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Functions of Difference Matrices
Are Toeplitz Plus Hankel∗

Gilbert Strang†

Shev MacNamara†

Abstract. When the heat equation and wave equation are approximated by ut = −Ku and utt =
−Ku (discrete in space), the solution operators involve e−Kt,

√
K, cos(

√
Kt), and

sinc(
√
Kt). We compute these four matrices and find accurate approximations with a va-

riety of boundary conditions. The second difference matrix K is Toeplitz (shift-invariant)
for Dirichlet boundary conditions, but we show why e−Kt also has a Hankel (anti-shift-
invariant) part. Any symmetric choice of the four corner entries of K leads to Toeplitz
plus Hankel in all functions f(K). Overall, this article is based on diagonalizing symmetric
matrices, replacing sums by integrals, and computing Fourier coefficients.
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1. Introduction. In teaching numerical methods for partial differential equations,
we begin with the heat equation and the wave equation. Our model problems are posed
on an interval 0 ≤ x ≤ 1 with zero boundary conditions. The second derivative uxx

is replaced by second differences at the mesh points x = h, 2h, . . . , Nh. The second
difference matrix with 1,−2, 1 on its diagonals is denoted by −K:

Heat equation
∂

∂t
u =

∂2

∂x2
u becomes

d

dt
u = −K

h2
u;

(1.1)

Wave equation
∂2

∂t2
u =

∂2

∂x2
u becomes

d2

dt2
u = −K

h2
u.

Time remains continuous. We choose signs so that K is positive definite, correspond-

ing to − d2

dx2 . Constant diagonals in K reflect constant coefficients in the differential
equations, so K is an N ×N tridiagonal Toeplitz matrix [27, 3, 15]:

(1.2) K =

⎡
⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎦ , h =

1

N + 1
.
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526 GILBERT STRANG AND SHEV MACNAMARA

Finite differences and linear finite elements both produce this well-loved matrix. Its
Cholesky decomposition K = LDLT is known, with pivots in D and multipliers in L.
Its eigenvalues and eigenvectors are a central example used in teaching computational
science [20] and produce the spectral decomposition K = V ΛV T in (3.2) to (3.4)—
the starting point of this paper.

The model problems (1.1) reflect the reality of modern numerical analysis: we
often discretize in space and solve ordinary differential equations in time. In solving
the time-dependent problem, accuracy can be monitored and increased at will. So the
semidiscrete approximations in (1.1) are the crucial steps, and their solutions involve
exponentials of matrices:

Heat equation: u(t) = e−Kt/h2

u(0); Wave equation: u(t) = cos
(√

Kt/h
)
u(0).

These equations are easy to write, but we did not know the actual structure of the
matrix exponentials. This article concerns that structure.

A small note: Our original study began with eA, not e−K . We had a simple
graph (a line of nodes) with adjacency matrix A = 2I − K. Then eA counts the
walks between nodes in the graph, weighted by their lengths. (An always counts
the walks of length n. Longer walks are weighted by 1/n! in eA.) This measure of
communicability on a graph was introduced by Estrada, Hatano, Benzi, and Higham
[7, 8, 9]. Since A differs from −K only by 2I, their exponentials differ only by a
factor e2, and we can study both at once.

2. Toeplitz and Hankel Matrices. A striking feature is that all functions of K
are Toeplitz plus Hankel : the entries are constant along each diagonal plus constant
along each antidiagonal. The Toeplitz part dominates, reflecting the shift invariance
of the differential equation itself. (With no boundaries, a shift in the initial function
u(0) produces the same shift in u(t) at all times.) The Hankel part represents a shift
in the opposite direction! That part must be caused by the boundaries, and we will
try to explain it.

When the input (0, 1, 0, 0) is shifted forward, you see how constant diagonals in
T produce a forward shift in the output vectors. Hankel shifts backwards:

Toeplitz

⎡
⎢⎢⎣

b a
c b a

c b a
c b

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a
b a
c b

c

⎤
⎥⎥⎦ forward shift;

Hankel

⎡
⎢⎢⎣

a b
a b c

a b c
b c

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a
a b
b c
c

⎤
⎥⎥⎦ backward shift.

Projections onto the eigenvectors of K (discrete sines) produce Toeplitz plus Hankel
matrices for all matrix functions f(K) (see sections 8, 10, and 11).

We begin (in section 3) with the square root of the discrete Laplacian. The doubly
infinite Toeplitz matrix

√
K∞,∞ has neat coefficients; its entries must be familiar to

some, but they were new to us. For problems on a half line (singly infinite) or an
interval,

√
K∞ and

√
K have a Hankel part.

The matrix exponential e−K comes next (in section 4). The function e−z is
everywhere analytic, and our Bessel approximation is superexponentially accurate.
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FUNCTIONS OF DIFFERENCE MATRICES ARE TOEPLITZ PLUS HANKEL 527

The Toeplitz part comes from the fundamental solution to the heat equation on an
infinite interval. The Hankel part comes from the old idea of placing “image” sources
across the endpoints x = 0 and x = 1 to cancel the actual source at those boundaries
(see section 5). Thus the boundary conditions are responsible for the Hankel part.

The wave equation utt = uxx has solutions u(x, t) = f(x − t) + g(x + t). These
waves are Toeplitz; boundary reflections bring in Hankel waves. Their form in the

discrete case (see section 6) comes from ei
√
Kt/h or, better, from the real matrix

function cos(
√
Kt/h). The other matrix that appears in this second-order problem

(multiplying initial velocity) is sinc(
√
Kt/h), which might provide a starting point

from which to consider waves on graphs, a topic that deserves more attention (see [11]
for an edge Laplacian).

In all these examples, we want to go beyond a line of nodes. The first step is

the usual five-point approximation to the two-dimensional Laplacian − ∂2

∂x2 − ∂2

∂y2 on

a square grid, which gives the matrix K of size N2. We combine K in the x-direction
with K in the y-direction, and it is no surprise that e−K and cos(

√
K) are accessible.

The more difficult goal, not attempted here, is to treat more general graphs, which
have become the fundamental framework for models in discrete applied mathematics.

The graph Laplacian matrix (sometimes known as a Kirchhoff matrix) is defined
as L ≡ D − A. The diagonal matrix D records the degree of each node, and A is
the adjacency matrix. The (i, j) entry of A is 1 if nodes i and j share an edge, and
zero otherwise [4]. When the graph is a regular two-dimensional mesh, L is a finite
difference approximation to the usual continuum Laplacian [4, 20]. In referring to K
or K as a “graph Laplacian” (see section 9), we are not quite accurate; the correct
choice is a singular matrix B or B with zero row sums:

B =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ = (degree matrix)− (adjacency matrix).

This corresponds to Neumann boundary conditions du
dx (0) = 0 and du

dx (1) = 0. The
eigenvectors v of B are discrete cosines instead of discrete sines. Those vectors retain
the crucial property that vvT is Toeplitz plus Hankel. Therefore, all functions of B
have this T +H property. B itself is K + (B −K).

The complete graph with edges between all pairs of nodes is particularly simple.
The Laplacian matrix L has N − 1 as diagonal entries and −1 everywhere else. Then
L2 equals N times L, so

√
L is simply L/

√
N .

