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Theory of Chemical Kinetics and Charge Transfer
based on Nonequilibrium Thermodynamics

Martin Z. Bazant∗

Departments of Chemical Engineering and Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

CONSPECTUS
Advances in the fields of catalysis and electrochemical energy conversion often involve nanopar-

ticles, which can have kinetics surprisingly different from the bulk material. Classical theories of
chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by
mean concentrations. In condensed matter, strong interactions alter chemical activities and create
variations that can dramatically affect the reaction rate. The extreme case is that of a reaction
coupled to a phase transformation, whose kinetics must depend not only on the order parameter,
but also its gradients at phase boundaries. Reaction-driven phase transformations are common in
electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid
phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodepo-
sition/dissolution. In spite of complex thermodynamics, however, the standard kinetic model is the
Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge
transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and
other non-idealities in condensed phases.

The limitations of existing theories recently became apparent for the Li-ion battery material,
LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which
scientists believe limits its performance. Chemists first modeled phase separation in LFP as an
isotropic “shrinking core” within each particle, but experiments later revealed striped phase bound-
aries on the active crystal facet. This raised the question: What is the reaction rate at a surface
undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with
LFP nanoparticles, and classical battery models could not predict the roles of phase separation and
surface modication.

In this Account, I present a general theory of chemical kinetics, developed over the past seven
years, which is capable of answering these questions. The reaction rate is a nonlinear function of
the thermodynamic driving force – the free energy of reaction – expressed in terms of variational
chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations
through a master equation for non-equilibrium chemical thermodynamics. For electrochemistry, I
have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic
solids.

This new theory provides a quantitative description of LFP phase behavior. Concentration gradi-
ents and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer
rate is focused on exposed phase boundaries, which propagate as “intercalation waves”, nucleated
by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and
below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary
to other mechanisms, elevated temperatures and currents may enhance battery performance and
lifetime by suppressing phase separation. The theory has also been extended to porous electrodes
and could be used for battery engineering with multiphase active materials.

More broadly, the theory describes non-equilibrium chemical systems at mesoscopic length and
time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction
rate is consistently defined for inhomogeneous, non-equilibrium states; for example, with phase
separation, large electric fields, or mechanical stresses. This research is also potentially applicable
to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and
electrochemical dynamics in biological cells.

I. INTRODUCTION

Breakthroughs in catalysis and electrochemical energy
conversion often involve nanoparticles, whose kinetics
can differ unexpectedly from the bulk material. Per-
haps the most remarkable case is lithium iron phosphate,

∗Electronic address: bazant@mit.edu

LixFePO4 (LFP). In the seminal study of micron-sized
LFP particles, Padhi et al. [5] concluded that “the ma-
terial is very good for low-power applications” but “at
higher current densities there is a reversible decrease in
capacity that... is associated with the movement of a
two-phase interface” between LiFePO4 and FePO4. Iron-
ically, over the next decade – in nanoparticle form – LFP
became the most popular high-power cathode material
for Li-ion batteries [6–8]. Explaining this reversal of for-
tune turned out to be a major scientific challenge, with
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(a) (b) (c)

FIG. 1: Motivation to generalize charge-transfer theory. Observations by (a) Chen et al. [1] and (b) Ramana et al.
[2] of separated FePO4 and LiFePO4 phases on the active {010} facet, which suggest (c) focusing of lithium
intercalation reactions on the phase boundary, so it propagates as an “intercalation wave” [3] (or “domino

cascade” [4]). [From Refs. [1–3]]

important technological implications.

It is now understood that phase separation is strongly
suppressed in LFP nanoparticles, to some extent in equi-
librium [9–12], but especially under applied current [11,
13–15], since reaction limitation [3], anisotropic lithium
transport [4, 16–18], elastic coherency strain [11, 19–21],
and interfacial energies [12, 13, 22, 23] are all enhanced.
At low currents, anisotropic nucleation and growth can
also occur [3, 11–13, 24], as well as multi-particle mo-
saic instabilities [25–28]. These complex phenomena can-
not be described by traditional battery models [29, 30],
which assume a spherical “shrinking core” phase bound-
ary [31, 32].

This Account summarizes my struggle to develop a
phase-field theory of electrochemical kinetics [3, 10–
13, 21, 28, 33–35] by combining charge-transfer the-
ory [36] with concepts from statistical physics [37] and
non-equilibrium thermodynamics [38–40]. It all began
in 2006 when my postdoc, Gogi Singh, found the paper
of Chen et al. [1] revealing striped phase boundaries in
LFP, looking nothing like a shrinking core and suggesting
phase boundary motion perpendicular to the lithium flux
(Fig. 1). It occurred to me that, at such a surface, inter-
calation reactions must be favored on the phase boundary
in order to preserve the stable phases, but this could not
be described by classical kinetics proportional to concen-
trations. Somehow the reaction rate had to be sensitive
to concentration gradients.

As luck would have it, I was working on models of
charge relaxation in concentrated electrolytes using non-
equilibrium thermodynamics [35, 41], and this seemed
like a natural starting point. Gerbrand Ceder suggested
adapting the Cahn-Hilliard (CH) model for LFP [42], but
it took several years to achieve a consistent theory. Our
initial manuscript [43] was rejected in 2007, just after
Gogi left MIT and I went on sabbatical leave to ESPCI,
faced with rewriting the paper [3].

The rejection was a blessing in disguise, since it made
me think harder about the foundations of chemical kinet-
ics. The paper contained some new ideas – phase-field
chemical kinetics and intercalation waves – that, the re-

viewers felt, contradicted the laws of electrochemistry.
It turns out the basic concepts were correct, but Ken
Sekimoto and David Lacoste at ESPCI helped me real-
ize that my initial Cahn-Hilliard reaction (CHR) model
did not uphold the De Donder relation [37]. In 2008 in
Paris, I completed the theory, prepared lecture notes [33],
published generalized Butler-Volmer kinetics [35] (Sec.
5.4.2) and formulated non-equilibrium thermodynamics
for porous electrodes [28]. (See also Sekimoto [37].)

Phase-field kinetics represents a paradigm shift in
chemical physics, which my group has successfully ap-
plied to Li-ion batteries. Damian Burch [10] used the
CHR model to study intercalation in nanoparticles, and
his thesis [27] included early simulations of “mosaic insta-
bility” in collections of bistable particles [25, 26]. Simula-
tions of galvanostatic discharge by Peng Bai and Daniel
Cogswell led to the unexpected prediction of a critical
current for the suppression of phase separation [13]. Liam
Stanton modeled anisotropic coherency strain [21], which
Dan added to our LFP model [11], along with surface
wetting [12]. Using material properties from ab initio
calculations, Dan predicted phase behavior in LFP [11]
and the critical voltage for nucleation [12] in excellent
agreement with experiments. Meanwhile, Todd Fergu-
son [28] did the first simulations of phase separation in
porous electrodes, paving the way for engineering appli-
cations.

