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Abstract 14 

16S ribosomal RNA (rRNA) sequencing, commonly used to survey microbial 15 

communities, begins by grouping individual reads into operational taxonomic units 16 

(OTUs). There are two major challenges in calling OTUs: identifying bacterial 17 

population boundaries, and differentiating true diversity from sequencing errors. 18 

Current approaches to identify taxonomic groups or eliminate sequencing errors 19 

rely on sequence data alone, but both of these activities could be informed by the 20 

distribution of sequences across samples. Here we show that using the distribution 21 

of sequences across samples can help identify population boundaries even in noisy 22 

sequence data. The logic underlying our approach is that bacteria in different 23 

populations will often be highly correlated in their abundance across different 24 

samples. Conversely, 16S rRNA sequences derived from the same population, 25 

whether slightly different copies in the same organism, variation of the 16S rRNA 26 

gene within a population or sequences generated randomly in error, will have the 27 

same underlying distribution across sampled environments. We present a simple 28 

OTU calling algorithm ("distribution-based clustering") that uses both genetic 29 

distance and the distribution of sequences across samples, and demonstrate it is 30 

more accurate than other methods at grouping reads into OTUs in a mock 31 

community. Distribution-based clustering also performs well on environmental 32 

samples: it is sensitive enough to differentiate between OTUs that differ by a single 33 

base pair, yet predicts fewer overall OTUs than most other methods. This program 34 

can decrease the total number of OTUs with redundant information and improve the 35 

power of many down-stream analyses to describe biologically relevant trends. 36 
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 37 

Introduction 38 

Identifying meaningful OTUs is a significant bottleneck in the analysis of 16S rRNA 39 

sequences from complex microbial communities, particularly for large datasets 40 

generated by next-generation sequencing. Spurious sequences created by PCR or 41 

sequencing errors can greatly inflate the total number of OTUs (i.e. alpha diversity) 42 

of a sample if not treated properly (1, 2). Although attempts have been made to 43 

address the problem of inflated alpha diversity from erroneous OTUs (1, 3-5), there 44 

have been few attempts to make OTUs that more accurately reflect ecologically 45 

cohesive bacterial populations. 46 

 Most common methods of forming OTUs with next-generation sequencing 47 

use a single genetic cut-off for creating OTUs. The most common approach for 48 

calling OTUs is to cluster sequences into groups based on sequence identity or 49 

genetic distances alone [taxonomy-independent (6), taxonomy-unsupervised (7) or 50 

de novo (8) clustering]. Sequences are usually aligned using a pairwise or multiple 51 

alignment algorithm to create a distance matrix, and sequences are clustered based 52 

on a sequence identity cut-off. Many heuristics have been developed to decrease 53 

computational demand of OTU calling with varying degrees of accuracy, such as CD-54 

HIT (9), UCLUST (8), DySC (10) and ESPRIT (11), among others. Another approach 55 

is to bin sequences into groups within a well- curated database of known sequences 56 

[taxonomy-dependent (6), phylotyping  (12) or closed-reference (13) clustering]. 57 

Sequences that do not match the database are lost, even though they could 58 

represent important, novel organisms. To overcome this problem, novel sequences 59 
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can be retained as distinct clusters ("open-reference"), but this comes at the 60 

expense of speed and convenience. All of these commonly applied techniques rely 61 

on a genetic cut-off, typically >97% sequence identity, to inform OTU clustering. 62 

 Although it is common to use a single sequence identity cut-off for clustering, 63 

more insight can be gained by adjusting the sequence clustering for individual 64 

taxonomic lineages (14, 15) or by using multiple genetic cut-offs for analysis (16, 65 

17). Hunt et al (14) developed a program called AdaptML to infer population 66 

boundaries from the ecological information of isolated strains. Different populations 67 

were often identified within what would generally be considered one species. Using 68 

two closely related populations predicted from AdaptML, Shapiro et al (18) was able 69 

to investigate the early events of bacterial speciation. Koeppel et al (15) used a 70 

program called EcoSim to infer units of bacterial diversity by estimating 71 

evolutionary parameters, such as periodic selection and drift, derived from 72 

phylogenetic relationships of isolated strains. This method can detect more total 73 

populations than is supported by AdaptML using ecology alone (19). Both Youngblut 74 

et al (16) and Nemergut et al (17) repeated their analysis at various levels of 75 

clustering. Youngblut et al (16) found that using an inappropriate genetic cut-off 76 

would have changed their results. All of these studies demonstrate that more 77 

biological insight can be obtained from diversity studies when the clustering is done 78 

at different levels for different taxonomic lineages. 79 

 Sequencing and PCR errors and chimeras are significant issues in next-80 

generation 16S rRNA libraries of microbial diversity. Inflated diversity estimates 81 

