
MIT Open Access Articles

Dynamic reduction of query result sets for interactive visualizaton

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Battle, Leilani, Michael Stonebraker, and Remco Chang. “Dynamic Reduction of Query
Result Sets for Interactive Visualizaton.” 2013 IEEE International Conference on Big Data
(October 6-9, 2013) Silicon Valley, CA. IEEE. p.1-8.

As Published: http://dx.doi.org/10.1109/BigData.2013.6691708

Persistent URL: http://hdl.handle.net/1721.1/90853

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90853
http://creativecommons.org/licenses/by-nc-sa/4.0/

Dynamic Reduction of Query Result Sets for Interactive Visualizaton

Leilani Battle∗

Massachusetts Institute of Technology

Remco Chang†

Tufts University

Michael Stonebraker‡

Massachusetts Institute of Technology

ABSTRACT

Modern database management systems (DBMS) have been de-
signed to efficiently store, manage and perform computations on
massive amounts of data. In contrast, many existing visualization
systems do not scale seamlessly from small data sets to enormous
ones. We have designed a three-tiered visualization system called
ScalaR to deal with this issue. ScalaR dynamically performs res-
olution reduction when the expected result of a DBMS query is
too large to be effectively rendered on existing screen real estate.
Instead of running the original query, ScalaR inserts aggregation,
sampling or filtering operations to reduce the size of the result. This
paper presents the design and implementation of ScalaR, and shows
results for an example application, displaying satellite imagery data
stored in SciDB as the back-end DBMS.

Index Terms: H.2.4 [Database Management]: Systems—
Query Processing; H.2.8 [Database Management]: Database
applications—Data mining

1 INTRODUCTION

Since their introduction by Ahlberg, Williamson and Shneiderman
in 1992 [4], dynamic queries have made their way into many visual
data exploration systems. Projects such as Polaris[14]/Tableau[2],
Spotfire[3], VisDB[9] and DEVise[10], focus on visual exploration
of databases. Similarly, projects like Xmdv Tool[15], VQE[7],
Visage[12], and Improvise[16] implement dynamic queries over
data loaded from files. However, as analytical and scientific data
sets continue to increase in magnitude, visual analytics systems will
need to incorporate scalable data management solutions to remain
interactive. Otherwise, interactive visual analytics of large-scale
data will remain difficult if not impossible.

Unfortunately, many information visualization systems do not
scale seamlessly from small data sets to massive ones. In these sys-
tems, a common bottleneck is the amount of data that needs to be
transferred from the database management system (DBMS) to the
front-end visualization. In addition, as information visualization
systems draw more and more query results on the screen, the result
is excessively dense graphs that are difficult to interpret. In order
to provide useful visualizations of large-scale data sets efficiently,
existing systems need to summarize large data sets on the fly. With-
out automatic summaries, the user is forced to write queries by
hand, or manually filter through the system’s dynamic querying
interface to reduce the data set down to the desired size. To ad-
dress these issues, several systems like Table Lens[11] and the At-
tribute Explorer[13] automatically provide summaries through their
visualizations. Alternatively, sampleAction[8] explores progressive
querying of DBMS’s, visualizing incremental query results with er-
ror bounds so the user can stop execution when they’ve reached
their desired accuracy level.

∗e-mail: leibatt@mit.edu
†e-mail: remco@cs.tufts.edu
‡e-mail: stonebraker@csail.mit.edu

Figure 1: ScalaR system architecture.

In our paper, we address this problem for large-scale data by
performing resolution reduction on query results. Our approach
dynamically determines if the result of a DBMS query is too large to
be effectively rendered on existing screen real estate. Based on this
information, we use the DBMS to reduce the visualization space by
inserting aggregation, sampling and/or filtering operations into the
query. To demonstrate our approach, we developed a three-tiered
prototype visualization system called ScalaR, and provide results
from an example application of ScalaR, displaying satellite imagery
data stored in SciDB[6] as the back-end DBMS.

