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Abstract

Lock-free concurrent algorithms guarantee thatsomeconcurrent operation will always make progress
in a finite number of steps. Yet programmers prefer to treat concurrent code as if it werewait-free,
guaranteeing thatall operations always make progress. Unfortunately, designing wait-free algorithms
is generally a very complex task, and the resulting algorithms are not always efficient. While obtaining
efficient wait-free algorithms has been a long-time goal forthe theory community, most non-blocking
commercial code is only lock-free.

This paper suggests a simple solution to this problem. We show that, for a large class of lock-
free algorithms, under scheduling conditions which approximate those found in commercial hardware
architectures, lock-free algorithms behave as if they are wait-free. In other words, programmers can keep
on designing simple lock-free algorithms instead of complex wait-free ones, and in practice, they will
get wait-free progress.

Our main contribution is a new way of analyzing a general class of lock-free algorithms under a
stochastic scheduler. Our analysis relates the individual performance of processes with the global per-
formance of the system usingMarkov chain liftingbetween a complex per-process chain and a simpler
system progress chain. We show that lock-free algorithms are not only wait-free with probability1,
but that in fact a general subset of lock-free algorithms canbe closely bounded in terms of the average
number of steps required until an operation completes.

To the best of our knowledge, this is the first attempt to analyze progress conditions, typically stated
in relation to a worst case adversary, in a stochastic model capturing their expected asymptotic behavior.

1 Introduction

The introduction of multicore architectures as today’s main computing platform has brought about a renewed
interest in concurrent data structures and algorithms, anda considerable amount of research has focused on
their modeling, design and analysis.

The behavior of concurrent algorithms is captured bysafety properties, which guarantee their correct-
ness, andprogress properties, which guarantee their termination. Progress properties can be quantified using
two main criteria. The first is whether the algorithm isblockingor non-blocking, that is, whether the delay
of a single process will cause others to be blocked, preventing them from terminating. Algorithms that use
locks are blocking, while algorithms that do not use locks are non-blocking. Most of the code in the world
today is lock-based, though the fraction of code without locks is steadily growing [11].

The second progress criterion, and the one we will focus on inthis paper, is whether a concurrent
algorithm guaranteesminimal or maximal progress[12]. Intuitively, minimal progress means thatsome
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process is always guaranteed to make progress by completingits operations, while maximal progress means
thatall processes always complete all their operations.

Most non-blocking commercial code islock-free, that is, provides minimal progress without using
locks [6, 12]. Most blocking commercial code isdeadlock-free, that is, provides minimal progress when
using locks. Over the years, the research community has devised ingenious, technically sophisticated algo-
rithms that providemaximal progress: such algorithms are eitherwait-free, i.e. provide maximal progress
without using locks [9], orstarvation-free[15], i.e. provide maximal progress when using locks. Unex-
pectedly, maximal progress algorithms, and wait-free algorithms in particular, are not being adopted by
practitioners, despite the fact that the completion of all method calls in a program is a natural assumption
that programmers implicitly make.

Recently, Herlihy and Shavit [12] suggested that perhaps the answer lies in a surprising property of
lock-free algorithms: in practice, they often behave as if they were wait-free (and similarly, deadlock-free
algorithms behave as if they were starvation-free). Specifically, most operations complete in a timely man-
ner, and the impact of long worst-case executions on performance is negligible. In other words, in real
systems, the scheduler that governs the threads’ behavior in long executions does not single out any partic-
ular thread in order to cause the theoretically possible badbehaviors. This raises the following question:
could the choice ofwait-freeversuslock-freebe based simply on what assumption a programmer is willing
to make about the underlying scheduler, and, with the right kind of scheduler, one will not need wait-free
algorithms except in very rare cases?

This question is important because the difference between await-free and a lock-free algorithm for any
given problem typically involves the introduction of specialized “helping” mechanisms [9], which signif-
icantly increase the complexity (both the design complexity and time complexity) of the solution. If one
could simply rely on the scheduler, adding a helping mechanism to guarantee wait-freedom (or starvation-
freedom) would be unnecessary.

Unfortunately, there is currently no analytical frameworkwhich would allow answering the above ques-
tion, since it would require predicting the behavior of a concurrent algorithm over long executions, under a
scheduler that is not adversarial.

Contribution. In this paper, we take a first step towards such a framework. Following empirical observa-
tions, we introduce astochastic schedulermodel, and use this model to predict the long-term behavior of
a general class of concurrent algorithms. The stochastic scheduler is similar to an adversary: at each time
step, it picks some process to schedule. The main distinction is that, in our model, the scheduler’s choices
contain some randomness. In particular, a stochastic scheduler has a probability thresholdθ > 0 such that
every (non-faulty) process is scheduled with probability at leastθ in each step.

We start from the following observation: underany stochastic scheduler, everybounded lock-freealgo-
rithm is actuallywait-free with probability1. (A boundedlock-free algorithm guarantees thatsomeprocess
always makes progress within a finite progress bound.) In other words, for any such algorithm, the schedules
which prevent a process from ever making progress must have probability mass0. The intuition is that, with
probability1, each specific process eventually takes enough consecutivesteps, implying that it completes its
operation. This observation generalizes to any bounded minimal/maximal progress condition [12]: we show
that under a stochastic scheduler, bounded minimal progress becomes maximal progress, with probability1.
However, this intuition is insufficient for explaining why lock-free data structures areefficient in practice:
because it works for arbitrary algorithms, the upper bound it yields on the number of steps until an operation
completes is unacceptably high.

Our main contribution is analyzing a general class of lock-free algorithms under a specific stochastic
scheduler, and showing that not only are they wait-free withprobability 1, but that in fact they provide a
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pragmatic bound on the number of steps until each operation completes.
We address a refineduniform stochastic scheduler, which schedules each non-faulty process with uni-

form probability in every step. Empirical data suggests that, in the long run, the uniform stochastic scheduler
is a reasonable approximation for a real-world scheduler (see Figures 3 and 4). We emphasize that we do
not claim real schedulers are uniform stochastic, but only that such a scheduler gives a good approximation
of what happens in practice for our complexity measures, over long executions.

We call the algorithmic class we analyzesingle compare-and-swap universal(SCU). An algorithm in
this class is divided into apreamble, and ascan-and-validatephase. The preamble executes auxiliary code,
such as local updates and memory allocation. In the second phase, the process first determines the data
structure state by scanning the memory. It then locally computes the updated state after its method call
would be performed, and attempts to commit this state to memory by performing an atomiccompare-and-
swap(CAS) operation. If the CAS operation succeeds, then the state has been updated, and the method call
completes. Otherwise, if some other process changes the state in between the scan and the attempted update,
then the CAS operation fails, and the process must restart its operation.

This algorithmic class is widely used to design lock-free data structures. It is known that every sequential
object has a lock-free implementation in this class using a lock-free version of Herlihy’s universal construc-
tion [9]. Instances of this class are used to obtain efficientdata structures such as stacks [21], queues [17],
or hash tables [6]. The read-copy-update (RCU) [7] synchronization mechanism employed by the Linux
kernel is also an instance of this pattern.

We examine the classSCU under a uniform stochastic scheduler, and first observe that, in this set-
ting, every such algorithm behaves as a Markov chain. The computational cost of interest issystem steps,
i.e. shared memory accesses by the processes. The complexity metrics we analyze areindividual latency,
which is the expected number of steps of the system until a specific process completes a method call, andsys-
tem latency, which is the expected number of steps of the system to complete somemethod call. We bound
these parameters by studying the stationary distribution of the Markov chain induced by the algorithm.

We prove two main results. The first is that, in this setting, all algorithms in this class have the property
that the individual latency of any process isn times the system latency. In other words, the expected number
of steps for any two processes to complete an operation isthe same; moreover, the expected number of steps
for the system to complete any operation is the expected number of steps for a specific process to complete
an operation, divided byn. The second result is an upper bound ofO(q + s

√
n) on the system latency,

whereq is the number of steps in the preamble,s is the number of steps in the scan-and-validate phase, and
n is the number of processes. This bound is asymptotically tight.

The key mathematical tool we use isMarkov chain lifting[3, 8]. More precisely, for such algorithms,
we prove that there exists a function whichlifts the complex Markov chain induced by the algorithm to a
simplifiedsystemchain. The asymptotics of the system latency can be determined directly from the minimal
progress chain. In particular, we bound system latency by characterizing the behavior of a new type of
iteratedballs-into-bins game, consisting of iterations which end when a certain condition on the bins first
occurs, after which some of the bins change their state and a new iteration begins. Using the lifting, we
prove that the individual latency is alwaysn times the system latency.

In summary, our analysis shows that, under an approximationof the real-world scheduler, a large class of
lock-free algorithms provide virtually the same progress guarantees as wait-free ones, and that, roughly, the
system completes requests at a rate that isn times that of individual processes. More generally, it provides
for the first time an analytical framework for predicting thebehavior of a class of concurrent algorithms,
over long executions, under a scheduler that is not adversarial.