Finally, we consider the one-way wave equation ut = ux (see section 7) and the
following centered first difference matrix F :

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎦ .

First come the eigenvalues (pure imaginary). Then the eigenvectors lead to “alternat-
ing Hankel” matrices that were new to us. The exact solution is u0(x+ t). The Taylor
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528 GILBERT STRANG AND SHEV MACNAMARA

series for that shift is exactly exp(t d
dx ), but with those alternating signs, the matrix

exponential of F shows only weak convergence for the semidiscrete ut = Fu/2h. The
convergence to a shift operator looks terrible until you test it for a smooth u0.

We have certainly not exhausted the subject of this paper. In the future we hope
to combine K with F , diffusion with convection. Those matrices are tridiagonal and
Toeplitz, but this does not ensure that functions of K+ cF are Toeplitz plus Hankel.
(That much stronger requirement depends on all the eigenvectors.)

A big encouragement for the authors—and we hope for the readers—is the elemen-
tary nature of the mathematics used here. We are working with known eigenvalues
and eigenvectors. Every function f(K) has eigenvalues f(λ), with the same eigenvec-
tors as K. As N → ∞, sums approach integrals, and these matrices are computed
exactly. The steps for

√
K are (3.2) to (3.7), and there are two different limits:

1. Singly infinite f(K∞) is Toeplitz plus Hankel. Rows and columns are num-
bered from 1 to ∞. In the continuous problem, the right endpoint x = 1
moves to infinity, leaving one boundary point.

2. Doubly infinite f(K∞,∞) is purely Toeplitz. Rows and columns are numbered
from −∞ to ∞. The left endpoint x = 0 moves to minus infinity, leaving no
boundary.

In both cases bandedness is lost and the square root (for example) is full. We can
report the numbers that appear on every row of the doubly infinite matrix

√
K∞,∞

and go unchanged down all of its diagonals. Each row contains

(2.1) . . .
−1

5× 7

−1

3× 5

−1

1× 3
1

−1

1× 3

−1

3× 5

−1

5× 7
. . . , all multiplied by

4

π
.

Surely this matrix has been seen somewhere else. For the finite and singly infinite
matrices with boundaries, the same numbers are seen down antidiagonals in the Han-
kel part. A useful general rule is that circulants grow into doubly infinite Toeplitz
matrices, while the properties of TN +HN extend to the singly infinite T∞ +H∞.
This touches on the classic study of connections between infinite matrix limits and
differential operators [5, 3].

The analysis of a Toeplitz matrix (with entries tj on diagonal j) is always con-

nected to its symbol
∑

tje
ijθ [27, 3]. To find T−1, eT , or

√
T , we work with the

symbol. For the −1, 2,−1 matrix K, the symbol is 2− 2 cosθ. This locates the eigen-
values of K in (3.3) on the interval from 0 to 4. The numbers in (2.1) are the Fourier
cosine coefficients of

√
2− 2 cos θ.

Functions of banded matrices are often approximately banded in the sense of fast
decay away from the diagonal, as in the nice examples of Iserles [16] and of Benzi
and Razouk [1]. More generally, Higham explained beautifully the subject of matrix
functions [14], and contour integrals are successful in computing functions (including
the square root) of a matrix times a vector [26, 13]. We focus on the very special
space of Toeplitz plus Hankel matrices. Previous work on these matrices includes
connections to Fredholm integral equations, spectral properties, and displacement
rank [24, 10, 2].

3. The Square Root of K. IfK did not have special eigenvalues and eigenvectors,

our computations could not go very far. The matrix corresponds to − d2

dx2 with zero
(Dirichlet) boundary conditions at x = 0 and x = 1. For this differential operator we
know that the eigenfunctions are sines:

(3.1) − d2

dx2
sin(kπx) = k2π2 sin(kπx).
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FUNCTIONS OF DIFFERENCE MATRICES ARE TOEPLITZ PLUS HANKEL 529

The unit eigenvectors vk in the discrete case sample just the first N sine functions at
the mesh points x = h, 2h, . . . , Nh:

(3.2) Eigenvectors vk =

√
2

N + 1
(sin(kπh), sin(2kπh), . . . , sin(Nkπh))T .

Since K is symmetric, the vk are orthogonal. Then Kvk = λkvk:

(3.3) Eigenvalues of K λk = 2− 2 cos(kπh), k = 1, . . . , N.

The matrix K is constructed from its eigenvalues in Λ and its eigenvectors in the
columns of V :

(3.4) Spectral theorem K = V ΛV T =

N∑
1

λkvkv
T
k .

All linear algebra textbooks present this fundamental theorem. Diagonalization has
separated K into a sum of rank-one symmetric matrices λkvkv

T
k . (Multiplying by vj ,

orthogonality gives vT
k vj = 0 except for the jth term. Then Kvj = λjvj as required.

We also see the singular value decomposition [21, 20, 15], sinceK is symmetric positive
definite.)

Notice that K2 = (V ΛV T )(V ΛV T ) = V Λ2V T . The entries of any function
f(K) come from V f(Λ)V T [14]. As in (3.4) this is a combination of vkv

T
k :

Matrix function f(K)m,n =
2

N + 1

N∑
k=1

f(λk) sin(mkπh) sin(nkπh).

The crucial point is that
√
K has the same eigenvectors vk with eigenvalues

√
λk.

A half-angle identity gives that square root:

(3.5)
√
λk =

√
2− 2 cos(θk) = 2 sin

(
θk
2

)
with θk = kπh =

kπ

N + 1
.

Now the product of sines yields the splitting we hoped for, into Toeplitz plus Hankel.
The whole paper depends on this elementary identity for sinA sinB:

(√
K
)
m,n

=
2

N + 1

N∑
k=1

2 sin

(
θk
2

)
sin(mθk) sin(nθk)

=
2

N + 1

N∑
k=1

sin

(
θk
2

)(
cos((m− n)θk)− cos((m+ n)θk)

)
.(3.6)

The dependence on m − n, which is constant down each diagonal of
√
K, signals

Toeplitz. The dependence on m + n, which is constant down every antidiagonal,
signals Hankel. The sum over N terms is closely approximated, and much improved,
when it is replaced by an integral (the limit as N → ∞):

(3.7)
(√

K
)
m,n

≈ 2

π

∫ π

0

sin

(
θ

2

)(
cos((m− n)θ) − cos((m+ n)θ)

)
dθ.
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530 GILBERT STRANG AND SHEV MACNAMARA

Eigenvalues of K λk = 2− 2 cos(kπh), k = 1, . . . , N

Eigenvectors of K vk =
√

2
N+1 (sin(kπh), sin(2kπh), . . . , sin(Nkπh))T

Function of K f(K)m,n = 2
N+1

∑N
k=1 f(λk) sin(mkπh) sin(nkπh)

Doubly infinite
√
K∞,∞ ap = 4/π(1− p2) in (3.9)

Singly infinite
(√

K∞
)
m,n

= am−n − am+n in (3.7)

Finite square root
(√

K
)
m,n

≈ am−n − am+n with aliasing (3.12)

