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We use a derivative expansion for gently curved surfaces to compute the leading and the next-to-leading
curvature corrections to the Casimir-Polder interaction between a polarizable small particle and a nonplanar
surface. While our methods apply to any homogeneous and isotropic surface, explicit results are presented
here for perfect conductors. We show that the derivative expansion of the Casimir-Polder potential follows
from a resummation of its perturbative series, for small in-plane momenta. We consider the retarded,
nonretarded and classical high-temperature limits.
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I. INTRODUCTION

Quantum and thermal vacuum fluctuations of the electro-
magnetic field are at the cause of so-called dispersion
forces between two polarizable bodies. A particular in-
stance of dispersion interaction is the Casimir-Polder force
[1] between a small polarizable particle (like an atom or a
molecule) and a nearby material surface. Recent advances
in nanotechnology and in the field of ultracold atoms have
made possible quite precise measurements of the Casimir-
Polder interaction. (For recent reviews, see Refs. [2,3].)
There is presently considerable interest in investigating

how the Casimir-Polder interaction is affected by the
geometrical shape of the surface, and several experiments
have been recently carried out [4–7] to probe dispersion
forces between atoms and microstructured surfaces. The
characteristic nonadditivity of dispersion forces makes it
very difficult to compute the Casimir-Polder interaction
for nonplanar surfaces in general. Detailed results have
been worked out only for a few specific geometries. The
example of a uniaxially corrugated surface was studied
numerically in Ref. [8] within a toy scalar field theory,
while rectangular dielectric gratings were considered in
Ref. [9]. In Ref. [10], analytical results were obtained for
the case of a perfectly conducting cylinder. A perturbative
approach is presented in Ref. [11], where surfaces with
smooth corrugations of any shape, but with small ampli-
tude, were studied. The validity of the latter is restricted to
particle-surface separations that are much larger than the
corrugation amplitude. In this paper we present an alter-
native approach that becomes exact in the opposite limit of
small particle-surface distances. In this limit, the proximity
force approximation (PFA) [12] can be used to obtain the
leading contribution to the Casimir-Polder potential. Our
approach is based on a systematic derivative expansion of
the potential, extending to the Casimir-Polder interaction an
analogous expansion successfully used recently [13–15] to

study the Casimir interaction between two nonplanar
surfaces. It has also been applied to other problems
involving short-range interactions between surfaces, like
radiative heat transfer [16] and stray electrostatic forces
between conductors [17]. From this expansion we could
obtain the leading and the next-to-leading curvature cor-
rections to the PFA for the Casimir-Polder interaction.
The paper is organized as follows: In Sec. II we present the

derivative expansion for thegeneral caseof adielectric surface.
Explicit results are presented for the special case of a perfectly
conducting surface. In Sec. III the example of a two-state atom
is considered, and we present the potential in two limits: the
retarded Casimir-Polder limit and the nonretarded London
limit. In Section IV we conclude, pointing out some avenues
for further exploration. Finally, in the Appendix we show how
the derivative expansion of the potential can be obtained by a
resummation of the perturbative series to all orders.

II. DERIVATIVE EXPANSION OF THE
CASIMIR-POLDER POTENTIAL

Consider a particle (an “atom,” a molecule, or any
polarizable microparticle) near a dielectric surface S. We
assume that the particle is small enough (compared to the
scale of its separation d from the surface), such that it
can be considered as pointlike, with its response to the
electromagnetic (em) fields fully described by a dynamic
electric dipolar polarizability tensor αμνðωÞ. (We assume
for simplicity that the particle has a negligible magnetic
polarizability, as is usually the case.) Let us denote by Σ1

the plane through the atom which is orthogonal to the
distance vector (which we take to be the ẑ axis) connecting
the atom to the point P of S closest to the atom. We assume
that the surface S is characterized by a smooth profile
z ¼ HðxÞ, where x ¼ ðx; yÞ is the vector spanning Σ1, with
the origin at the atom’s position (see Fig. 1). In what
follows, greek indices μ; ν;… label all coordinates ðx; y; zÞ,
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while latin indices i; j; k… refer to ðx; yÞ coordinates in
the plane Σ1. Throughout, we adopt the convention that
repeated indices are summed over.
The exact Casimir-Polder potential at finite temperature