Related work. To the best of our knowledge, the only prior work which addresses a probabilistic sched-
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uler for a shared memory environment is that of Aspnes [2], who gave a fast consensus algorithm under a
probabilistic scheduler model different from the one considered in this paper. The observation that many
lock-free algorithms behave as wait-free in practice was made by Herlihy and Shavit in the context of
formalizing minimal and maximal progress conditions [12],and is well-known among practitioners. For
example, reference [1, Figure6] gives empirical results for the latency distribution of individual operations
of a lock-free stack. Recent work by Petrank and Timnat [20] states that most known lock-free algorithms
can be written in a canonical form, which is similar to the classSCU , but more complex than the pattern
we consider. Significant research interest has been dedicated to transforming obstruction-free or lock-free
algorithms to wait-free ones, e.g. [14, 20], while minimizing performance overhead. In particular, an effi-
cient strategy has been to divide the algorithm into a lock-freefast path, and a wait-freebackup path, which
is invoked it an operation fails repeatedly. Our work does not run contrary to this research direction, since
the progress guarantees we prove are only probabilistic. Instead, it could be used to bound the cost of the
backup path during the execution.

Roadmap. We describe the model, progress guarantees, and complexitymetrics in Section 2. In particular,
Section 2.3 defines the stochastic scheduler. We show that minimal progress becomes maximal progress with
probability1 in Section 4. Section 5 defines the classSCU(q, s), while Section 6.1 analyzes individual and
global latency. The Appendix contains empirical justification for the model, and a comparison between the
predicted behavior of an algorithm and its practical performance.

2 System Model

2.1 Preliminaries

Processes and Objects.We consider a shared-memory model, in whichn processesp1, . . . , pn, communi-
cate through registers, on which they perform atomicread, write, andcompare-and-swap (CAS) operations.
A CAS operation takes three arguments(R, expVal ,newVal ), whereR is the register on which it is applied,
expVal is the expected value of the register, andnewVal is the new value to be written to the register. If
expVal matches the value ofR, then we say that the CAS is successful, and the value ofR is updated to
newVal . Otherwise, the CAS fails. The operation returnstrue if it successful, andfalseotherwise.

We assume that each process has a unique identifier. Processes follow an algorithm, composed of shared-
memory steps and local computation. The order of process steps is controlled by thescheduler. A set of at
mostn−1 processes may fail by crashing. A crashed process stops taking steps for the rest of the execution.
A process that is not crashed at a certain step iscorrect, and if it never crashes then it takes an infinite number
of steps in the execution.

The algorithms we consider are implementations of shared objects. A shared objectO is an abstraction
providing a set ofmethodsM , each given by its sequential specification. In particular,an implementation
of a methodm for objectO is a set ofn algorithms, one for each executing process. When processpi
invokes methodm of objectO, it follows the corresponding algorithm until it receives aresponse from the
algorithm. In the following, we do not distinguish between amethodm and its implementation. A method
invocation ispendingif has not received a response. A method invocation isactiveif it is made by acorrect
process (note that the process may still crash in the future).

Executions, Schedules, and Histories.An execution is a sequence of operations performed by the pro-
cesses. To represent executions, we assume discrete time, where at every time unit only one process is
scheduled. In a time unit, a process can perform any number oflocal computations or coin flips, after which
it issues astep, which consists of a single shared memory operation. Whenever a process becomes active,
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as decided by the scheduler, it performs its local computation and then executes a step. Thescheduleis a
(possibly infinite) sequence of process identifiers. If processpi is in positionτ ≥ 1 in the sequence, thenpi
is active at time stepτ .

Raising the level of abstraction, we define ahistory as a finite sequence of method invocation and
response events. Notice that each schedule has a corresponding history, in which individual process steps
are mapped to method calls. On the other hand, a history can bethe image of several schedules.

2.2 Progress Guarantees

We now define minimal and maximal progress guarantees. We partly follow the unified presentation
from [12], except that we do not specify progress guaranteesfor each method of an object. Rather, for
ease of presentation, we adopt the simpler definition which specifies progress provided by an implemen-
tation. Consider an executione, with the corresponding historyHe. An implementation of an objectO
providesminimal progressin the executione if, in every suffix ofHe, some pending active instance of some
method has a matching response. Equivalently, there is no point in the corresponding execution from which
all the processes take an infinite number of steps without returning from their invocation.

An implementation providesmaximalprogress in an executione if, in every suffix of the corresponding
historyHe, everypending active invocation of a method has a response. Equivalently, there is no point in
the execution from which a process takes infinitely many steps without returning.

Scheduler Assumptions.We say that an execution iscrash-freeif each process is always correct, i.e. if
each process takes an infinite number of steps. An execution isuniformly isolatingif, for everyk > 0, every
correct process has an interval where it takes at leastk consecutive steps.

Progress. An implementation isdeadlock-freeif it guarantees minimal progress in every crash-free ex-
ecution, and maximal progress in some crash-free execution.1 An implementation isstarvation-freeif it
guarantees maximal progress in every crash-free execution. An implementation isclash-freeif it guarantees
minimal progress in every uniformly isolating history, andmaximal progress in some such history [12]. An
implementation isobstruction-freeif it guarantees maximal progress in every uniformly isolating execu-
tion2. An implementation islock-free if it guarantees minimal progress in every execution, and maximal
progress in some execution. An implementation iswait-free if it guarantees maximal progress in every
execution.

Bounded Progress.While the above definitions provide reasonable measures of progress, often in practice
more explicit progress guarantees may be desired, which provide an upper bound on the number of steps
until some method makes progress. To model this, we say that an implementation guaranteesbounded
minimal progressif there exists a boundB > 0 such that, for any time stept in the executione at which
there is an active invocation of some method, some invocation of a method returns within the nextB steps
by all processes. An implementation guaranteesbounded maximal progressif there exists a boundB > 0
such thateveryactive invocation of a method returns withinB steps by all processes. We can specialize
the definitions of bounded progress guarantees to the scheduler assumptions considered above to obtain
definitions forboundeddeadlock-freedom,boundedstarvation-freedom, and so on.

1According to [12], the algorithm is required to guarantee maximal progress in some execution to rule out pathological cases
where a thread locks the object and never releases the lock.

2This is the definition of obstruction freedom from [12]; it isweaker than the one in [10] since it assumes uniformly isolating
schedules only, but we use it here as it complies with our requirements of providing maximal progress.
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2.3 Stochastic Schedulers

We define a stochastic scheduler as follows.

Definition 1 (Stochastic Scheduler). For any n ≥ 0, a scheduler forn processes is defined by a triple
(Πτ , Aτ , θ). The parameterθ ∈ [0, 1] is the threshold. For each time stepτ ≥ 1, Πτ is a probability
distribution for scheduling then processes atτ , andAτ is the subset ofpossibly activeprocesses at time
stepτ . At time stepτ ≥ 1, the distributionΠτ gives, for everyi ∈ {1, . . . , n} a probabilityγiτ , with which
processpi is scheduled. The distributionΠτ may depend on arbitrary outside factors, such as the current
state of the algorithm being scheduled. A scheduler(Πτ , Aτ , θ) is stochasticif θ > 0. For everyτ ≥ 1, the
parameters must ensure the following:

1. (Well-formedness)
∑n

i=1 γ
i
τ = 1;

2. (Weak Fairness) For every processpi ∈ Aτ , γiτ ≥ θ;
3. (Crashes) For every processpi /∈ Aτ , γiτ = 0;
4. (Crash Containment)Aτ+1 ⊆ Aτ .

The well-formedness condition ensures that some process isalways scheduled. Weak fairness ensures
that, for a stochastic scheduler, possibly active processes do get scheduled with some non-zero probability.
The crash condition ensures that failed processes do not getscheduled. The set{p1, p2, . . . , pn} \ Aτ can
be seen as the set of crashed processes at time stepτ , since the probability of scheduling these processes at
every subsequent time step is0.

An Adversarial Scheduler. Any classic asynchronous shared memory adversary can be modeled by “en-
coding” its adversarial strategy in the probability distributionΠτ for each step. Specifically, given an algo-
rithm A and a worst-case adversaryAA for A, let pτi be the process that is scheduled byAA at time stepτ .
Then we give probability1 in Πτ to processpτi , and0 to all other processes. Things are more interesting
when the thresholdθ is strictly more than0, i.e., there is some randomness in the scheduler’s choices.

The Uniform Stochastic Scheduler. A natural scheduler is theuniform stochastic scheduler, for which,
assuming no process crashes, we have thatΠτ hasγτi = 1/n, for all i andτ ≥ 1, andAτ = {1, . . . , n} for
all time stepsτ ≥ 1. With crashes, we have thatγτi = 1/|Aτ | if i ∈ Aτ , andγτi = 0 otherwise.