Doubly infinite e−tK∞,∞ bp = e−2tIp(2t) = modified Bessel in (4.5)

Singly infinite (exp(−tK∞))m,n = bm−n − bm+n

Finite heat equation (exp(−tK))m,n ≈ bm−n − bm+n with aliasing

Doubly infinite
cos(

√
K∞,∞) cp = J2p(2) = Bessel in (6.6)

Doubly infinite
sinc(

√
K∞,∞) sp/π = s0/π −∑p

k=1 J2k−1(2) in (6.9)

Finite wave equation cos(
√
K)u0 + sinc(

√
K)v0, t = h = 1 in (6.2)

Now we see that the crucial numbers are the Fourier cosine coefficients of sin( θ2 ).
So we must consider the periodic even function f(θ) on [−π, π]:

(3.8) f(θ) =

∣∣∣∣sin
(
θ

2

)∣∣∣∣ .
This changes slope from − 1

2 to 1
2 at θ = 0. That discontinuity in slope means 1/p2

decay in the pth Fourier coefficient [25]. For this half-angle function f(θ), the integrals
in (3.7) are easily computed:

ap =
2

π

∫ π

0

sin

(
θ

2

)
cos(pθ)dθ

=
1

π

∫ π

0

(
sin

(
1 + 2p

2
θ

)
+ sin

(
1− 2p

2
θ

))
dθ

=
2

π

(
1

1 + 2p
+

1

1− 2p

)
=

4

π

1

(1− 2p)(1 + 2p)
.(3.9)
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The denominators 1 × 3, 3 × 5, and 5 × 7 enter the infinite square root matrix that
was anticipated in (2.1). The sum of entries is zero along a row (. . . , a1, a0, a1, . . . ) of√
K∞,∞:

(3.10) a0 + 2a1 + 2a2 + · · · = 4

π

(
1 +

(
1

3
− 1

1

)
+

(
1

5
− 1

3

)
+ · · ·

)
= 0.

The doubly infinite matrix is singular and purely Toeplitz, with the all-ones vector in
its nullspace. (The function f(θ) = | sin( θ2 )| touches zero at θ = 0, where (3.10) adds
up its cosine series.) This corresponds to the fact that, with no boundaries, constant
functions are in the nullspace of the second derivative and its positive square root.
We are seeing, in one dimension, the square root (2.1) of the discrete Laplacian.

We cannot expect such perfection in the finite case, for the N ×N matrix
√
KN .

It becomes important to include the Hankel part HN , together with the Toeplitz part
TN from (3.6). The approximate square root (still using the integral in (3.7) rather
than the sum) has entries am−n − am+n. MATLAB confirms that the first rows of√
K∞ = T∞ +H∞ are

4

π
times

(
1 − 1

3 − 1
15 − 1

35 . . .

− 1
3 1 − 1

3 − 1
15 . . .

)
+

(
1
15

1
35

1
63

1
99 . . .

1
35

1
63

1
99

1
143 . . .

)
.

One important point:
√
KN is symmetric across its main antidiagonal as well

as its main diagonal (thus, it is centrosymmetric). This is because high-frequency
cosines agree with low-frequency cosines at the N sample points θk (aliasing):

(3.11) cos

(
pπ

N + 1

)
= cos

(
(2N + 2− p)π

N + 1

)
.

Then the entries am+n of the Hankel part of the exact
√
KN are reflected across the

antidiagonal, where m + n = N + 1. The lower frequency gives an integral closer to
the sum from 1 to N . Therefore, we choose the Hankel part of the approximation to
be

(3.12) Hm,n =

{
−am+n if m+ n ≤ N + 1,

−a2N+2−m−n otherwise.

Figure 3.1 shows the largest error among the entries of
√
KN .

Note 1. The square root of | d2

dx2 | corresponds to multiplication (in transform
space) by the absolute value |θ|. Its trigonometric analogue in our discrete case is
multiplication by 2| sin θ

2 |. Both quantities are compared in Figure 3.2.

Note 2. By remarkable chance, the integral a0 of | sin θ
2 | is the first example chosen

by Weideman [25] to illustrate the distance from the Riemann sum (the trapezoidal
rule) with N terms. The speed of convergence is astonishing when Riemann sums
approach the integrals of periodic analytic functions.

For this example, Weideman pointed out that Mathematica will give an explicit
expression for the sums in (3.6):

(
√
K)m,n =

1

N + 1
(Am−n −Am+n) ,

where

Ap = (−1)p−1 − 1

2
cot

(
2p− 1

4 + 4N
π

)
+

1

2
cot

(
2p+ 1

4 + 4N
π

)
.
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Fig. 3.1 Left: The approximation of
√
KN by am−n − am+n, with ap from (3.9), and aliasing

(3.12). We observe second-order accuracy (the dotted line has reference slope −2). Right:
The approximation of exp(−KN ) via (4.4) and aliasing. The dotted line is Weideman’s
estimate of exponential accuracy (!) for a periodic integral [25]. We used MATLAB’s sqrtm
and expm as reference solutions. Both graphs show the largest error among the entries of
the matrix.

0 2 4 6
0

1

2

3

4

5

6

7

θ

2 sin(θ /2)
θ

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ

sinc(2*sin(θ/2))
sinc(θ)

Fig. 3.2 For small θ, 2 sin(θ/2) and sinc(2 sin(θ/2)) are close to θ and sinc(θ).

Note 3. The valuable paper [23] (in this issue!) by Trefethen and Weideman gives
a clear picture of the analysis. They credit Poisson as the first to study very fast
convergence of numerical integration for analytic functions. (The exponential e−K

will be our analytic example.) The simplest approximation says that the difference
between the sum and the integral comes from all the aliasing terms aN , a2N , . . . that
are captured exactly by the sum and are absent in the integral for a0:

sum− integral = aN + a2N + a3N + · · · .
For e−K those aliasing terms drop off like (cN)−N (this is better than exponential in
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N) and the convergence is very fast. For
√
K we see only the ordinary trapezoidal

convergence rate N−2, because f(θ) is not analytic.
Note 4. On a square grid in two dimensions, the Kronecker sum

K = K ⊕K = (K ⊗ I) + (I ⊗K)

becomes the usual five-point approximation to the Laplacian − ∂2

∂x2 − ∂2

∂y2 . Here ⊗
is the Kronecker product, producing matrices of size N2 from K and I. For K, the
components of the N2 unit eigenvectors vk,l are products of sines:

(3.13) (vk,l)m,n =
2

N + 1
sin(kmπh) sin(lnπh) with k, l,m, n = 1, . . . , N.

The eigenvalues now involve two angles θ and φ:

(3.14) λk,l = (2− 2 cos θk) + (2− 2 cosφl) = 4 sin2
(
θk
2

)
+ 4 sin2

(
φl

2

)
.

The same steps, (3.5) to (3.8), lead us to a function of two variables for
√
K,

(3.15) f(θ, φ) =

(
sin2

(
θ

2

)
+ sin2

(
φ

2

))1/2

,

with singularity at θ = φ = 0. Its Fourier cosine coefficients apq, which will multiply
(cos pθ)(cos qφ), have no form as simple as c/(1− 4p2).

