
MIT Open Access Articles

Pessimistic Software Lock-Elision

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Afek, Yehuda, Alexander Matveev, and Nir Shavit. “Pessimistic Software Lock-Elision.”
Lecture Notes in Computer Science (2012): 297–311.

As Published: http://dx.doi.org/10.1007/978-3-642-33651-5_21

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/90880

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90880
http://creativecommons.org/licenses/by-nc-sa/4.0/

Pessimistic Software Lock-Elision

Yehuda Afek1, Alexander Matveev2, and Nir Shavit3

1 Tel-Aviv University, afek@post.tau.ac.il
2 Tel-Aviv University, matveeva@post.tau.ac.il

3 MIT and Tel-Aviv University, shanir@csail.mit.edu

Abstract. Read-write locks are one of the most prevalent lock forms in concur-
rent applications because they allow read accesses to locked code to proceed in
parallel. However, they do not offer any parallelism between reads and writes.
This paper introduces pessimistic lock-elision (PLE), a new approach for non-
speculatively replacing read-write locks with pessimistic (i.e. non-aborting) soft-
ware transactional code that allows read-write concurrency even for contended
code and even if the code includes system calls. On systems with hardware trans-
actional support, PLE will allow failed transactions, or ones that contain system
calls, to preserve read-write concurrency.
Our PLE algorithm is based on a novel encounter-order design of a fully pes-
simistic STM system that in a variety of benchmarks spanning from counters to
trees, even when up to 40% of calls are mutating the locked structure, provides
up to 5 times the performance of a state-of-the-art read-write lock.

Keywords: Multicore, Software Transactional memory, Locks, Lock-elision, Wait-
free

1 Introduction

Many modern applications make extensive use of read-write locks, locks that separate
read-only calls from ones that can write. Read-write locks allow read-only calls, preva-
lent in many applications, to proceed in parallel with one another. However, read-write
locks do not offer any parallelism between reads and writes.

In a ground breaking paper, Rajwar and Goodman [18] proposed speculative lock-
elision (SLE), the automatic replacement of locks by optimistic hardware transactions,
with the hope that the transactions will not abort due to contention, and not fail to ex-
ecute due to system calls within the transaction. The SLE approach, which is set to
appear in Intel’s Haswell processors in 2013 [23], promises great performance benefits
for read-write locks when there are low levels of write contention, because it will allow
extensive concurrent reading while writing. It will of course also allow write-write par-
allelism that does not appear in locks. However, if transactions do fail, SLE defaults to
using the original lock which has no write-read parallelism.

A few years ago, Roy, Hand, and Harris [4] proposed an all software implementa-
tion of SLE, in which transactions are executed speculatively in software, and when they
fail, or if they cannot be executed due to system calls, the system defaults to the original
lock. In order to synchronize correctly and get privatization, their system uses Safe(..)

instrumentation for objects and a special signaling mechanism between the threads that
is implemented inside the kernel. In short, speculative lock-elision is complex and re-
quires OS patches or hardware support because one has to deal with the possible failure
of the speculative calls.

This paper introduces pessimistic software lock-elision (PLE), a new technique for
non-speculative replacement of read-write locks by software transactional code. At the
core of our PLE algorithm is a novel design of a fully pessimistic STM system, one
in which each and every transaction, whether reading or writing, is executed once and
never aborts. The fact that transactions are pessimistic means that one can simply re-
place the locks by transactions without the need, as in SLE [18, 4], to ever revert to
the original lock based code. In particular, PLE allows read-write concurrency even for
contended code and even if the code includes system calls. It provides only limited
write-write concurrency, but then again, read-write locks offer none.

All past STM algorithms (see [21]), including the TinySTM algorithm of Felber,
Fetzer, and Reigel [17] and the TL2 STM of Dice, Shalev, and Shavit [9], are optimistic
or partially optimistic: some transactions can run into inconsistencies and be forced to
abort and retry. Welc et al. [5] introduced the notion of irrevocable transactions. Their
system was the first to answer the need to execute systems calls within transactions, but
did not relieve the programmer from having to plan and be aware of which operations to
run within the specialized pessimistic transaction. Perelman et al. [7] showed a partially
pessimistic STM that can support read-only transactions by keeping multiple versions
of the transactions’ view during its execution. Attiya and Hillel [10] presented a par-
tially pessimistic STM that provides read-only transactions without multiple versions.
However, their solution requires acquiring a read-lock for every location being read.