2.4 Complexity Measures

Given a concurrent algorithm, standard analysis focuses ontwo measures:step complexity, the worst-case
number of steps performed by a single process in order to return from a method invocation, andtotal step
complexity, or work, which is the worst-case number of system steps required to complete invocations of
all correct processes when performing a task together. In this paper, we focus on the analogue of these
complexity measures for long executions. Given a stochastic scheduler, we define(average) individual
latencyas the maximum over all inputs of the expected number of stepstaken by the system between the
returns times of two consecutive invocations of the same process. Similarly, we define the(average) system
latencyas the maximum over all inputs of the expected number of system steps between consecutive returns
times of any two invocations.

3 Background on Markov Chains

We now give a brief overview of Markov chains. Our presentation follows standard texts, e.g. [16,18]. The
definition and properties of Markov chain lifting are adapted from [8].
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Given a setS, a sequence of random variables(Xt)t∈N, whereXt ∈ S, is a (discrete-time)stochastic
processwith states inS. A discrete-time Markov chainover the state setS is a discrete-time stochastic
process with states inS that satisfies theMarkov condition

Pr[Xt = it|Xt−1 = it−1, . . . ,X0 = i0] = Pr[Xt = it|Xt−1 = it−1].

The above condition is also called thememoryless property. A Markov chain istime-invariantif the equality
Pr[Xt = j|Xt−1 = i] = Pr[Xt′ = j|Xt′−1 = i] holds for all timest, t′ ∈ N and alli, j ∈ S. This allows us
to define thetransition matrixP of a Markov chain as the matrix with entries

pij = Pr[Xt = j|Xt−1 = i].

The initial distribution of a Markov chain is given by the probabilitiesPr[X0 = i], for all i ∈ S. We denote
the time-invariant Markov chainX with initial distributionλ and transition matrixP by M(P, λ).

The random variableTij = min{n ≥ 1|Xn = j, if X0 = i} counts the number of steps needed by the
Markov chain to get fromi to j, and is called thehitting time from i to j. We setTi,j = ∞ if statej is
unreachable fromi. Further, we definehij = E[Tij ], and callhii = E[Tii] the (expected) return time for
statei ∈ S.

GivenP , the transition matrix ofM(P, λ), astationary distributionof the Markov chain is a state vector
π with π = πP . (We considerrow vectors throughout the paper.) The intuition is that if the state vector
of the Markov chain isπ at timet, then it will remainπ for all t′ > t. LetP (k) be the transition matrixP
multiplied by itselfk times, andp(k)ij be element(i, j) of P (k). A Markov chain isirreducible if for all pairs

of statesi, j ∈ S there existsm ≥ 0 such thatp(m)
ij > 0. (In other words, the underlying graph is strongly

connected.) This implies thatTij < ∞, and all expectationshij exist, for all i, j ∈ S. Furthermore, the
following is known.

Theorem 1. An irreducible finite Markov chain has a unique stationary distributionπ, namely

πj =
1

hjj
,∀j ∈ S.

The periodicity of a statej is the maximum positive integerα such that{n ∈ N|p(n)jj > 0} ⊆ {iα|i ∈
N}. A state with periodicityα = 1 is calledaperiodic. A Markov chain isaperiodic if all states are aperi-
odic. If a Markov chain has at least one self-loop, then it is aperiodic. A Markov chain that is irreducible
and aperiodic isergodic. Ergodic Markov chains converge to their stationary distribution ast → ∞ inde-
pendently of their initial distributions.

Theorem 2. For every ergodic finite Markov chain(Xt)t∈N we have independently of the initial distribution
that limt→∞ qt = π, whereπ denotes the chain’s unique stationary distribution, andqt is the distribution
on states at timet ∈ N.

Ergodic Flow. It is often convenient to describe an ergodic Markov chain interms of itsergodic flow:
for each (directed) edgeij, we associate a flowQij = πipij. These values satisfy

∑

i Qij =
∑

iQji and
∑

i,j Qij = 1. It also holds thatπj =
∑

iQij .

Lifting Markov Chains. LetM andM ′ be ergodic Markov chains on finite state spacesS, S′, respectively.
Let P, π be the transition matrix and stationary distribution forM , andP ′, π′ denote the corresponding
objects forM ′. We say thatM ′ is a lifting of M [8] if there is a functionf : S′ → S such that

Qij =
∑

x∈f−1(i),y∈f−1(j)

Q′
xy,∀i, j ∈ S.
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Informally, M ′ is collapsed ontoM by clustering several of its states into a single state, as specified
by the functionf . The above relation specifies a homomorphism on the ergodic flows. An immediate
consequence of this relation is the following connection between the stationary distributions of the two
chains.

Lemma 1. For all v ∈ S, we have that

π(v) =
∑

x∈f−1(v)

π′(x).

4 From Minimal Progress to Maximal Progress

We now formalize the intuition that, under a stochastic scheduler, all algorithms ensuring bounded minimal
progress guarantee in fact maximal progress with probability 1. We also show theboundedminimal progress
assumption is necessary: if minimal progress is not bounded, then maximal progress may not be achieved.

Theorem 3 (Min to Max Progress). LetS be a stochastic scheduler with probability threshold1 ≥ θ > 0.
Let A be an algorithm ensuring bounded minimal progress with a bound T . ThenA ensures maximal
progress with probability1. Moreover, the expected maximal progress bound ofA is at most(1/θ)T .

Proof. Consider an interval ofT steps in an execution of algorithmA. Our first observation is that, since
A ensuresT -bounded minimal progress, any process that performsT consecutivesteps in this interval must
complete a method invocation. To prove this fact, we consider cases on the minimal progress condition.
If the minimal progress condition isT -boundeddeadlock-freedomor lock-freedom, then every sequence
of T steps by the algorithm must complete some method invocation. In particular,T steps by a single
process must complete a method invocation. Obviously, thiscompleted method invocation must be by the
process itself. If the progress condition isT -boundedclash-freedom, then the claim follows directly from
the definition.

Next, we show that, sinceS is a stochastic scheduler with positive probability threshold, each correct
process will eventually be scheduled forT consecutive steps, with probability1. By the weak fairness
condition in the definition, for every time stepτ , every active processpi ∈ Aτ is scheduled with probability
at leastθ > 0. A processpi is correct if pi ∈ Aτ , for all τ ≥ 1. By the definition, at each time stepτ , each
correct processpi ∈ Aτ is scheduled forT consecutive time units with probability at leastθT > 0. From the
previous argument, it follows that every correct process eventually completes each of its method calls with
probability1. By the same argument, the expected completion time for a process is at most(1/θ)T .

The proof is based on the fact that, for every correct processpi, eventually, the scheduler will produce
a solo a schedule of lengthT . On the other hand, since the algorithm ensures minimal progress with bound
T , we show thatpi must complete its operation during this interval.

We then prove that the finite bound for minimal progress is necessary. For this, we devise anunbounded
lock-free algorithm which is not wait-free with probability > 0. The main idea is to have processes that
fail to change the value of a CAS repeatedly increase the number of steps they need to take to complete an
operation. (See Algorithm 1.)

Lemma 2. There exists an unbounded lock-free algorithm that isnot wait-freewith high probability.

Proof. Consider the initial state of Algorithm 1. With probabilityat least1/n, each processpi can be the
first process to take a step, performing a successful CAS operation. Assume processp1 takes the first step.
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1 Shared: CAS objectC, initially 0;
2 RegisterR
3 Local: Integersv, val, j, initially 0
4 while true do
5 val ← CAS(C, v, v + 1)
6 if val = v then return ;
7 else
8 v ← val
9 for j = 1 . . . n2v do read(R) ;

Algorithm 1: An unbounded lock-free algorithm.

10 Shared: registersR,R1, R2, . . . , Rs−1

11 proceduremethod-call()
12 Take preamble stepsO1, O2, Oq /* Preamble region */
13 while true do

/* Scan region: */
14 v ← R.read()
15 v1 ← R1.read(); v2 ← R2.read(); . . .; vs−1 ← Rs−1.read()
16 v′ ← new proposed state based onv, v1, v2, . . . , vs−1

/* Validation step: */
17 flag ← CAS(R, v, v′)
18 if flag = true then
19 output success

Algorithm 2: The structure of the lock-free algorithms inSCUq,s.

Conditioned on this event, letP be the probability thatp1 is not the next process that performs a successful
CAS operation. Ifp1 takes a step in any of the nextn2 ·v steps, then it is the next process that wins the CAS.
The probability that this does not happen is at most(1−1/n)n2

. Summing over all iterations, the probability
that p1 ever performs an unsuccessful CAS is therefore at most

∑∞
ℓ=1 (1− 1/n)n

2·ℓ ≤ 2(1 − 1/n)n
2 ≤

2e−n. Hence, with probability at least1 − 2e−n, processp1 always wins the CAS, while other processes
never do. This implies that the algorithm is not wait-free, with high probability.