What follows is a general synthesis of the theory and a
summary its key predictions. A thermodynamic frame-
work is developed for chemical kinetics, whose applica-
tion to charge transfer generalizes the classical Butler-
Volmer and Marcus equations. The theory is then unified
with phase-field models and applied to Li-ion batteries.
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II. REACTIONS IN CONCENTRATED
SOLUTIONS

A. Generalized Kinetics

The theory is based on chemical thermodynamics [40].
In an open system, the chemical potential of species i
(per particle),

µi = kBT ln ai + µΘ
i = kBT ln c̃i + µexi (1)

is defined relative to a standard state (Θ) of unit activity
(ai = 1) and concentration ci = cΘi , where c̃i = ci/c

Θ
i is

the dimensionless concentration. The activity coefficient,

γi = e(µexi −µ
Θ
i )/kBT (2)

is a measure of non-ideality (ai = γic̃i). In a dilute so-
lution, µexi = 0 and γi = 1. For the general chemical
reaction,

S1 =
∑
r

srAr →
∑
p

spBp = S2, (3)

the equilibrium constant is

KΘ =

(
a2

a1

)eq
= e(µΘ

1 −µ
Θ
2 )/kBT (4)

where a1 =
∏
r a

sr
r , a2 =

∏
p a

sp
p , µΘ

1 =
∑
i srµ

Θ
r and

µΘ
2 =

∑
p spµ

Θ
p .

The theory assumes that departures from equilibrium
obey linear irreversible thermodynamics (LIT) [38, 39].
The flux of species i is proportional to the thermody-
namic driving force −∇µi:

Fi = −Mici∇µi = −Di

(
∇ci + ci∇

µexi
kBT

)
= −Dchem

i ∇ci
(5)

where Mi is the mobility, Di = MikBT is the tracer

diffusivity, and Dchem
i = Di

(
1 + ∂ ln γi

∂ ln ci

)
is the chemical

diffusivity [30]. In Eq. 5, the first term represents ran-
dom fluctuations and the second, drift in response to the
thermodynamic bias, −∇µexi .

In a consistent formulation of reaction kinetics [33, 37],
therefore, the reaction complex explores a landscape of
excess chemical potential µex(x) between local minima
µex1 and µex2 with transitions over an activation barrier
µex (Fig. 2(a)). For rare transitions (µex‡ −µex1,2 � kBT ),

the reaction rate (per site) is

R = k→c̃1e
−(µex‡ −µ

ex
1 )/kBT − k←c̃2e−(µex‡ −µ

ex
2 )/kBT (6)

Enforcing detailed balance (R = 0) in equilibrium
(µ1 = µ2) yields the reaction rate consistent with non-
equilibrium thermodynamics:

R = k0

(
e−(µex‡ −µ1)/kBT − e−(µex‡ −µ2)/kBT

)
(7)

FIG. 2: (a) Landscape of excess chemical potential
explored by the reaction S1 → S2. (b) Adsorption from

a liquid, where the transition state (TS) excludes
multiple surface sites (s > 1) while shedding the

first-neighbor shell. (c) Solid diffusion on a lattice,
where the transition state excludes two sites.

where k0 = k→ = k← (for properly defined µ). Eq. 7
upholds the De Donder relation [37],

R→
R←

=
KΘa1

a2
= e(µ1−µ2)/kBT (8)

which describes the steady state of chemical reactions in
open systems [44].

The thermodynamic driving force is

∆µ = µ2 − µ1 = kBT ln
a2

KΘa1
= ∆G (9)

also denoted as ∆G, the free energy of reaction. The re-
action rate Eq. 7 can be expressed as a nonlinear function
of ∆µ:

R = R0

(
e−α∆µ/kBT − e(1−α)∆µ/kBT

)
(10)

where α, the symmetry factor or generalized Brønsted
coefficient [36], is approximately constant with 0 < α < 1
for many reactions. Defining the activity coefficient of
the transition state γ‡ by

µex‡ = kBT ln γ‡ + (1− α)µΘ
1 + αµΘ

2 , (11)

the exchange rate R0 takes the form,

R0 =
k0a

1−α
1 aα2
γ‡

= k0c̃
1−α
1 c̃α2

(
γ1−α

1 γα2
γ‡

)
(12)

where the term in parentheses is the thermodynamic cor-
rection for a concentrated solution.
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B. Example: Surface Adsorption

Let us apply the formalism to Langmuir adsorption
from a liquid mixture with µ1 = kT ln a (Fig. 2(b)). The
surface is an ideal solution of adatoms and vacancies,

µ2 = kBT ln
c̃

1− c̃
+ Ea (13)

with coverage c̃ = c/cs, site density cs, and adsorption
energy Ea = µΘ

2 − µΘ
1 . Equilibrium yields the Langmuir

isotherm,

c̃eq =
KΘa

1 +KΘa
, KΘ = e−Ea/kBT (14)

If the transition state excludes s surface sites,

µex‡ = −skBT ln(1− c̃) + E‡ (15)

then Eq. 7 yields,

R = k1(1− c̃)s
[
KΘa(1− c̃)− c̃

]
(16)

where k1 = k0e
(Ea−E‡)/kBT . With only configura-

tional entropy, we recover standard kinetics of adsorp-
tion, Asol+sV → Asurf +(s−1)V , involving s vacancies.
With attractive forces, however, Eq. 7 predicts novel ki-
netics for inhomogeneous surfaces undergoing condensa-
tion (below).

C. Example: Solid diffusion

We can also derive the LIT flux Eq. 5 for macroscopic
transport in a solid by activated hopping between adja-
cent minima of µex having slowly varying chemical poten-
tial, |∆µ| � kBT and concentration ∆c̃� 1. Linearizing
the hopping rate,

R ∼ −R0∆µ

kBT
, R0 ∼

k0c̃γ

γ‡
(17)

over a distance ∆x through an area ∆y∆z with ∂µ
∂x ∼

∆µ
∆x ,

we obtain Eq. 5 with

D

D0
=

γ

γ‡
(18)

where D0 = k0∆x
cΘ∆y∆z . Eq. 18 can be used to derive the

tracer diffusivity in a concentrated solid solution by esti-
mating γ‡, consistent with γ. For example, for diffusion
on a lattice (Fig. 2(c)) with γ = (1 − c̃)−1, the transi-
tion state excludes two sites, γ‡ = (1 − c̃)−2; the tracer
diffusivity, D = D0(1− c̃), scales with the mean number
of empty neighboring sites, but the chemical diffusivity
is constant, Dchem = D0 = D(0) (particle/hole duality).

x

µex

O+ ne−

R
Δµ = neη

E = −∇φ eq 

e−
x1x2 x†

electrode electrolyte 

FIG. 3: Landscape of excess chemical potential
explored by the Faradaic reaction O + ne− → R, in

Nernst equilibrium (blue) and after a negative
overpotential η = (µ2 − µ1)/ne is applied (red) to favor

reduction, as illustrated below.

III. ELECTROCHEMISTRY IN
CONCENTRATED SOLUTIONS

A. Electrochemical Thermodynamics

Next we apply Eq. 7 to the general Faradaic reaction,

S1 =
∑
i

si,OO
zi,O
i + ne− →

∑
j

sj,RR
zj,R
j = S2 (19)

converting the oxidized state OzO =
∑
i si,OO

zi,O
i to the

reduced state RzR =
∑
j sj,RR

zj,R
j while consuming n

electrons. Let µ1 = µO + nµe =
∑
i si,Oµi,O + nµe and

µ2 = µR =
∑
j sj,rµj,r. Charge conservation implies zO−

n = zR where zO =
∑
i si,Ozi,O and zR =

∑
j sj,Rzj,R.

The electrostatic energy zieφi is added to µexi to define
the electrochemical potential,

µi = kBT ln ai + µΘ
i + zieφi = kBT ln c̃i + µexi (20)

where zie is the charge and φi is the Coulomb potential
of mean force.