Our new fully pessimistic STM design is an encounter-time variation of our earlier
commit-time pessimistic STM [3]. Our algorithm executes write transactions sequen-
tially in a manner similar to [5], yet allows concurrent wait-free read-only transac-
tions without using read-locks or multiple versions as in [10, 7]. We do so by using
a TL2/LSA [9, 22] style time-stamping scheme (we can reduce the time-stamp to two
bits) together with a new variation on the quiescence array mechanism of Matveev and
Shavit [2]. The almost sequential execution of the pessimistic write transactions is a
drawback relative to standard TL2, but also has some interesting performance advan-
tages. The most important one is that our STM transactions do not acquire or release
locks using relatively expensive CAS operations. Moreover, one does not need read-
location logging and revalidation or any bookkeeping for rollback in the case of aborts.
Our use of the Matveev and Shavit quiescence mechanism is a variation on the mech-
anism, which was originally used to provide privatization of transactions, in order to
allow write transactions to track concurrent read-only transactions with little overhead.
A side benefit of this mechanism is that our new fully pessimistic STM also provides im-
plicit privatization with very little overhead (achieving implicit privatization efficiently
in an STM is not an easy task and has been the subject of a flurry of recent research [2,
6, 13–15, 19, 20]).

Though our pessimistic and privatizing STM does not provide the same perfor-
mance as the optimistic non-privatizing state-of-the-art TL2 algorithm, its performance
is comparable in many cases we tested. In particular, this is true when there is use-

ful non-transactional work between transactional calls. Our new pessimistic algorithm
is encounter-time, which means locations are updated as they are encountered. Our
benchmarks show this improves on our prior commit-time updating approach [3] both
in performance and in its suitability to handling system calls within lock code. Most
importantly, our new pessimistic STM offers a significant improvement over what, to
the best of our knowledge, is the state-of-the-art read-write lock: across the concurrency
scale and on NUMA machines, it delivers up to 5 times the lock’s throughput. The par-
allelism PLE offers therefore more than compensates for the overheads introduced by
its instrumentation.

Finally, we show how PLE fits naturally with future hardware lock-elision and
transactional memory support. We explain how to seamlessly integrate PLE into In-
tel’s hardware lock-elision (HLE) or its restricted transactional memory (RTM) [23]
mechanisms, scheduled to appear in processors in 2013. In these mechanisms, transac-
tions cannot execute if they include system calls, and they can fail if there is read-write
contention on memory locations. The idea is to execute lock-code transactionally in
hardware, and use PLE as the default mechanism to be executed in software if the hard-
ware fails: in other words, elide to the better performing PLE instead of the original
read-write lock. Moreover, as we explain, PLE itself can run concurrently with hard-
ware transactions, allowing the user the benefit from both worlds: execute locks with
fast hardware transactions in the fast path, or with fast software transactions in the slow
path.

2 A Pessimistic Lock-Elision System

We begin by describing the new pessimistic STM algorithm at the core of our system.
We will then explain how it can be used to provide non-speculative lock-elision in
today’s systems that do not have HTM support, and how in the future, one will be able
to provide it in systems with HTM support.

2.1 Designing a Pessimistic STM

A typical transaction must read and write multiple locations. Its read-set and write-set
are the sets of locations respectively read and written during its execution. If a trans-
action involves only reads, we call it a read transaction, and otherwise it is a write
transaction. The transactional writes may be delayed until the commit phase, making
the STM commit-time style, or may be performed directly to the memory, making the
STM encounter-time. This paper presents a new encounter-time fully-pessimistic STM
implementation that is based on our previous commit-time fully-pessimistic STM [3], in
which we allow wait-free read transactions concurrently with a write transaction. Read
transactions run wait-free and are never aborted. Write transactions use a lightweight
signaling mechanism (instead of a mutex lock) to run one after the other, where a new
write transaction starts when the previous one begins its commit phase; this allows the
execution of one write transaction to be concurrent with the commit phase of the pre-
vious write transaction, which we show improves performance. To ensure that a read
transaction sees a snapshot view of memory, each write transaction logs the previous

value of the address, and at the beginning of the commit phase a write-transaction waits
until all the read transactions that have started before or during its execution phase (that
does not include the commit phase) have finished. To implement the synchronization
between the write and read transactions we use a variant of the quiescence array mech-
anism of Matveev and Shavit [2] (which in turn is based on epoch mechanisms such
as RCU [8]). Read transactions are made wait-free: locations being updated by a con-
current write transaction (there is only one such transaction at a time) are read from a
logged value, and otherwise are read directly from memory. In addition, as a side effect,
the quiescence operation provides us with an implicit privatization, which is critical for
preserving the read-write lock semantics of the program when replacing the locks with
transactions.

Section 2.2 presents the global variables and structures, and defines the API func-
tions of read and write transactions. To simplify the presentation, we first consider the
case of only one write transaction executing at a time with possible concurrent read
transactions. Section 2.3 presents this implementation, and presents the write transac-
tion commit that allows concurrent read transactions to complete without aborts in a
wait-free manner. Next, in Section 2.4, we consider the multiple writers case, where we
present a signaling mechanism between the write transactions that we found to be more
efficient than using a simple mutex, allowing concurrency between the current write
transaction’s commit and the next write transaction’s execution.