5 The Class of AlgorithmsSCU(q, s)

In this section, we define the class of algorithmsSCU(q, s). An algorithm in this class is structured as
follows. (See Algorithm 2 for the pseudocode.) The first partis thepreamble, where the process performs
a series ofq steps. The algorithm then enters aloop, divided into ascanregion, which reads the values of
s registers, and avalidation step, where the process performs a CAS operation, which attempts to change
the value of a register. The of the scan region is to obtain a view of the data structure state. In the validation
step, the process checks that this state is still valid, and attempts to change it. If the CAS is successful, then
the operation completes. Otherwise, the process restarts the loop. We say that an algorithm with the above
structure with parametersq ands is in SCU(q, s).

We assume that steps in the preamble may perform memory updates, including to registersR1, . . . , Rs−1,
but do not change the value of the decision registerR. Also, two processes never propose the same value for
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the registerR. (This can be easily enforced by adding a timestamp to each request.) The order of steps in the
scan region can be changed without affecting our analysis. Such algorithms are used in several CAS-based
concurrent implementations. In particular, the class can be used to implement a concurrent version of every
sequential object [9]. It has also been used to obtain efficient implementations of several concurrent objects,
such as fetch-and-increment [4], stacks [21], and queues [17].

6 Analysis of the ClassSCU(q, s)

We analyze the performance of algorithms inSCU(q, s) under the uniform stochastic scheduler. We assume
that all threads execute the same method call with preamble of lengthq, and scan region of lengths. Each
thread executes an infinite number of such operations. To simplify the presentation, we assume alln threads
are correct in the analysis. The claim is similar in the crash-failure case, and will be considered separately.

We examine two parameters: system latency, i.e., how often (in terms of system steps) does a new
operation complete, and individual latency, i.e., how often doesa certain threadcomplete a new operation.
Notice that the worst-case latency for the whole system isΘ(q+ sn) steps, while the worst-case latency for
an individual thread is∞, as the algorithm is not wait-free. We will prove the following result:

Theorem 4. LetA be an algorithm inSCU(q, s). Then, under the uniform stochastic scheduler, the system
latency ofA isO(q + s

√
n), and the individual latency isO(n(q + s

√
n)).

We prove the upper bound by splitting the classSCU(q, s) into two separate components, and analyzing
each under the uniform scheduler. The first part is the loop code, which we call thescan-validatecomponent.
The second part is theparallel code, which we use to characterize the performance of the preamble code. In
other words, we first considerSCU(0, s) and thenSCU(q, 0).

6.1 The Scan-Validate Component

Notice that, without loss of generality, we can simplify thepseudocode to contain a single read step before
the CAS. We obtain the performance bounds for this simplifiedalgorithm, and then multiply them bys, the
number of scan steps. That is, we start by analyzingSCU(0, 1) and then generalize toSCU(0, s).

Proof Strategy. We start from the Markov chain representation of the algorithm, which we call theindivid-
ual chain. We then focus on a simplified representation, which only trackssystem-wide progress, irrespective
of which process is exactly in which state. We call this thesystem chain. We first prove the individual chain
can be related to the system chain via a lifting function, which allows us to relate the individual latency to
the system latency (Lemma 5). We then focus on bounding system latency. We describe the behavior of the
system chain via an iterated balls-and-bins game, whose stationary behavior we analyze in Lemmas 8 and 9.
Finally, we put together these claims to obtain anO(

√
n) upper bound on the system latency ofSCU(0, 1).

6.1.1 Markov Chain Representations

We define theextended local stateof a process in terms of the state of the system, and of the typeof step it
is about to take. Thus, a process can be in one of three states:either it performs a read, or it CAS-es with
the current value ofR, or it CAS-es with an invalid value ofR. The state of the system after each step is
completely described by then extended local states of processes. We emphasize that this is different than
what is typically referred to as the “local” state of a process, in that the extended local state is described
from the viewpoint of the entire system. That is, a process that has a pending CAS operation can be in either
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1 Shared: registerR
2 Local: v, initially ⊥
3 procedure scan-validate()
4 while true do
5 v ← R.read(); v′ ← new value based onv
6 flag ← CAS(R, v, v′)
7 if flag = true then
8 output success

Algorithm 3: The scan-validate pattern.

of two different extended local states, depending on whether its CAS will succeed or not. This is determined
by the state of the entire system. A key observation is that, although the “local” state of a process can only
change when it takes a step, its extended local state can change also when another process takes a step.

The individual chain. Since the scheduler is uniform, the system can be described as a Markov chain, where
each state specifies the extended local state of each process. Specifically, a process is in stateOldCAS if
it is about to CAS with an old (invalid) value ofR, it is in stateRead if it is about to read, and is in state
CCAS if it about to CAS with the current value ofR. (Once CAS-ing the process returns to stateRead .)

A stateS of the individual chain is given by a combination ofn statesS = (P1, P2, . . . , Pn), describing
the extended local state of each process, where, for eachi ∈ {1, . . . , n}, Pi ∈ {OldCAS ,Read ,CCAS} is
the extended local state of processpi. There are3n − 1 possible states, since the state where each process
CAS-es with an old value cannot occur. In each transition, each process takes a step, and the state changes
correspondingly. Recall that every processpi takes a step with probability1/n. Transitions are as follows.
If the processpi taking a step is in stateRead or OldCAS , then all other processes remain in the same
extended local state, andpi moves to stateCCAS orRead , respectively. If the processpi taking a step is in
stateCCAS , then all processes in stateCCAS move to stateOldCAS , andpi moves to stateRead .

The system chain. To reduce the complexity of the individual Markov chain, we introduce a simplified
representation, which tracks system-wide progress. More precisely, each state of the system chain tracks
the number of processes in each state, irrespective of theiridentifiers: for anya, b ∈ {0, . . . , n}, a statex is
defined by the tuple(a, b), wherea is the number of processes that are in stateRead , andb is the number
of processes that are in stateOldCAS . Notice that the remainingn − a − b processes must be in state
CCAS . The initial state is(n, 0), i.e. all processes are about to read. The state(0, n) does not exist. The
transitions in the system chain are as follows.Pr[(a+1, b− 1)|(a, b)] = b/n, where0 ≤ a ≤ n andb > 0.
Pr[(a+1, b)|(a, b)] = 1− (a+b)/n, where0 ≤ a < n. Pr[(a−1, b)|(a, b)] = 1−a/n, where0 < a ≤ n.
(See Figure 1 for an illustration of the two chains in the two-process case.)

6.1.2 Analysis Preliminaries

First, we notice that both the individual chain and the system chain are ergodic.

Lemma 3. For anyn ≥ 1, the individual chain and the system chain are ergodic.

Let π be the stationary distribution of the system chain, and letπ′ be the stationary distribution for the
individual chain. For any statek = (a, b) in the system chain, letπk be its probability in the stationary dis-
tribution. Similarly, for statex in the individual chain, letπ′

x be its probability in the stationary distribution.
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Figure 1: The individual chain and the global chain for two
processes. Each transition has probability1/2. The red clusters
are the states in the system chain. The notationX;Y ;Z means

that processes inX are in stateRead , processes inY are in state
OldCAS , and processes inZ are in stateCCAS .

Figure 2: Structure of an algorithm inSCU(q, s).

We now prove that there exists alifting from the individual chain to the system chain. Intuitively,the
lifting from the individual chain to the system chain collapses all states in whicha processes are about to
read andb processes are about to CAS with an old value (the identifiers of these processes are different for
distinct states), into to state(a, b) from the system chain.

Definition 2. Let S be the set of states of the individual chain, andM be the set of states of the system
chain. We define the functionf : S →M such that each stateS = (P1, . . . , Pn), wherea processes are in
stateRead andb processes are in stateOldCAS , is taken into state(a, b) of the system chain.

We then obtain the following relation between the stationary distributions of the two chains.

Lemma 4. For every statek in the system chain, we haveπk =
∑

x∈f−1(k) π
′
x.

Proof. We obtain this relation algebraically, starting from the formula for the stationary distribution of the
individual chain. We have thatπ′A = π′, whereπ′ is a row vector, andA is the transition matrix of the
individual chain. We partition the states of the individualchain into sets, whereGa,b is the set of system
statesS such thatf(S) = (a, b). Fix an arbitrary ordering(Gk)k≥1 of the sets, and assume without loss of
generality that the system states are ordered according to their set in the vectorπ and in the matrixA, so
that states mapping to the same set are consecutive.

Let now A′ be the transition matrix across the sets(Gk)k≥1. In particular,a′kj is the probability of
moving from a state in the setGk to some state in the setGj . Note that this transition matrix is the same
as that of the system chain. Pick an arbitrary statex in the individual chain, and letf(x) = (a, b). In
other words, statex maps to setGk, wherek = (a, b). We claim that for every setGj ,

∑

y∈Gj
Pr[y|x] =

Pr[Gj |Gi].
To see this, fixx = (P0, P1, . . . , Pn). Sincef(x) = (a, b), there are exactlyb distinct statesy reachable

from x such thatf(y) = (a + 1, b − 1): the states where a process in extended local stateOldCAS takes
a step. Therefore, the probability of moving to such a statey is b/n. Similarly, the probability of moving
to a statey with f(y) = (a + 1, b − 1) is 1 − (a + b)/n, and the probability of moving to a statey with
f(y) = (a− 1, b) is a/n. All other transition probabilities are0.