T is given by the scattering formula [18,19]

U ¼ −kBT
X∞
n¼0

0Tr½T ðSÞUT ðAÞU�ðκnÞ: ð1Þ

Here T ðSÞ and T ðAÞ denote, respectively, the T-operators
of the plate S and the atom, evaluated at the Matsubara
wave numbers κn ¼ 2πnkBT=ðℏcÞ, and the primed sum
indicates that the n ¼ 0 term carries weight 1=2. In a
plane-wave basis jk; Qi [20], where k is the in-plane
wave vector, and Q ¼ E;M denotes, respectively,
the electric (transverse magnetic) and magnetic (trans-
verse electric) modes, the translation operator U in
Eq. (1) is diagonal with matrix elements e−dq where
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2n

p ≡ qðkÞ, k ¼ jkj. The matrix elements

of the atom T-operator in the dipole approximation
are

T ðAÞ
QQ0 ðk;k0Þ ¼ −

2πκ2nffiffiffiffiffiffiffi
qq0

p eðþÞ
Qμ ðkÞαμνðicκnÞeð−ÞQ0νðk0Þ; ð2Þ

where q0 ¼ qðk0Þ, eð�Þ
M ðkÞ ¼ ẑ × k̂ and eð�Þ

E ðkÞ ¼ −1=
κnðikẑ� qk̂Þ, with k̂ ¼ k=k. There are no analytical for-
mulas for the elements of theT-operator of a curved plateT ðSÞ,
and its computation is in general quite challenging, even
numerically. We shall demonstrate, however, that for any
smooth surface it is possible to compute the leading curvature
corrections to the potential in the experimentally relevant limit
of small separations. The key idea is that the Casimir-Polder
interaction falls off rapidly with separation, and it is thus
reasonable to expect that the potentialU ismainly determined
by thegeometryof thesurfaceS ina small neighborhoodof the
point P of S which is closest to the atom. This physically
plausible idea suggests that for small separations d the
potential U can be expanded as a series expansion in an
increasing number of derivatives of the height profile H,
evaluated at the atom’s position. Up to fourth order, and
assuming that the surface is homogeneous and isotropic, the
most general expression which is invariant under rotations of
the ðx; yÞ coordinates, and that involves at most four deriv-
atives ofH [but no first derivatives, since∇Hð0Þ ¼ 0] can be
expressed [at zero temperature, and up toOðd−1Þ] in the form

U ¼ −
ℏc
d4

Z
∞

0

dξ
2π

�
βð0Þ1 α⊥ þ βð0Þ2 αzz þ d ×

�
ðβð2Þ1 α⊥ þ βð2Þ2 αzzÞ∇2H þ βð2Þ3

�
∂i∂jH −

1

2
∇2Hδij

�
αij

�
þ d2

×
�
βð3Þαzi∂i∇2Hþð∇2HÞ2ðβð4Þ1 α⊥ þ βð4Þ2 αzzÞ þ ð∂i∂jHÞ2ðβð4Þ3 α⊥ þ βð4Þ4 αzzÞ þ βð4Þ5 ∇2H

�
∂i∂jH −

1

2
∇2Hδij

�
αij

��
;

ð3Þ

where the Matsubara sum has been replaced by an integral
over ξ ¼ κd, α⊥ ¼ αxx þ αyy, and it is understood that all
derivatives ofHðxÞ are evaluated at the atom’s position, i.e.

for x ¼ 0. The coefficients βðpÞp are dimensionless functions
of ξ, and of any other dimensionless ratio of frequencies
characterizing the material of the surface. The derivative
expansion in Eq. (3) can be formally obtained by a
resummation of the perturbative series for the potential
for small in-plane momenta k (see the Appendix). We note
that there are additional terms involving four derivatives of

H which, however, yield contributions ∼1=d (as do terms
involving five derivatives of H) and are hence neglected.
As demonstrated in the Appendix [see Eqs. (A12),