2 ARCHITECTURE

The design principle of ScalaR’s architecture is to allow for “thin”
visualizations that are oblivious to the size of the data. Therefore
ScalaR can visualize large amounts of data on commodity hard-
ware. ScalaR has 3 major components: a web front-end responsible
for taking user input and drawing the visualizations with the result-
ing data; an intermediate layer on the server that takes input from
the front-end and translates it into queries for the DBMS to exe-
cute, incorporating resolution reduction as necessary; and a DBMS
that executes the queries dispatched from the intermediate layer.
Figure 1 shows the layout of ScalaR architecture. The three major
architecture components are described in more detail below.

2.1 Web Front-End

We implemented a web-based front end, using the D3.js [5]
Javascript library to draw the visualizations. The front end supports
the following visualizations: scatterplots, line charts, histograms,
mosaic plots, heat maps, and tree maps. The user inputs a query
into a text box on the screen and selects a visualization type through
a drop-down menu. After choosing the visualization, the user is
given a second set of optional menus to specify characteristics of
the visualization. For example, what attributes in the query results
correspond to the x and y axes. ScalaR’s architecture supports pan
and zoom functionality, both of which trigger new dynamic queries
over the DBMS to retrieve missing data as the user explores the
data set.

2.2 Intermediate Layer

The intermediate layer consists of server code that takes user
queries from the front-end, dispatches queries to the DBMS, and

(a) Original query, with marked regions of interest (b) Aggregation

(c) Sampling (d) Filtering

Figure 2: Map plots for a query manipulated using several resolution reduction techniques.

prepares the resulting data for consumption by the front-end. Be-
fore dispatching user-defined queries to the DBMS, the intermedi-
ate layer retrieves the proposed query plan from the DBMS and uses
this information to compute the expected size of the result. The in-
termediate layer uses this calculation to decide whether to insert a
resolution reduction operation into the original query. See Section 3
for a list of resolution reduction operations.

2.3 DBMS

SciDB[6] is the DBMS used in ScalaR. SciDB is geared towards
managing large-scale array-based data, particularly for data sets
that require complicated computations. SciDB has several native
functions that make the query rewriting process in the intermedi-
ate layer simpler. For example, the bernoulli function performs
uniform sampling over the data. The regrid function divides the
data into a grid of subarrays and returns summaries of the subarrays,
such as averages or counts.

SciDB stores data as multi-dimensional matrices. Users specify
the dimensions of the matrix, and the attributes of each element
in the matrix. SciDB supports two languages for querying the data:
Array Functional Language (AFL), or the SQL-like language Array
Query Language (AQL). When writing queries, the attributes and
dimensions can be thought of as columns and elements in the matrix
as tuples. The combined dimensions act as keys for elements in the
matrix (see Section 3.2 for examples of SciDB queries).

3 RESOLUTION REDUCTION

3.1 Problem Definition and Approach

There are two issues many existing visualization systems face when
drawing very large data sets. First, if the system is only designed
to handle data sets up to a certain size, the system will spend all of
its time trying to manage the visualization. The system may even
“freeze” for an extended period of time or crash while trying to
draw the visualization. The second issue is that even if the visu-
alization system can draw arbitrarily large results, there may be so
many objects to draw on the screen that the resulting visualization
is too dense to be useful to the user.

Figure 3: Zoom on regions 2 and 3 over filtered query results.

We have implemented several Resolution Reduction techniques
to resolve these issues automatically. They can be applied to the
data directly, as well as objects to be drawn in the visualization.
The techniques are as follows:

Aggregation: Given a summary operation, the data is grouped into
submatrices, and summaries of the submatrices are returned
as the result. Summary operations include: sum, average, max
and min.

Sampling: Given a probability value p, return roughly that frac-
tion of data as the result. Most databases already support this
operation.

Filtering: Given a set of desired characteristics of the data, return
the elements that meet these characteristics. These character-
istics are translated into WHERE clause predicates.