To complete the proof, notice that we can collapse the stationary distributionπ′ onto the row vector̄π,
where thekth element of̄π is

∑

x∈Gk
π′
x. Using the above claim and the fact thatπ′A = π′, we obtain by

calculation that̄πA′ = π̄. Therefore,̄π is a stationary distribution for the system chain. Since thestationary
distribution is unique,̄π = π, which concludes the proof.

In fact, we can prove that the functionf : S →M defined above induces a lifting from the individual chain
to the system chain.
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Lemma 5. The system Markov chain is a lifting of the individual Markovchain.

Proof. Consider a statek inM. Let j be a neighboring state ofk in the system chain. The ergodic flow
from k to j is pkjπk. In particular, ifk is given by the tuple(a, b), j can be either(a+1, b−1) or (a+1, b),
or (a − 1, b). Consider now a statex ∈ M, x = (P0, . . . , Pn), such thatf(x) = k. By the definition off ,
x hasa processes in stateRead , andb processes in stateOldCAS .

If j is the state(a+ 1, b − 1), then the flow fromk to j, Qkj, is bπk/n. The statex from the individual
chain has exactlyb neighboring statesy which map to the state(a+1, b−1), one for each of theb processes
in stateOldCAS which might take a step. Fixy to be such a state. The probability of moving fromx to y is
1/n. Therefore, using Lemma 4, we obtain that

∑

x∈f−1(k),y∈f−1(j)

Q′
xy =

∑

x∈f−1(k)

∑

y∈f−1(j)

1

n
π′
x =

b

n

∑

x∈f−1(k)

π′
x =

b

n
πk = Qkj.

The other cases for statej follow similarly. Therefore, the lifting condition holds.

Next, we notice that, since states from the individual chainwhich map to the same system chain state are
symmetric, their probabilities in the stationary distribution must be the same.

Lemma 6. Letx andx′ be two states inS such thatf(x) = f(y). Thenπ′
x = π′

y.

Proof (Sketch).The proof follows by noticing that, for anyi, j ∈ {1, 2, . . . , n}, switching indicesi andj in
the Markov chain representation maintains the same transition matrix. Therefore, the stationary probabilities
for symmetric states (under the swapping of process ids) must be the same.

We then use the fact that the code is symmetric and the previous Lemma to obtain an upper bound on the
expected time between two successes for a specific process.

Lemma 7. LetW be the expected system steps between two successes in the stationary distribution of the
system chain. LetWi be the expected system steps between two successes of process pi in the stationary
distribution of the individual chain. For every processpi, W = nWi.

Proof. Let µ be the probability that a step is a success bysomeprocess. Expressed in the system chain,
we have thatµ =

∑

j=(a,b)(1 − (a + b)/n)πj . Let Xi be the set of states in the individual chain in which
Pi = CCAS . Consider the event that a system step is a step in whichpi succeeds. This must be a step by
pi from a state inXi. The probability of this event in the stationary distribution of the individual chain is
ηi =

∑

x∈Xi
π′
x/n.

Recall that the lifting functionf maps all statesx with a processes in stateRead andb processes in state
OldCAS to statej = (a, b). Therefore,ηi = (1/n)

∑

j=(a,b)

∑

x∈f−1(j)∩Xi
π′
x. By symmetry, we have that

π′
x = π′

y, for every statesx, y ∈ f−1(j). The fraction of states inf−1(j) that havepi in stateCCAS (and
are therefore also inXi) is (1− (a+ b)/n). Therefore,

∑

x∈f−1(j)∩Xi
π′
x = (1− (a+ b)/n)πj .

We finally get that, for every processpi, ηi = (1/n)
∑

j=(a,b)(1− (a+ b)/n)πj = (1/n)µ. On the other
hand, since we consider the stationary distribution, from astraightforward extension of Theorem 1, we have
thatWi = 1/ηi, andW = 1/µ. Therefore,Wi = nW , as claimed.
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6.1.3 System Latency Bound

In this section we provide an upper bound on the quantityW , the expected number of system steps between
two successes in stationary distribution of the system chain. We prove the following.

Theorem 5. The expected number of steps between two successes in the system chain isO(
√
n).

An iterated balls-into-bins game. To boundW , we model the evolution of the system as a balls-into-
bins game. We will associate each process with a bin. At the beginning of the execution, each bin already
contains one ball. At each time step, we throw a new ball into auniformly chosen random bin. Essentially,
whenever the process takes a step, its bin receives an additional ball. We continue to distribute balls until
the first time a bin acquiresthreeballs. We call this event areset. When a reset occurs, we set the number of
balls in the bin containing three balls to one, and all the bins containing two balls become empty. The game
then continues until the next reset.

This game models the fact that initially, each process is about to read the shared state, and must take two
steps in order to update its value. Whenever a process changes the shared state by CAS-ing successfully, all
other processes which were CAS-ing with the correct value are going to fail their operations; in particular,
they now need to take three steps in order to change the sharedstate. We therefore reset the number of balls
in the corresponding bins to0.

More precisely, we define the game in terms ofphases. A phase is the interval between two resets. For
phasei, we denote byai the number of bins with one ball at the beginning of the phase,and bybi the number
of bins with0 balls at the beginning of the phase. Since there are no bins with two or more balls at the start
of a phase, we have thatai + bi = n.

It is straightforward to see that this random process evolves in the same way as the system Markov chain.
In particular, notice that the boundW is the expected length of a phase. To prove Theorem 5, we first obtain
a bound on the length of a phase.

Lemma 8. Letα ≥ 4 be a constant. The expected length of phasei is at mostmin(2αn/
√
ai, 3αn/b

1/3
i ).

The phase length is2αmin(n
√
log n/

√
ai, n(log n)

1/3/b
1/3
i ), with probability at least1 − 1/nα. The

probability that the length of a phase is less thanmin(n/
√
ai, n/(bi)

1/3)/α is at most1/(4α2).

Proof. Let Ai be the set of bins with one ball, and letBi be the set of bins with zero balls, at the beginning
of the phase. We haveai = |Ai| andbi = |Bi|. Practically, the phase ends either when a bin inAi or a bin
in Bi first contains three balls.

For the first event to occur, some bin inAi must receive two additional balls. Letc ≥ 1 be a large
constant, and assume for now thatai ≥ log n andbi ≥ log n (the other cases will be treated separately). The
number of bins inAi which need to receive a ball before some bin receives two new balls is concentrated
around

√
ai, by the birthday paradox. More precisely, the following holds.

Claim 1. LetXi be random variable counting the number of bins inAi chosen to get a ball before some bin
in Ai contains three balls, and fixα ≥ 4 to be a constant. Then the expectation ofXi is less than2α

√
ai.

The value ofXi is at mostα
√
ai log n, with probability at least1− 1/nα2

.

Proof. We employ the Poisson approximation for balls-into-bins processes. In essence, we want to bound
the number of balls to be thrown uniformly intoai bins until two balls collide in the same bin, in expectation
and with high probability. Assume we throwm balls into theai ≥ log n bins. It is well-known that the
number of balls a bin receives during this process can be approximated as a Poisson random variable with
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meanm/ai (see, e.g., [18]). In particular, the probability that no bin receives two extra balls during this
process is at most

2

(

1−
e−m/ai(mai )

2

2

)ai

≤ 2

(

1

e

)
m2

2ai
e−m/ai

.

If we takem = α
√
ai for α ≥ 4 constant, we obtain that this probability is at most

2

(

1

e

)α2e−α/
√
ai/2

≤
(

1

e

)α2/4

,

where we have used the fact thatai ≥ log n ≥ α2. Therefore, the expected number of throws until some bin
receives two balls is at most2α

√
ai. Takingm = α

√
ai log n, we obtain that some bin receives two new

balls withinα
√
ai log n throws with probability at least1− 1/nα2

.

We now prove a similar upper bound for the number of bins inBi which need to receive a ball before some
such bin receives three new balls, as required to end the phase.

Claim 2. LetYi be random variable counting the number of bins inBi chosen to get a ball before some bin
in Bi contains three balls, and fixα ≥ 4 to be a constant. Then the expectation ofYi is at most3αb2/3i , and

Yi is at mostα(log n)1/3b2/3i , with probability at least1− (1/n)α
3/54.

Proof. We need to bound the number of balls to be thrown uniformly into bi bins (each of which is initially
empty), until some bin gets three balls. Again, we use a Poisson approximation. We throwm balls into the
bi ≥ log n bins. The probability that no bin receives three or more balls during this process is at most

2

(

1− e−m/ai(m/bi)
3

6

)bi

= 2

(

1

e

)
m3

6b2
i
e−m/bi

.

Takingm = αb
2/3
i for α ≥ 4, we obtain that this probability is at most

2

(

1

e

)
α3

6
e−α/b

1/3
i

≤
(

1

e

)α3/54

.