The electrostatic potential is φe in the electrode and φ
in the electrolyte. The difference is the interfacial volt-
age, ∆φ = φe−φ. The mean electric field −∇φ at a point
is unique, so φi = φe for ions in the electrode and φi = φ
for those in the electrolyte solution. In the most general
case of a mixed ion-electron conductor, the reduced and
oxidized states are split across the interface (Fig. 4(a)).
Charge conservation implies zOe + zOs − n = zRe + zRs,
and the net charge nce transferred from the solution to
the electrode is given by nc = zOs− zRs = zRe− zOe+n.

Let us assume that ions only exist in the electrolyte
(zRe = zOe = 0, nc = n) since the extension to mixed
ion-electron conductors is straightforward. For redox re-
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(a)$ OzOs
(s )

RzRs
(s)

ne−

φφe electrode$$|$$solu/on$

OzOe
(e)

RzRe
(e)

(b)$ OzO

RzR

(c)$ OzO

RzR

ne−

ne−

FIG. 4: Types of Faradaic reactions O + ne− → R. (a)
General mixed ion-electron conductor

electrode/electrolyte interface. (b) Redox in solution.
(c) Ion intercalation or electrodeposition.

actions (Fig. 4(b)), e.g. Fe3+ + e− → Fe2+, the re-
duced state is in the solution at the same potential,
φR = φO = φ. For electrodeposition (Fig. 4(c)), e.g.
Cu2+ + 2e− → Cu, or ion intercalation as a neutral po-
laron, e.g. CoO2+Li+ +e− → LiCoO2, the reduced state
is uncharged, zR = 0, so we can also set φR = φ, even
though it is in the electrode. For this broad class of
Faradaic reactions, we have

µO = kBT ln aO + µΘ
O + zOeφ (21)

µR = kBT ln aR + µΘ
R + zReφ (22)

µe = kBT ln ae + µΘ
e − eφe (23)

(aO =
∏
i a
sj
i , µΘ

O =
∑
i siµi,...) where µe is the Fermi

level, which depends on φe and the electron activity ae =
γece.

In equilibrium (µ1 = µ2), the interfacial voltage is
given by the Nernst equation

∆φeq = EΘ +
kBT

nce
ln
aOa

n
e

aR
(24)

where nc = n and

EΘ =
µΘ
O + nµΘ

e − µΘ
R

ne
(25)

is the standard half-cell potential. Out of equilibrium,
the current I = neR (per active site) is controlled by the
activation over-potential,

η = ∆φ−∆φeq =
∆µ

ne
=

∆G

ne
(26)

Specific models of charge transfer correspond to different
choices of µex‡ .

B. Generalized Butler-Volmer Kinetics

The standard phenomenological model of electrode ki-
netics is the Butler-Volmer equation[30, 45],

I = I0

(
e−αcneη/kBT − eαaneη/kBT

)
(27)

where I0 is the exchange current I0. For a single-step
charge-transfer reaction, the anodic and cathodic charge-
transfer coefficients αa and αc satisfy αa = 1−α and αc =
α with a symmetry factor, 0 < α < 1. The exchange
current is typically modeled as I0 ∝ cαaO cαcR , but this is a
dilute solution approximation.

In concentrated solutions, the exchange current is af-
fected by configurational entropy and enthalpy, elec-
trostatic correlations, coherency strain, and other non-
idealities. For Li-ion batteries, only excluded volume
has been considered, using[29, 30], I0(c) ∝ (cs− c)αccαa .
For fuel cells, many phenomenological models have been
developed for electrocatalytic reactions with surface ad-
sorption steps [46–48]. Electrocatalysis can also be
treated by our formalism [33], but here we focus on the
elementary charge-transfer step and its coupling to phase
transformations, which has no prior literature.

In order to generalize BV kinetics (Fig. 3), we model
the transition state

µex‡ = kBT ln γ‡+(1−α)(zOeφ−neφe+µΘ
O+nµΘ

e )+α(zReφ+µΘ
R)

(28)
by averaging the standard chemical potential and electro-
static energy of the initial and final states, which assumes
a constant electric field across the reaction coordinate x
with α =

x‡−xR
xO−xR . Substituting Eq. 28 into Eq. 7 using

Eq. 24, we obtain Eq. 27 with

I0 =
k0ne(aOa

n
e )1−αaαR

γ‡
= k0ne(cOc

n
e )1−αcαR

[
(γOγ

n
e )1−αγαR
γ‡

]
(29)

The factor in brackets is the thermodynamic correction
for the exchange current.

Generalized BV kinetics (Eq. 27 and Eq. 29) consis-
tently applies chemical kinetics in concentrated solutions
(Eq. 10 and Eq. 12, respectively) to Faradaic reactions.
In Li-ion battery models, ∆φeq(c) is fitted to the open
circuit voltage, and I0(c) and Dchem(c) are fitted to dis-
charge curves [29, 31, 32], but these quantities are related
by non-equilibrium thermodynamics [13, 28, 35]. Lai and
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Oxidized State 

Transition State 

Reduced State 

Solid Host Liquid Electrolyte 

e−

e−

xOxR x†

µex
O + nµe

µex
R

µex
†

O+ ne−

R

x

µex

ΔGex

FIG. 5: Above: The Faradaic reaction O + ne− → R in
concentrated solutions. Each state explores a landscape
of excess chemical potential µex. Charge transfer occurs

where the curves overlap, or just below, by quantum
tunneling (dashed curves). Below: Example of ion
intercalation into a solid electrode from a liquid

electrolyte.

Ciucci [49–51] also recognized this inconsistency and used
Eq. 5 and Eq. 24 in battery models, but they postulated
a barrier of total (not excess) chemical potential, in con-
trast to Eq. 7, Eq. 29 and charge-transfer theory.

C. Generalized Marcus Kinetics

The microscopic theory of charge transfer, initiated by
Marcus [52, 53] and honored by the Nobel Prize in Chem-
istry [54], provides justification for the BV equation and

a means to estimate its parameters based on solvent re-
organization [45]. Quantum mechanical formulations pi-
oneered by Levich, Dogonadze, Marcus, Kuznetsov, and
Ulstrup further account for Fermi statistics, band struc-
ture, and electron tunneling [36]. Most theories, however,
make the dilute solution approximation by considering an
isolated reaction complex.

In order to extend Marcus theory for concentrated so-
lutions, our basic postulate (Fig. 5) is that the Faradaic
reaction Eq. 19 occurs when the excess chemical poten-
tial of the reduced state, deformed along the reaction co-
ordinate by statistical fluctuations, equals that of the oxi-
dized state (plus n electrons in the electrode) at the same
point. (More precisely, charge transfer occurs at slightly
lower energies due to quantum tunneling [36, 45].) Fol-
lowing Marcus, we assume harmonic restoring forces for
structural relaxation (e.g. shedding of the solvation shell
from a liquid, or ion extraction from a solid) along the
reaction coordinate x from the oxidized state at xO to
the reduced state at xR:

µex1 (x) = µΘ
O+nµΘ

e +kBT ln(γOγ
n
e )+zOeφ−neφe+

kO
2

(x−xO)2

(30)

µex2 (x) = µΘ
R + kBT ln γR + zReφ+

kR
2

(x− xR)2 (31)

The Nernst equation Eq. 24 follows by equating the to-
tal chemical potentials at the local minima, µ1(xO) =
µ2(xR) in equilibrium. The free energy barrier is set by
the intersection of the excess chemical potential curves,
µex‡ = µex1 (x‡) = µex2 (x‡), which determines the barrier
position, x = x‡ and implies

∆Gex = µex2 (xR)−µex1 (xO) =
kO
2

(x‡−xO)2−kR
2

(x‡−xR)2

(32)
where ∆Gex is the excess free energy change per reaction.

