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The basic physics of nucleation in solid single-crystal nanoparticles is revealed by a phase-field
theory that includes surface energy, chemical reactions and coherency strain. In contrast to binary
fluids, which form arbitrary contact angles at surfaces, complete “wetting” by one phase is favored
at binary solid surfaces. Nucleation occurs when surface wetting becomes unstable, as the chemical
energy gain (scaling with area) overcomes the elastic energy penalty (scaling with volume). The
nucleation barrier thus decreases with the area-to-volume ratio and vanishes below a critical size,
and nanoparticles tend to transform in order of increasing size, leaving the smallest particles ho-
mogeneous (in the phase of lowest surface energy). The model is used to simulate phase separation
in realistic nanoparticle geometries for LiXFePO4, a popular cathode material for Li-ion batteries,
and collapses disparate experimental data for the nucleation barrier, with no adjustable parameters.
Beyond energy storage, the theory generally shows how to tailor the elastic and surface properties
of a solid nanostructure to achieve desired phase behavior.

Keywords: core-shell nanoparticles, nucleation, coherency strain, phase-field modeling, electrochemistry,
LiFePO4

Despite the widespread use of phase-separating
nanoparticles for catalysis, “smart materials”, and en-
ergy storage [1–3], their complex phase behavior is just
beginning to be understood [4–6]. The most basic open
question involves nucleation, which is difficult to observe
experimentally and beyond the reach of ab initio molec-
ular simulations. (A 20 nm nanoparticle has ∼ 50, 000
atoms.) It is known that surfaces are important [2], but
their precise role is unclear. In bimetallic nanoparti-
cles, where phase transitions are triggered by changes in
temperature [7], anomalous melting point depression in
silica-gold core-shell nanoparticles persists to unexpect-
edly large particle sizes [8]. Enhanced interdiffusion in
gold-silver core-shell nanoparticles cannot be explained
by size-dependent melting point depression [9].

For Li-ion battery nanoparticles, where phase transi-
tions occur by ion intercalation, the literature is full of
contradictions. The canonical phase-separating cathode
material is LiFePO4, which exhibits low power in micron-
sized particles [10] but can achieve very high rates in
nanoparticles [11]. Experimental measurements of the
critical overpotential to initiate lithiation vary widely
from 2 mV to 37 mV [12–21]. Size dependence has also
been reported [12, 21]. Some experiments observe elec-
trical signatures of nucleation and 1D growth above a
critical particle size [22], while others attribute voltage
hysteresis to mosaic phase separation among homoge-
neous particles without nucleation [16]. Some theoret-
ical studies suggest that nucleation at surfaces leads to
“intercalation waves” (moving phase boundaries) at low
current [23–25], while others describe a “solid-solution
pathway” without the possibility of nucleation [26].

In this article, we resolve these discrepancies by show-
ing that nucleation in single-crystal nanoparticles is size-
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FIG. 1: (a) Partial wetting by fluid β displacing fluid α
at a solid surface with contact angle θ. (b) Complete

“wetting” by solid β displacing solid α at a fluid
surface. Table: Surface energies of FePO4 (α) vs.

LiFePO4 (β) calculated from first principles [28]. The
smaller phase boundary energy [27], γαβ = 39 mJ/m2,

implies complete wetting by α or β at each facet.

dependent, occurring as a result of surface adsorption
that leads to coherency strain (a long-range force). This
mechanism implies a nucleation barrier that decreases
linearly with the area-to-volume ratio, in quantitative
agreement with a wide range of experimental data. We
show that the data are consistent with both phase-field
[27] and ab initio calculations [26] that estimate a zero-
current overpotential of about 35 mV in bulk LiFePO4.
The analysis presented in Methods is very general and
could be applied to other multiphase nanostructures.

Surface wetting in binary solids. – The wetting of a
solid surface by binary fluids is one of the most stud-
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FIG. 2: (a) Equilibrium voltage curve for a binary intercalation particle, calculated with our phase-field model for
LiFePO4. For ∆φ > ∆φ∗ (or ∆µ > ∆µ∗), transformation from metastable to stable homogeneous states is nucleated
by changes in potential, composition, or temperature leading to unstable two-phase coexistence at the barrier. (b)
Sketch of nucleation at wetted surfaces due to changes in composition. (c) Calculation of the surface adsorption
profile in a LiFePO4 nanoparticle (C3 shape [29] with wetted side facets; inset) by voltage fluctuations, which

increase the bulk concentration, c0(∆φ), until the surface layer becomes unstable at the coherent solubility limit c∗0.