Note 5. A nice property of Kronecker forms is that the exponential of a Kronecker
sum A⊕B is the Kronecker product eA⊗ eB. Also, Kronecker products are bilinear.
In our example with K = K ⊗ I + I ⊗K,

e−K = e−K ⊗ e−K = (T +H)⊗ (T +H) = T ⊗ T + T ⊗H +H ⊗ T +H ⊗H .

We see the Toeplitz (T ) and Hankel (H) exponentials again. This connection gives
us an easy, accurate approximation to e−K from our approximation to e−K .

4. The Heat Equation and e−tK. Once again take the eigenvalues λk = 2 −
2 cos θk and the eigenvectors vk =

√
2

N+1(sin θk, sin 2θk, . . . , sinNθk)
T ; then e−tK has

the same eigenvectors with eigenvalues e−tλk . The entries of the matrix exponential
(the heat kernel) are

(4.1) (e−tK)m,n =
2

N + 1

N∑
k=1

e2t cos θk−2t sin(mθk) sin(nθk).

Again we use the identity sinA sinB = 1
2 (cos(A−B)− cos(A+B)):

(4.2) (e−tK)m,n =
e−2t

N + 1

N∑
k=1

e2t cos θk

(
cos((m− n)θk)− cos((m+ n)θk)

)
.

Those sums are very closely approximated by integrals [25, 23]. For p = m − n and
p = m+ n the limits as N → ∞ are

(4.3) bp =
e−2t

π

∫ π

0

e2t cos θ cos(pθ) dθ.
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The infinite matrix exp(−tK∞) has entries bm−n − bm+n and is symmetric positive
definite. With t = 1, the entries along the first rows of T +H are(

0.3085 0.2153 0.0932 . . .
0.2153 0.3085 0.2153 . . .

)
−
(

0.0932 0.0288 0.0069 . . .
0.0288 0.0069 0.0013 . . .

)
.

For finite N , cosines obey the aliasing equation (3.11). As before, the sums in
(4.2) are the same for p = m + n as for P = (2N + 2) − (m + n). The true e−tK

is centrosymmetric. We choose the smaller of p and P , so the Hankel part of the
approximation is symmetric across the main antidiagonal m+ n = N + 1:

(4.4) e−tK ≈ T +H with entries bm−n − bm+n for m+ n ≤ N + 1.

This example has one more beautiful feature. The integral in (4.3) is the celebrated
representation of a modified Bessel function of the first kind Ip [16, 25, 6], with integer
p. So those integrals are exactly

(4.5) bp = e−2tIp(2t).

For e−Kt/h2

, t in (4.5) changes to t/h2.
A remarkable point about the approximation is that the role of x (on the spatial

mesh) is played by the order p of the Bessel function! We don’t ordinarily consider
finite differences with respect to p. But we do use recursion formulas.

The same steps apply to the model Schrödinger equation ut = −iuxx and its
semidiscrete approximation ut = iKu/h2. That factor i changes the entries in T +H
from modified Bessel Ip to the ordinary Bessel coefficients Jp in (6.6). The second-
order accuracy from our tridiagonal K stands in contrast to the spectral (infinite-
order) accuracy achievable [22, 19] with full matrices.

5. Images and Hankel Matrices. We want to understand the unexpected ap-
pearance of Hankel matrices, which produce the very opposite of shift invariance. If
the entries of a vector x shift down, then the entries of Hx shift up:

Hankel

⎡
⎢⎢⎣

a b
a b c

a b c
b c

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a
a b
b c
c

⎤
⎥⎥⎦ backward shift.

The first clue is that this effect must come from the boundary conditions. An initial
value problem on the whole line will be shift-invariant and purely Toeplitz if the
coefficients in the differential or difference equation are constant.

Recall the trick of image sources for the heat equation [12], where they are placed
to cancel the effect of the original sources at the boundary. Suppose the original is a
point source u0(x) = δ(x− a) at x = a. If there is just one boundary, at x = 0, place
an image source −δ(x+a) at x = −a. When we solve the heat equation on the whole
line starting from u(0) = δ(x − a)− δ(x + a), the solution remains zero at x = 0 (by
symmetry):

(5.1) u(x, t) =
1√
4πt

(e−(x−a)2/4t − e−(x+a)2/4t) and u(0, t) = 0.

The second exponential from the image source is anti-shift-invariant. When the source
point x = amoves to the right, its image point x = −amoves to the left. This accounts
for Hankel.
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For problems on a finite interval, we need infinitely many image points. Across
x = 0, an image at x = −a balances the original source at x = a. But then both the
source and that image have to be balanced across x = 1 (by images at 2 − a and at
2 + a). In the end, we extend u0 = δ(x − a) to a sequence of + and − images with
period 2 on the whole line:

(5.2) U0(x) =

∞∑
−∞

δ(x + 2n− a)−
∞∑
−∞

δ(x− 2n+ a) for ∞ < x < ∞.

Now we solve the heat equation Ut = Uxx starting from this U0(x). At time zero,
U = u = δ(x − a) on the interval 0 ≤ x ≤ 1. At all times the boundary conditions
U(0, t) = 0 and U(1, t) = 0 are satisfied, from the symmetry of sources and image
sources. Across x = 0, each point x = 2n+ a has an image point x = −2n− a; across
x = 1 we see the image point x = 2− (2n+ a).

If we shift the original sources by changing a, the negative image sources at 2n−a
move in the opposite direction. This gives the Hankel part of the (continuous) solution
operator.

A corresponding discrete theory for a point source u0 = δ explains the Hankel
part of the finite matrix exp(−K). When δ has N − 1 zero components and 1 in
position j, its extension u needs an image −1 in position −j. By analogy with U0(x)
in (5.2), extend u to have period 2(N + 1) on the whole discrete line:

(5.3) uk =

{
1 for k = n(2N + 2) + j,

−1 for k = n(2N + 2)− j.

Certainly, K∞,∞u (with infinite Toeplitz matrix) agrees with the N components of
Kδ. Moreover, exp(−K∞,∞)u agrees with exp(−K)δ and satisfies the boundary
conditions of zero at positions 0 and N + 1.

The Hankel part of the finite matrix corresponds to the negative images in u.
When j changes, the initial vector δ moves one way and the images move the other
way—the opposite of shift invariance.

6. The Wave Equation. For the wave equation utt = uxx, eigenvalues are imag-
inary. Energy is conserved, not lost. The eigenfunctions with boundary conditions
u(0, t) = u(1, t) = 0 are still sin kπx. But the eigenvalues change from −k2π2 for the
heat equation to ±ikπ for the wave equation.

Starting from u0(x) with velocity ut = v0(x), d’Alembert found left and right
waves coming from u0 and a spreading wave coming from v0:

(6.1) u(x, t) =
1

2
(u0(x+ t) + u0(x − t)) +

1

2

∫ x+t

x−t

v0(s) ds.

Compare with the solution to the semidiscrete equation utt = −Ku/h2:

(6.2) u(t) = cos(
√
Kt/h) u0 + hK−1/2 sin(

√
Kt/h) v0.