2.2 Global Structures

Our solution uses a version-number-based consistency mechanism in the style of the
TL2 algorithm of Dice, Shalev, and Shavit [9]. The range of shared memory is divided
into stripes, each with an associated local version-number (similar to [9, 17, 1]), initial-
ized to 0.

We use a shared global version number (as introduced by [9, 22]). The global ver-
sion and stripe versions are 64bit unsigned integers. Every transaction reads the global
version upon start, and determines each location’s validity by checking its associated
stripe’s version number relative to the global version.

Our quiescence mechanism uses a global activity array, that has an entry for every
thread in the system. The association between the threads and the activity array entries
is explained in detail later. For now assume that N threads have ids [0..N-1], and thread
K is associated with the entry activity array[K]. We later show how to reduce the array
size to be a function of the number of hardware cores. The entry for a specific thread
holds the context of the current transaction being executed by this thread. It includes the
transaction’s local variables, and shared variables; the ones accessed by other threads.

Figure 1 depicts the algorithm’s global variables and structures. They include the
stripe version array that has a version number per stripe, the global version number,
and the activity array that holds a context for every thread in the system. In addition,
Figure 1 shows the API of read and write transactions. Every API function gets ctx as
a first parameter the thread’s context, and the thread’s associated activity array entry
references the same context.

Every transaction’s context has a tx version variable that is used to hold the result
of sampling the global version number. The tx version’s initial value is the maximum

64bit value. When a transaction starts, the tx version is initialized to the current global
version value, and when it finishs, it is set back to the maximum 64bit value.

stripe 1

stripe 2

stripe 1 version

stripe 3

stripe N

memory

global version

.

.

.

stripe 2 version

stripe 3 version

stripe N version

.

.

.

thread 1
context

activity array:

Start TX
(thread 1)

Commit TX
(thread 1)

thread 2
context

Start TX
(thread 2)

Commit TX
(thread 2)

Start TX
(thread M)

Commit TX
(thread M)

thread M
context. . .

. . .

stripe version array:

read_tx_start(ctx)
read_tx_read(ctx , addr)
read_tx_commit(ctx)

Read Transaction Write Transaction

write_tx_start(ctx)
write_tx_read(ctx , addr)
write_tx_write(ctx , addr , val)
write_tx_commit(ctx)

Fig. 1. The algorithm’s variables and structures, and the API of a read and write transactions.

2.3 The Core Algorithm

During the write transaction’s execution, the write operations are written directly in
memory and the overwritten values are logged to the log buffer. Algorithm 1 shows
the write transaction’s start, read, write and commit functions. A writer lock is used to
allow one write transaction at a time. It is acquired on start and released on commit.
The write operation logs the write location’s old value to the transaction’s log buffer,
updates the location’s stripe version to the next global version and writes the new value
to the memory. The order of these operations is important, because the update of the
location’s stripe version may require the concurrent reads of this location to snoop into
the log buffer of this write transaction in order to obtain the most up-to-date value.

When a write transaction commits, the global version is incremented (line 24). This
splits the transactions in the system into old transactions and new transactions: ones
started before the global version increment and ones that started after it.

It is consistent for new transactions to read the latest values written by the writer,
because they started after the global version increment step, and can be serialized as be-
ing executed after the writer. This is not the case for old transactions that may have read
old values of the locations overwritten by the writer. These transactions are not allowed
to read the new values and must continue to read the old values of the overwritten lo-
cations in order to preserve their consistent memory view. As a result, old transactions
perform a snoop into the concurrent writer’s log buffer when reading an overwritten
location.

Note that the log buffer values must be preserved as long as there are old read trans-
actions that may read them. Therefore, the writer executes a quiescence pass (line 26)

Algorithm 1 Write transaction.

1: function WRITE TX START(ctx)
2: mutex acquire(writer lock)
3: g writer id = ctx.id
4: ctx.tx version← global version
5: memory fence()
6: end function
7:
8: function WRITE TX WRITE(ctx, addr, val)

. log the old value
9: n← ctx.log size

10: ctx.log buffer[n].addr ← addr
11: ctx.log buffer[n].val← load(addr)
12: ctx.log size← ctx.log size+ 1

. update the stripe version and write
the new value

13: s index← get stripe index(addr)
14: s ver = stripe version array
15: s ver[s index]← ctx.tx version+1
16: store(addr, val)

17: end function
18:
19: function WRITE TX READ(ctx, addr)
20: value← load(addr)
21: return value
22: end function
23:
24: function WRITE TX COMMIT(ctx)

. allow new transactions to read the
new values

25: global version← global version+1
26: memory fence()