have been problematic with 454 pyrosequencing (1, 3-5, 20) and Illumina datasets 82 
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(21, 22). Many attempts have been made to reduce the impact of sequencing error 83 

on the estimate of total diversity from chimeric sequences and PCR and sequencing 84 

errors (3-5). With good quality filtering and strict error correcting software, many 85 

errors can be detected and removed from the dataset, reducing the effective error 86 

rate. However, these methods do not help in identifying how these "cleaned" 87 

sequences should be grouped into OTUs for down-stream analyses. 88 

 We hypothesized that identifying the appropriate grouping for each 89 

taxonomic lineage and detecting many methodological errors can be accomplished 90 

using the distribution of sequences across samples. Bacteria in different populations 91 

will respond uniquely to variation in environmental conditions, resulting in a 92 

different distribution across sampled environments. This has been demonstrated 93 

for different taxa under a range of conditions (14, 15) and during disturbance (16). 94 

Conversely, 16S rRNA sequences derived from the same population will have the 95 

same distribution across sampled environments, whether the sequences are from 96 

slightly different copies of the 16S rRNA gene in the same organism, variation of the 97 

16S rRNA sequence within a population or sequences generated randomly in error. 98 

Thus, whether the underlying distribution is the same for ecological (i.e. same 99 

population of bacteria) or methodological reasons (i.e. sequencing error), they 100 

should be considered as a group and merged into one OTU. 101 

 Our goal was to develop a simple algorithm using the distribution of 16S 102 

rRNA sequences across samples to inform the creation of OTUs for large next 103 

generation sequencing studies. This method accommodates differences in the level 104 

of genetic differentiation across taxa and reduces the number of redundant OTUs 105 
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from sequences within the same population or created from sequencing error. To 106 

apply this method to 16S rRNA surveys created from next-generation sequencing, 107 

we developed an algorithm that uses distribution information, the relative 108 

abundance of sequences within all samples and genetic distance to inform 109 

clustering. We compare this method ("distribution-based clustering" or DBC) to 110 

commonly applied closed-reference (i.e. phylotyping), open-reference (i.e. hybrid of 111 

phylotyping and de novo clustering) and de novo clustering methods using 112 

experimental mock community datasets. We test the accuracy and sensitivity of all 113 

clustering methods in identifying true input sequences, clustering sequencing and 114 

methodological errors with the input sequences they are derived from, and 115 

retaining the information contained in the distribution of sequences across samples. 116 

Distribution-based clustering reflects the true distribution of input templates or 117 

organisms more accurately than OTUs from methods using sequence identity alone. 118 

Finally, we compare the results of each clustering method on a set of unknown 119 

samples from a stratified lake, showing that it calls fewer OTUs than either the de 120 

novo or open-reference methods, yet is able to discriminate OTUs differing by a 121 

single base pair that show evidence of differing ecological roles. The source code, 122 

test data and user guide are freely available for download at 123 

https://github.com/spacocha/Distribution-based-clustering. 124 

 125 

Materials and Methods 126 

Previously generated mock community 127 
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 We used an experimental mock dataset that was previously generated (23) 128 

to test our clustering method. Data was downloaded from the Supplemental Data 129 

page from the Gordon Lab website for the paper 130 

(http://gordonlab.wustl.edu/TurnbaughSE_2_10/PNAS_2010.html). The quality 131 

filtered, denoised and chimera-free dataset was used for further analysis 132 

(Mock_nochimeras.fna) and all sequences were trimmed to 210 bases and the first 133 

14 bases were removed. The input sequences (MockIsolatesV2.fna) and the input 134 

distributions from the Supplemental Material [Table S3 in Turnbaugh et al (23)] 135 

were also used in the analysis. Distribution information across samples was not 136 

included in the Mock_nochimeras.fna file, so it was derived from matching 137 

sequences in the cleaned dataset (Mock_cleaned.fna).  138 

 The representative sequence for Providencia alcalifacien was mislabeled as 139 

Providencia rettgeri, as evident from distribution of this sequence across samples 140 

[which corresponded to the Providencia alcalifacien distribution (Fig. S1a)] and 141 

matched many Providencia alcalifacien strains in NCBI's nr database. The 142 

Providencia rettgeri sequence was replaced with the sequence from the dataset that 143 

had the correct corresponding distribution (Fig. S1b) and that matched many 144 

Providencia rettgeri sequences in NCBI's nr database.  145 

 146 

Mock community generation 147 

 The second mock community used for much of this analysis was created from 148 

an environmental clone library of 16S rRNA sequences from a lake sample. DNA 149 

templates were 16S rRNA sequences on purified, linearized plasmids (i.e. 150 
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environmental clones) as described in the Supplementary Information (SI) and 151 

approximately 800 base pairs were sequenced from the forward primer 27F (24). 152 

All clone sequences were submitted to GenBank (accession nos. KC192376 - 153 

KC192544). The input concentration of each DNA template was measured using the 154 