From Eq. 26, the overpotential is the total free energy
change per charge transferred,

neη = ∆G = ∆Gex + kBT ln
c̃R
c̃O c̃ne

(33)

In classical Marcus theory [45, 54], the overpotential is
defined by neη = ∆Gex without the concentration fac-
tors required by non-equilibrium thermodynamics, which
is valid for charge-transfer reactions in bulk phases (A−+
B → A+B−) because the initial and final concentrations
are the same, and thus ∆G = ∆Gex = ∆G0 (standard
free energy of reaction). For Faradaic reactions at inter-
faces, however, the concentrations of reactions and prod-
ucts are different, and Eq. 33 must be used. The missing
“Nernst concentration term” in Eq. 33 has also been
noted by Kuznetsov and Ulstrup [36] (p. 219).

In order to relate µex‡ to ∆Gex, we solve Eq. 32 for
x‡. In the simplest approximation, kO = kR = k, the
barriers for the cathodic and anodic reactions,

∆Gexc = µex‡ − µex1 (xO) =
λ

4

(
1 +

∆Gex

λ

)2

(34)
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∆Gexa = µex‡ − µex2 (xR) =
λ

4

(
1− ∆Gex

λ

)2

(35)

are related to the reorganization energy, λ = k
2 (xO −

xR)2. These formulae contain the famous “inverted re-
gion” predicted by Marcus for isotopic exchange [54],
where (say) the cathodic rate, kc ∝ e−∆Gexc /kBT reaches
a minimum and increases again with decreasing driving
force ∆Gex, for x‡ < xR in Fig. 5(a). This effect re-
mains for charge transfer in concentrated bulk solutions,
e.g. A− + B→ A + B−. For Fardaic reactions, however,
it is suppressed at metal electrodes, since electrons can
tunnel through unoccupied conduction-band states, but
can arise in narrow-band semiconductors [36, 53, 54].

Substituting µex‡ into Eq. 7, we obtain

R = k0e
−λ/4kBT e−(∆Gex)2/4kBTλ

×
(
c̃oc̃

n
e e
−∆Gex/2kBT − c̃Re∆Gex/2kBT

)
(36)

Using Eq. 33, we can relate the current to the overpo-
tential,

I = I0 e
−(neη)2/4kBTλ

(
e−αneη/kBT − e(1−α)neη/kBT

)
(37)

via the exchange current,

I0 = nek0e
−λ/4kBT (c̃O c̃

n
e )

3−2α
4 c̃

1+2α
4

R , (38)

and symmetry factor,

α =
1

2

(
1 +

kBT

λ
ln
c̃O c̃

n
e

c̃R

)
. (39)

In the typical case λ � kBT , the current Eq. 37 is well
approximated by the BV equation with α = 1

2 at mod-

erate overpotentials, |η| > kBT
ne

√
λ

kBT
and non-depleted

concentrations, | ln c̃| � λ
kBT

.

Comparing Eq. 38 with Eq. 29 for α ≈ 1
2 , we can re-

late the reorganization energy to the activity coefficients
defined above,

λ ≈ 4kBT ln
γ‡

(γOγne γR)1/2
(40)

For a dilute solution, the reorganization energy λ0 can
be estimated by the classical Marcus approximation,
λ0 = λi + λo, where λi is the “inner” or short-range
contribution from structural relaxation (sum over nor-
mal modes) and λo is the “outer”, long-range contri-
bution from the Born energy of solvent dielectric relax-
ation [45, 54]. For polar solvents at room temperature,
the large Born energy, λo > 0.5n2eV ≈ 20n2kBT (at
room temperature), implies that single-electron (n = 1),
symmetric (α ≈ 1

2 ) charge transfer is favored. Quantum
mechanical approximations of λ0 are also available [36].
For a concentrated solution, we can estimate the thermo-
dynamic correction, γc‡ , for the entropy and enthalpy of
the transition state and write

γ‡ = γc‡e
λ0/4kBT . (41)

which can be used in either Marcus (Eqs. 37-40) or BV
(Eqs. 27-29) kinetics. An example for ion intercalation
is given below, Eq. 80, but first we need to develop a
modeling framework for chemical potentials.

IV. NONEQUILIBRIUM CHEMICAL
THERMODYNAMICS

A. General theory

In homogeneous bulk phases, activity coefficients de-
pend on concentrations, but for reactions at an interface,
concentration gradients must also play a role (Fig. 1).
The main contribution of this work has been to formulate
chemical kinetics for inhomogeneous, non-equilibrium
systems. The most general theory appears here for the
first time, building on my lectures notes [33].

The theory is based the Gibbs free energy functional

G[{ci}] =

∫
V

g dV +

∮
A

γs dA = Gbulk +Gsurf (42)

with integrals over the bulk volume V and surface area
A. The variational derivative [55],

δG

δci
(x) = lim

ε→0

G[ci(x) + εδε(x)]−G[ci(x)]

ε
(43)

is the change in G to add a “continuum particle” δ(x)
(delta function) of species i at point x, where δε(x) →
δ(x) is a finite-size approximation, e.g. δε(x) = e−x

2/2ε
√

2πε
.

This is the consistent definition of diffusional chemical
potential [39, 56],

µi =
δG

δci
(44)

If g depends on {c̃i} and {∇c̃i}, then

µi =
∂g

∂ci
−∇ · ∂g

∂∇ci
(45)

The continuity of µi at the surface yields the “natural
boundary condition”,

n̂ · ∂g

∂∇ci
=
∂γs
∂ci

. (46)

We can also express the activity variationally,

ai = exp

(
1

kBT

δGmix
δci

)
(47)

in terms of the free energy of mixing

Gmix = Gbulk −
∑
i

µΘ
i

∫
V

ci dV (48)
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FIG. 6: Types of reactions (R) in non-equilibrium
chemical thermodynamics. (a) Heterogeneous chemistry
at a surface Eq. 52. (b) Homogeneous chemistry Eq. 54

with diffusing species. (c) Phase transformations, or
homogeneous reactions with immobile species Eq. 56.

which we define relative to the standard states of each
species.

The simplest approximation for an inhomogeneous sys-
tem is the Cahn-Hilliard [56] (or Landau-Ginzburg, or
Van der Waals [57]) gradient expansion,

g = ḡ({ci}) +
∑
i

µΘ
i ci +

1

2

∑
j

∇c̃i · κij∇c̃j

 (49)

for which

µi − µΘ
i = kBT ln ai =

∂ḡ

∂ci
+
∑
j

∇ · κij∇
c̃j
cΘj

(50)

where ḡ is the homogeneous free energy of mixing and κ
is the gradient penalty tensor. (Higher-order derivative
terms can also be added [58, 59].)

With these definitions, Eq. 7 takes the variational
form,

R = k0e
µex‡
kBT

[
exp

(∑
r

sr
kBT

δG

δcr

)
− exp

(∑
p

sp
kBT

δG

δcp

)]
(51)

for the general reaction, Eq. 3, in a concentrated solu-
tion.