The matrix cosine and sine come from the matrix exponentials exp(±i
√
Kt/h). The

form (6.2) separates the waves evolving from u0 and v0. There are no fractional
powers of K because of the factor K−1/2, which corresponds to the integration in
(6.1) just as

√
K corresponds to | d

dx |. In (6.3) below, this K−1/2 factor moves us

from sin(
√
K) to sinc(

√
K).
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Fig. 6.1 Waves spreading left and right from u(0) have large oscillations in U when u(0) = δ. The
error |U − u| is too small to see when u(0) is smooth.

To find good approximations to cos(
√
Kt/h) and K−1/2 sin(

√
Kt/h), we start

with t/h = 1. The cosine and sinc matrices still have the eigenvectors vk:

cos(
√
K) =

N∑
k=1

cos(
√

λk) vkv
T
k and

sinc(
√
K) = K−1/2 sin(

√
K) =

N∑
k=1

sin(
√
λk)√

λk

vkv
T
k .(6.3)

Recall from (3.5) that
√
λk = 2 sin( θk2 ) with θk = kπ

N+1 . Then the entries in the matrix
cosine become
(6.4)

cos(
√
K)m,n =

1

N + 1

N∑
k=1

cos

(
2 sin

(
θk
2

))(
cos((m− n)θk)− cos((m+ n)θk)

)
.

This sum is exponentially close to an integral because cos(2 sin( θ2 )) is real analytic.
We recognize the Toeplitz and Hankel parts as Fourier cosine coefficients:

(6.5) cos(
√
K)m,n ≈ 1

π

∫ π

0

cos

(
2 sin

(
θ

2

))(
cos((m− n)θ)− cos((m+ n)θ)

)
dθ.

The integrals produce Bessel function values J2p(2) [6] as entries in cos(
√
K∞,∞):

(6.6) Cosine coefficients cp =
1

π

∫ π

0

cos

(
2 sin

(
θ

2

))
cos(pθ) dθ = J2p(2).

For the matrix cos(
√
Kt/h) in (6.2), the entries of T and H become J2p(2t/h).

Unlike the (parabolic) heat equation, the (hyperbolic) wave equation is not smooth-
ing. Figure 6.1 shows an initial spike and a Gaussian, both splitting into left and right
waves (u0(x+ t)+u0(x− t))/2. For the difference equation, U stays close to the Gaus-
sians, but it oscillates badly for the spikes. Figure 6.2 shows the corresponding results
from initial velocities v0(x).

Now we turn to the sinc matrix that multiplies the initial velocity v0 in (6.2).
To see why the sinc function (sin θ)/θ appears, look at the final term in the exact

D
ow

nl
oa

de
d 

10
/1

4/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FUNCTIONS OF DIFFERENCE MATRICES ARE TOEPLITZ PLUS HANKEL 537

Fig. 6.2 Oscillations when v(0) = δ(x) and the exact u(t) is a box function. Extra smoothness and
accuracy when v(0) = box and u(t) = box ∗ box = hat function.

solution (6.1). That term is a convolution of v0 with a box function, equal to 1 on
[−t,+t]. In Fourier space this is multiplication by the transform of the box function,
and that Fourier transform is exactly (sin θt)/θ = t sinc(θt), a sinc function.

The discrete case involves sinc(
√
λ) = sinc(2 sin(θ/2)). We want to find its Fourier

cosine coefficients, the integrals sp in (6.8). Those integrals look alarming at first, but
they arise naturally so there must be some hope. You will see next that Hung Cheng
has found a way.

To evaluate sinc(K1/2) = K−1/2sin(K1/2) = I −K/3!+K2/5!− · · · , the eigen-
vectors vk are more useful than this infinite series. From the spectral theorem (6.3),

(6.7) sinc(
√
KN ) =

N∑
k=1

sinc(
√
λk) vkv

T
k .

As in (3.10) the m,n entry of this matrix is approximately (sm−n − sm+n)/π with

(6.8) sp =

∫ π

0

sinc

(
2 sin

(
θ

2

))
cos(pθ) dθ.

Cheng’s Lemma. Each integral sp comes from s0 and p values of Bessel functions
at x = 2:

(6.9) sp = s0 − π

p∑
k=1

J2k−1(2) = π
∞∑

k=p+1

J2k−1(2).

The first four integrals are s0 ≈ 2.2396, s1 ≈ 0.4278, s2 ≈ 0.0227, and s3 ≈ 0.0006.
Simplified proof. It was a key insight of Hung Cheng (in private correspondence)

to compute differences of the integrals sp. He worked with sp − s0, and we noticed
that sp − sp−1 is even simpler:

(6.10) sp − sp−1 =

∫ π

0

sinc

(
2 sin

θ

2

)
(cos pθ − cos(p− 1)θ) dθ.

The integrand is an even function of period 2π. So (6.10) equals half of the integral
from −π to π, and one quarter of the integral from −2π to 2π. Now write θ = 2φ and
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dθ = 2dφ to shrink back to −π ≤ φ ≤ π:

(6.11) sp − sp−1 =
1

2

∫ π

−π

sin(2 sinφ)

2 sinφ
(cos 2pφ− cos((2p− 2)φ)) dφ.

This difference of cosines is −2 sinφ sin((2p− 1)φ). After canceling 2 sinφ (this is the
nice step), we are left with

(6.12) sp − sp−1 = −1

2

∫ π

−π

sin(2 sinφ) sin((2p− 1)φ)dφ = −πJ2p−1(2).

Then (sp−sp−1)+(sp−1−sp−2)+ · · ·+(s1−s0) produces sp−s0 in (6.9). We learned
from Mathematica that these numbers are related to Struve functions.

Signal Speed. An important feature of the wave equation utt = uxx is that the
signal speed is finite. No information about the initial values at X reaches the point
x before the time t = |x −X |. This is apparent from the d’Alembert solution (6.1).
Equivalently, the solution at x, t depends only on initial values in the interval from
x− t to x+ t.

How is this property reflected in the semidiscrete wave equation utt = −Ku/h2 ?
Not exactly. The infinite Toeplitz matrices C∞ = cos(

√
K∞) and S∞ = sinc(

√
K∞)

are not banded. This would be expecting too much. What we do expect is rapid decay
beyond the appropriate diagonals. Since the matrices appear at time h (when t/h = 1
in the exponentials of ±i

√
Kt/h), the full matrices should be “morally tridiagonal.”

Notice that a fully discrete approximation (if it is explicit) does have finite signal
speed. That speed depends on the Courant–Friedrichs–Lewy (CFL) number r =
Δt/Δx. The simplest finite difference approximation to utt = uxx would use K and
also K∗, the second difference matrix in time:

−K∗U(x, t) = U(x, t+Δt)− 2U(x, t) + U(x, t−Δt).

Working backwards in K∗U/(Δt)2 = KU/(Δx)2, each value of U(x, t) comes from
earlier values on and inside a triangle with vertex at (x, t). The sides of the triangle
have slopes ±1/r. Therefore, U(x, t) uses only initial values u0(x) and v0(x) between
x− t/r and x+ t/r. The fully discrete problem deals strictly with banded matrices.