The final query results are sent to the front-end as a list of ob-
jects, where each object in the list stores the attribute and dimension
values of one cell from the resulting array. The resolution reduction
techniques can also be applied to the formatted list. For example,
the intermediate layer may return a uniform sampling of the objects,
or a grouping of the objects based on a given attribute/dimension of
the data. Performing resolution reduction on the formatted list pro-
vides finer granularity for resolution reduction that is independent
of the storage model of the DBMS.

(a) 1000 points resolution (b) 10000 points resolution (c) 40000 points resolution

Figure 5: Zoom on the California region of the ndvi points array at 1000, 10000, and 40000 points resolution

Figure 4: Overview visualization of the ndvi points array

3.2 Example

Suppose a user of the ScalaR system wants to plot earthquake data
to see the distribution of earthquakes around the world. She inputs
the following query, and requests a map plot of the results: select
latitude, longitude from quake. Figure 2a shows the
resulting plot. ScalaR uses the Google Maps API[1] to create map
plots. The distribution of earthquakes appears to be evenly divided
between 3 regions, specified in Figure 2a. However, two important
details are hidden from the user due to over-plotting: the largest
region actually contains only a small percentage of earthquakes,
and there are considerably more earthquakes around California than
Alaska. The rest of this section explains in detail how the plot in
Figure 2a is misleading, and provides alternative plots for the data
using the techniques in the previous section.

The user has a 6381 by 6543 sparse array containing records
for 7576 earthquakes. The data is stored in SciDB with the fol-
lowing schema: quake(datetime, magnitude, depth,

latitude, longitude, region)[lat, lon]. Array
attributes are listed in the parentheses, followed by dimensions in
brackets. Note that longitude and latitude coordinates are repre-
sented twice in the schema. SciDB provides operations for trans-
forming attributes into new dimensions, such as the latitude and
longitude attributes in quake. However, SciDB replaces the origi-
nal values of non-integer attributes with a zero-based integer range.
To maintain access to the original values, the latitude and longitude
coordinates were also stored as attributes in the array.

The user picks 3 major regions of interest in this plot, identified
by the three boxes drawn in Figure 2a. Region 1covers Asia and
Australia. Region 2 is the Alaska area, and region 3 is the west
coast of the US excluding Alaska. According to Figure 2a, region
1 appears to contain at least 25% of the plotted earthquakes. In
addition, the points in region 2 cover a larger area of the plot, so
region 3 seems to have less seismic activity than region 2. However,
this plot is misleading. All 7576 earthquakes are plotted, but over-
plotting obscures the true densities of these three regions. Ignoring
overlap with region 2, region 1 actually contains only 548 points, or
less than 8% of all plotted earthquakes. Regions 2 and 3 have 2423

points (over 30%) and 4081 points (over 50%), respectively. Thus
region 3 actually contains over 50% more points than region 2.

Now suppose we reduce the resolution to roughly 500 points
to provide the user with a clearer view of the distribution. Ag-
gregation over the array produces the following query: select

avg(latitude), avg(longitude) from (select

latitude, longitude from quake) regrid 289,

289, where the original query is wrapped in a SciDB regrid

statement. This query tells SciDB to divide quake into 289 by
289 subarrays along the lat and lon dimensions, and summarize
the subarrays by taking the average of the latitude and longitude
coordinates within in each subarray. ScalaR makes all dimensions
of the subarrays the same width, and computes this value using

the following function: ⌈
d

√

|quake|
t ⌉, where d is the number of

dimensions, and t is a computed threshold value. In this example,
t = 500. The resulting array has 529 cells, and Figure 2b shows
the resulting plot. Region 1 now contains much fewer points, and
the majority of points are clearly located in regions 2 and 3. In
addition, the plotted points in region 2 are spread out and visibly
less dense than the points plotted in region 3. Despite some loss
of detail due to the reduction in points, but the distribution of
earthquakes is accurately characterized by the aggregation plot.