. wait for the old transactions to fin-
ish

27: Quiescence(ctx)
. allow the next writer to proceed

28: mutex release(write lock)
29: end function

that waits for the old transactions to finish. These transactions have a tx version less
than the new global version (created by the global version increment) because they
started before this global version increment. Therefore, it would seem sufficient to scan
the activity array for entries having a tx version less than the new global version, and
spin-loop on each until this condition becomes false. But, in this way, the scan can miss
a transaction, because the tx version modification is implemented as a simple load of
the global version and store of the loaded value to the tx version. As a result, a read
transaction on start, might load a global version, the concurrent commit may perform
the global version increment, and then begin the activity array scan, bypassing the read
transaction, because it has not yet performed the store to its tx version. To overcome this
scenario, we introduce a special flag, called the update flag. The tx version, is set to this
flag value before the reading of global version to the tx version, indicating that a read
transaction is in the middle of tx version update. In this case, the writer will wait for
the update to finish by spin-looping on tx version until its value becomes different than
the update flag’s value. In Algorithm 2 we show the implementation of the quiescence
mechanism using this flag, including the read transaction start and commit procedures.

Algorithm 3 shows the implementation of the read transaction’s read operation.
Upon a read of a location, the transaction first validates that the location has not been
overwritten by a concurrent writer by testing the location’s stripe version to be less than
the read transaction’s tx version (lines 2- 9). If validation succeeds, then the location’s
value is returned. Otherwise the location may have been overwritten and a snoop is
performed to the concurrent writer’s log buffer (lines 10-28). The snoop simply scans
the log buffer for the read location, and returns the location’s value from there (note
that the scan must start from a 0 index and up, because the location may be overwritten

Algorithm 2 Quiescence.

1: function TX VERSION UPDATE(ctx)
2: ctx.tx version← update flag
3: memory fence()
4: ctx.tx version← global version
5: memory fence()
6: end function
7: function READ TX START(ctx)
8: tx version update(ctx)
9: end function

10:
11: function READ TX COMMIT(ctx)
12: ctx.tx version← max 64bit value
13: end function
14:
15:

16: function QUIESCENCE(ctx)
17: for id = 0→ max threads− 1 do
18: if id = ctx.thread id then
19: continue . to next iteration - skip

this id
20: end if
21: cur ctx← activity array[id]
22: while cur ctx.tx version =

update flag do
23: end while . spin-loop
24: while cur ctx.tx version <

global version do
25: end while . spin-loop
26: end for
27: end function

twice). If this location address is not found in the log, then it means it was not overwrit-
ten (the stripe version protects a memory range), and the location’s value that was read
before the snoop is returned. The relevant log buffer is accessed through the writer’s
context that is identified by a global index g writer id. This index is initialized upon
write transaction start.

To illustrate the synchronization between the write and read transactions, Figure 2.3
shows 3 stages of a concurrent execution. In stage 1, there is read of transaction 1 and
write of transaction 1; both of them read the global version on start, and proceed to
reading locations. The read transaction validates that the locations were not overwritten
and the writer reads them directly.

In stage 2, the writer performs two writes; (addr1, val1) and (addr2, val2). For every
write; (1) the old value is stored in the log buffer, (2) the stripe version is updated, and
(3) the new value is written. Then, read transaction 1 tries to read (addr1) from stripe
1 and identifies that the stripe was updated. As a result, it snoops into the concurrent
writer’s log buffer, searching for (addr1) old value and reading it from there. The second
read of (addr3) from stripe 1, also triggers the snoop procedure, but it does not find
addr3 in the log buffer and the value of (addr3) is read from the memory.

In stage 3, the writer arrives at the commit point, increments the global version and
begins the quiescence step; waiting for old transactions (ones started before the incre-
ment) to finish. Specifically, the quiescence waits for read transaction 1. Meanwhile, a
new read transaction 2 is started, which reads the new global version. This new transac-
tion can read the new values freely, since it is serialized after the writer. In contrast, read
transaction 2 continues to snoop into the concurrent writer log buffer until it is finished,
and only then the quiescence step of the writer will finish and the log buffer will be
reset. The old values are no longer required because there are no remaining active old
readers.

Algorithm 3 Read Operation.

1: function READ TX READ(ctx, addr)
. Try to read the memory location

2: s index← get stripe index(addr)
3: s ver ← stripe version array
4: ver before← s ver[s index]
5: value← load(addr)
6: ver after ← s ver[s index]
7: if ver before <= ctx.tx version and

ver before = ver after then
8: return value
9: end if

. The read location may had been
overwritten. Snoop into the concurrent
writer’s log buffer

10: wr ctx← activity array[g writer id]

11: log size← wr ctx.log size
12: is found← False

13: i← 0
14: while is found = False and i <

log size do
15: p buf ← wr ctx.log buffer
16: cur addr ← p buf [i].addr
17: cur val← p buf [i].val
18: if cur addr = addr then
19: is found← True
20: snoop value← cur val
21: end if
22: i← i+ 1
23: end while
24: if is found = False then
25: return value
26: else
27: return snoop value
28: end if
29: end function

2.4 The Signaling Mechanism for Write Transactions

In [5], the write transaction coordination is implemented using a global writer lock.
Every write transaction tries to acquire this global lock on start and release it upon fin-
ish. We have found that these lock acquire and release sequences can cause high cache
coherence traffic. To avoid this, we implement a different scheme using a combination
of a writer lock and a simple “pass the baton” style signaling mechanism in the activity
array.