ied problems in fluid mechanics [30–32], but a theory of
surface “wetting” in binary solids, which have coherency
strain, has not been developed. Wagemaker et al. [33, 34]
modeled the effect of surfaces on the voltage curves and
solubility limits of LiFePO4, but assumed that phase
boundaries form a contact angle with exterior surfaces
and neglected coherency strain. Tang and Karma stud-
ied coherent spinodal decomposition at solid surfaces [35],
but did not consider finite systems or dependence of sur-
face energy on composition. Bai et al. simulated nucle-
ation by surface wetting [24], but neglected coherency
strain.

Young’s equation, γα = γβ + γαβ cos θ, relates surface
and interfacial tensions to the contact angle θ at a triple
junction (Fig. 1(a)). Because fluid-fluid and fluid-solid
interfacial energies have the same order of magnitude, all
contact angles are possible in binary fluids [31, 32], in-
cluding complete wetting and de-wetting (θ = 0◦, 180◦).

The surface of a binary intercalation compound in-
volves equilibrium between two solid phases and a fluid
(the electrolyte in battery). A stable triple junction
(0◦ < θ < 180◦) is unlikely to form between two solid
phases because the excess energy of the free surface (from
broken bonds) is much larger than that of a coherent
solid-solid interface (from stretched bonds) (Fig. 1(b)).
A rule of thumb is that coherent interfaces have γαβ <
200 mJ/m2, while solid surfaces have γα, γβ > 1 J/m2

[36]. The change in surface energy with composition thus
dominates, and one solid phase will tend to completely
wet the surface. If γ′(c) = 0, a 90◦ contact angle will
form and coherent surface spinodal states exist [35], but
this is not the typical situation.

This prediction is supported by the “core-shell” struc-
tures commonly observed in bimetallic nanoparticles
with the low-γ phase as the shell [2], as well as by

first principles calculations of battery nanoparticles. The
change in surface energy by between α = FePO4 and
β = LiFePO4 for common facets of the Wulff shape
(Table 1) greatly exceeds the phase boundary energy,
γαβ = 39 mJ/m2, inferred from the thickness of striped
phases [27]. As a result, each crystal facet tends to be
fully lithiated (θ = 0) or delithiated (θ = 180◦).

Nucleation at Solid Surfaces. – Consider a nanoparti-
cle of volume V in bulk phase α with a surface area A
wetted by molecules of phase β, in metastable equilib-
rium with diffusional chemical potential ∆µ = µβ − µα,
where ∆µ = 0 corresponds to chemical (or mosaic) two-
phase coexistence. In the case of lithium ion intercalation
in batteries [6, 24, 27], ∆φ = ∆µ/e = φe − φ is the in-
terfacial voltage (of electrons φe relative to ions φ), and
∆φ = 0 corresponds to mosaic phase separation across
a set of homogeneous particles [16, 37]. For a neutral
species, ∆µ can be controlled by adjusting the reservoir
concentration of that species.

The transformation from the metastable phase α to
the stable phase β can be nucleated by fluctuations in
composition, potential or temperature (Fig. 2(a)). The
nucleation barrier corresponds to the onset of (unstable)
two-phase coexistence. At a critical potential, ∆µ∗ =
e∆φ∗, corresponding to the coherent solubility limit, the
barrier for composition fluctuations vanishes (∆Gb = 0),
and the critical state is an unstable surface layer (Xβ =
0).

With battery nanoparticles, it is straightforward to
control the voltage and observe a sudden current as-
sociated with phase transformation. In this case, the
bulk solid remains homogeneous at the bulk concentra-
tion c0(∆φ) until the coherent solubility limit is reached
at the critical potential ∆φ∗ (Fig. 2(c)). The Gibbs free
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FIG. 3: Phase-field simulation of galvanostatic lithiation of a LiXFePO4 nanoparticle (C3 shape [29] with a 150 nm
× 76 nm (010) facet (top)) illustrating nucleation at the coherent solubility limit (X = 0.09), followed by growth
from the lithiated side facets with interface alignment along (101) planes due to coherency strain. (Movie online)

energy

G(c0) = (f(c0) + c0∆µ) ρsV + σ(c0)A (1)

has contributions from the homogeneous Helmholtz free
energy per volume, ρsf(c0) (where ρs is the density of
intercalation sites), and the excess surface free energy of
the wetted surface layer, σ(c0). Setting G′(c∗0) = 0 at
the critical concentration c∗0 = c0(∆φ∗), we obtain the
critical potential,