2100 Bioanalyzer  (Agilent Technologies Inc., Santa Clara, CA). DNA templates were 155 

mixed together into nine different mock communities ranging from simple (com1) 156 

with five DNA templates added to complex (com9) with 40 total DNA templates. 157 

DNA templates were mixed to create a range of final concentrations. Specific 158 

information about mock community composition can be found in Table S1 and S2. 159 

 160 

Library construction and sequencing 161 

 Mock community libraries for paired-end Illumina sequencing were 162 

constructed using a two-step 16S rRNA PCR amplicon approach diagramed in Figure 163 

S2. The first step primers (PE16S_V4_U515_F : 5' ACACG ACGCT CTTCC GATCT 164 

YRYRG TGCCA GCMGC CGCGG TAA- 3'; PE16S_V4_E786_R: 5'- CGGCA TTCCT GCTGA 165 

ACCGC TCTTC CGATC TGGAC TACHV GGGTW TCTAA T 3') contain primers U515F 166 

and E786R  targeting the V4 region of the 16S rRNA gene as described previously 167 

(25). Additionally, a complexity region in the forward primer (5'-YRYR-3') was 168 

added to aid the image processing software used detect distinct clusters during 169 

Illumina next generation sequencing. A second-step priming site is also present in 170 

both the forward (5'-ACACG ACGCT CTTCC GATCT-3') and reverse (5'-CGGCA 171 

TTCCT GCTGA ACCGC TCTTC CGATC T-3') first step primers. The second step 172 

primers incorporate the Illumina adapter sequences and a nine base pair barcode 173 
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for library recognition (PE-III-PCR-F : 5'- AATGA TACGG CGACC ACCGA GATCT 174 

ACACT CTTTC CCTAC ACGAC GCTCT TCCGA TCT 3'; PE-III-PCR-001-096: 5'- CAAGC 175 

AGAAG ACGGC ATACG AGATN NNNNN NNNCG GTCTC GGCAT TCCTG CTGAA CCGCT 176 

CTTCC GATCT  3' where N's indicate the presence of a unique barcode listed in 177 

Table S3).  178 

 Real-time PCR before the first-step PCR reaction was done to ensure uniform 179 

amplification and avoid over-cycling all templates. Both real-time and first step PCR 180 

reactions were done similar to the manufacture's protocol for Phusion polymerase 181 

(New England Biolabs, Ipswich, MA) as described in SI. Samples were divided into 182 

four 25 μl replicate reactions during both first and second step cycling reactions and 183 

cleaned using Agencourt AMPure XP- PCR purification (Beckman Coulter, Brea, CA). 184 

Environmental libraries were created as previously described using the two-step 185 

primer skipping library protocol (26). Libraries were multiplexed together with 186 

other libraries not used in this study and sequenced using the paired-end approach 187 

on either the Genome Analyzer IIx or HiSeq 2000 Illumina sequencing machines at 188 

the BioMicro Center (MIT, Cambridge, MA). Environmental libraries were 189 

sequenced with 2 x 144 bases and mock community samples done with 2 x 100. 190 

 191 

Pre-and post-clustering quality control 192 

 Raw data was quality filtered using QIIME (version 1.3.0) (27) before 193 

processing with any clustering algorithm. The fastq files were processed using the 194 

split_library_fastq.py program of QIIME, truncating sequences when a base quality 195 

dropped below Phred quality score 17, which corresponds to a probability of error 196 
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around 0.02  (--last_bad_character Q -r 0). This quality filter stringency was chosen 197 

because it was found to result in the smallest Jensen-Shannon divergence from the 198 

true distribution using com9 (Fig. S3). Only sequences at least 99 bps long after 199 

quality filtering were retained (-min_per_read_length 99). All other parameters 200 

were default parameters. After quality filtering, the complexity region between the 201 

adapters and the primer (Fig. S2), along with the primer sequence were removed 202 

using the trim.seqs program in mothur (version v.1.23.1) (28) and trimmed to 76 bp 203 

with a custom perl script (https://github.com/spacocha/Distribution-based-204 

clustering/blob/master/bin/truncate_fasta.pl). All sequences not matching the first 205 

15 bases of the primer were removed.  206 

 After each clustering algorithm, representative sequences were picked using 207 

QIIME pick_rep_set.py, or a custom perl script 208 

(https://github.com/spacocha/Distribution-based-209 

clustering/blob/master/bin/pick_most_ab_from_ablist.pl), using the most abundant 210 

sequence in the OTU as the representative. These were used to determine which 211 

OTUs were correct (i.e. matching an input sequence) or incorrect (i.e. did not match 212 

an input sequence). OTUs were removed if the representative sequence did not align 213 

to the part of the 16S rRNA gene that was amplified (positions 13862 to 15958 of 214 

the silva alignment) with at least 76 bp. OTUs with less than 2 counts, or 11 counts 215 

were filtered out using QIIME's filter_otu_table.py (-c 2 or -c 11) for data in Table 2. 216 