B. Phase-Field Chemical Kinetics

The rate expression Eq. 51 can be applied to any type
of reaction (Fig. 6):

1. Heterogeneous chemistry

At an interface, Eq. 51 provides a new reaction bound-
ary condition [3, 10, 13, 35]

siAr n̂ ·
(
~u ci −

Dici
kBT

∇δG
δci

)
= ±R

({
δG

δcj

})
(52)

(+ for reactants, − for products; Ar = reaction site area)
for the Cahn-Hilliard (CH) equation [39],

∂ci
∂t

+ ~u · ∇ci = ∇ ·
(
Dici
kBT

∇δG
δci

)
, (53)

expressing mass conservation for the LIT flux Eq. 5 with
convection in a mean flow ~u. For thermodynamic consis-
tency, Di is given by Eq. 18, which reduces Eq. 53 to
the “modified” CH equation [58] in an ideal mixture [28].
This is the “Cahn-Hilliard reaction (CHR) model”.

2. Homogeneous chemistry

For bulk reactions, Eq. 51 provides a new source term
for the CH equation,

∂ci
∂t

+ ~u · ∇ci = ∇ ·
(
Dici
kBT

∇δG
δci

)
∓ cs
si
R

({
δG

δcj

})
(54)

(cs = reaction sites/volume). This also generalizes the
Allen-Cahn equation [39] (AC), which corresponds to
Di = 0 and linearization of R for |µj | � kBT . Eq.
54 is the fundamental equation of non-equilibrium chem-
ical thermodynamics. It unifies and extends the CH and
AC equations via a consistent set of reaction-diffusion
equations based on variational principles. Eq. 52 is its
integrated form for a reaction localized on a boundary.

3. Phase transformations

As a special case, Eq. 54 also describes phase transfor-
mations with an immobile, non-conserved order parame-
ter. For example, if f(c) has two local equilibrium states,
cA and cB , then

ξ =
c− cA
cA − cB

(55)

is a phase field with minima at ξ = 0 and ξ = 1 satisfying

∂ξ

∂t
= R

(
δG

δξ

)
(56)

This is the “Allen-Cahn reaction (ACR) model”, which is
a nonlinear generalization of the AC equation for chemi-
cal kinetics [3, 11, 13, 33].
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C. Example: Adsorption with Condensation

To illustrate the theory, we revisit surface adsorp-
tion with attractive forces, strong enough to drive
adatom condensation (separation into high- and low-
density phases) on the surface [33]. Applications may
include water adsorption in concrete [60] or colloidal de-
position in electrophoretic displays [61]. Following Cahn
and Hilliard [56], the simplest model is a regular solution
of adatoms and vacancies with pair interaction energy Ω,

g = cs {kBT [c̃ ln c̃+ (1− c̃) ln(1− c̃)]

+Ωc̃(1− c̃) + Eac̃}+
κ

2
|∇c̃|2 (57)

µ = kBT ln
c̃

1− c̃
+ Ω(1− 2c̃) + Ea +

κ

cs
∇2c̃ (58)

Below the critical point, T < Tc = Ω
2kB

, the enthalpy

of adatom attraction (third term, favoring phase sepa-
ration c̃ = 0, 1) dominates the configurational entropy
of adatoms and vacancies (first two terms, favoring mix-
ing c̃ = 1

2 ). The gradient term controls spinodal de-
composition and stabilizes phase boundaries of thickness

λb =
√

κ
csΩ

and interphasial tension γb =
√
κcsΩ. Using

Eq. 15 to model the transition state with

µ = kBT ln
c̃

1− c̃
+ Ω(1− 2c̃) + Ea +

κ

cs
∇2c̃ (59)

the ACR model Eq. 56 takes the dimensionless form

∂c̃

∂t̃
= KΘa(1− c̃)− c̃ exp

(
Ω̃(1− 2c̃) + κ̃∇2c̃

)
(60)

where t̃ = k1t, Ω̃ = Ω
kBT

= 2Tc
T , κ̃ = κ

L2cskBT
and

∇̃ = L∇ (with length scale L). This nonlinear PDE
describes phase separation coupled to adsorption at an
interface (Fig. 7), controlled by the reservoir activity a.
It resembles a reaction-diffusion equation, but there is no
diffusion; instead, −κ∇2c̃ is a gradient correction to the
chemical potential, which nonlinearly affects the adsorp-
tion reaction rate. With modifications for charge transfer
and coherency strain, a similar PDE describes ion inter-
calation in a solid host, driven by an applied voltage.

V. NONEQUILIBRIUM ELECTROCHEMICAL
THERMODYNAMICS

A. Background

We thus return to our original motivation – phase sep-
aration in Li-ion batteries (Fig. 1). Three important pa-
pers in 2004 set the stage: Garcia et al. [62] formulated
variational principles for electromagnetically active sys-
tems, which unify the CH equation with Maxwell’s equa-
tions; Guyer et al. [63] represented the metal/electrolyte

interface with a continuous phase field ξ evolving by AC
kinetics [64]; Han et al. [42] used the CH equation to
model diffusion in LFP, leading directly to this work.

When the time is ripe for a new idea, a number of sci-
entists naturally think along similar lines. As described
in the Introduction, my group first reported phase-field
kinetics (CHR and ACR) [3, 43] and modified Poisson-
Nernst-Planck (PNP) equations [41] in 2007, the gen-
eralized BV equation [35] in 2009, and the complete
theory [13, 33] in 2011. Independently, Lai and Ciucci
also applied non-equilibrium thermodynamics to electro-
chemical transport [49], but did not develop a variational
formulation. They proceeded to generalize BV kinet-
ics [50, 51] (citing Singh et al. [3]) but used µ in place
of µex and neglected γex‡ . Tang et al. [65] were the first
to apply CHR to ion intercalation with coherency strain,
but, like Guyer et al. [64], they assumed linear AC ki-
netics. Recently, Liang et al. [66] published the BV-ACR
equation, claiming that “in contrast to all existing phase-
field models, the rate of temporal phase-field evolution...
is considered nonlinear with respect to the thermody-
namic driving force”. They cited my work [3, 10, 11, 13]
as a “boundary condition for a fixed electrode-electrolyte
interface” (CHR) but overlooked the same BV-ACR
equation for the depth-averaged ion concentration [3, 13],
identified as a phase field for an open system [11, 13].
They also set I0 =constant, which contradicts chemical
kinetics (see below).

B. Phase-Field Electrochemical Kinetics

We now apply phase-field kinetics to charged species.
The Gibbs free energy of ionic materials can be modeled
as [3, 10, 11, 13, 59, 62, 63, 67]:

G = Gmix +Gelec +Gsurf +
∑
i

µΘ
i

∫
V

ci dV (61)

Gmix =

∫
V

f(~c)dV +Ggrad (62)

Ggrad =
1

2

∫
V

(
∇~̃c · κ∇~̃c−∇φ · εp∇φ+ σ : ε

)
dV (63)

Gelec =

∫
V

ρeφdV +

∮
A

qsφdA (64)

where Ggrad is the free energy associated with all gradi-
ents; Gelec is the energy of charges in the electrostatic
potential of mean force, φ; ~c is the set of concentrations
(including electrons for mixed ion/electron conductors);
f is the homogeneous Helmholtz free energy density, ρe
and qs are the bulk and surface charge densities; εp is the
permittivity tensor; and σ and ε are the stress and strain
tensors. The potential φ acts as a Lagrange multiplier
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FIG. 7: Surface adsorption with condensation when an empty surface is brought into contact with a reservoir
(µres = µ1 = kBT ln a > Ea = −kBT lnKΘ). Left: Homogeneous chemical potential of the adsorbed species µ.
Right: (A) early-stage uniform adsorption and (B) late-stage adsorption waves nucleated at edges, where the

reaction is focused on advancing boundaries of the condensed phase.

constraining the total ion densities [11, 62] while enforc-
ing Maxwell’s equations for a linear dielectric material
( δGδφ = 0),

−∇ · εp∇φ = ρe =
∑
i

zieci (65)

− n̂ · εp∇φ = qs (66)

The permittivity can be a linear operator, e.g. εp =
ε0(1 − `2c∇2), to account for electrostatic correlations in
ionic liquids [59] and concentrated electrolytes [35, 68] (as
first derived for counterion plasmas [69, 70]). Modified
PNP equations [35, 41, 49, 50] correspond to Eq. 53 and
Eq. 65.