−∆µ∗ = f ′(c∗0) +
σ′(c∗0)

ρs

A

V
= −∆µ∗∞

(
1− L∗

L

)
(2)

The critical potential in an infinite particle, ∆µ∗∞ =
−f ′(c∗0), is the difference between coherent and chemical
(or mosaic) solubility due to the elastic strain exerted by
the wetted surface on the bulk solid, which scales with
volume V , as shown in Methods. Since surface energy
scales with the wetted area A, the critical potential de-
creases with particle size, L = V/A, and vanishes be-

low a critical value, Lc =
σ′(c∗0)
ρsf ′(c∗0)

, which corresponds to

∆µ∗ = 0 (Fig. 4). Below Lc there is no barrier for trans-
formation.

Phase-field model. – To more precisely determine ∆φ∗∞
and Lc, we use the phase-field method, extended to in-
clude electrochemistry [6, 24], coherency strain [27] and
external surfaces [30]. Phase-field models accurately de-
scribe both homogeneous and heterogeneous nucleation
[38, 39]. For an inhomogeneous single-crystal nanopar-
ticle, the free energy is a functional of the intercalated
ion concentration c(~x, t) and elastic displacement field
~u(~x, t),

G[c, ~u] =

∫
V

(f(c) + e∆φc) ρsdV +

∫
A

γ(c) dA∫
V

[
1

2
κ(∇c)2 +

1

2
Cijklεijεkl

]
dV (3)

where γ(c) is the surface energy as a function of sur-
face concentration, κ the gradient energy coefficient,
εij = ∂ui

∂uj
the strain tensor, and Cijkl the elastic stiff-

ness tensor. Overpotential is defined as η = δG
eρsδc

by

the phase-field theory of electrochemical kinetics [6, 27].

Dynamical equations are given in Methods, and at equi-
librium G is minimized with η = 0.

Here we focus on the effect of surface energy, described
by the natural boundary condition,

γ′(c) = n̂ · δG
δ∇c

= n̂ · κ∇c (4)

which is necessary to enforce δG = 0 [30, 39]. For the
case of a binary fluid in contact with a solid, Cahn [30]
showed that Eq. 4 is a generalization of Young’s Law. For
a typical binary solid (Fig. 1), the left hand side of Eq. 4
dominates, leading to complete wetting or dewetting of
each facet, depending on the sign of γ′(c). This can be
seen by substituting Eq. 9 and performing the graphical
analysis of Cahn [30].

The properties of the critical point are derived in Meth-
ods by defining σ as the excess surface free energy of the
adsorption layer (Fig. 2(c)) and analyzing the equilib-
rium conditions δG

δc = 0 and ∂G
∂c0

= 0. The derivation
shows that σ is independent of system system size, lead-
ing to Eq. 2 for the critical potential. dσ

dc0
is approxi-

mated as

dσ

dc0
(c∗0) =

√
κB0(c∗0 −X) (5)

where B0 is the elastic contribution to interfacial energy
(scaling with Cij), c

∗
0 is the concentration at the coherent

solubility limit, and X = 1
V

∫
V
c dV is the state of charge

of LiXFePO4. For a very large system, a small amount
of surface adsorption will have a negligible effect on X.
As the particle size decreases, however, surface adsorp-
tion significantly changes X, which in turn creates an
increased energy contribution from coherency strain.

Equation 1 is reminiscent of the free energy of forming
a nucleus in classical nucleation theory (CNT), ∆G =
V∆GV + γA, but fundamentally different. CNT is an
approximation applied to a growing nucleus of a few
nanometers, while Eq. 2 is rigorous and applies to much
larger nanoparticles with fixed size. The intercalation
analogue of the classical critical radius is a binary inter-
calation particle at the critical size Lc where ∆φ∗ = 0.
Bulk free energy will be dominant in particles larger than
Lc, but the phase state of particle smaller than Lc will
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FIG. 4: Size dependence of nucleation in LiFePO4 nanoparticles. (a) Calculated discharge curves of circular
cylinders of various diameters. (b) Calculated critical potential versus wetted area-to-volume ratio for different

particle shapes, collapsing onto a master line. (c) Measured critical potentials versus reported particle sizes, falling
on or below the theoretical limit for a perfect crystal (outside the gray region).

be controlled by surface energy. Below the critical size,
the nanoparticle will exist in the homogeneous state that
minimizes surface energy.