We add to each context in the activity array a writer waiting flag. If a write trans-
action must wait for a concurrent writer, it sets this flag to True and spins on it until it
becomes False. The concurrent writer commit scans the activity array for entries hav-
ing the writer waiting set to True, and signals one of these entries, by changing this
entry’s writer waiting to False. The signals must be sent in a way that avoids starvation
of threads. To make the system fair we scan the activity array for an entry with a waiting
writer starting from thread id + 1 to the array end, and from 0 to thread id-1. In this
way every waiting writer will be signaled after at most max threads write transactions,
which is proportional to the activity array length.

In the common case, the write transactions will signal each other using the writer waiting
flags, and not by using the global lock acquire and release. That’s because usually there
is some degree of concurrency between the write transactions. As a result, usually dur-
ing the commit of a write transaction there will be some entry in the activity array with
writer waiting set to True. By setting it to False, only one cache line in a specific core
is invalidated, avoiding the global lock release and acquire sequences that invalidate the
cache line in all of the cores.

read transaction 1 write transaction 1

1. read global version
(tx_version == 22)

2. read from stripe 3
(18 <= 22)

3. read from stripe 1
(22 <= 22)

3. read from stripe 3
(direct read)

1. read global version
(tx_version = 22)

2. read from stripe 1
(direct read)

STAGE 1: Reads

Stripe
1

Stripe
2

22

22

Stripe
3

Stripe
4

18

14

memoryversions

22global version:

emptyLog buffer:

read transaction 1

22global version:

write transaction 1

4. Write (addr1, val1) to
stripe 1
(1. log old value,
2. update the stripe version
3. write the new value)

5. Write (addr2, val2) to
stripe 2
(1. log old value,
2. update the stripe version
3. write the new value)

4. read (addr1)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer
and return old_val1)

STAGE 2: Writes

Stripe
1

Stripe
2

23

23

Stripe
3

Stripe
4

18

14

memoryversions

Log buffer: addr1, old_val1 addr2, old_val2

5. read (addr3)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer;
addr3 is not there;
return the value read
from memory)

read transaction 1

23global version:

write transaction 1

6. read (addr2)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer
and return old_val2)

Stripe
1

Stripe
2

23

23

Stripe
3

Stripe
4

18

14

memoryversions

7. read from stripe 4
(14 <= 22)

6. Arrive commit

STAGE 3: Commit

7. Increment the
global version

read transaction 2

1. read global version
(tx_version == 23)

2. read (addr1)
from stripe 1
(23 <= 23)

3. read from stripe 4
(14 <= 23)

8. Quiescence
(Wait for
read transaction 1
to finish)

⋯ (wait)

⋯ (wait)

⋯ (wait)
8. Finish

9. Quiescence done

11. Finish

4. Finish

10. Reset log buffer

Log buffer: addr1, old_val1 addr2, old_val2

Fig. 2. Three different stages of concurrent execution between read and write transactions are
shown.

Now the question is when to execute the signal procedure during the writer com-
mit. The simplest way is to signal the next writer after the commit is done. In general
we want to signal the next writer as soon as possible because of the writer’s serial
bottleneck. The earliest point for the next writer signaling is after the global version
increment; immediately before the quiescence step. In this case, the snoop procedure of
the read operation is complicated, because now we have the log buffer of the commit-
ting writer and the log buffer of the next-started writer. The snoop procedure may need
to scan both of the log buffers for the read location. Therefore, we limit the number of
log buffers to only two, by not allowing the next writer to signal the following writer
until the current writer has finished its quiescence phase.

In summary, we have shown a pessimistic STM algorithm that allows concurrent
wait-free reading while writing. We note that there are various elements algorithm that
for lack of space we have not described. These include how our signaling mechanism
provides better locality of reference in the critical section execution and reduced NUMA
traffic by preferring to signal a transaction of a thread on the same chip to run next (up
to some threshold so as to maintain fairness). They also include a mechanism to reduce

the version numbers used to only two bits, allowing us to compress more of them into
a single cache line in the quiescence array.

3 How to Elide Locks

We present three ways in which PLE can be used to implement lock-elision: non-
speculative software-only lock elision, as a fall back (slow path) for the HLE (e.g.,
Intel’s hardware lock-elision [12]), and as a fall back using optimistic hardware TM
(e.g., Intel’s restricted transactional memory RTM [12]).

