural interpretation. For example,
the subsystem (A11, 0,C1) corresponds to the observ-
able subspace, where the system is uncontrollable,
etc. (The usual Kalman decomposition as stated in

standard control texts is a block 4 × 4 decomposi-
tion of the state-transition matrix. Here we have a
smaller block 3 × 3 decomposition because of the
collapse of the subspace where the system is re-
quired to be both controllable and observable). Thus
this decomposition allows us to infer the specific
block structure (19) on the matrices (Ā, B̄, C̄, D̄).
Consequently there is a realization of the overall
controller (AK , BK ,CK ,DK), where all the matrices
have the block structure

M1,1 . . . M1,p−1 0
...

. . .
...

Mp−1,1 . . . Mp−1,p−1 0
Mp,1 . . . Mp,p−1 Mp,p

 .
One can now repeat this argument for the upper
(p− 1)× (p− 1) sub-matrix of K. By repeating this
argument for first p − 1, p − 2, . . . , 1 we obtain a
realization of K where all four matrices are block
lower triangular.

Note that given the controller K (henceforth
assumed to have a lower triangular realization),
the closed loop matrix Acl is given by Acl =[

A + BDK BCK

BK AK

]
. By assumption the (open loop)

system is poset-causal, hence A and B are block
lower triangular. As a result, each of the blocks
A + BDK , BCK , BK , AK are block lower triangu-
lar. A straightforward permutation of the rows and
columns enables us to put Acl into block lower
triangular form where the diagonal blocks of the
matrix are given by[

A j j + B j jDK j j B j jCK j j

BK j j AK j j

]
. (20)

Note that the eigenvalues of this lower triangular
matrix (and thus of Acl, since simultaneous permuta-
tions of rows and columns are spectrum-preserving)
are given by the eigenvalues of the diagonal blocks.
The matrix Acl is stable if and only if all its
eigenvalues are in the left half plane, i.e. the above
blocks are stable for each j ∈ P. Note that (20) is
obtained as the closed-loop matrix precisely by the
interconnection of[

A j j B j j

I 0

]
with the controller

[
AK j j BK j j

CK j j DK j j

]
.

Hence, (20) (and thus the overall closed loop) is
stable if and only if (A j j, B j j) are stabilizable for
all j ∈ P, and (AK j j , BK j j ,CK j j ,DK j j) are chosen to
stabilize the pair.
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Proof of Theorem 2: If G = [G1, . . . ,Gk] is a
transfer function matrix with Gi as its columns, then
‖G‖2 =

∑k
i=1 ‖Gi‖

2. The separability property of the
H2 norm can be used to simplify (8). Recall that
P11( j),Q( j) denote the jth columns of P11 and Q
respectively. Using the separability we can rewrite
(8) as

minimize
Q

∑
j∈P ‖P11( j) + P12Q( j)‖2

subject to Q( j) ∈ I(P) j
(21)

The formulation in (21) can be further simplified by
noting that for Q j ∈ I(P) j,

P12Q( j) = P12(↓ j)Q↓ j. (22)

The advantage of the representation (22) is that,
in the right hand side the variable Q↓ j is uncon-
strained. Using this we may reformulate (21) as:

minimize
Q↓1,...,Q↓p

∑
j∈P ‖P11( j) + P12(↓ j)Q↓ j‖2 (23)

Since the variables in the Q↓ j are distinct for differ-
ent j, this problem can be separated into p standard
centralized sub-problems as follows:

minimize
Q↓ j

‖P11( j) + P12(↓ j)Q↓ j‖2

for all j ∈ P.
(24)

The sub-problems can be solved using canonical
procedures as described in the next lemma.

Lemma 3: Let (A, B,C,D) be as given in (1)
with A, B in the block incidence algebra I(P).
Let (K(↓ j, ↓ j),Q( j)) = H

opt
2 (↓ j). Then the optimal

solution of each sub-problem (13) is given by:

(Q↓ j) =

[
A(↓ j, ↓ j) − B(↓ j, ↓ j)K(↓ j, ↓ j) E1F j j

−K(↓ j, ↓ j) 0

]
.

(25)

(We remind the reader that in the above E1 is the
block |↓ j|×1 matrix which picks out the first column
corresponding of the block |↓ j| × |↓ j| matrix before
it.)