(A13)], the coefficients βðpÞq in Eq. (3) can be extracted
from the perturbative series of the potential U, carried to
second order in the deformation hðxÞ, which in turn
involves an expansion of the T-operator of the surface S
to the same order. The latter expansion was worked out
in Ref. [21] for a dielectric surface characterized by a
frequency-dependent permittvity ϵðωÞ. It reads

T ðSÞ
QQ0 ðk;k0Þ ¼ ð2πÞ2δð2Þðk − k0ÞδQQ0rðSÞQ ðicκn;kÞ

þ
ffiffiffiffiffiffiffi
qq0

p �
−2BQQ0 ðk;k0Þ ~hðk − k0Þþ

Z
d2k00

ð2πÞ2 ðB2ÞQQ0 ðk;k0;k00Þ ~hðk − k00Þ ~hðk00 − k0Þ þ � � �
�
; ð4Þ

FIG. 1. Coordinates parametrizing a configuration consisting of
an atom or nanoparticle near a gently curved surface.
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where rðSÞQ ðicκn;kÞ denotes the familiar Fresnel reflection
coeffcient of a flat surface. Explicit expressions for
BQQ0 ðk;k0Þ and ðB2ÞQQ0 ðk0;k0;k00Þ are given in Ref. [21].

The computation of the coefficients βðpÞq involves an
integral over k and k0 [as is apparent from Eq. (1)] that
cannot be performed analytically for a dielectric plate,
and has to be estimated numerically. In this paper, we
shall content ourselves to considering the case of a
perfect conductor, in which case the integrals can be
performed analytically. For a perfect conductor, the matrix
BQQ0 ðk;k0Þ takes the simple form

Bðk;k0Þ ¼
 k̂·k̂0κ2nþkk0

qq0
κn
q ẑ · ðk̂ × k̂0Þ

κn
q0 ẑ · ðk̂ × k̂0Þ −k̂ · k̂0

!
; ð5Þ

where the matrix indices 1,2 correspond to E;M,
respectively. For perfect conductors, the matrix ðB2ÞQQ0

ðk;k0;k00Þ is simply related to B by

ðB2Þðk;k0;k00Þ ¼ 2q00Bðk;k00Þσ3Bðk00;k0Þ; ð6Þ

where σ3 ¼ diagð1;−1Þ. For perfect conductors, the co-

efficients βðpÞq are functions of ξ only, and we list them in
Table I.
The geometric significance of the expansion in Eq. (3)

becomes more transparent when the x and y axis are chosen
to be coincident with the principal directions of S at P, in
which case the local expansion of H takes the simple form
H ¼ dþ x2=ð2R1Þ þ y2=ð2R2Þ þ � � �, where R1 and R2 are
the radii of curvature at P. In this coordinate system, the
derivative expansion of U reads

U ¼ −
ℏc
d4

Z
∞

0

dξ
2π

�
βð0Þ1 α⊥ þ βð0Þ2 αzz þ

�
d
R1

þ d
R2

�
ðβð2Þ1 α⊥ þ βð2Þ2 αzzÞ þ

βð2Þ3

2

�
d
R1

−
d
R2

�
ðαxx − αyyÞ

þ d2βð3Þαzi∂i

�
1

R1

þ 1

R2

�
þ
�
d
R1

þ d
R2

�
2

ðβð4Þ1 α⊥ þ βð4Þ2 αzzÞ

þ
��

d
R1

�
2

þ
�
d
R2

�
2
�
ðβð4Þ3 α⊥ þ βð4Þ4 αzzÞ þ

βð4Þ5

2

��
d
R1

�
2

−
�
d
R2

�
2
�
ðαxx − αyyÞ

�
: ð7Þ

III. TWO-STATE “ATOM”

The β coefficients in Eq. (3) are significantly different
from zero only for rescaled frequencies ξ≲ 1. Therefore,
for separations small compared to the radii of surface

curvature but d ≫ c=ωr, where ωr is the typical atomic
resonance frequency, we can replace αμνðicκÞ in Eqs. (3)
and (7) with its static limit αμνð0Þ≡ α0μν. Upon performing
the ξ integrals, we obtain the retarded Casimir-Polder
potential