Therefore, the expected number of ball thrown into bins fromBi until some such bin contains three balls is
at most3αb2/3i . Takingm = α(log n)1/3b

2/3
i , we obtain that the probability that no bin receives three balls

within the firstm ball throws inBi is at most(1/n)α
3/54.

The above claims bound the number of steps inside the setsAi andBi necessary to finish the phase. On
the other hand, notice that a step throws a new ball into a bin fromAi with probabilityai/n, and throws it
into a bin inBi with probabilitybi/n. It therefore follows that the expected number of steps for abin in Ai

to reach three balls (starting from one ball in each bin) is atmost2α
√
ain/ai = 2αn/

√
ai. The expected

number of steps for a bin inBi to reach three balls is at most3αb2/3i n/bi = 3αn/b
1/3
i . The next claim

provides concentration bounds for these inequalities, andcompletes the proof of the Lemma.

Claim 3. The probability that the system takes more than2α n√
ai

√
log n steps in a phase is at most1/nα.

The probability that the system takes more than2α n

b
1/3
i

(log n)1/3 steps in a phase is at most1/nα.
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Proof. Fix a parameterβ > 0. By a Chernoff bound, the probability that the system takes more than2βn/ai
steps without throwing at leastβ balls into the bins inAi is at most(1/e)β . At the same time, by Claim 1,
the probability thatα

√
ai log n balls thrown into bins inAi do not generate a collision (finishing the phase)

is at most1/nα2

.
Therefore, throwing2α n√

ai

√
log n balls fail to finish the phase with probability at most1/nα2

+

1/eα
√
ai logn. Sinceai ≥ log n by the case assumption, the claim follows.

Similarly, using Claim 2, the probability that the system takes more than2α(log n)1/3b2/3i n/bi =

2α(log n)1/3n/b
1/3
i steps without a bin inBi reaching three balls (in the absence of a reset) is at most

(1/e)1+(log n)1/3b
2/3
i + (1/n)α

3/54 ≤ (1/n)α, sincebi ≥ log n.

We put these results together to obtain that, ifai ≥ log n andbi ≥ log n, then the expected length of
a phase ismin(2αn/

√
ai, 3αn/b

1/3
i ). The phase length is2αmin( n√

ai

√
log n, n

b
1/3
i

(log n)1/3), with high

probability.
It remains to consider the case where eitherai or bi are less thanlog n. Assumeai ≥ log n. Then

bi ≥ n− log n. We can therefore apply the above argument forbi, and we obtain that with high probability
the phase finishes in2αn(log n/bi)1/3 steps. This is less than2α n√

ai

√
log n, sinceai ≤ log n, which

concludes the claim. The converse case is similar.

Returning to the proof, we characterize the dynamics of the phasesi ≥ 1 based on the value ofai at the
beginning of the phase. We say that a phasei is in the first rangeif ai ∈ [n/3, n]. Phasei is in the second
rangeif n/c ≤ ai < n/3, wherec is a large constant. Finally, phasei is in the third rangeif 0 ≤ ai < n/c.
Next, we characterize the probability of moving between phases.

Lemma 9. For i ≥ 1, if phasei is in the first two ranges, then the probability that phasei+1 is in the third
range is at most1/nα. Letβ > 2c2 be a constant. The probability thatβ

√
n consecutivephases are in the

third range is at most1/nα.

Proof. We first bound the probability that a phase moves to the third range from one of the first two ranges.

Claim 4. For i ≥ 1, if phasei is in the first two ranges, then the probability that phasei+ 1 is in the third
range is at most1/nα.

Proof. We first consider the case where phasei is in range two, i.e.n/c ≤ ai < n/3, and bound the
probability thatai+1 < n/c. By Lemma 8, the total number of system steps taken in phasei is at most

2αmin(n/
√
ai
√
log n, n/b

1/3
i (log n)1/3), with probability at least1 − 1/nα. Given the bounds onai, it

follows by calculation that the first factor is always the minimum in this range.
Let ℓi be the number of steps in phasei. Sinceai ∈ [n/c, n/3), the expected number of balls thrown

into bins fromAi is at mostℓi/3, whereas the expected number of balls thrown into bins fromBi is at
least2ℓi/3. The parameterai+1 is ai plus the bins fromBi which acquire a single ball, minus the balls
from Ai which acquire an extra ball. On the other hand, the number of bins fromBi which acquire a single
ball duringℓi steps is tightly concentrated around2ℓi/3, whereas the number of bins inAi which acquire a
single ball duringℓi steps is tightly concentrated aroundℓi/3. More precisely, using Chernoff bounds, given
ai ∈ [n/c, n/3), we obtain thatai ≥ ai+1, with probability at least1− 1/eα

√
n.

For the case where phasei is in range one, notice that, in order to move to range three, the value ofai
would have to decrease by at leastn(1/3−1/c) in this phase. On the other hand, by Lemma 8, the length of
the phase is at most2α

√
3n log n, w.h.p. Therefore the claim follows. A similar argument provides a lower

bound on the length of a phase.
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The second claim suggests that, if the system is in the third range (a low probability event), it gradually
returns to one of the first two ranges.

Claim 5. Let β > 2c2 be a constant. The probability thatβ
√
n phases are in the third range is at most

1/nα.

Proof. Assume the system is in the third range, i.e.ai ∈ [0, n/c). Fix a phasei, and letℓi be its length. Let
Si
b be the set of bins inBi which get a single ball during phasei. Let T i

b be the set of bins inBi which get
two balls during phasei (and are reset). LetSi

a be the set of bins inAi which get a single ball during phase
i (and are also reset). Thenbi − bi+1 ≥ |Si

b| − |T i
b | − |Si

a|.
We bound each term on the right-hand side of the inequality. Of all the balls thrown during phasei, in

expectation at least(1− 1/c) are thrown in bins fromBi. By a Chernoff bound, the number of balls thrown
in Bi is at least(1− 1/c)(1 − δ)ℓi with probability at least1− exp(−δ2ℓi(1− 1/c)/4), for δ ∈ (0, 1). On
the other hand, the majority of these balls do not cause collisions in bins fromBi. In particular, from the
Poisson approximation, we obtain that|Si

b| ≥ 2|T i
b | with probability at least1 − (1/n)α+1, where we have

usedbi ≥ n(1− 1/c).
ConsideringSi

a, notice that, w.h.p., at most(1 + δ)ℓi/c balls are thrown in bins fromAi. Summing up,
given thatℓi ≥

√
n/c, we obtain thatbi − bi+1 ≥ (1 − 1/c)(1 − δ)ℓi/2 − (1 + δ)ℓi/c, with probability at

least1 −max((1/n)α, exp(−δ2ℓi(1− 1/c)/4). For smallδ ∈ (0, 1) andc ≥ 10, the difference is at least
ℓi/c

2. Notice also that the probability depends on the length of the phase.
We say that a phase isregular if its length is at leastmin(n/

√
ai, n/(bi)

1/3)/c. From Lemma 8, the
probability that a phase is regular is at least1 − 1/(4c2). Also, in this case,ℓi ≥

√
n/c, by calculation. If

the phase is regular, then the size ofbi decreases byΩ(
√
n), w.h.p.

If the phase is not regular, we simply show that, with high probability, ai does not decrease. Assume
ai < ai+1. Then, eitherℓi < log n, which occurs with probability at most1/nΩ(log n) by Lemma 8, or the
inequalitybi − bi+i ≥ ℓi/c

2 fails, which also occurs with probability at most1/nΩ(log n).
To complete the proof, consider a series ofβ

√
n consecutive phases, and assume thatai is in the third

range for all of them. The probability that such a phase is regular is at least1 − 1/(4c2), therefore, by
Chernoff, a constant fraction of phases are regular, w.h.p.Also w.h.p., in each such phase the size ofbi goes
down byΩ(

√
n) units. On the other hand, by the previous argument, if the phases are not regular, then it is

still extemely unlikely thatbi increases for the next phase. Summing up, it follows that theprobability that
the system stays in the third range forβ

√
n consecutive phases is at most1/nα, whereβ ≥ 2c2, andα ≥ 4

was fixed initially.

This completes the proof of Lemma 9.

Final argument. To complete the proof of Theorem 5, recall that we are interested in the expected length of
a phase. To upper bound this quantity, we group the states of the game according to their range as follows:
stateS1,2 contains all states(ai, bi) in the first two ranges, i.e. withai ≥ n/c. StateS3 contains all states
(ai, bi) such thatai < n/c. The expected length of a phase starting from a state inS1,2 is O(

√
n), from

Lemma 8. However, the phase length could beω(
√
n) if the state is inS3. We can mitigate this fact given

that the probability of moving to range three is low (Claim 4), and the system moves away from range three
rapidly (Claim 5): intuitively, the probability of states inS3 in the stationary distribution has to be very low.