Proof: The proof follows directly from Lemma
2 by choosing

H =
[

P11( j) P12(↓ j)
]

=

[
A(↓ j, ↓ j) E1F j j B(↓ j, ↓ j)

C(↓ j) 0 D(↓ j)

]
.

Lemma 4: The optimal solution to (8) is given

by

Q∗ =

[
A ΠT

x F
−ΣK 0

]
. (26)

Proof: We note that Lemma 3 gives an expres-
sion for the individual columns of Q∗. Using Lemma
3 and the LFT formula for column concatenation:[

G1 G2

]
=

 A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2

 ,
we obtain the required expression.

Lemma 5: The matrix A is stable.
Proof: Recall that A = diag(A(↓ j, ↓ j) −

B(↓ j, ↓ j)K(↓ j, ↓ j)). Since A(↓ j, ↓ j) and B(↓ j, ↓ j)
are lower triangular with Akk, Bkk, k ∈ ↓ j along
the diagonals respectively, we see that the pair
(A(↓ j, ↓ j), B(↓ j, ↓ j)) is stabilizable by Assumption
1 (simply picking a diagonal K which stabi-
lizes the diagonal terms would suffice to stabilize
(A(↓ j, ↓ j), B(↓ j, ↓ j))). Hence, there exists a stabi-
lizing solution to Hopt

2 (↓ j) and the corresponding
controller K(↓ j, ↓ j) is stabilizing. Thus A(↓ j, ↓ j) −
B(↓ j, ↓ j)K(↓ j, ↓ j)) is stable, and thus so is A.

Lemma 6: Given transfer function matrices M
and K with realizations

M =

 A B1 B2

C1 D11 D12
C2 D21 0

 , K =

[
AK BK

CK DK

]
,

the Linear Fractional Transformation (LFT)
f (M,K) = M11 + M12K(I − M22K)−1M21 is given
by:

f (M,K) =

 A + B2DKC2 B2CK B1 + B2DK D21
BKC2 AK BK D21

C1 + D12DKC2 D12CK D11 + D12DK D21

 .
(27)

Proof: The proof is standard, see for example
[32, pp. 179] and the references therein.

Proof of Theorem 3: Consider again the opti-
mal control problem (5): Let v∗1 be the optimal value
of (5). Consider, on the other hand the optimization
problem:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(28)

Let v∗2 be the optimal value of (28). Recall that the
optimal solution Q∗ of (28) was obtained in Lemma
4 as (26). We note that if K∗ is an optimal solution to
(5) then the corresponding Q̄ := K∗(I −P22K∗)−1P21

is feasible for (28). Hence v∗2 ≤ v∗1. We will show
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that the controller in (16) is optimal by showing
that Q̄ = Q∗ (so that v∗1 = v∗2). We will also show
that K∗ ∈ I(P) and is internally stabilizing. Since
it achieves the lower bound v∗2 and is internally
stabilizing, it must be optimal.

Given K∗, one can evaluate Q̄ := K∗(I −
P22K∗)−1P21. To do so we use K∗ as per (16) and

M =

[
0 I

P21 P22

]
=

 A F B
0 0 I
I 0 0

 and use (27) to

obtain

Q̄ =


A − BΣKΠT

x −BΣK(ΠT
q − ΠT

x ΣΠT
q ) F

BΦ AΦ − BΦΣΠT
q 0

−ΣKΠT
x −ΣK(ΠT

q − ΠT
x ΣΠT

q ) 0

 .
Recall that Q∗ given by (26) is the optimal

solution to (8) (which constitutes a lower bound to
the problem we are trying to solve). We are trying
to show that it is achievable by explicitly producing
K∗ such that Q̄ := K∗(I − P22K∗)−1P21 and Q̄ = Q∗,
thereby proving optimality of K∗.

While Q∗ in (26) and Q̄ obtained above appear
different at first glance, their state-space realizations
are actually equivalent modulo a coordinate trans-
formation. Recall that Πq and Πx are coordinate
projection operators on complementary subspaces.
As a result the matrix

[
ΠT

x ΠT
q

]
is a permutation

matrix. Define the matrices

Λ :=
[

ΠT
x ΠT

q

] [ I −ΣΠT
q

0 I

]
,

Λ−1 =

[
I ΣΠT

q
0 I

] [
Πx

Πq

]
.