TABLE I. The coefficients βðpÞq are obtained by multiplying the third column by e−2ξ and adding the fourth column
times Eið2ξÞ ¼ −

R
∞
2ξ dt expð−tÞ=t.

p q ×e−2ξ ×Eið2ξÞ
0 1 1

8
ð1þ 2ξþ 4ξ2Þ 0

2 1
4
ð1þ 2ξÞ 0

2 1 − 1
32
ð3þ 6ξþ 6ξ2 þ 4ξ3Þ − ξ4

4

2 − 1
16
ð1þ 2ξ − 2ξ2 þ 4ξ3Þ ξ2ð1 − ξ2

2
Þ

3 − 1
32
ð3þ 6ξþ 2ξ2 − 4ξ3Þ ξ4

4

3 1
32
ð1þ 2ξ − 2ξ2 þ 4ξ3Þ − ξ2

4
ð2 − ξ2Þ

4 1 1
384

ð3þ 6ξþ 15ξ2 þ 22ξ3 þ 2ξ4 − 4ξ5Þ ξ4

48
ð6 − ξ2Þ

2 − 1
960

ð15þ 542ξþ 259ξ2 − 546ξ3 − 14ξ4 þ 28ξ5Þ 120ξ4

7
ð20 − ξ2Þ

3 1
192

ð15þ 30ξ − 9ξ2 þ 70ξ3 þ 2ξ4 − 4ξ5Þ ξ4

24
ð18 − ξ2Þ

4 1
480

ð45þ 218ξ − 59ξ2 þ 146ξ3 þ 14ξ4 − 28ξ5Þ ξ4

60
ð40 − 7ξ2Þ

5 1
96
ð9þ 18ξ − 27ξ2 þ 50ξ3 − 2ξ4 þ 4ξ5Þ ξ4ð1þ ξ2

12
Þ
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UCP ¼ −
ℏc
πd4

�
α0μμ
8

−
�
d
R1

þ d
R2

��
3α0⊥
40

þ α0zz
15

�
−

1

40

�
d
R1

−
d
R2

�
ðα0xx − α0yyÞ þ

d2

30
α0zi∂i

�
1

R1

þ 1

R2

�

þ
�
d
R1

þ d
R2

�
2
�
3α0⊥
280

−
α0zz
240

�
þ
��

d
R1

�
2

þ
�
d
R2

�
2
��

13α0⊥
280

þ 3α0zz
40

�
þ 9

560

��
d
R1

�
2

−
�
d
R2

�
2
�
ðα0xx − α0yyÞ

�
:

ð8Þ

In the special case of a spherical atom near a cylindrical
metallic shell, the leading curvature correction in the above
formula reproduces Eq. (30) of Ref. [10]. Before turning to
the nonretarded limit, it is instructive to consider the

classical high-temperature limit, where the Casimir free
energy is given by the first term of the Matsubara sum in
Eq. (1). From the limit κ → 0 of the coefficients βðpÞq , we
obtain the classical free energy as

Uclassical ¼ −
kBT
2

1

d3

�
1

8
α0⊥ þ 1

4
α0zz −

3

64

�
3
d
R1

þ d
R2

�
α0xx −

3

64

�
d
R1

þ 3
d
R2

�
α0yy −

1

16

�
d
R1

þ d
R2

�
α0zz

þ 1

128

�
17

d2

R2
1

þ 5
d2

R2
2

þ 2
d2

R1R2

�
α0xx þ

1

128

�
17

d2

R2
2

þ 5
d2

R2
1

þ 2
d2

R1R2

�
α0yy þ

1

64

�
5
d2

R2
1

þ 5
d2

R2
2

− 2
d2

R1R2

�
α0zz

�
:

ð9Þ

From the above result we obtain the nonretarded London
interaction between the surface and a two-state atom for
small distances d ≪ dr ¼ c=ωr at any finite temperature T.
The dynamic dipolar polarizability of an atom or molecule
on the imaginary frequency axis is given by