3.1 Non-speculative Software Lock-Elision

To perform non-speculative elision, for every RW-Lock code section, the RW-Lock ac-
quire and release calls are replaced with the PLE transaction start and commit calls (the
read acquisition with a read transaction start and write acquisition with a write trans-
action start). The loads and stores are instrumented according to our above pessimistic
STM algorithm with transactional read and write calls. We will denote each code sec-
tion transformed into a PLE based code section as the PLE code path of this segment.
This transformation introduces a read-write concurrency to the program that may result
in two special cases:

1. Conflicting I/O: The concurrently executing read and write critical sections may
invoke conflicting I/O requests, like a read and a write to the same file. In this
case, a simple solution is to mark the conflicting I/O read critical section as a write
critical section; resulting in the conflicting I/O serialization.

2. Private Operation: Inside the write critical section there may be a call for an op-
eration that requires privatization (mutual exclusion) on the data it accesses. For
example, a call for a free function on a shared memory. PLE provides privatiza-
tion only after the commit operation and therefore these kind of operations must be
moved to after the commit of the write critical section.

3.2 PLE as a Fall Back for HLE

In Intel’s HLE, lock-protected code sections typically execute without locking and with-
out interruption if they contain no system calls and if no conflicts are detected by the
cache coherence protocol (there may be various other spurious reasons). If the h/w
based speculation fails, it falls back to the software based locks that offer no read-write
concurrency.

While Intel’s HLE does not provide user specified software abort handlers, it does
provide an XTEST instruction which returns true if the thread is currently executing
in HLE (or RTM), and false otherwise – when an HLE or RTM transaction has been
aborted. Thus, by executing XTEST after the XACQUIRE instruction (the HLE transac-
tion start instruction), we can tell whether a fall-back to the hardware mechanism should
be executed, or HLE should continue. For this to work we need to prepare at compile
time a duplicate of each read-write lock protected code section where the duplicate is
transformed into the corresponding PLE code path, as in the previous subsection. If the
XTEST fails, then the duplicate PLE path is called.

3.3 PLE as a Fall Back for RTM

As before, each read-write lock-protected code segment is duplicated, one copy is trans-
formed into the corresponding PLE path, as in Subsection 3.1, and the other is converted
into an RTM code path as follows. Replace the acquire and release with XBEGIN and
XEND, the RTM transaction start and end calls, and specify the fall-back routine (a
parameter to XBEGIN) to be the matching PLE code path start. In addition, after the
XBEGIN, add a read (load) instruction of a shared variable, called is abort. We use
is abort to abort all of the hardware transactions currently executing if one of them has
transitioned to PLE.

By default, each read-write lock section is first attempted as an RTM code path
transaction. If it fails, a jump to the PLE pessimistic transaction start routine is per-
formed. This routine first executes a small RTM transaction that updates the shared
variable is abort. This will cause all of the currently executing RTM transactions to
fail. The result is a shift of the whole system to PLE. Now the PLE execution proceeds
normally.

If in the RTM design, a hardware transaction is aborted when its cache line is in-
validated, then we can allow execution of RTM hardware read only transactions con-
currently with PLE transactions (this assumes a specific implementation of RTM which
at this time we have no specfic information about [12]). This is because the PLE trans-
actions never abort, and the cache coherence ensures that RTM hardware read-only
transactions are atomic. In this case, we can avoid shifting the whole system from RTM
to PLE, and shift only the write transactions.

Finally, we note that a transition from PLE back to RTM is also possible, but do not
describe it here for lack of space.

4 Empirical Performance Evaluation

We empirically evaluated our algorithm on an Intel 40-way machine that includes 2
Intel Xeon E7-4870 chips on a NUMA interconnect. Each chip has 10 2.40GHz cores,
each multiplex- ing 2 hardware threads (HyperThreading), and each core has private
write-back L1 and L2 caches and the L3 cache is shared.

The algorithms we benchmarked are:

PLE Pessimistic Lock Elision: our fully pessimistic encounter-time STM.
PTM Pessimistic Transactional Memory: The commit-time variation of our fully pes-

simistic STM [3].
RW-Lock An ingress-egress counter based reader-writer mutex implementation (in

general, it uses a two global counters. one for read acquires and one for read re-
leases. Writers compute the difference of these two counters to determine when
there are no more readers in the system). This is state-of-the-art RW Lock imple-
mentation for Intel platform.

MCS-Lock Michael and Scott’s MCS Lock [16].

We present two standard synthetic microbenchmarks: a Red-Black Tree and a single
location counter (Counter-1).