Note that Λ is a square, invertible matrix. Chang-
ing state coordinates on Q∗ using Λ via:

A 7→ Λ−1AΛ ΠT
x F 7→ Λ−1ΠT

x F − ΣK 7→ −ΣKΛ

along with the relations ΣΠT
q Πq + Πx = Σ, ΣA +

BΣK = AΣ, and AΣΠT
x = A, we see that the trans-

formed realization of Q∗ is equal to the realization
of Q̄, and hence Q∗ = Q̄.

Using (4) for the open loop, (16) for the controller
and the LFT formula (27) to compute the closed
loop map, one obtains that the closed-loop state
transition matrix is given by[

A − BΣKΠT
x −BΣK(ΠT

q − ΠT
x ΣΠT

q )
BΦ AΦ − BΦΣΠT

q

]
� A.

By Lemma 5, the closed loop is internally stable.
To prove that K∗ ∈ I(P) we produce an explicit

factorization K∗ = KΦΦ−1, where both factors are in

I(P). First, we define the factors Φ and KΦ via[
Φ

KΦ

]
=

 AΦ BΦ

ΣΠT
q I

−ΣKΠT
q −ΣKΠT

x

 . (29)

Using the state-space factorization formula [30, pp.
52] and the formula (16), it is straightforward to ver-
ify that this is indeed a valid coprime factorization
of K∗. Note that the transfer function Φ−1 is shown
in Fig. 4. The map from γ to x is in fact invertible,
and this inverse map is x = Φγ. Then q = ΨΦγ,
which in turn gives a factorization:[

q
γ

]
=

[
Ψ

I

]
Φ−1.

This in turn allows us to interpret the factorization
of the entire controller graphically.

Note that Φ is invertible since its feed-through
term is the identity. Lastly, we verify that the factors
KΦ,Φ ∈ I(P). and that Φ is invertible. Note that AΦ

and BΦ are block diagonal matrices. Let us introduce
the following notation for their diagonal blocks:

AΦ( j) = ET
↓↓ j

(
A − B ̂K(↓ j, ↓ j)

)
E↓↓ j

BΦ( j) = ET
↓↓ j

(
A − B ̂K(↓ j, ↓ j)

)
E j.

Note that the jth columns of Φ,KΦ are given by the
formula:

Φ( j) =

[
AΦ( j) BΦ( j)
E↓↓ j I

]
KΦ( j) =

[
AΦ( j) BΦ( j)

− ̂K(↓ j, ↓ j)E↓↓ j − ̂K(↓ j, ↓ j)E j

]
.

(30)

Furthermore, KΦ( j) = − ̂K(↓ j, ↓ j)Φ( j), and if i is
such that j � i then the ith entry of Φ( j) is zero since
the corresponding row of E↓↓ j is zero. By similar
reasoning, KΦ( j) also has this property. Thus, when
we construct the matrices Φ =

[
Φ(1) . . . Φ(p)

]
,

KΦ =
[

KΦ(1) . . . KΦ(p)
]

by column concate-
nation, we see that both Φ ∈ I(P) and KΦ ∈ I(P).

Proof of Theorem 4: Using equations (16) and
(17) it follows that K∗ = −ΣKΘ, from which the
first expression in the statement follows directly.
The second expression is a simple manipulation of
the first.

VII. Conclusions
In this paper we provided a state-space solu-

tion to the problem of computing an H2-optimal
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decentralized controller for a poset-causal system.
We introduced a new decomposition technique that
enables one to separate the decentralized problem
into a set of centralized problems. We gave explicit
state-space formulae for the optimal controller and
provided degree bounds on the controller. We il-
lustrated our technique with a numerical example.
Our approach also enabled us to provide insight
into the structure of the optimal controller. We
introduced a transfer function Θ that relates the
role of the controller to state prediction. In future
work, it would be interesting to attempt to apply
this decomposition technique to a wider class of
decentralization structures. Other interesting direc-
tions include the study of control laws over posets in
the presence of output feedback, and optimal design
with respect to the H∞ norm.
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