To formalize the argument, we define two Markov chains. The first Markov chainM has two states,
S1,2 andS3. The transition probability fromS1,2 to S3 is 1/nα, whereas the transition probability fromS3

to S1,2 is x > 0, fixed but unknown. Each state loops onto itself, with probabilities 1 − 1/nα and1 − x,
respectively. The second Markov chainM ′ has two statesS andR. StateS has a transition toR, with
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probability β
√
n/nα, and a transition to itself, with probability1 − β

√
n/nα. StateR has a loop with

probability1/nα, and a transition toS, with probability1− 1/nα.
It is easy to see that both Markov chains are ergodic. Let[s r] be the stationary distribution ofM ′. Then,

by straightforward calculation, we obtain thats ≥ 1− β
√
n/nα, while r ≤ β

√
n/nα.

On the other hand, notice that the probabilities in the transition matrix forM ′ correspond to the proba-
bilities in the transition matrix forMβ

√
n, i.e.M applied to itselfβ

√
n times. This means that the stationary

distribution forM is the same as the stationary distribution forM ′. In particular, the probability of state
S1,2 is at least1− β

√
n/nα, and the probability of stateS3 is at mostβ

√
n.

To conclude, notice that the expected length of a phase is at most the expected length of a phase in the
first Markov chainM . Using the above bounds, this is at most2α

√
n(1 − β

√
n/nα) + βn2/3√n/nα =

O(
√
n), as claimed. This completes the proof of Theorem 5.

6.2 Parallel Code

We now use the same framework to derive a convergence bound for parallel code, i.e. a method call which
completes after the process executesq steps, irrespective the concurrent actions of other processes. The
pseudocode is given in Algorithm 4.

1 Shared: registerR
2 procedure call()
3 while true do
4 for i from1 to q do
5 Executeith step
6 output success

Algorithm 4: Pseudocode for parallel code.

Analysis. We now analyze the individual and system latency for this algorithm under the uniform stochastic
scheduler. Again, we start from its Markov chain representation. We define the individual Markov chain
MI to have statesS = (C1, . . . , Cn), whereCi ∈ {0, . . . , q − 1} is the current step counter for process
pi. At every step, the Markov chain picksi from 1 to n uniformly at random and transitions into the state
(C1, . . . , (Ci + 1) mod q, . . . , Cn). A process registers a success every time its counter is reset to 0; the
system registers a success every time some process counter is reset to0. The system latency is the expected
number of system steps between two successes, and the individual latency is the expected number of system
steps between two successes by a specific process.

We now define the system Markov chainMS , as follows. A stateg ∈ MS is given by q values
(v0, v1, . . . , vq−1), where for eachj ∈ {0, . . . , q − 1} vj is the number of processes with step counter
valuej, with the condition that

∑q−1
j=0 vj = n. Given a state(v0, v1, . . . , vq−1), let X be the set of indices

i ∈ {0, . . . , q − 1} such thatvi > 0. Then, for eachi ∈ X, the system chain transitions into the state
(v0, . . . , vi − 1, vi+1 + 1, . . . , vq−1) with probabilityvi/n.

It is easy to check that bothMI andMS are ergodic Markov chains. Letπ be the stationary distribution
of MS , andπ′ be the stationary distribution ofMI . We next define the mappingf : MI → MS which
maps each stateS = (C1, . . . , Cn) to the state(v0, v1, . . . , vq−1), wherevj is the number of processes with
counter valuej from S. Checking that this mapping is a lifting betweenMI andMS is straightforward.

Lemma 10. The functionf defined above is a lifting between the ergodic Markov chainsMI andMS .
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We then obtain bounds on the system and individual latency.

Lemma 11. For any1 ≤ i ≤ n, the individual latency for processpi is Wi = nq. The system latency is
W = q.

Proof. We examine the stationary distributions of the two Markov chains. Contrary to the previous exam-
ples, it turns out that in this case it is easier to determine the stationary distribution of the individual Markov
chainMI . Notice that, in this chain, all states have in- and out-degreen, and the transition probabilities
are uniform (probability1/n). It therefore must hold that the stationary distribution of MI is uniform. Fur-
ther, notice that a1/nq fraction of the edges corresponds to the counter of a specificprocesspi being reset.
Therefore, for anyi, the probability that a step inMI is a completed operation bypi is 1/nq. Hence, the
individual latency for the algorithm isnc. To obtain the system latency, we notice that, from the lifting, the
probability that a step inMS is a completed operation bysomeprocess is1/q. Therefore, the individual
latency for the algorithm isq.

6.3 General Bound forSCU(q, s)

We now put together the results of the previous sections to obtain a bound on individual and system latency.
First, we notice that Theorem 5 can be easily extended to the case where the loop containss scan steps, as
the extended local state of a processp can be changed by a step of another processq 6= p only if p is about
to perform a CAS operation.

Corollary 1. For s ≥ 1, given a scan-validate pattern withs scan steps under the stochastic scheduler, the
system latency isO(s

√
n), while the individual latency isO(ns

√
n).

Obviously, an algorithm inSCU(q, s) is a sequential composition of parallel code followed bys loop
steps. Fix a processpi. By Lemma 11 and Corollary 1, by linearity of expectation, weobtain that the
expected individual latency for processpi to complete an operation is at mostn(q + αs

√
n), whereα ≥ 4

is a constant.
Consider now the Markov ChainMS that corresponds to the sequential composition of the Markov chain

for the parallel codeMP , and the Markov chainML corresponding to the loop. In particular, a completed
operation fromMP does not loop back into the chain, but instead transitions into the corresponding state
of ML. More precisely, if the transition is a step by some processor pi which completed step numberq in
the parallel code (and moves to the loop code), then the chaintransitions into the state where processorpi
is about to execute the first step of the loop code. Similarly,when a process performs a successful CAS at
the end of the loop, the processes’ step counter is reset to0, and its next operation will the first step of the
preamble.

It is straightforward that the chainMS is ergodic. Letκi be the probability of the event that processpi
completes an operation in the stationary distribution of the chainMS . Since the expected number of steps
pi needs to take to complete an operation is at mostn(q+α

√
n), we have thatκi ≥ 1/(n(q +αs

√
n)). Let

κ be the probability of the event thatsomeprocess completes an operation in the stationary distribution of
the chainMS . It follows thatκ =

∑n
i=1 κi ≥ 1/(q + αs

√
n). Hence, the expected time until the system

completes a new operation is at mostq + αs
√
n, as claimed.

We note that the above argument also gives an upper bound on the expected number of (individual) steps
a processpi needs to complete an operation (similar to the standard measure of individualstep complexity).
Since the scheduler is uniform, this is alsoO(q + s

√
n). Finally, we note that, if onlyk ≤ n processes are

correct in the execution, we obtain the same latency bounds in terms ofk: since we consider the behavior of
the algorithm at infinity, the stationary latencies are onlyinfluenced by correct processes.
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Corollary 2. Given an algorithm inSCU(q, s) onk correct processes under a uniform stochastic scheduler,
the system latency isO(q + s

√
k), and the individual latency isO(k(q + s

√
k)).

7 Application - A Fetch-and-Increment Counter using Augmented CAS

We now apply the ideas from the previous section to obtain minimal and maximal progress bounds for other
lock-free algorithms under the uniform stochastic scheduler.

Some architectures support richer semantics for the CAS operation, which return thecurrent value of
the register which the operation attempts to modify. We can take advantage of this property to obtain a
simpler fetch-and-increment counter implementation based on compare-and-swap. This type of counter
implementation is very widely-used [4].

7 Shared: registerR
8 procedure fetch-and-inc() v ← 0
9 while true do

10 old← v
11 v ← CAS(R, v, v + 1)
12 if v = old then
13 output success

Algorithm 5: A lock-free fetch-and-increment counter based on compare-and-swap.

7.1 Markov Chain Representations

We again start from the observation the algorithm induces anindividual Markov chain and a global one.
From the point of view of each process, there are two possiblestates:Current, in which the process has the
current value (i.e. its local valuev is the same as the value of the registerR), and theStalestate, in which
the process has an old value, which will cause its CAS call to fail. (In particular, theReadandOldCAS
states from the universal construction are coalesced.)

The Individual Chain. The per-process chain, which we denote byMI , results from the composition of
the automata representing the algorithm at each process. Each state ofMI can be characterized by the set
of processes that have the current value of the registerR. The Markov chain has2n− 1 states, since it never
happens thatno threadhas the current value.

For each non-empty subset of processesS, let sS be the corresponding state. The initial state issΠ,
the state in which every thread has the current value. We distinguishwinningstates as the states(s{pi})i in
which onlyonethread has the current value: to reach this state, one of the processes must have successfully
updated the value ofR. There are exactlyn winning states, one for each process.

Transitions are defined as follows. From each states, there aren outgoing edges, one for each process
which could be scheduled next. Each transition has probability 1/n, and moves to states′ corresponding
to the set of processes which have the current value at the next time step. Notice that the winning states
are the only states with a self-loop, and that from every state sS the chain either moves to a statesV with
|V | = |S|+ 1, or to a winning state for one of the threads inS.