The consistency of the difference equation does not guarantee convergence of U
to u. If Δt > Δx so that r > 1, then U is using initial values on a smaller interval
than [x− t, x+ t] for the true solution. Without using the needed information from u0

and v0, the approximation U cannot converge to u. The CFL requirement is r ≤ 1.

7. First Differences and One-Way Waves. At this point we abandon K and
look at first differences. Our equation becomes ut = ux, whose solution is u0(x + t),
a pure translation of the initial function u0(x). If there is a left endpoint x = 0, we
don’t want a boundary condition there: the wave is arriving and the solution u0(t)
at that point is already known. If there is a right endpoint x = 1, then an inflow
condition is appropriate. When the condition is u(1, t) = 0 so that nothing enters,
the solution u(x, t) is zero for x+ t ≥ 1.

In the semidiscrete problem, one-sided differences are a natural choice:

Δ =

⎡
⎢⎢⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .

−1 1
−1

⎤
⎥⎥⎥⎥⎥⎦ and ut =

Δ

h
u.
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The forward difference matrix Δ is upper triangular, looking on the “upwind” side
of each mesh point for information. (Looking downwind with backward differences
−ΔT would be a disaster, as all waves are coming from the right side.) The missing
1 in the last row of Δ correctly reflects the boundary condition u = 0 at the right
endpoint x = 1.

The matrix Δ is Toeplitz and so are all its powers. We think of Δ as S − I,
where the upper triangular shift has SN = 0. The entries on the jth diagonal of
Δn = (S − I)n are binomial coefficients

(
n
j

)
times (−1)n+j. Then the entries on the

jth diagonal of the matrix exponential eΔ are

(7.1) (eΔ)i,i+j =
∞∑

n=0

(−1)n+j

n!

(
n

j

)
=

1

e

1

j!
for j = 0, . . . , N − 1.

The infinite matrix exp(Δ∞) would have these Poisson probabilities on all diagonals
j ≥ 0.

Notice that we do not use the eigenvectors of Δ to study eΔ. The space of
eigenvectors is only one-dimensional. The matrix is not diagonalizable. The matrix
Δ happens to be already in Jordan form, with a single Jordan block, and its only
eigenvector is (1, 0, . . . , 0) with λ = −1. We need to approximate ut = ux by another
difference matrix to make life interesting again.

A more accurate approximation of ∂u/∂x, and a more exciting choice of the
difference matrix, comes from centered first differences :

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎦ and ut =

F

2h
u.

This matrix is still Toeplitz, but its powers will not have constant diagonals. The
effect of the boundary rows in F will move into the interior of F n, one step at a
time. Consistent with the rest of this paper, we want an approximation for eF . Since
F is antisymmetric, its eigenvalues will be imaginary and its eigenvectors will be
orthogonal. Introduce the diagonal matrices D = diag(i, i2, . . . , iN ) and D−1 = D̄.
Then D−1FD multiplies row m by (−i)m and column n by in:

G = D−1FD = i

⎡
⎢⎢⎢⎢⎢⎣

0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

⎤
⎥⎥⎥⎥⎥⎦ .

The eigenvalues ofG are already known to be i times 2 cos θk, with θk = kπ/(N+1) =
kπh as before. These are also the eigenvalues μk of F since the two matrices are
similar.

The eigenvectors of G are the same discrete sine vectors vk that have appeared
throughout this paper. The eigenvectors of F are then wk = Dvk:

D−1FDvk = μkvk means that FDvk = μkDvk and Fwk = μkwk.
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540 GILBERT STRANG AND SHEV MACNAMARA

Explicitly, the eigenvectors of F are wk = (i sin θk, i
2 sin 2θk, . . . , i

N sinNθk)
T , to

be normalized so that ||wk||2 = wT
k wk = 1. Then the rank-one projection matrices

wkw
T
k onto these unit eigenvectors are almost Toeplitz plus Hankel, but the “Hankel”

part has become “alternating Hankel,” which was completely new to us:

(wkw
T
k )m,n =

2

N + 1
im−n sin(mθk) sin(nθk)

=
1

N + 1
im−n

(
cos((m− n)θk)− cos((m+ n)θk)

)
.(7.2)

For each wkw
T
k , the Toeplitz part has constant entries fp = (ip cos pθk)/(N + 1) on

diagonal p = m−n. The alternating Hankel part has constant absolute value, but the
factor im−n = im+ni−2n produces alternating signs down each antidiagonal p = m+n:

−1

N + 1
im+ni−2n cos((m+ n)θk) = (−1)n+1fp.

These projections wkw
T
k are “Toeplitz plus alternating Hankel,” and so is eF :

(7.3) Exponential of F eF =

N∑
1

e2i cos(θk) wkw
T
k .

The eigenvalues have |eμk | = 1, so that eF is a unitary matrix. (Exponentials of
antisymmetric matrices are unitary, just as |eiθ| = 1.) This sum is close to an integral,
also of the form T +AH :
(7.4)

(eF )m,n ≈ 1

π

∫ π

0

e2i cos(θ)
(
im−n cos((m− n)θ) − (−1)nim+n cos((m+ n)θ)

)
dθ.

The alternating signs down each antidiagonal of AH must reflect the fact that the
original F uncouples even indices from odd indices. The entries along the diagonal
m− n = p of T and the antidiagonal m+ n = p of AH are tp and (−1)n+1tp :

(7.5) tp =
ip

π

∫ π

0

e2i cos(θ) cos(pθ) dθ = (−1)pJp(2).

For eF t/2h the Bessel functions Jp are evaluated at 2t/2h. The space variable always
turns up in the order p.

Recall that the exact solution to ut = ux is u0(x + t). With boundary condition
u = 0 at x = 1, the solution is zero for x+ t ≥ 1. Then the solution operator at time
t = 2h is simply a shift by 2h. The exponential eF approximates that shift, since it
is the solution operator at t = 2h in the semidiscrete problem ut = Fu/2h.

How close is eF to a perfect shift? Not close, if the initial function u0 is a point
source. In that case we are looking at a single column of eF , which shows oscillating
entries. But if the initial function u0 is a Gaussian (therefore much smoother), then
this is translated in a coherent way. Figures 6.1 and 6.2 show similar phenomena for
the two-way wave equation.

We will leave untouched the classical question of the convergence of the discretized
operator to the true solution operator. Before closing, we include some quick tests to
determine whether a matrix has either of special forms T +H or T +AH .
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8. Toeplitz Plus Hankel Matrices. Matrices of this form fill a subspace TH of
the N2-dimensional space of N×N matrices. What is the dimension of that subspace,
and what tests on a matrix M will confirm that it can be written as M = T +H?
We quickly recall the answers presented in [2]:

M = T +H if and only if

Mi−1,j +Mi+1,j = Mi,j−1 +Mi,j+1 for 1 < i < N, 1 < j < N.(8.1)

A Toeplitz matrix satisfies those (N − 2)2 conditions because Ti−1,j = Ti,j+1 and
Ti,j−1 = Ti+1,j . A Hankel matrix satisfies the same conditions because Hi−1,j =
Hi,j−1 and Hi,j+1 = Hi+1,j . Therefore, the sum satisfies the conditions (8.1) and
they produce a subspace TH of dimension N2 − (N − 2)2 = 4N − 4 for N > 1.