Since it is based on non-equilibrium thermodynam-
ics [6], our model can be used to predict the dynamics
of nucleation and growth, driven by surface reactions.
Phase transformation at constant current with a fixed
transformation time (C rate) is illustrated in Fig. 3.
At constant voltage, the transformation time depends
mainly on the thermodynamic driving force, or overpo-
tential beyond critical voltage, and only weakly on the
particle size. For small driving force, the particle initially
lingers near the critical point. The transformation then
accelerates exponentially due to the release of elastic en-
ergy (linearly growing overpotential from the tilted volt-
age plateau), but a detailed theory is beyond the scope
of this paper.

Application to LiFePO4. – Parameters for the phase-
field model were estimated previously by fitting a reg-
ular solution model for f(c) and a gradient energy to
experimental solubility data [27]. Based on the fitting, a
chemical solubility limit of X = .01 and coherent solubil-
ity limit of X = .09 were estimated, in agreement with
experiment. Using these phase-field parameters and the
surface energies in Table 1 (Eq. (4) reduces to Dirichlet
boundaries with cs = 0 or cs = 1 with the application
of Eq. 9), we consider realistic LiFePO4 particle geome-
tries characterized by Smith et al. [29]. Simulation of
intercalation dynamics is presented Fig. 3 for particle
shape C3, using the 2D depth-averaged model described
in Methods [6, 27]. The lithiated phase originates from
the side facets, and intercalation waves [23, 24] propa-
gate inward, with phase boundary orientation tending to
occur along elastically preferred (101) planes.

Figure 4(a) shows calculated equilibrium discharge
curve for LiFePO4 nanoparticles with circular cross-
sections of varying diameter. The critical potential on
discharging, or lithiation from a low state of charge, is

reduced in smaller particles, as a result of lithium adsorp-
tion on the side facets, which competes with coherency
strain to facilitate nucleation. (The same effect is not
seen during charging, or delithiation from high concentra-
tion, since the 2D depth-averaged model does not model
dewetting of the (010) surface.)

The size effect resulting from surface adsorption is cal-
culated for a variety of particle shapes in Fig. 4(b). Each
LiFePO4 geometry is treated as a prism, with the lithi-
ated side facets contributing to the wetted surface area
A. The calculated critical potentials are close to a mas-
ter line given by Eq. 2, so the A/V ratio is much more
important than the precise shape. As shown in Methods,
each surface layer is localized and planar, so its tension
(energy/area) is largely unaffected by the bulk geometry.

At a critical wetted area-to-volume ratio, A/V =
L−1c ≈ .18 /nm, the critical potential vanishes, ∆φ∗ = 0 .
Below the critical size Lc (analogous to the critical radius
in classical nucleation theory), the nanoparticle becomes
dominated by its surface properties, rather than its bulk
properties. For prism-shaped LiFePO4 particles, this cor-
responds to mean particle diameter, dc = 4Lc = 22 nm.
A delithiated particle below this size will spontaneously
lithiate and remain lithiated at equilibrium. Interest-
ingly, this is the same size at which phase separation is
suppressed in LiFePO4 [27, 40]. It is also roughly the
cutoff size for anomalous phase behavior in bimetallic
nanoparticles [8, 9].

The calculations in Fig. 4(b) are compared with ex-
tensive experimental data in Fig. 4(c) without adjusting
any parameters. For each experiment, A/V is found by
approximating the particles as prisms and taking A to
be the area of the side facets. Since the calculation rep-
resents an ideal thermodynamic limit, experimental data
points are expected to lie on or below the theoretical line
(Eq. 2).

The collapse of experimental data in Fig. 4(c) strongly
supports the theory. No experimental points lie signifi-
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cantly above the simulated limit, and most lie very close
to it. Some points also lie below, as expected for two
reasons. Firstly, it is likely that some experiments over-
estimate the size of the active particles. If the system
has a distribution of particle sizes, a consequence of Eq.
2 is that small particles will be transformed first at lower
potentials. Therefore measuring an average particle size
may not be sufficient to characterize a porous electrode.
If measurements are made while only a fraction of the
total capacity is cycled (as done by Dreyer et al. [16]),
the properties of the smallest particles in the system may
inadvertently be measured. Secondly, defects may play
an important role by reducing coherency strain and de-
creasing the barrier for intercalation. Meethong et al.
measured different amount of retained strain in differ-
ent samples [12, 13]. If the amount of retained strain
decreases, Eq. 2 predicts the bulk phase transformation
barrier ∆φ∗∞ will also decrease. In the limit of zero strain,
the particle will transform at the miscibility gap where
∆φ∗∞ = 0.