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 40% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 40% mutations,

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations, Private Work L100

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations, Private Work L100

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 40% mutations

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations, Private Work L100

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 40% mutations,

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations, Private Work L100

Fig. 3. Throughput of 200K sized Red-Black Tree with varying number of mutations; 10% and
40%, and varying amount of private work after the write transactions; 0 and L100 (100 dummy
memory fences). The Y-axis denotes operations per second and X-axis the number of threads.
Upto 10 threads every thread runs on its own core. Above 10 threads, the threads are being
multiplexed, and we have 2 threads per core. From 20 threads on the second chip is being used;
using the NUMA interconnect

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 40% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 40% mutations,

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations, Private Work L100

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations, Private Work L100

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 40% mutations

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB‐Tree, 10% mutations, Private Work L100

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 40% mutations,

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations, Private Work L100

Fig. 4. Throughput of Counter-1 benchmark with varying number of mutations; 10% and 40%.

The red-black tree implementation exposes a key-value pair interface of put, delete,
and get operations. The put operation installs a key-value pair, if the key is present, else
updates the key’s node value. Delete removes the key’s node, if present, and get returns
the value associated with a key. We allow the tree to grow to a maximum of 200K
elements from an initial 100K elements. We vary the fraction of mutation operations and
the number of local private operations of threads after the write methods. For example,
10% mutations means we execute 5% puts and 5% deletes. We tested various rates and
also a Private Work L100 benchmark which executes 100 dummy memory fences after
the write transaction.

In all the presented graphs, up to a concurrency of 10, all threads are running on
separate cores on a single chip. From 11 to 20 they are being multiplexed on the 10
cores of the same chip, and from 21 to 40 they are multiplexed on the two NUMA cores
of the machine.

We began by testing the benefit of allowing write concurrency in PLE and PTM. We
noticed that in several benchmarks allowing write concurrency, even though it is mini-
mal and commits are still serialized, provides a 30% performance improvement. Next,
we added a priority to the signaling mechanism so that it will first try to signal write
transactions from the same chip so as to get better locality of reference in consecutive
critical section executions and avoid NUMA traffic (See [11]). We defined a constant
threshold value that will limit the number of signals in the same chip, in order to avoid
starvation.

As a reference point, we also compared our algorithms to the TL2 STM on the
RB-Tree, despite the fact that TL2 is optimistic and non-privatizing and cannot be used
to provide non-speculative lock-elision. The comparison shows that TL2 is better than
PLE above about 10 threads (not included in the graphs), because in TL2 we have
concurrency between the write transactions, and in the RB-Tree benchmark the number
of aborts is very low. For a high number of aborts, TL2 performance degrades. Also,
adding private work after the write transactions makes PLE performance similar to TL2
(upto 20 threads), because the contention is reduced.

We next ran the red-black tree benchmarks in Figure 3. Consider first the results for
10% mutations without private work (left graph) and with private work (L100 case -
middle graph). For the case without private work, the MCS-Lock does not scale and the
RW-Lock and PLE have similar performance until 4 threads. With more than 4 threads,
PLE runs 2 times faster than the RW-Lock until 20 threads is reached. After 20 threads,
we cross the boundary of one chip and start to use both of the Intel machine chips.
The communication between the chips is NUMA and it is expensive, therefore, we get
a performance drop in both the RW-Lock and PLE. Still, in the NUMA range (21-40
threads), PLE runs 4.5 times faster than the RW-Lock. In contrast to PLE, PTM’s per-
formance is close to that of the RW-Lock. PTM is a commit-time STM, executing more
expensive write transactions. Since writers are a bottleneck, the encounter-time order of
PLE makes a difference and runs faster than PTM. When there is private work, we can
see that the RW-Lock, PTM, and PLE, all have a similar performance until 10 threads.
Beyond 10 threads, the RW-Lock and PTM show a similar drop in the performance,
while PLE runs 2 times faster than both of them until 20 threads, and 4 times faster in
the NUMA range. Note, that all of the algorithms have a performance drop in the 12
threads range for the private work case. This is because the Intel machine we use starts
to multiplex (use HyperThreading) from 11 to 20 threads. Above 20 threads it starts
to use the second chip. We executed additional profiling analysis of the L1 cache miss
rate for the benchmarks and found that the MCS-Lock has the lowest number of cache
misses. Next is the RW-Lock and only then PLE. This means that a large part of PLE’s
performance gain is due to parallelism despite the overhead of its instrumentation and
its lesser locality of reference.

In Figure 3 (right graph) we benchmark the high mutation rate of 40%. In this case,
the MCS-Lock performs better than the RW-Lock above 8 threads, and PLE outper-
forms the RW-Lock and MCS-Lock after 4 threads and until we reach 20 threads; PLE
runs 1.4 times faster in this range. In the NUMA range the MCS-Lock outperforms
PLE. This is a result of a high mutation rate and lower possible concurrency between

the read and write transactions. The MCS lock causes cache lines to bounce from one
core to the other significantly less times.

In the Counter-1 benchmark we model an extreme contention situation, in which
every write transaction increments a shared counter and every read transaction reads
this shared counter. Also, we test the case of Private Work L100.