To find basis matrices for this subspace, we could try to choose separately the
2N − 1 diagonals of T and the 2N − 1 antidiagonals of H . But that gives 4N − 2
parameters. There must be a two-dimensional intersection of T and H, and it turns out
that there is. The all-ones matrix is both Toeplitz and Hankel, as is the checkerboard
matrix with entries (−1)i+j .

Note: The splitting in this paper comes from m − n and m + n in the cosines
of (3.6). K itself is pure Toeplitz, but our method puts the checkerboard part into
H and not T . The website math.mit.edu/highdegree develops other splittings, with
source codes.

If the matrix M is required to be symmetric, that removes the entries of T on
N − 1 lower diagonals as independent parameters. The dimension of this subspace
STH drops from 4N − 4 to 3N − 3. Correspondingly, the tests (8.1) only apply in
the upper triangular part 1 < i < j < N . Those (N − 2)(N − 3)/2 conditions act on
the N ×N symmetric matrices (dimension N(N +1)/2) to leave the correct subspace
STH.

If, in addition, the Hankel partH is required to be centrosymmetric, that removes
N − 1 more parameters. The lower antidiagonals are reflections of the upper antidi-
agonals, as in the matrices of this paper. And our examples had the further condition
that both parts T and H came from Fourier coefficients of the same function.

For M = T +AH , Toeplitz plus alternating Hankel, there is a new and equally
quick set of tests:

M = T +AH if and only if

Mi−1,j +Mi,j−1 = Mi+1,j +Mi,j+1 for 1 < i < N, 1 < j < N.(8.2)

Toeplitz matrices T pass this test, as before. Alternating Hankel matrices AH pass
because the test gives 0 = 0. Therefore, M = T +AH will pass. The separate sub-
spaces T and AH again have a two-dimensional intersection, spanned by the Toeplitz
matrices with first row 1, 0,−1, 0, . . . and first row 0, 1, 0,−1, . . . . Then the subspace
TAH has the same dimension 4N − 4 = dim(T) + dim(AH)− dim(T ∩ AH) as TH.

For fast computations with special subspaces of matrices, Morf and Kailath intro-
duced the fruitful idea of displacement rank [17, 18]. For the shift matrix Z with 1’s
along the first subdiagonal, ZRZT is a “displacement” of R by one row and column.
When R is Toeplitz, the difference R−ZRZT has rank 2. For non-Toeplitz matrices,
that displacement rank measures the difficulty of solving Rx = b.

Other subspaces (H, TH, TAH) are associated with other matrices Z coming from
the tests (8.1) and (8.2). We are not sure (but can hope) that this subspace TAH will
appear somewhere else again.
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9. Graph Laplacian B with Neumann Boundary Conditions. The Laplacian
matrix for a line of nodes is not the invertible matrix K, but the singular matrix B,
with zero row sums:

(9.1) B =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ =

degree matrix
minus

adjacency matrix.

Nodes 0 and N+1 are no longer “grounded.” Rows 1 andN correspond to a Neumann
condition du

dx = 0 at x = 0 and x = 1. In fact, the eigenvalues of BN are exactly the
eigenvalues 2 − 2 cos θk of KN−1 with θk = kπ/N , together with the new eigenvalue
λ0 = 0.

With zero slope at the endpoints, the differential equation −uxx = λu yields the
eigenfunctions u = cos kπx. Then the eigenvectors of B are discrete cosines instead
of discrete sines. Again we sample the exact eigenfunctions, but now at half-integer
multiples of the step h = 1/N . The eigenvector for λ0 = 0 is q0 = (1, 1, . . . , 1)T /

√
N .

The other N − 1 eigenvectors are

qk =

√
2

N

(
cos

(
1

2
kπh

)
, cos

(
3

2
kπh

)
, . . . , cos

((
N − 1

2

)
kπh

) )T

.(9.2)

All matrix functions f(B) come from the spectral theorem B = QΛQT :

(9.3) f(B) =

N−1∑
k=0

f(λk) qkq
T
k .

Now introduce the entries (cosines) of these eigenvectors. Replace each cosA cosB
by [cos(A − B) + cos(A + B)]/2 to see that f(B) is Toeplitz plus Hankel. Then
approximate the sum by an integral:

(9.4) f(B)m,n ≈ 1

π

∫ π

0

f(2− 2 cos θ)
(
cos((m− n)θ) + cos((m+ n)θ)

)
dθ.

The Hankel part of the approximation to f(B) has opposite sign to the Hankel part
of f(K)! For the matrix e−Bt that solves the heat equation, the entries will again
use values bp = e−2tIp(2t) of the modified Bessel function of the first kind in (4.5):

(9.5) e−B ≈ T +H = bm−n +++ bm+n for m+ n ≤ N + 1.

For the heat equation on [0, 1] with Neumann conditions at the endpoints, the
same placement of images will succeed, but now the image sources are positive (to
make the solution an even function across x = 0 and also across x = 1). The images
are still responsible for the Hankel part, shifting in the opposite direction from u0(x).
The Hankel part has a plus sign, not a minus sign, exactly as in (9.5) for the matrix
case.

What we have done for K and B extends to three more matrices, all involving
changes in the corners of K:

C with C1,N = CN,1 = −1 (periodic circulant),
M with M1,1 = 1 and MN,N = 2 (mixed Neumann–Dirichlet matrix),
S with S1,1 = 2 and SN,N = 1 (mixed Dirichlet–Neumann matrix).
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Periodic Case. The boundary conditions u(0) = u(1) and du
dx (0) =

du
dx (1) pro-

duce a circulant matrix C with −1, 2,−1 on its cyclic diagonals. All functions of
circulant matrices are still circulants (therefore Toeplitz). The eigenvectors are the
columns of the Fourier matrix [20]. If we prefer to work with real eigenvectors (as we
do), those come as above from sampling the continuous eigenfunctions sin 2πkx and
cos 2πkx. Separately, these lead to Hankel parts as they did for K and B. Combined,
the two Hankel parts cancel because of opposite signs.

We now have two eigenvectors (sine and cosine) for a typical frequency k, and half
as many frequencies. The usual step from sum to integral yields a good approximation
for the middle diagonals of CN and an exact value for C∞,∞:

(9.6) (f(CN ))m,n ≈ cm−n = (f(C∞,∞))m,n.

The entries cp are simply the Fourier coefficients of the function f(2 − 2 cos θ). For
the exponential e−C we see modified Bessel again, but there is only the Toeplitz part:

(9.7) (e−Ct/h)m,n ≈ e−2Im−n(2t/h).

For the finite matrix, we use these values for the middle diagonals |m−n| ≤ (N+1)/2
and complete the matrix as a circulant.