Discussion – LiXFePO4 was initially thought to be a
slow-rate material due to kinetic limitations of nucle-
ation and growth [10]. However, this hypothesis is in-
consistent with the rapid rate improvements from smaller
nanoparticles [3], doping to improve electrical conductiv-
ity [41], and the use of exotic surface coatings [42, 43].
These modifications are not expected to significantly al-
ter growth kinetics.

Recently there has been a shift in thinking to the oppo-
site extreme, with ultra-fast rate capabilities attributed
to particles that never phase-separate. Malik and Ceder
[26] calculated a solid solution pathway using quantum
Monte Carlo and argued against the possibility of nu-
cleation and growth by applying CNT at the bulk spin-
odal. A significant result of phase-field theory, however,
is that the nucleation barrier goes to zero – and CNT fails
catastrophically – at the spinodal point, in agreement
with experiment [38]. The argument was also based on a
phase boundary energy of γαβ = 960 mJ/m2 from ab ini-
tio calculations [33], which is likely more than an order of
magnitude too large. We have inferred γαβ = 39 mJ/m2

from experimental morphology and solubility data [27],
consistent with the bound γαβ < 200 mJ/m2 for coher-
ent interfaces [36]. (From a modeling perspective, this
illustrates the limitations of ab initio calculations that
are restricted to a few unit cells of material, often at
zero temperature, although our results also demonstrate
the remarkable accuracy of the ab initio bulk and surface
properties, used to parameterize our phase-field theory.)

Dreyer et al. [16] also advocated for particles that
never phase separate based on the observation of a 20 mV
(∆φ∗ = 10 mV) “thermodynamic” hysteresis LiXFePO4.
Although the basic picture of mosaic phase separation
may hold, we have shown that there is no unique value
of the critical potential. In order to be consistent
with experimental observations of coherent phase sep-

aration [27], the bulk critical potential must be much
larger than 10 mV, and the inferred value ∆φ∗∞ = 35 mV
is confirmed here by an independent analysis of nucle-
ation (Fig. 4). Indeed, the discrepancy over hysteresis
can be resolved by combining our theory of nucleation
with porous electrode theory based on non-equilibrium
thermodynamics [37], as will be reported elsewhere.

Conclusion – We have developed a quantitative phase-
field theory of nucleation in single-crystal nanoparticles.
A key observation is that complete “wetting” by one solid
phase is typically favored at each surface, so that nucle-
ation corresponds to the instability of a wetted surface
layer. In order to overcome coherency strain, the nucle-
ation barrier becomes a linear function of the surface-
to-volume ratio, which implies that nanoparticles tend
to transform in order of increasing size. The theory is
confirmed by collapsing disparate experimental data for
nucleation in LiXFePO4 nanoparticles, without any ad-
justable parameters. Beyond important applications to
Li-ion batteries, however, the theory also has broader
relevance for nanotechnology. It provides the basic prin-
ciples to design solid nanostructures with desired phase
behavior under different operating conditions, by control-
ling the elastic and surface properties of the component
materials.

METHODS

Dynamical Model. – The mean intercalation rate at the
surface is related to the local surface concentration, stress
state, and overpotential η = δG

eρsδc
by the phase-field theory of

electrochemical kinetics [6]. At equilibrium, G is minimized,
and η = 0. To model intercalation dynamics (Fig. 3), we
assume reaction limitation for anisotropic LiFePO4 nanopar-
ticles (with fast diffusion and no phase separation along the
[010] crystal axis and negligible diffusion along the [100] and
[001] axes) and solve the electrochemical Allen-Cahn reaction
equation [6, 23, 24, 27],

∂c

∂t
=

2

e
J0(c,∇2c, ~u) sinh

(
δG

eρsδc

)
+ ξ (6)

for the depth-averaged concentration c(x, y) over the active
(010) facet. The right side of Eq. 6 is a generalized Butler-
Volmer rate for symmetric electron transfer, where J0 is the
exchange current per area [6]. Stochastic intercalation is mod-
eled with Langevin noise ξ, which facilitates nucleation or
spinodal decomposition [24, 27]. The strain field is deter-
mined by mechanical equilibrium, δG

δ~u
= ∇ · σ = 0, and zero

surface traction, n̂ · σ = 0, for a solid particle in a liquid
electrolyte [25, 27].