 217 

Closed-reference, open-reference and de novo clustering methods 218 
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 QIIME was used to make closed-reference (i.e. phylotype) and open-219 

reference (i.e. hybrid of phylotyping and de novo approaches) OTUs as described 220 

above. Closed-, and open-reference clustering was done with the 221 

pick_reference_otus_through_otu_table.py flow from QIIME. Both methods used the 222 

12_10 greengenes 97% reference OTU collection 223 

(http://qiime.org/home_static/dataFiles.html) as the reference, UCLUST as the 224 

clustering algorithm (pick_otus:otu_picking_method uclust_ref) and new clusters 225 

were suppressed for closed-reference (pick_otus:suppress_new_clusters) but not for 226 

open-reference clustering. Example scripts are presented in the SI. 227 

 mothur (v.1.23.1)  (28) was used to form de novo OTUs using average 228 

neighbor hierarchical clustering following some of the standard protocol for 229 

processing 16S rRNA data (http://www.mothur.org/wiki/454_SOP). Sequences 230 

were aligned to the Silva reference alignment and trimmed using the align.seqs and 231 

screen.seqs/filter.seqs commands, respectively. A distance matrix was created and 232 

used to cluster the sequences for the calling of final OTUs using dist.seqs and cluster 233 

commands, respectively. A list of commands can be found in the SI. The total 234 

number of OTUs was similar after chimera checking and lineage removal. 235 

 USEARCH (v. 6.0.307; http://www.drive5.com/usearch/) was used to create 236 

the USEARCH de novo OTU with custom perl scripts for pre- and post- processing as 237 

described in SI, which are available at https://github.com/spacocha/Distribution-238 

based-clustering/blob/master/bin. 239 

 240 

Distribution-based clustering theory 241 
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 Distribution-based clustering works by identifying bacterial populations at 242 

different levels of genetic differentiation for different taxonomic lineages by relying 243 

on the distribution of sequences across samples (i.e. the ecology) to determine 244 

where to draw population boundaries. Sequences that differ by only one base but 245 

that are found in different samples, suggesting they did not arise from the same 246 

underlying distribution, and should be considered separately in downstream 247 

analyses and put into different OTUs (Fig. 1a). Conversely, 16S rRNA sequences 248 

drawn from the same underlying distribution across samples could be generated 249 

from differences between 16S rRNA operons in the same organism, variation of the 250 

16S rRNA gene within a population or generated from random sequencing errors 251 

from a true sequence in the sample. These sequences should be grouped together 252 

and considered as a unit (Fig. 1b). A statistical test (i.e. chi-squared test) can be used 253 

to determine whether two sequences have a similar distribution across libraries. 254 

Applying these metrics can merge sequences derived from the same population (e.g. 255 

sequencing error or inter-operon variation) but retain ecologically distinct sequence 256 

types, even if they occur at the same genetic distance. It is important to note that the 257 

distribution-based approach will generate more spurious OTUs when sequencing 258 

errors are created in a non-random way across samples (i.e. higher error rates in a 259 

subset of libraries). 260 

 261 

Distribution-based clustering algorithm 262 

 Distribution-based clustering requires two input files, an OTU-by-library 263 

matrix and a distance matrix. Both the distribution and abundance are obtained 264 
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from the OTU-by-library matrix. The distance matrix is important for ordering 265 

sequences according to increasing distance from the candidate sequences as 266 

described below. Any method can be used to create a distance matrix. We use 267 

FastTree (29) with the -makematrix option using both the aligned and unaligned 268 

sequences as inputs. This creates Jukes-Cantor corrected distances, and balances 269 

speed with accuracy. While this method works well on these mock communities, 270 

other distance matrices may be used as input, which may or may not improve 271 

accuracy. 272 

 273 

OTUs are built in a step-wise manner (Fig. 2), as described below. 274 

 275 

Step 1.) Choose a candidate sequence. This sequence will either be added to an 276 

existing OTU, or create a new OTU with itself as the representative depending on the 277 

results of the subsequent steps. Consider candidate sequences from the pool of 278 

existing unique sequences, in order of decreasing abundance. Abundance is defined 279 

as the number of times each sequence has been seen across all libraries.   280 

Step 2.) Choose an OTU from the pool of existing OTUs, sorted by decreasing 281 

distances of the representative sequence from the candidate. An OTU is evaluated if 282 

the representative sequence of the OTU is within the maximum genetic variation 283 

allowed to be within the same population (default -dist 0.1, the Jukes-Cantor 284 

corrected distance of 0.1). Jukes-Cantor corrected genetic distances were calculated 285 

using the -makematrix flag of FastTree (29), but other distance matrices can be 286 

used. The important information is the relative relationship of OTU representatives 287 
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to the candidate sequence.  Additionally, genetic distance is determined from the 288 

minimum of aligned and unaligned distance, to reduce the impact of misalignment. 289 