Sampling to reduce the resolution produces the following query:
select latitude, longitude from bernoulli(

(select latitude, longitude from quake),

0.0659978881), where the original query is wrapped in
a SciDB bernoulli statement. This query tells SciDB to
randomly choose points from quake, where each point is chosen
with probability 0.0659978881. ScalaR computes this probability
by dividing t by the total number of non-empty cells in quake.
Figure 2c shows a plot of the result, which returns 526 points. Like
aggregation, sampling results in few points drawn in region 1, and
the majority of points drawn in regions 2 and 3. More points are
drawn in the areas that were densest in the original plot, providing
a concise summary of the distribution of earthquakes.

Now that the user has identified the regions with the most
earthquakes, she can use filtering to reduce the resolution of the
data in favor of these regions. This results in the following query
to retrieve points in regions 2 and 3: select latitude,

longitude from quake where lat > 20 and (lon

< -100 or lon > 170). Figure 2d shows the resulting plot.
She can then zoom into regions 2 and 3 to see the distribution of
earthquakes in more detail, as shown in Figure 3.

4 VISUALIZING SATELLITE IMAGE DATA

We implemented an example application that visualizes query
results for normalized difference vegetation index (NDVI) cal-
culations over a subset of NASA satellite imagery data. The
data set was roughly 27GB in size, covered the state of Cali-

(a) 1000 points resolution (b) 10000 points resolution

Figure 6: Zoom on LA area at 1000 and 10000 points resolution

fornia, and was stored in a single, two-dimensional sparse ma-
trix called ndvi points in SciDB. The schema was as follows:
ndvi points(ndvi)[longitude,latitude]. The lati-
tude and longitude coordinates were used to dimension the array,
and the ndvi calculations were stored as an attribute of the array.
The NDVI calculations were visualized as heatmaps, and aggrega-
tion was used to reduce the resolution of the data.

Consider the scenario where the user wants an overview of the
of the NDVI data over the southern California coast, primarily from
Santa Barbara to San Diego. The user starts by inputting a query to
retrieve all the NDVI calculations from the array: select ndvi

from ndvi points. Without resolution reduction, this query
returns over one billion points. In addition, the actual dimension
ranges of the array are on the order of millions, which would result
in a sparse heatmap with over one trillion cells. This is clearly too
large of an image to draw on the screen, so ScalaR prompts the user
to reduce the resolution. Using aggregation, ScalaR produces an
initial visualization at a resolution of about 1000 points, shown in
Figure 4. Resolution refers to the size of the query results being
drawn, so Figure 4 shows the result of reducing the data down to a
33 by 33 matrix. This visualization clearly shows the sparseness of
ndvi points, and reveals a dense area of data in the array.

Now the user tells the application to zoom in on the dense por-
tion of the array using a selection box. The resulting visualization
at a resolution of 1000 points is shown in Figure 5a. The general
shape of the western coast of California/Northern Mexico is appar-
ent, but the user may want the image to be clearer. Figures 5b and
5c show the results of increasing the resolution to 10000 and 40000
points respectively, where the identity of the region is very clear in
both images. The user can now clearly identify the desired southern
California region, and zooms in to the Los Angeles, Santa Barbara
area as shown in Figure 6.

To perform the same tasks without ScalaR, the user would have
to write aggregation queries manually over the data set. She has
to manually identify the desired region of the array to visualize,
and perform her own calculations to determine a reasonable reso-
lution for the results. She may also need to store the query results
in a separate file to load into her desired visualization system. The
user also resorts to trial and error, potentially repeating the above
steps many times before finding her desired region and resolution
for the image. ScalaR eliminates the need to manually write queries
to reduce the resolution of the data, providing the user with more
information quickly and easily.

5 CONCLUSIONS AND FUTURE WORK

We presented the design and implementation of ScalaR, an infor-
mation visualization system that dynamically performs resolution
reduction when expected query results from the back-end DBMS
are too large to be effectively drawn on the screen. ScalaR uses
aggregation, filtering and/or sampling queries to downsize query
results, providing the user with more or less detail as necessary to
reduce completion time and maximize usage of existing screen real
estate. We presented results for an example application of ScalaR,
visualizing satellite imagery data stored in SciDB.