Derivation of the Critical Potential. – For functionals that
do not depend explicitly on x, the Beltrami Identity is an inte-
grated form the the Euler equation that applies at equilibrium
in 1D systems. Application of this relation to Eq. 3 produces:

ρs [f(c) + e∆φc]− 1

2
κ(∇c)2 +

1

2
Cijklεijεkl = C (7)

where C is a constant whose value can be determined by con-
sidering the boundary condition at x = L, which is stress-free
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and c(L) = c0. Thus C = ρs [f(c0) + e∆φc0], where c0 is the
bulk concentration in equilibrium with ∆φ. Solving Eq. 7 for
the gradient energy produces:

1

2
κ(∇c)2 = ρs [∆f + e∆φ∆c] +

1

2
Cijklεijεkl (8)

where ∆f = f(c)− f(c0), and ∆c = c− c0. Solving Eq. 8 for
∇c produces:

∇c = ±

√
2

κ

(
ρs [∆f + e∆φ∆c] +

1

2
Cijklεijεkl

)
(9)

The excess free energy of the adsorption layer σ [30] (which
differs from the surface energy γ) is the difference in energy
between a homogeneous system and a system with the ad-
sorption layer:

σ = G−
∫
V

ρs [f(c0) + e∆φc0] dV (10)

Substitution of Eq. 8 to eliminate the gradient energy leads
to:

σ = γ(cs) + 2

∫ L

0

ρs [∆f + e∆φ∆c] +
1

2
Cijklεijεkl dx (11)

which is minimized at equilibrium. Eq. 9 can be used to
change the variable of integration in Eq. 11 from x to c:

σ = γ(cs) +
√
κ

∫ c0

cs

√
2ρs [∆f + e∆φ∆c] + Cijklεijεkl dc

(12)
For an adsorption layer at a surface in a semi-infinite sys-

tem, the elastic energy can be approximated as Cijklεijεkl =
B0(c−c0)2 [44]. The stability of the adsorption layer is related
to the sign of dσ

dc
, and σ is maximized when δσ

δc
= 0:

δσ

δc
= 2

([
ρsf
′(c) + e∆φ

]
+B0(c− c0)

)
= 0 (13)

The equilibrium condition e∆φ = −f ′(c0) can be applied in
the bulk, far from the interface:

ρsf
′(c) +B0c = ρsf

′(c0) +B0c0 (14)

which is the common tangent construction for coherent binary
solids [44]. Thus the adsorption layer will become unstable
and grow at the coherent solubility limit (miscibility gap).
The energy needed to reach the coherent solubility limit is
the barrier energy to initiate transformation of the particle.

The dependence of the surface excess σ on the size of the
system can be determined by examining the sign of ∂σ

∂L
, which

is found using the fundamental theorem of calculus:

∂σ

∂L
= 2ρs [∆f + e∆φ∆c] + Cijklεijεkl

∣∣∣
x=L

(15)

Since the boundary condition at x = L is stress-free and
c(L) = c0:

∂σ

∂L
= 0 (16)

Thus σ is independent of the system size L.
From Eq. 10, we can see that:

G =

∫
V

ρs [f(c0) + e∆φc0] dV + σA (17)

The terms inside the integral are constants, and the integral
can be evaluated:

G = ρs [f(c0) + e∆φc0]V + σA (18)

Now set dG
dc0

= 0 for c0 = c∗0 and solve for ∆φ∗:

dG

dc0
= ρs[f

′(c∗0) + e∆φ]V +
dσ

dc0
(c∗0)A = 0 (19)

e∆φ∗ = −f ′(c0∗) +
1

ρs

(
dσ

dc0
(c∗0)

)
A

V
(20)

where c∗0 is the concentration at the coherent solubility limit,
determined by the coherent common tangent construction
(Eq. 14).

Using Eq. 12, an approximation for elastic energy
Cijklεijεkl = B0(c − c̄)2 [44], and applying the fundamental
theory of calculus, an estimate for dσ

dc0
can be obtained:

dσ

dc0
(c∗0) =

√
κB0(c∗0 − c̄) (21)

where c̄ = 1
V

∫
V
c dV is the mean value of c.
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