If an OTU is found whose representative sequence is within the genetic distance cut-290 

off, proceed to step 3. Otherwise, stop the search and go to step 6. 291 

Step 3.) Determine whether the representative sequence of the candidate OTU 292 

satisfies the abundance criteria. The abundance of the representative sequence must 293 

be greater than a user-defined abundance threshold, defined as a k-fold increase 294 

over the abundance of the candidate sequence. To remove sequencing errors, thus 295 

creating OTUs that represent true sequences (not populations), 10-fold abundance 296 

threshold is appropriate (-abund 10, default). This high abundance threshold 297 

restricts the total number of comparisons to OTUs with representatives that are 298 

much more abundant than the candidate sequences, which is common for sequences 299 

generated in error. To create OTUs that represent populations, a lower abundance 300 

threshold should be used, allowing for comparisons with candidate sequences that 301 

are at a similar abundance to the OTU representative (-abund 0). This low 302 

abundance threshold provides the possibility to merge sequences together that 303 

were generated from inter-operon variation or sequence variation with the 304 

population. If the representative sequence satisfies the abundance criteria, proceed 305 

to step 4. Otherwise, return to step 2 and choose another candidate OTU. 306 

Step 4.) Determine whether the candidate and representative sequences are 307 

distributed across samples in a similar manner. The candidate sequence will be 308 

merged into the OTU unless there is evidence that its distribution is different from 309 

the distribution of the representative. The distribution of candidate sequence (i.e. 310 
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observed distribution) and the OTU representative sequence (i.e. expected 311 

distribution) is similar if the chi-squared test results in a p-value above a user-312 

defined cut-off (default = 0.0005). Sequences with low counts (e.g. singletons) will 313 

also result in high p-values. P-values are calculated using R statistical language 314 

(chisq.test) or simulated (chisq.test:simulate.p.value) when the expected is below 5 315 

for more than 80% of the compared values. As an additional option, the Jensen-316 

Shannon divergence (JSD) can be used. JSD is commonly used to measure the 317 

distance between two distributions and can be applied when the difference between 318 

distributions is statistically significant but distributed in a similar manner (i.e. the 319 

chi squared test is too sensitive). JSD will commonly merge distributions that look 320 

similar by eye but are found to have statistically significant differences. However, it 321 

cannot be used as the sole metric, as it performs poorly on distributions with low 322 

counts. If the distributions are different, the next OTU is evaluated (step 2). 323 

Otherwise, proceed to step 5. 324 

Step 5) Add the sequence to OTU. If the candidate sequence is distributed similarly 325 

to the representative sequence of the candidate OTU, the candidate sequence is 326 

added to the OTU and step 1 is repeated.  327 

Step 6.) Define OTU representatives. If none of the existing OTUs satisfy the criteria 328 

outlined above, an OTU is created with the candidate sequence as the representative 329 

of the OTU. This new OTU will not be merged with OTUs, but other sequences may 330 

be added.  331 

 332 
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Default parameters were chosen after varying each parameter in isolation and 333 

evaluated based on the total number of correct, merged and incorrect sequences 334 

OTUs (Fig. S4). Default parameters were used to cluster the mock community 335 

sequences generated in this study. The previously generated, cleaned dataset (23) 336 

was clustered with the following parameters: distance cut-off was 0.05, abundance 337 

criteria was 0 and the Jensen-Shannon divergence was used with a cutoff of 0.07. 338 

Ideally, these parameters would be optimized for different platforms. 339 

 340 

Complete vs. Parallel algorithm 341 

 With the "complete" process, all sequences were analyzed together in the 342 

analysis. In the "parallel" process, sequences were pre-clustered with a heuristic 343 

approach (see below) and sequences in each cluster were processed separately, in 344 

parallel. However, sequences could be pre-clustered with different algorithms (e.g. 345 

nearest-neighbor single linkage clustering), as long as the number of sequences that 346 

are grouped with their nearest neighbor is maximized. Data was pre-clustered with 347 