For elastic solids, the stress is given by Hooke’s law,
σij = Cijklεkl, where C is the elastic constant tensor.
The coherency strain,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
−
∑
m

ε0ijmc̃m (67)

is the total strain due to compositional inhomogeneity
(first term) relative to the stress-free inelastic strain (sec-
ond term), which contributes to Gmix. In a mean-field
approximation (Vegard’s law), each molecule of species
m exerts an independent strain ε0m (lattice misfit between
c̃m = 0, 1 with cΘm = cs). Since elastic relaxation (sound)
is faster than diffusion and kinetics, we assume mechan-
ical equilibrium, δG

δ~u = ∇ · σ = 0.
For Faradaic reactions Eq. 19, the overpotential is the

thermodynamic driving force for charge transfer,

neη =
∑
j

sj,R
δG

δcj,R
−
∑
i

si,O
δG

δci,O
− n δG

δce
, (68)

determined by the electrochemical potentials µi = δG
δci

.
For thermodynamic consistency, the diffusivities Eq. 18,
Nernst voltage Eq. 24 and exchange current Eq. 29 must

depend on ~c, ∇~c, and σ via the variational activities Eq.
47, given by

kBT ln ai =
∂f

∂ci
− ∇ · κ∇c̃i + σ : ε0i

cs
−∇φ · ∂εp

∂ci
∇φ (69)

for the ionic model above. The Faradaic current density
is

I = I0 F

(
neη

kBT

)
(70)

where

F (η̃) =

{
e−αη̃ − e(1−α)η̃ Butler-Volmer

e−η̃
2/4λ̃

(
e−αη̃ − e(1−α)η̃

)
Marcus

(71)
and I0 is given by either Eq. 29 or Eqs. 38-41, respec-
tively (λ̃ = λ

kBT
) . The charge-transfer rate, R = I

ne ,
defines the CHR and ACR models, Eqs. 52-56, for elec-
trochemical systems.

C. Example: Metal Electrodeposition

In models of electrodeposition [63, 64] and electroki-
netics [71], the solid/electrolyte interface is represented
by a continuous phase field ξ for numerical convenience
(to avoid tracking a sharp interface). If the phase field
evolves by reactions, however, it has physical significance,
as a chemical concentration. For example, consider elec-
trodeposition, Mn+ +ne− → M, of solid metal M from a
binary electrolyte M+A− with dimensionless concentra-
tions, ξ = c̃ = c/cs and c̃±/c0, respectively. In order to
separate the metal from the electrolyte, we postulate

f = W [h(c̃) + c̃(c̃+ + c̃−)] + fion(c̃+, c̃−) (72)

with W � kBT , where h = c̃2(1 − c̃)2 is an arbi-
trary double-welled potential. For a dilute electrolyte,
fion = kBT (c̃+ ln c̃+ + c̃− ln c̃−), without phase separa-
tion [67], we include gradient energy only for the metal.
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The activities Eq. 69 for reduced metal

cskBT ln a = W [h′(c̃) + c̃+ + c̃−]− κ∇2c̃− ∂εp
∂c̃
|∇φ|2

(73)
and metal cations

c0kBT ln a+ = Wc̃+ kBT ln c̃+ −
∂εp
∂c̃+
|∇φ|2 (74)

define the current density Eq. 70 via

I0 = K0a
αa1−α

+ , K0 =
nek0a

n
e cs

γ‡
(75)

η =
kBT

ne
ln

a

a+ae
− EΘ (76)

Note that the local potential for electrons and ions is
unique (φ = φe, ∆φ = 0), but integration across the
diffuse interface yields the appropriate interfacial voltage.

The ACR equation Eq. 56 for ξ = c̃ with Eqs. 70- 76
differs from prior phase-field models [64, 66]. Eq. 75 has
the thermodynamically consistent dependence on reac-
tant activities (rather than I0 =constant). Coupled with
Eq. 54 for c̃±, our theory also describes Frumkin correc-
tions to BV kinetics [72, 73] and electro-osmotic flows [71]
associated with diffuse charge in the electrolyte.

D. Example: Ion Intercalation

Hereafter, we neglect double layers and focus on
solid thermodynamics. Consider cation intercala-
tion, An++B+ne− →AB, from an electrolyte reservoir
(aO =constant) into a conducting solid B (ae =constant)
as a neutral polaron (cR = c(x, t), zR = 0). The overpo-
tential Eq. 68 takes the simple form

neη =
δG

δc
− (µO + µe) =

δGmix
δc

+ ne∆Φ (77)

where

∆Φ = ∆φ− EΘ − kBT

ne
ln aOae (78)

is the interfacial voltage relative to the ionic standard
state. The equilibrium voltage is

ne∆Φeq = −kBT ln a = −δGmix
δc

. (79)

Note that potentials can be shifted for convenience: Bai
et al. [13] and Ferguson and Bazant [28] set µΘ = 0 for
ions, so µ = kBT ln a = δGmix

δc ; Cogswell and Bazant [11]

defined “∆φ”= ∆Φ and shifted g by −c∆Φ, so eη = δG
δc .

Our surface adsorption model Eq. 57 can be adapted
for ion intercalation by setting Ea = e∆Φ. If the tran-
sition state excludes s sites (where s > 1 could account

for the An+ solvation shell) and has strain −ε‡, then its
activity coefficient Eq. 41 is

γ‡ = (1− c̃)−se−σ̃:ε‡+λ̃0/4 (80)

where λ̃0 = λ0

kBT
and σ̃ = σ

cskBT
. The exchange current

Eq. 29 is

I0 = nek(c̃)c̃α(1− c̃)s−α eσ̃:∆ε+αΩ̃(1−2c̃)−α∇̃·κ̃∇̃c̃ (81)

k(c̃) = k0c
s
s(a+ae(c̃))

1−α e−λ̃0/4 (82)

where a+ is the ionic activity in the electrolyte and ∆ε =
ε‡−αε0 is the activation strain [74]. For semiconductors,

the electron activity ae = e∆Ef/kBT depends on c̃, if
the intercalated ion shifts the Fermi level by donating an
electron to the conduction band, e.g. ∆Ef ∝ (1 + βc̃)2/d

for free electrons in d dimensions (as in LiWO3 with d = 3
[75]).