Neumann–Dirichlet. The boundary conditions du
dx (0) = 0 and u(1) = 0 change

K1,1 = 2 to M1,1 = 1 and they leave MN,N = 2. There is an important change in the
eigenvectors: For the continuous problem they become cos((k + 1

2 )πx), and so they
behave like a cosine at x = 0 and like a sine at x = 1. The eigenvalues are (k+ 1

2 )
2π2.

The eigenvalues and eigenvectors of the finite matrix M have M = N + 1
2 where

K and B had N + 1 and N :

λk = 2− 2 cos θk with θk =
(k − 1

2 )π

M
,(9.8)

yk =

√
2

M

(
cos

(
1

2
θk

)
, cos

(
3

2
θk

)
, . . . , cos

((
N − 1

2

)
θk

))T

.(9.9)

The m,n component of f(MN) =
∑

f(λk)yky
T
k is

2

M

N∑
1

f(λk) cos

((
m− 1

2

)(
k − 1

2

)
π

M

)
cos

((
n− 1

2

)(
k − 1

2

)
π

M

)
.(9.10)

Then the integral approximation to f(M)m,n is

(9.11)
2

π

∫ π

0

f(2− 2 cos θ)
(
cos((m− n)θ) + cos((m+ n− 1)θ)

)
dθ.

Notice the change to m+ n− 1 in the Hankel part.
This approximation is good above the main antidiagonal, where M imitates B

(Neumann). Below that antidiagonal, M imitates K (Dirichlet). There is aliasing
in the terms cos((m + n − 1)θk) = cos((m̄ + n̄ − 1)θk), where m̄ = N + 1 −m and
n̄ = N +1−n. So we have the option of changing to m̄, n̄ in the case m+n > N +1.
The sum is the same, but the integrand is less oscillatory. For the exponential of −M
the approximation is still Toeplitz plus Hankel, but no longer centrosymmetric. We
see e−B above the antidiagonal and e−K below:

(e−M )m,n ≈ e−2Im−n(2) + e−2Im+n−1(2) for m+ n ≤ N + 1,(9.12)

(e−M )m,n ≈ e−2Im−n(2) + e−2I2N+2−m−n(2) for m+ n > N + 1.(9.13)

The Dirichlet–Neumann matrix is the reflection of Neumann–Dirichlet.
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10. Resolvents. The resolvent R(z) ≡ (zI −A)−1 of a matrix A offers another
way to understand the Toeplitz plus Hankel property of all functions f(A). When
the resolvent is Toeplitz plus Hankel for all z, the Cauchy integral formula

f(A) =
1

2πi

∫
Γ

f(z) (zI −A)−1 dz

shows that f(A) is likewise Toeplitz plus Hankel. If the contour Γk encloses one
simple eigenvalue λk, the projection

Pk = vkv
T
k =

1

2πi

∫
Γk

(zI −A)−1 dz

is also T +H . (For a repeated eigenvalue, Pk is the projection onto the eigenspace.)
Thus, we have three equivalent conditions (1 ⇒ 2 ⇒ 3 ⇒ 1) for a symmetric matrix
to have the “TH property”:

1. All analytic functions f(A) are Toeplitz plus Hankel.
2. The resolvent R(z) ≡ (zI −A)−1 is Toeplitz plus Hankel for (almost) all z.
3. The projections onto all eigenspaces of A are Toeplitz plus Hankel.

The exceptions in condition 2 are the eigenvalues of A, where zI −A is singular. To
repeat for emphasis: This “TH property” is much stronger than merely the require-
ment that A itself is T +H .

The resolvent (which is involved in studying the Helmholtz equation −uxx−k2u =
f(x)) is the Laplace transform of the exponential:

(zI −A)−1 =

∫ ∞

0

etAe−ztdt .

Our exact expression for e−Kt as a finite sum allows us to find the resolvent of
−K exactly, as a finite sum of Laplace transforms. Alternatively, we have e−Kt

approximately, in terms of modified Bessel functions of the first kind, Ip. The key
Laplace transform L is that of e−2tIp(2t):

L(p, z) =
2p√

z2 + 4z (z + 2 +
√
z2 + 4z)p

.

Hence, the resolvent of −K is approximately

(10.1)
(
(zI +K)−1

)
m,n

≈ L(|m− n|, z)− L(m+ n, z) .

As usual, we make use of symmetry and centrosymmetry for m + n > N + 1. The
approximation (10.1) is very accurate; for example, with z = 5+ i, the approximation
is close to machine precision at N = 15.

11. The Four Corners Theorem. We had expected that only special values in
the (1, 1), (1, N), (N, 1), and (N,N) corners of our second difference matrix would
ensure that all matrix functions are T + H . However, MATLAB experiments told
us we were wrong. For random values in the four corners (maintaining symmetry by
A1,N = AN,1) we computed the eigenvectors vk. In every case, the projections vkv

T
k

passed the test (8.1). Thus, A =
∑

λkvkv
T
k surely has the TH property.

At this point we finally understood why every M = vkv
T
k passes the T+H test.

Subtract 2Mi,j from both sides of (8.1), which does not change the test:

(11.1) Mi−1,j − 2Mi,j +Mi+1,j = Mi,j−1 − 2Mi,j +Mi,j+1.
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At each interior position (i, j), the second difference Δ2 down column j of M must
equal the second difference along row i. Now apply this test to M = vvT . It requires

(11.2) v(j)Δ2v(i) = v(i)Δ2v(j) for 1 < i < N, 1 < j < N.

Each interior row of Av = λv is the statement that Δ2v(j) = −λv(j). Arbitrary
entries in the corners of A = AT have no effect. (If we try to change other entries in
row 1, A loses symmetry, and if A has more than the three diagonals, all our T +H
reasoning fails.) The test (11.2) is passed, because it becomes

(11.3) v(j)λv(i) = v(i)λv(j) for 1 < i < N, 1 < j < N.

We conclude that every vvT is T +H , and therefore all functions of A are T +H .
The changes in A1,1 and AN,N correspond to Robin boundary conditions like

du
dx (0) = au(0). Perhaps a four corner change corresponds to Robin conditions linking
x = 0 and x = 1 (which we have never seen).

In relation to boundary value problems, we note that explicit formulas for eigen-
values and inverses of tridiagonal Toeplitz matrices with four perturbed corners have
been studied elsewhere [28]. The eigenvectors are not simple sines or cosines.

For an integral operator Au(x) =
∫
P (x, y)u(y)dy with kernel P (x, y), the T +H

test (11.1) in the continuous case would become Pxx = Pyy. Solutions to this wave
equation have exactly the form P = f(x− y) + g(x+ y). Then the kernel is Toeplitz
plus Hankel.

12. Conclusions. The eigenvalues and eigenvectors of a symmetric matrixK give
a formula for all functions f(K). When those eigenvectors are discrete sines or cosines,
every f(K) is Toeplitz plus Hankel. Moreover, entries of f(K) can be approximated
by an integral. For second difference matrices K, this paper identifies those integrals
as Bessel coefficients, which give exact solutions to basic finite difference equations on
a half-line x ≥ 0 or on the whole line.

The formulas for e−Kt/h2

, cos(
√
Kt/h), and sinc(

√
Kt/h) allow a much more

precise estimate for discretization errors than merely O(h2).
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