UCLUST into clusters for the new mock and previously generated mock 348 

communities respectively using a progressive clustering algorithm 349 

(https://github.com/spacocha/Distribution-based-350 

clustering/blob/master/ProgressiveClustering.csh). Clustering was accomplished in 351 

several iterations by gradually relaxing the cutoff threshold. Sequences were first 352 

sorted by abundance and clustered with the UCLUST algorithm at 0.98 (1 bp 353 

difference is already below 0.99). The seeds of these clusters were sorted by 354 

abundance and clustered again at 0.97. This was repeated to the lowest threshold 355 
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value of 0.9 for the mock generated in this paper, and 0.95 for the Turnbaugh mock 356 

community. The resulting files were consolidated to make a list of clustered 357 

sequences. The distribution-based algorithm is used in parallel on sequences in 358 

these clusters. If the abundance of all members of the group is lower than the 359 

abundance threshold, the cluster remains intact (i.e. low count cluster with no 360 

information). However, the cluster is divided when two OTU representative 361 

sequences are identified. 362 

 363 

Assessment of accuracy 364 

 We assessed how well the resulting OTUs represent the true input 365 

sequences. We expect sequences originating from the same input organism or 366 

template to be clustered together and sequences originating from different input 367 

organisms or templates to remain distinct, even with as little as one base pair of 368 

difference between them. The corresponding input organisms or template for each 369 

resulting sequence was determined as the smallest distance (minimum of aligned 370 

and unaligned distances) to an input sequence for each unique sequence. Sequences 371 

were weighted by abundance, so more abundant sequences result in more total 372 

counts. 373 

 To assess the accuracy of each method against our criteria, we used two 374 

measures of a test's accuracy, F-score and MCC. True positives (TP) are defined as a 375 

pair of sequences in the same OTU originating from the same input organism or 376 

template. False positives (FP) are defined as a pair of sequences in different OTUs 377 

originating from the same input. True negatives (TN) are defined as a pair of 378 
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sequences in different OTUs originating from different inputs. False negatives (FN) 379 

are defined as a pair of sequences in different OTUs originating from the same input 380 

or if either of a pair of reads was not assigned into an OTU (only affecting closed-381 

reference clustering). These were calculated with various scripts using the resulting 382 

OTU list from each algorithm along with a mapping file indicating the input 383 

(determined as above) and a translation file mapping reads to libraries 384 

(https://github.com/spacocha/Distribution-based-385 

clustering/tree/master/confusion_matrix_calc). 386 

 The F-score was calculated as: 387 

f - score = 2´
precision´ recall

precision+ recall
 388 

where precision is defined as: 389 

precision =
TP

TP+FP
 390 

and recall is defined as: 391 

recall =
TP

TP+FN
 392 

Matthew's correlation coefficient (MCC): 393 

MCC =
TP´TN -FP´FN

(TP+FN )(TP+FP)(TN +FP)(TN +FN )
 394 

as previously described (30) with the definition of TP, FP, TN and FN described 395 

above. 396 

 397 

Comparison with the input community 398 
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 To compare the resulting OTU by library matrix with the expected 399 

distribution [Table S3 of Turnbaugh et al. (23) and Table S2 in SI], we used the JSD 400 

from mock community com9 and Uneven2 for comparison. OTUs were paired to an 401 

input sequence through the sequence representative (i.e. the most abundant 402 

sequence in the OTU) with a match to an input sequence or by the most abundant 403 

OTU with a best blast hit to the input organism. The total abundance of reads 404 

mapping to each OTU from com9 or Uneven2 was compared to the concentration of 405 

each corresponding mock community member (Fig. 3c and 4c). JSD was calculated 406 

using dist_mat (metric='JS') using PySurvey 407 

(https://bitbucket.org/yonatanf/pysurvey). 408 

 409 

Results 410 

Distribution-based clustering goals 411 

 Our goal was to develop a clustering algorithm that merges sequences 412 

derived from the same input organism or template but keep separate those 413 

originating from different input organisms or templates (Fig. 1). Sequences derived 414 

from the same input could represent micro-diversity from inter-operon variation, 415 

closely related organisms within the community with highly similar functions and 416 

the same fitness across sampled environments, or sequencing error. However, we 417 

also wanted an algorithm that has the sensitivity to detect different populations, 418 

even if the similarity between sequences in different populations is greater than 419 

what is typically used for species designations (i.e. above 97% sequence identity), or 420 

within the range of sequencing error. We compare the resulting method using two 421 
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different experimental mock communities to demonstrate how this algorithm 422 

compares to more commonly applied clustering methods based on sequence 423 

identity alone. 424 

 425 

Distribution-based clustering more accurately clusters sequences created in error 426 

 Distribution-based clustering creates OTUs that more accurately represent 427 

the input sequences based on the total number of OTUs, how sequences are grouped 428 

together into OTUs and distribution of OTUs across samples. 38 mock template 429 

sequences remain in distinct OTUs in both distribution-based and open-reference 430 

clustering, resulting in the largest number of OTUs containing at least one of the 431 

input sequences ("Correct"; Fig. 3a).  De novo clustering has fewer correct OTUs 432 

because some sequences are merged into the same OTU. Closed-reference clustering 433 

retains fewer correct OTUs because some of the community members do not match 434 

the database with sufficient identity. Distribution-based clustering predicts the 435 

lowest number of spurious, incorrect OTUs ("Incorrect"; Fig. 3a). Open-reference 436 

clustering predicts the largest number of incorrect OTUs of all methods. 437 

 Distribution-based clustering also groups together reads originating from the 438 