VI. APPLICATION TO LI-ION BATTERY
ELECTRODES

A. Allen-Cahn-Reaction Model

The three-dimensional CHR model Eqs. 52-53 with
current density I = neR given by Eq. 70 and Eq. 81
describes ion intercalation in a solid particle from an
electrolyte reservoir. In nanoparticles, solid diffusion
times (ms-s) are much shorter than discharge times, so
a reaction-limited ACR model is often appropriate. In
the case of LFP nanoparticles, strong crystal anisotropy
leads to a two-dimensional ACR model over the active
(010) facet by depth averaging over Ns sites in the [010]
direction [3, 13]. For particle sizes below 100nm, the con-
centration tends to be uniform in [010] due to the fast dif-
fusion [16] (uninhibited by Fe anti-site defects [18]) and
elastically unfavorable phase separation [11].

Using Eq. 70 and Eq. 81 with ae =constant, ε‡ = αε0,
α = 1

2 and s = 1, the ACR equation Eq. 56 takes the
simple dimensionless form [11, 13],

∂c̃

∂t̃
= Ĩ0 F (µ̃+ ∆Φ̃) (83)

µ̃ = ln
c̃

1− c̃
+ Ω̃(1− 2c̃)− κ̃∇̃2c̃+ σ̃ : ε (84)

Ĩ0 =
√
c̃(1− c̃) e(Ω̃(1−2c̃)−κ̃∇̃2c̃)/2 (85)

where ∆Φ̃ = ne∆Φ
kBT

, t̃ = Nskt. The total current inte-
grated over the active facet

Ĩ(t̃) =

∫
Ã

∂c̃

∂t̃
dx̃dỹ (86)

is either controlled while solving for ∆Φ̃(t̃) (as in Fig. 8),
or vice versa.



12

 x

 c

 c

 c

 I = 0.01

 I = 0.25

 I = 2

(a) (c) (b) 

1 wave 
2 waves 

Spinodal decomposition à intercalation waves 

Quasi-solid solution (partial phase separation) 

Solid solution (suppressed phase separation) 

FIG. 8: Suppression of phase separation at constant current in an Li-ion battery nanoparticle (ACR model without
coherency strain or surface wetting) [13]. (a) Linear stability diagram for the homogeneous state versus

dimensionless current Ĩ = I/I0(c̃ = 0.5) and state of charge X. (b) Battery voltage versus X with increasing Ĩ. (c)

Concentration profiles: Spinodal decomposition at Ĩ = 0.01 leading to intercalation waves (Fig. 1(c)); quasi-solid

solution at Ĩ = 0.25; homogeneous filling at Ĩ = 2.

B. Intercalation Waves and Quasi-Solid Solutions

The theory predicts a rich variety of new intercala-
tion mechanisms. A special case of the CHR model [3]
is isotropic diffusion-limited intercalation [29, 30] with a
shrinking-core phase boundary [31, 32], but the reaction-
limited ACR model also predicts intercalation waves
(or “domino cascades” [4]), sweeping across the ac-
tive facet, filling the crystal layer by layer (Fig. 1(c))
[3, 11, 13, 34, 65]. Intercalation waves result from spin-
odal decomposition or nucleation at surfaces [13] and
trace out the voltage plateau at low current (Fig. 8).

The theory makes other surprising predictions about
electrochemically driven phase transformations. Singh
et al. [3] showed that intercalation wave solutions of the
ACR equation only exist over a finite range of thermo-
dynamic driving force. Based on bulk free energy cal-
culations, Malik et al. [14] argued for a “solid solution
pathway” without phase separation under applied cur-
rent, but Bai et al. [13] used the BV ACR model to show
that phase separation is suppressed by activation over-
potential at high current (Fig. 8), due to the reduced
area for intercalation on the phase boundary (Fig. 1(c)).
Linear stability analysis of homogeneous filling predicts
a critical current, of order the exchange current, above
which phase separation by spinodal decomposition is im-
possible. Below this current, the homogeneous state is
unstable over a range of concentrations (smaller than the
zero-current spinodal gap), but for large currents, the
time spent in this region is too small for complete phase
separation. Instead, the particle passes through a tran-
sient “quasi-solid solution” state, where its voltage and
concentration profile resemble those of a homogeneous
solid solution. When nucleation is possible (see below),
a similar current dependence is also observed.

For quantitative interpretation of experiments, it is es-

sential to account for the elastic energy [11]. Coherency
strain is a barrier to phase separation (Fig. 9), which
tilts the voltage plateau (compared to Fig. 8) and re-
duces the critical current, far below the exchange current.
An unexpected prediction is that phase separation rarely
occurs in situ during battery operation in LFP nanopar-
ticles, which helps to explain their high-rate capability
and extended lifetime [11, 13].

Phase separation occurs at low currents and can be ob-
served ex situ in partially filled particles (Fig. 10). Crys-
tal anisotropy leads to striped phase patterns in equi-
librium [19–21], whose spacing is set by the balance of
elastic energy (favoring short wavelengths at a stress-free
boundary) and interfacial energy (favoring long wave-
lengths to minimize interfacial area) [11]. Stanton and
Bazant [21] predicted that simultaneous positive and neg-
ative eigenvalues of ε0 make phase boundaries tilt with
respect to the crystal axes. In LFP, lithiation causes
contraction in the [001] direction and expansion in the
[100] and [010] directions [1]. Depending on the degree
of coherency, Cogswell and Bazant [11] predicted phase
morphologies in excellent agreement with experiments
(Fig. 10) and inferred the gradient penalty κ and the
LiFePO4/FePO4 interfacial tension (beyond the reach of
molecular simulations) from the observed stripe spacing.

C. Driven Nucleation and Growth

The theory can also quantitatively predict nucleation
dynamics driven by chemical reactions. Nucleation is
perhaps the least understood phenomenon of thermody-
namics. In thermal phase transitions, such as boiling or
freezing, the critical nucleus is controlled by random het-
erogeneities, and its energy is over-estimated by classical
spherical-droplet nucleation theory. Phase-field models
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FIG. 9: ACR simulations of galvanostatic discharge in a 100nm LiXFePO4 nanoparticle [11]. As the current is
increased, transient quasi-solid solutions (images from the shaded region) transition to homogeneous filling for

Ĩ > 0.1, as phase separation is suppressed.
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FIG. 10: Phase separation of a 500nm particle of Li0.5FePO4 into Li-rich (black) and Li-poor phases (white) at zero
current in ACR simulations [11], compared with ex situ experimental images [1, 2]. (a) Coherent phase separation

with [101] interfaces. (b) Semi-coherent phase separation, consistent with observed {100} microcracks [1].

address this problem, but often lack sufficient details to
be predictive.

For battery nanoparticles, nucleation turns out to be
more tractable, in part because the current and voltage
can be more precisely controlled than heat flux and tem-
perature. More importantly, the critical nucleus has a
well-defined form, set by the geometry, due to strong
surface “wetting” of crystal facets by different phases.
Cogswell and Bazant [12] showed that nucleation in bi-
nary solids occurs at the coherent miscibility limit, as a
surface layer becomes unstable and propagates into the

bulk. The nucleation barrier, Eb = −e∆Φ is set by co-
herency strain energy (scaling with volume) in large par-
ticles and reduced by surface energy (scaling with area)
in nanoparticles. The barrier thus decays with the wet-
ted area-to-volume ratio A/V and vanishes at a critical
size, below which nanoparticles remain homogeneous in
the phase of lowest surface energy.