Results for Counter-1 are shown in Figure 4. For 10% mutations (write transactions)
PLE is 3 times faster than RW-Lock at up to 20 threads, and 4.5 times faster in the
NUMA range. For 40% mutations, the MCS-Lock outperforms both PLE and the RW-
Lock because of the extreme contention on the shared counter. Again, the MCS lock has
the lowest cache miss rate, though PLE’s rates are not as bad as in the red-black tree
benchmark. Perhaps the biased preference to signal a thread on the same node reduces
bouncing of the counter cache line in PLE. For 10% mutations with private work, PLE
and the RW-Mutex are similar until 8-10 threads. At 12 threads we see a performance
drop because of the HyperThreading, and then we see that PLE runs 1.4 times faster
until 20 threads, and 5 times faster in the NUMA range.

Acknowledgments We thank Dima Perelman and two anonymous PODC referees for
inspiring this paper by suggesting that we compare our pessimistic STMs to read write
locks. This helped set us along the path of noticing that with pessimistic transactions
one could actually perform straightforward non-speculative elision of read-write locks.
This work was supported by the Israel Science Foundation under grant number 1386/11
and the US National Science Foundation under grant number 1217921.

References

1. M. Kapalka A. Dragojevic, R. Guerraoui. Stretching transactional memory. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, pages 155–165, New York, NY, USA, 2009. ACM.

2. D. Dice A. Matveev and N. Shavit. Implicit privatization using private transactions. In
Transact 2010, Paris, France, 2010.

3. N. Shavit A. Matveev. Towards a fully pessimistic stm model. In TRANSACT 2012 Work-
shop, New Orleans, LA, USA, 2012.

4. T. Harris A. Roy, S. Hand. A runtime system for software lock elision. In Proceedings of
the 4th ACM European conference on Computer systems, EuroSys ’09, pages 261–274, New
York, NY, USA, 2009. ACM.

5. A. Adl-Tabatabai A. Welc, B. Saha. Irrevocable transactions and their applications. In
SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures, pages 285–296, New York, NY, USA, 2008. ACM.

6. H. Attiya and E. Hillel. The cost of privatization. In DISC, pages 35–49, 2010.
7. I. Keidar D. Perelman, R. Fan. On maintaining multiple versions in stm. In Proceeding of

the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC
’10, pages 16–25, New York, NY, USA, 2010. ACM.

8. M. Desnoyers, A. Stern P. McKenney, and J. Walpole. User-level implementations of read-
copy update. IEEE Transactions on Parallel and Distributed Systems, 2009.

9. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc. of the 20th International
Symposium on Distributed Computing (DISC 2006), pages 194–208, 2006.

10. E. Hillel H. Attiya. Single-version stms can be multi-version permissive. In Proceedings
of the 12th international conference on Distributed computing and networking, ICDCN’11,
pages 83–94, Berlin, Heidelberg, 2011. Springer-Verlag.

11. M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

12. Intel. Intel architecture instruction set extensions programming reference – chapter 8. Doc-
ument 319433-012A, 2012.

13. Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Olszewski. Anatomy
of a scalable software transactional memory. In 2009, 4th ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT09, 2009.

14. H. Machens and V. Turau. Avoiding Publication and Privatization Problems on Software
Transactional Memory. In Norbert Luttenberger and Hagen Peters, editors, 17th GI/ITG
Conference on Communication in Distributed Systems (KiVS 2011), volume 17 of Ope-
nAccess Series in Informatics (OASIcs), pages 97–108, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

15. V. Marathe, M. Spear, and M. Scott. Scalable techniques for transparent privatization in
software transactional memory. Parallel Processing, International Conference on, 0:67–74,
2008.

16. J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

17. C. Fetzer P. Felber and T. Riegel. Dynamic performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, pages 237–246, New York, NY, USA,
2008. ACM.

18. R. Rajwar and J. Goodman. Speculative lock elision: enabling highly concurrent multi-
threaded execution. In MICRO, pages 294–305. ACM/IEEE, 2001.

19. T. Shpeisman, V. Menon, A. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. Hudson,
K. Moore, and B. Saha. Enforcing isolation and ordering in stm. SIGPLAN Not., 42:78–
88, June 2007.

20. M. Spear, V. Marathe, L. Dalessandro, and M. Scott. Privatization techniques for software
transactional memory. In Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, PODC ’07, pages 338–339, New York, NY, USA, 2007.
ACM.

21. R. Rajwar T. Harris, J. Larus. Transactional Memory, 2nd Edition. Morgan and Claypool
Publishers, 2nd edition, 2010.

22. P. Felber T. Riegel and C. Fetzer. A lazy snapshot algorithm with eager validation. In 20th
International Symposium on Distributed Computing (DISC), September 2006.

23. Web. Intel tsx
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell,
2012.