same template sequence more accurately. A typical benchmark of OTU accuracy is 439 

whether the algorithms cluster sequences that are within a specific genetic distance 440 

or sequence identity threshold (12). However, our benchmark is whether reads that 441 

originate from the same mock template are grouped together and reads originating 442 

from different templates are kept apart. The F-score and Matthew's correlation 443 

coefficient are both measures of classification accuracy that have been used 444 



Page 21 of 39 

previously to benchmark OTU definitions (12). By either metric, distribution-based 445 

clustering out-performs all of the other methods at accurately discriminating input 446 

sequences (Fig. 3b). De novo clustering predicts more true positives than 447 

distribution-based clustering, but also predicts about 10 times more false positives 448 

than distribution-based clustering (Table 1) because it tends to over-cluster the 449 

closely related true sequences. Closed-reference clustering has the lowest scores 450 

due to a large number of false negatives for sequences that do not match the 451 

database. 452 

 Distribution-based clustering produces a resulting community that is more 453 

similar to the input community in both total number and relative abundance of 454 

OTUs. The number of reads mapping to each OTU from one high quality library 455 

(com9) was compared to the input sequences using the Jensen-Shannon divergence 456 

(Fig. 3c). Distribution-based clustering (both complete and parallel applications- see 457 

Complete vs. Parallel algorithm in Materials and Methods for details) had the 458 

smallest Jensen-Shannon divergence from the input community of all clustering 459 

algorithms. Both de novo algorithms result in the largest divergence from the true 460 

distribution of all clustering methods because some input sequences are merged 461 

together. Closed-reference clustering discarded many input sequences that did not 462 

match the database, resulting in a larger calculated divergence from the input 463 

community. Open-reference clustering does not merge as many input sequences as 464 

de novo clustering and does not discard any true sequences like closed-reference 465 

clustering, but was still less accurate than distribution-based clustering.  466 

 467 
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Filtering out low abundance OTUs 468 

 Low abundance OTUs are often discarded because they do not contain much 469 

information. We have also compared the total number of OTUs remaining after 470 

filtering to various levels (Table 2). After filtering out singletons (i.e. OTUs with less 471 

than 2 counts), distribution-based clustering still predicts many fewer OTUs than 472 

any other method, for the mock community, and fewer than de novo and open-473 

reference in the environmental sample. However, the total number of OTUs is 474 

similar after filtering out OTUs with 10 or fewer counts.  475 

 476 

DBC more accurately groups sequences from the same organism 477 

 The mock community generated by Turnbaugh et al (23) provides the 478 

opportunity to highlight the power of this approach at grouping together sequences 479 

originating from the same organism, while still keeping the power to resolve closely 480 

related organisms that have a unique distribution across samples. The input of this 481 

mock community came from DNA extracted from 67 organisms. The data in this 482 

analysis was previously cleaned, denoised and chimeras were removed (23). Thus, 483 

the following results describe how well this method does at clustering sequences in 484 

the absence of sequence error. 485 

 Distribution-based clustering is better than other methods at merging 486 

sequences together that originated from the same input organism and accurately 487 

representing the input distribution. The complete and parallel versions of 488 

distribution-based clustering predicted 76 and 75 total OTUs, respectively, the 489 

fewest total number of OTUs of all clustering methods (Fig. 4a). It also more 490 
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accurately grouped together reads that originated from the same organism (Fig. 4b) 491 

and more accurately captured the distribution of the input sequences (Fig. 4c). 492 

Closed- and open-reference clustering never grouped together sequences that 493 

originated from different organisms (i.e. no false positives), but did not merge as 494 

many sequences that originated from the same organism in the same OTUs (i.e. 495 

fewer true positives), not clustering together enough sequences (i.e. under-496 

clustering). Both de novo approaches tended to merge sequences originating from 497 

closely related organisms (i.e. more false positives), but also more often grouped 498 

together sequences from the same organism (i.e. more true positives), grouping 499 

together too many sequence (i.e. over-clustering). These results highlight the 500 

drawback of using genetic information alone, which will necessarily either over-501 

cluster or under-cluster sequences, as depicted in the example in Fig 1c. Using the 502 

distribution of sequences across samples is the only way to cluster more sequences 503 

by their input when the level of genetic variation is different across taxonomic 504 

lineages. 505 

 506 

Comparison with unknown samples 507 

 Along with comparisons between clustering methods on a simple, well-508 

defined mock community, we also applied all clustering methods to an 509 

environmental sample set. This sample set was generated from 25 samples from a 510 

depth profile of a stratified lake sample (Mystic Lake, Winchester, MA), where 511 

different depths corresponded to distinct biogeochemical conditions. We generated 512 

two datasets for this analysis. First, we made an Illumina 16S rRNA library from 513 
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DNA extracted from water collected approximately every meter from the surface to 514 

the bottom (22 meters depth). Additionally, we generated Sanger-sequencing based 515 