The agreement between theory and experiment – with-
out fitting any parameters – is impressive (Fig. 11). Us-
ing our prior ACR model [11] augmented only by ab initio
calculated surface energies (in Eq. 46), the theory is able
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FIG. 11: (a) ACR simulation of galvanostatic nucleation in a realistic LFP nanoparticle shape (C3) [76] with a 150
nm × 76 nm top (010) active facet [12]. Surface “wetting” of the side facets by lithium nucleates intercalation waves

that propagate across the particle (while bending from coherency strain) after the voltage exceeds the coherent
miscibility limit. (b) Discharge plot indicating nucleation by fluctuations in voltage or composition [12]. (c) Collapse

of experimental data for the nucleation voltage by the theory, without any fitting parameters [12]. (d) Size
dependence of the miscibility gap, fitted by the theory [11].

to collapse Eb data for LFP versus A/V , which lie either
on the predicted line or below (e.g. from heterogeneities,
lowering Eb, or missing the tiniest nanoparticles, lower-
ing A/V ) [12]. This resolves a major controversy, since
the data had seemed inconsistent (Eb = 2.0 − 37 mV),
and some had argued for [3, 24, 77] and others against
the possibility of nucleation (using classical droplet the-
ory) [14]. The new theory also predicts that the nucle-
ation barrier (Fig. 11(c)) and miscibility gap (Fig. 11(d))
vanish at the same critical size, dc ≈ 22 nm, consistent
with separate Li-solubility experiments [15].

D. Mosaic Instability and Porous Electrodes

These findings have important implications for porous
battery electrodes, consisting of many phase separating
nanoparticles. The prediction that small particles trans-
form before larger ones is counter-intuitive (since larger
particles have more nucleation sites) and opposite to clas-
sical nucleation theory. The new theory could be used
to predict mean nucleation and growth rates in a sim-
ple statistical model [77] that fits current transients in
LFP [24] and guide extensions to account for the particle
size distribution.

Discrete, random transformations also affect voltage
transients. Using the CHR model [10] for a collection of
particles in a reservoir, Burch [27] discovered the “mo-
saic instability”, whereby particles switch from uniform

to sequential filling after entering the miscibility gap.
Around the same time, Dreyer et al. [25] published a sim-
ple theory of the same effect (neglecting phase separation
within particles) supported by experimental observations
of voltage gap between charge/discharge cycles in LFP
batteries (Fig. 12(c)), as well as pressure hysteresis in
ballon array [26].

The key ingredient missing in these models is the trans-
port of ions (in the electrolyte) and electrons (in the
conducting matrix), which mediates interactions between
nanoparticles and becomes rate limiting at high current.
Conversely, the classical description of porous electrodes,
pioneered by Newman [29, 30], focuses on transport,
but mostly neglects the thermodynamics of the active
materials [28, 50], e.g. fitting [31], rather than deriv-
ing [13, 25, 49, 51], the voltage plateau in LFP. These
approaches are unified by non-equilibrium chemical ther-
modynamics [28]. Generalized porous electrode theory
is constructed by formally volume averaging over the
microstructure to obtain macroscopic reaction-diffusion
equations of the form Eq. 54 for three overlapping con-
tinua – the electrolyte, conducting matrix, and active
material – each containing a source/sink for Faradaic re-
actions, integrated over the internal surface of the active
particles, described by the CHR or ACR model.

The simplest case is the “pseudo-capacitor approxi-
mation” of fast solid relaxation (compared to reactions
and macroscopic transport), where the active particles
remain homogeneous. Using our model for LFP nanopar-
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FIG. 12: Finite-volume simulations of a porous LFP cathode (T. Ferguson [28]). (a) Voltage versus state of charge
at different rates with profiles of the mean solid Li concentration (A-C), separator on the left, current collector on

the right. (b) SEM image of LFP nanoparticles represented by three finite volumes (P. Bai). (c) Experiments
revealing a zero-current gap between noisy charge and discharge voltage plateaus (From Dreyer et al. [25]).

ticles [11], the porous electrode theory predicts the zero-
current voltage gap, without any fitting (Fig. 12). (Using
the mean particle size, the gap is somewhat too large,
but this can be corrected by size-dependent nucleation
(Fig. 11), implying that smaller particles were preferen-
tially cycled in the experiments.) Voltage fluctuations at
low current correspond to discrete sets of transforming
particles. For a narrow particle size distribution, mosaic
instability sweeps across the electrode from the separator
as a narrow reaction front (Fig. 12(a) inset). As the cur-
rent is increased, the front width grows, and the active
material transforms more uniformly across the porous
electrode, limited by electrolyte diffusion. A wide parti-
cle size distribution also broadens the reaction front, as
particles transform in order of increasing size. These ex-
amples illustrate the complexity of phase transformations
in porous media driven by chemical reactions.

VII. CONCLUSION

This Account describes a journey along the “middle
way” [78], searching for organizing principles of the meso-
scopic domain between individual atoms and bulk mate-
rials. The motivation to understand phase behavior in
Li-ion battery nanoparticles gradually led to a theory of
collective kinetics at length and time scales in the “mid-
dle”, beyond the reach of both molecular simulations and
macroscopic continuum models. The work leveraged ad-
vances in ab initio quantum-mechanical calculations and
nanoscale imaging, but also required some new theoreti-
cal ideas.

Besides telling the story, this Account synthesizes my

work as a general theory of chemical physics, which tran-
scends its origins in electrochemistry. The main result,
Eq. 54, generalizes the Cahn-Hilliard and Allen-Cahn
equations for reaction-diffusion phenomena. The reac-
tion rate is a nonlinear function of the species activities
and the free energy of reaction (Eq. 7) via variational
derivatives of the Gibbs free energy functional (Eq. 51),
which are consistently defined for non-equilibrium states,
e.g. during a phase separation. For charged species, the
theory generalizes the Poisson-Nernst-Planck equations
of ion transport, the Butler-Volmer equation of electro-
chemical kinetics (Eq. 29), and the Marcus theory of
charge transfer (Eq. 37) for concentrated electrolytes and
ionic solids.

As its first application, the theory has predicted new
intercalation mechanisms in phase-separating battery
materials, exemplified by LFP:

• intercalation waves in anisotropic nanoparticles at
low currents (Fig. 8);

• quasi-solid solutions and suppressed phase separa-
tion at high currents (Fig. 9);

• relaxation to striped phases in partially filled par-
ticles (Fig. 10);

• size-dependent nucleation by surface wetting (Fig.
11);

• mosaic instabilities and reaction fronts in porous
electrodes (Fig. 12);

These results have some unexpected implications, e.g.
that battery performance may be improved with elevated
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currents and temperatures, wider particle size distribu-
tions, and coatings to alter surface energies. The model
successfully describes phase behavior of LFP cathodes,
and my group is extending it to graphite anodes (“stag-
ing” of Li intercalation with ≥ 3 stable phases) and air
cathodes (electrochemical growth of Li2O2).

The general theory may find many other applications
in chemistry and biology. For example, the adsorp-
tion model (Fig. 7) could be adapted for the deposi-
tion of charged colloids on transparent electrodes in elec-
trophoretic displays. The porous electrode model (Fig.
12) could be adapted for sorption/desorption kinetics
in nanoporous solids, e.g. for drying cycles of cemen-
titious materials, release of shale gas by hydraulic frac-
turing, carbon sequestration in zeolites, or ion adsorp-
tion and impulse propagation in biological cells. The
common theme is the coupling of chemical kinetics with
non-equilibrium thermodynamics.
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