We plan to make several optimizations in ScalaR’s design, start-
ing with the 2 following approaches. The first is to push optimiza-
tions into the database by improving query optimization, and by
writing queries to utilize information from the front-end about what
is being drawn. Second, we plan to incorporate prefetching in the
middle layer of our architecture, using feedback from the front-end
about user interactions; for example, whether the user just zoomed
in, or the direction the user is panning through the visualization.

REFERENCES

[1] Google maps api. https://developers.google.com/

maps/, May 2012.

[2] Tableau software. http://www.tableausoftware.com/,

May 2012.

[3] Tibco spotfire. http://spotfire.tibco.com/, May 2012.

[4] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for

information exploration: an implementation and evaluation. In Pro-

ceedings of the SIGCHI conference on Human factors in computing

systems, CHI ’92, pages 619–626, New York, NY, USA, 1992. ACM.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.

IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[6] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,

E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. De-

Witt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker, and

S. Zdonik. A demonstration of scidb: a science-oriented dbms. Proc.

VLDB Endow., 2(2):1534–1537, Aug. 2009.

[7] M. Derthick, J. Kolojejchick, and S. F. Roth. An interactive visual-

ization environment for data exploration. In IN PROC. OF KNOWL-

EDGE DISCOVERY IN DATABASES, pages 2–9. Press, 1997.

[8] D. Fisher, I. Popov, S. Drucker, and m. schraefel. Trust me, i’m

partially right: incremental visualization lets analysts explore large

datasets faster. In Proceedings of the 2012 ACM annual conference

on Human Factors in Computing Systems, CHI ’12, pages 1673–1682,

New York, NY, USA, 2012. ACM.

[9] D. Keim and H.-P. Kriegel. Visdb: database exploration using multidi-

mensional visualization. Computer Graphics and Applications, IEEE,

14(5):40 –49, sept. 1994.

[10] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,

S. Lawande, J. Myllymaki, and K. Wenger. Devise: integrated query-

ing and visual exploration of large datasets. In Proceedings of the 1997

ACM SIGMOD international conference on Management of data,

SIGMOD ’97, pages 301–312, New York, NY, USA, 1997. ACM.

[11] R. Rao and S. K. Card. The table lens: merging graphical and sym-

bolic representations in an interactive focus + context visualization for

tabular information. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems: celebrating interdependence, CHI

’94, pages 318–322, New York, NY, USA, 1994. ACM.

[12] S. F. Roth, P. Lucas, J. A. Senn, C. C. Gomberg, M. B. Burks, P. J.

Stroffolino, A. J. Kolojechick, and C. Dunmire. Visage: a user in-

terface environment for exploring information. In Proceedings of the

1996 IEEE Symposium on Information Visualization (INFOVIS ’96),

INFOVIS ’96, pages 3–, Washington, DC, USA, 1996. IEEE Com-

puter Society.

[13] R. Spence and L. Tweedie. The attribute explorer: information syn-

thesis via exploration. Interacting with Computers, 11(2):137 – 146,

1998.

[14] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and

visualization of multi-dimensional relational databases. In Proceed-

ings of the IEEE Symposium on Information Vizualization 2000, IN-

FOVIS ’00, pages 5–, Washington, DC, USA, 2000. IEEE Computer

Society.

[15] M. O. Ward. Xmdvtool: integrating multiple methods for visualizing

multivariate data. In Proceedings of the conference on Visualization

’94, VIS ’94, pages 326–333, Los Alamitos, CA, USA, 1994. IEEE

Computer Society Press.

[16] C. Weaver. Building highly-coordinated visualizations in improvise.

In Proceedings of the IEEE Symposium on Information Visualization,

INFOVIS ’04, pages 159–166, Washington, DC, USA, 2004. IEEE

Computer Society.