αμνðκÞ ¼
α0μν

1þ ðdrκÞ2
: ð10Þ

Formally, the nonretarded limit is obtained by taking the
velocity of light to infinity (c → ∞). This implies that the

coefficients βðpÞq are evaluated at ξ ¼ κnd ∼ 1=c → 0, while
the atom’s polarizability tends to the finite limit α0=½1þ
ð2πnkBT=ðℏωrÞÞ2� for c → ∞. Hence, the Matsubara sum
over n can be performed easily, leading to the nonretarded
London potential at finite temperature T of

UL ¼ ℏωr

2kBT
coth

�
ℏωr

2kBT

�
Uclassical: ð11Þ

IV. CONCLUSIONS AND OUTLOOK

We have developed a derivative expansion for the
Casimir-Polder potential between a small polarizable par-
ticle and a gently curved dielectric surface, which is valid
in the limit of small particle-surface distances. We have
demonstrated the power of our approach by computing
analytically the leading and next-to-leading curvature
corrections to the PFA for the potential, in the idealized
limit of a perfectly conducting surface at zero temperature.
For a two-level atom, we provide explicit formulas for the

potential in the retarded Casimir-Polder limit, and in the
nonretarded London limit.
While the explicit results presented in the paper are for

idealized situations, the gradient expansion method allows
for many interesting extensions: Specific dielectric proper-
ties of the surface can be easily incorporated and estimated
numerically; resonances and anisotropy of the material can
lead to interesting interplay with shape and curvature. On the
side of the “atom,” we can include effects from higher
multipoles in the particle’s polarizability. It is easy to deduce
already from Eq. (7) that curvature of the surface can exert a
torque, rotating an anisotropic particle into a specific low-
energy orientation. Nonequilibrium situations, involving an
excited atom, or a surface held at a different temperature,
also provide additional avenues for exploration.
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APPENDIX: RESUMMATION OF THE
PERTURBATIVE SERIES

It has been recently shown that the derivative expansion
of the Casimir energy between a flat and a curved surface
follows from a resummation of the perturbative series, for
small in-plane momenta [22]. In this appendix we show that
the derivative expansion of the Casimir-Polder potential
U in Eq. (3) can be justified by an analogous procedure.
It is first convenient to recast the potential U in Eq. (1) in
the form
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U ¼ −
ℏc
d4

Z
∞

0

dξ
2π

αμνðicκÞUμνðξÞ; ðA1Þ

where the coefficients Uμν depend linearly on the matrix
elements of T ðSÞ. To specify the perturbative series, we
introduce an arbitrary reference plane Σ2 at distance a from
Σ1 (see Fig. 1), and then we set HðxÞ ¼ aþ hðxÞ. For
sufficiently small h, the coefficients Uμν in Eq. (A1) admit
the expansion

Uμν ¼ Gð0Þ
μν ðaÞ þ

X
n≥1

1

n!

Z
d2x1…

Z
d2xn

× GðnÞ
μν ðx1; � � � ;xn; aÞhðx1Þ � � �hðxnÞ; ðA2Þ

whereGð0Þ
μν ðaÞ denotes the coefficient for a planar surface at

distance a from the atom, GðnÞ
μν ðx1; � � � ;xn; aÞ are symmet-

ric functions of ðx1; � � � ;xnÞ, and for brevity we have

omitted the dependence of GðnÞ
μν on ξ. The kernels GðnÞ

μν

satisfy a set of differential relations, which result from
invariance of Uμν under a redefinition of a and hðxÞ:

a → aþ ϵ; hðxÞ → hðxÞ − ϵ; ðA3Þ
where ϵ is an arbitrary number. Independence ofUμν on ϵ is
equivalent to demanding ∂pUμν=∂ϵpjϵ¼0 ¼ 0 for all non-
negative integers p. It is possible to verify that these

conditions are satisfied if and only if the kernels GðnÞ
μν obey

the relations

∂pGðnÞ
μν

∂ap ðx1;…;xn; aÞ

¼
Z

d2xnþ1 � � �
Z

d2xnþpG
ðnþpÞ
μν ðx1;…;xnþp; aÞ:

ðA4Þ
In momentum space, the above relations read

∂p ~GðnÞ
μν

∂ap ðk1;…;kn; aÞ ¼ ~GðnþpÞ
μν ðk1;…;kn; 0;…; 0; aÞ;

ðA5Þ

where our Fourier transforms are defined such that ~fðkÞ ¼R
d2xfðxÞ expð−ik · xÞ, and we set ~Gð0Þ

μν ≡ Gð0Þ
μν . Consider

now the perturbative expansion of the coefficients Uμν in
Fourier space:

Uμν ¼ Gð0Þ
μν ðaÞ þ

X
n≥1

1

n!