The Global Chain. Theglobal chainMG results from clustering the symmetric states states fromMI into
single states. The chain hasn statesv1, . . . , vn, where statevi comprises all the statessS in MG such that
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|S| = i. Thus, statev1 is the state in whichsomeprocess just completed a new operation. In general,vi
is the state in whichi processes have the current value ofR (and therefore may commit an operation if
scheduled next).

The transitions in the global chain are defined as follows. For any1 ≤ i ≤ n, from statevi the chain
moves to statev1 with probability i/n. If i < n, the chain moves to statevi+1 with probability 1 − i/n.
Again, the statev1 is the only state with a self-loop. The intuition is that someprocess among thei possessing
the current value wins if scheduled next (and changes the current value); otherwise, if some other thread is
scheduled, then that thread will also have the current value.

7.2 Algorithm Analysis

We analyze the stationary behavior of the algorithm under a uniform stochastic scheduler, assuming each
process invokes an infinite number of operations.

Strategy. We are interested in the expected number of steps that some processpi takes between committing
two consecutive operations, in the stationary distribution. This is theindividual latency, which we denote
by Wi. As for the general algorithm, we proceed by first bounding the system latencyW , which is easier
to analyze, and then show thatWi = nW , i.e. the algorithm isfair. We will use the two Markov chain
representations from the previous section. In particular,notice thatWi is the expected return time of the
“win state” vi of the global chainMG, andW is the expected return time of the statespi in which pi just
completed an operation.

The first claim is an upper bound on the return time forv1 in MG.

Lemma 12. The expected return time forv1 isW ≤ 2
√
n.

Proof. For0 ≤ i ≤ n− 1, letZ(i) be the hitting time for statev1 from the state wheren− i processes have
the current value. In particular,Z(0) is the hitting time from the state whereall processes have the correct
value, and thereforeZ(0) = 1. Analyzing the transitions, we obtain thatZ(i) = iZ(i−1)/n+1. We prove
thatZ(n− 1) ≤ 2

√
n.

We analyze two intervals:k from 0 to n − √n, and then up ton − 1. We first claim that, for0 ≤
k ≤ n − √n, it holds thatZ(k) ≤ √n. We prove this by induction. The base case obviously holds.
For the induction step, notice thatZ(k) ≤ Z(k − 1)(n − √n)/n + 1 in this interval. By the hypothesis,
Z(k − 1) ≤ √n, thereforeZ(k) ≤ √n for k ≤ n−√n.

For k ∈ {n −√n, . . . , n}, notice thatZ(k) can add at most1 at each iteration, and we are iterating at
most

√
n times. This gives an upper bound of2

√
n, as claimed.

Remark. Intuitively, the valueZ(n − 1) is related to the birthday paradox, since it counts the number
of elements that must be chosen uniformly at random from1 to n (with replacement) until one of the
elements appears twice. In fact, this is the RamanujanQ function [5], which has been studied previously by
Knuth [13] and Flajolet et al. [5] in relation to the performance of linear probing hashing. Its asymptotics
are known to beZ(n− 1) =

√

πn/2(1 + o(1)) [5].

Markov Chain Lifting. We now analyzeWi, the expected number of total system steps for a specific
processpi to commit a new request. We define a mappingf : MI → MG between the states of the
individual Markov chain. For any non-empty setS of processes, the function maps the statesS ∈MI to the
statevi of the chain. It is straightforward to prove that this mapping is a correct lifting of the Markov chain,
and that both Markov chains are ergodic.
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Lemma 13. The individual chain and the local chain are ergodic. The function f is a lifting between the
individual chain and the global chain.

We then use the lifting and symmetry to obtain the following relation between the stationary distributions of
the two Markov chains. The proof is similar to that of Lemma 5.This also implies that every process takes
the same number of steps in expectation until completing an operation.

Lemma 14. Letπ = [π1 . . . πn] be the stationary distribution of the global chain, and letπ′ be the stationary
distribution of the individual chain. Letπ′

i be the probability ofs{pi} in π′. Then, for alli ∈ {1, . . . , n},
π′
i = π/n. Furthermore,Wi = nW .

This characterizes the asymptotic behavior of the individual latency.

Corollary 3. For any i ∈ {1, . . . , n}, the expected number of system steps between two completed opera-
tions by processpi is O(n

√
n). The expected number of steps bypi between two completed operations is

O(
√
n).

8 Discussion

This paper is motivated by the fundamental question of relating the theory of concurrent programming to
real-world algorithm behavior. We give a framework for analyzing concurrent algorithms which partially
explains the wait-free behavior of lock-free algorithms, and their good performance in practice. Our work
is a first step in this direction, and opens the door to many additional questions.

In particular, we are intrigued by the goal of obtaining a realistic model for the unpredictable behavior
of system schedulers. Even though it has some foundation in empirical results, our uniform stochastic
model is a rough approximation, and can probably be improved. We believe that some of the elements of
our framework (such as the existence of liftings) could still be applied to non-uniform stochastic scheduler
models, while others may need to be further developed. A second direction for future work is studying
other types of algorithms, and in particular implementations which export several distict methods. The
class of algorithms we consider isuniversal, i.e., covers any sequential object, however there may exist
object implementations which do not fall in this class. Finally, it would be interesting to explore whether
there exist concurrent algorithms which avoid theΘ(

√
n) contention factor in the latency, and whether such

algorithms are efficient in practice.
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Structure of the Appendix. Section A presents empirical data for the stochastic scheduler model, while
Section B gives compares the predicted and actual performance of an algorithm inSCU .

A The Stochastic Scheduler Model

A.1 Empirical Justification

The real-world behavior of a process scheduler arises as a complex interaction of factors such as the timing of
memory requests (influenced by the algorithm), the behaviorof the cache coherence protocol (dependent on
the architecture), or thread pre-emption (depending on theoperating system). Given the extremely complex
interactions between these components, the behavior of thescheduler could be seen asnon-deterministic.
However, when recorded for extended periods of time, simplepatterns emerge. Figures 3 and 4 present
statistics on schedule recordings from a simple concurrentcounter algorithm, executed on a system with 16
hardware threads. (The details of the setup and experimentsare presented in the next section).

Figure 3 clearly suggests that, in the long run, the scheduler is “fair:” each thread gets to take about
the same number of steps. Figure 4 gives an intuition about how the schedule looks likelocally: assuming
processpi just took a step at time stepτ , any process appears to be just as likely to be scheduled in the next
step. We note that the structure of the algorithm executed can influence the ratios in Figure 4; also, we only
performed tests on an Intel architecture.

Our stochastic scheduler model addresses the non-determinism in the scheduler by associating a dis-
tribution with each scheduler time step, which gives the probability of each process being scheduled next.
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In particular, we model our empirical observations by considering the uniform stochastic scheduler, which
assigns a probability of1/n with which each process is scheduled. We stress that we do notclaim that the
schedule behaves uniformly random locally; our claim is that the behavior of the schedule over long periods
of time can be approximated reasonably in this way, for the algorithms we consider. We note that random-
ized schedulers attempting to explicitly implement probabilistic fairness have been proposed in practice, in
the form oflottery scheduling[19].

A.2 Experimental Setup

The machine we use for testing is a Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon E7-4870
(Westmere EX) processors. Each processor has 10 2.40 GHz cores, each of which multiplexes two hardware
threads, so in total our system supports80 hardware threads. Each core has private write-back L1 and L2
caches; an inclusive L3 cache is shared by all cores. We limited experiments to20 hardware threads, in
order to avoid the effects of non-uniform memory access (NUMA), which appear when hardware threads
are located on different cores.

We used two methods to record schedules. The first used an atomic fetch-and-increment operation
(available in hardware): each process repeatedly calls this operation, and records the values received. We
then sort the values of each process to recover the total order of steps. The second method records times-
tamps during the execution of an algorithm, and sorts the timestamps to recover the total order. We found
that the latter method interferes with the schedule: since the timer call causes a delay to the caller, a process
is less likely to be scheduled twice in succession. With thisexception, the results are similar for both meth-
ods. The statistics of the recorded schedule are summarizedin Figures 3 and 4. (The graphs are built using
20 millisecond runs, averaged over10 repetitions; results for longer intervals and for different thread counts
are similar.)

B Implementation Results

Let thecompletion rateof the algorithm be the total number of successful operations versus the total number
of steps taken during the execution. The completion rate approximates the inverse of the system latency. We
consider a fetch-and-increment counter implementation which simply reads the valuev of a shared register
R, and then attempts to increment the value using aCAS(R, v, v + 1) call. The predicted completion rate
of the algorithm isΘ(1/

√
n). The actual completion rate of the implementation is shown in Figure 5 for

varying thread counts, for a counter implementation based on the lock-free pattern. TheΘ(1/
√
n) rate

predicted by the uniform stochastic scheduler model appears to be close to the actual completion rate. Since
we do not have precise bounds on the constant in front ofΘ(1/

√
n) for the prediction, we scaled the

prediction to the first data point. The worst-case predictedrate(1/n) is also shown.
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Figure 5: Predicted completion rate of the algorithm vs. completion rate of the implementation vs. worst-case completion rate.
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