Z
d2k1

4π2
� � �
Z

d2kn

4π2

× ~GðnÞ�
μν ðk1; � � � ;kn; aÞ ~hðk1Þ � � � ~hðknÞ: ðA6Þ

For profiles of small slopes, ~hðkÞ is supported near zero,
and then it is legitimate to Taylor-expand ~GðnÞðk1; � � � ;knÞ
in powers of the in-plane momenta ðk1; � � � ;knÞ. Upon
truncating the Taylor expansion to fourth order, and
after going back to position space, we find for Uμν the
expression

Uμν ≃Gð0Þ
μν ðaÞ þ

X
n≥1

�
1

n!
AðnÞ�
μν ðaÞhnð0Þ þ hn−1ð0Þ

ðn − 1Þ!
�
−
1

2
BðnÞ�
μνjijðaÞ∂i∂jhð0Þ þ

i
3!
BðnÞ�
μνjijkðaÞ∂i∂j∂khð0Þ

þ 1

4!
BðnÞ�
μνjijklðaÞ∂i∂j∂k∂lhð0Þ

��
þ
X
n≥2

hn−2ð0Þ
8ðn − 2Þ!C

ðnÞ�
μνjijklðaÞ∂i∂jhð0Þ∂k∂lhð0Þ; ðA7Þ

where

AðnÞ
μν ðaÞ ¼ ~GðnÞ

μν ð0; � � � ; 0; aÞ; ðA8Þ

BðnÞ
μνji1…ip

ðaÞ ¼ ∂ki1
c � � � ∂kip

~GðnÞ
μν ðk; 0; � � � ; 0; aÞjk¼0;

ðA9Þ

and

CðnÞ
μνjijklðaÞ ¼ ∂ki∂kj∂k0k

∂k0l
~GðnÞ
μν ðk;k0; 0; � � � ; 0; aÞjk¼k0¼0;

ðA10Þ

and we have only displayed the terms that do not vanish
identically on account of the condition ∇hð0Þ ¼ 0. The

n-sums in Eq. (A7) can be easily done, because by
virtue of Eq. (A5), the A;B;C coefficients satisfy the
relations

AðnÞ
μν ðaÞ ¼ ∂nGð0Þ

μν

∂an ; ðA11Þ

BðnÞ
μνji1…ip

ðaÞ ¼
∂n−1Bð1Þ

μνji1…ip
ðaÞ

∂an−1 ; ðA12Þ

and

CðnÞ
μνjijklðaÞ ¼

∂n−2Cð2Þ
μνjijklðaÞ

∂an−2 : ðA13Þ
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After we substitute the above relations into Eq. (A7), and recalling that d ¼ aþ hð0Þ, we obtain the desired result:

Uμν ≃Gð0Þ
μν ðdÞ − 1

2
Bð1Þ�
μνjijðdÞ∂i∂jhð0Þ þ

i
3!
Bð1Þ�
μνjijkðdÞ∂i∂j∂khð0Þ þ

1

4!
Bð1Þ�
μνjijklðdÞ∂i∂j∂k∂lhð0Þ

þ 1

8
Cð2Þ�
μνjijklðdÞ∂i∂jhð0Þ∂k∂lhð0Þ: ðA14Þ

We see that the resummed perturbative series involves the coefficients Bð1Þ
μνji1…ip

ðdÞ, p ¼ 2, 3, 4 and Cð2Þ
μνjijklðdÞ,

evaluated for a ¼ d. As is apparent from Eqs. (A9) and (A10), these coefficients can be extracted, respectively, from

the first- and second-order kernels ~Gð1Þ
μν ðk; dÞ and ~Gð2Þ

μν ðk1;k2; dÞ by Taylor-expanding them for small momenta.
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