16S rRNA libraries from two depths (6 and 21 meters). The distribution of the 516 

Illumina library sequences was used in the clustering method and Illumina 517 

sequences that match different Sanger clones were used as a control comparison, 518 

since these sequences were observed independently in the Illumina and Sanger 519 

datasets. 520 

 521 

Closed-reference clustering over-filters environmental data 522 

 The closed-reference clustering method predicts the fewest number of OTUs 523 

of all methods (Fig. 5a). Although the total number of OTUs in the sample is 524 

unknown, the Illumina sequences that match the Sanger library mock community 525 

can be used to compare clustering methods on the unknown sample. 89 Illumina 526 

sequences match one or more of the Sanger sequences. As we saw with the simple 527 

mock community, which was generated from clones of these sequences, the closed-528 

reference method discards many sequences that are missing representative 529 

sequences in the database. Closed-reference clustering discards 15 of the 89 530 

sequences with more than 1000 counts across all libraries. The most abundant 531 

discarded sequence is classified as Cyanobacteria with a distribution that 532 

corresponds to a peak in oxygen below the thermocline. This suggests that the very 533 

low number of OTUs predicted by the closed-reference method is an underestimate 534 

and that this method excluded biologically interesting information. 535 

 536 
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Over-clustered environmental data 537 

 De novo, open-, and closed- reference clustering over-clustered the data, 538 

resulting in skewed environmental distributions for many OTUs as compared with 539 

distribution-based clustering. Merged sequences with different distributions 540 

resulted low correlations between the resulting OTU and the matching Sanger clone 541 

for different clustering methods because merged sequences had very distinct 542 

profiles (such as in Fig. 5b). The distribution of five OTUs formed by de novo 543 

(USEARCH) clustering, resulting in correlations below 0.9 with the matching Sanger 544 

sequence (Table S4). Three OTUs formed by open- and closed-reference clustering 545 

algorithms had low correlations with the matching Sanger sequence (Table S4). 546 

However, the correlation of the matching Sanger sequence with distribution-based 547 

clustering OTUs was high in all cases. This suggests that other clustering methods 548 

are more likely to over cluster sequences with distinct environmental distributions, 549 

as compared to distribution-based clustering. 550 

 551 

Distribution-based clustering is accurate and flexible 552 

 The distribution based clustering method predicted a low number of OTUs 553 

yet retained distinct profiles for highly similar sequences. Distribution-based 554 

clustering predicted about 9,000 fewer OTUs than both de novo open-reference (Fig 555 

5a). When filtering out singletons (i.e. OTUs with 1 count), distribution-based 556 

clustering still predicted a few thousand fewer total OTUs than either de novo or 557 

open-reference clustering. However, after filtering out OTUs with less than 10 558 

counts across all libraries, the difference was less obvious (Table 2). Distribution-559 
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based clustering was also sensitive enough to keep closely related sequences with 560 

distinct distributions in separate OTUs (Fig. 5b). 561 

 Distribution-based clustering can function to identify all likely sequences in 562 

the sample (i.e. remove sequencing error) or be used to group all sequences 563 

together that are within a population (i.e. ecologically relevant populations). To 564 

eliminate sequencing error, the representative sequence of the OTU must be at least 565 

10-fold more abundant than other sequences in the OTU, since sequences created in 566 

error are typically less than 10% of the abundance original sequence. This is 567 

comparable to the analysis done with the mock community generated from 16S 568 

plasmid templates (Fig. 3). Under these conditions, sequences in Fig. 5c would 569 

remain as distinct OTUs. However, it may be redundant to consider each sequence 570 

as a separate OTU because they are genetically similar and distributed in a similar 571 

manner. Thus, the distribution-based algorithm can also be adjusted to merge 572 

sequences in Fig. 5c by using no abundance cut-off and comparing the sequence 573 

distributions with JSD (see Materials and Methods for details). This is comparable to 574 

the analysis done on the mock community generated from genomic DNA extracted 575 

from different organisms (Fig. 4). Under the adjusted parameters, distribution-576 

based clustering predicts 11,871 OTUs total, and created three OTUs with more than 577 

one sequence matching Sanger clones, including the sequences in Fig. 5c. 578 

 579 

Run-time of each clustering algorithm 580 

 The total computational time for distribution-based clustering is much 581 

longer than any of the other clustering methods. Table 3 shows typical run times for 582 
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approximately 500,000 total reads (5,489 unique sequences) in the mock and 7.5 583 

million reads (120,601 unique sequences). Only the parallelized distribution-based 584 

clustering used multiple processors to complete, and run time of other methods 585 

could be improved even further by using multiple processors. However, it is clear 586 

that there is a significant difference in speed between distribution-based clustering 587 

and the other methods. 588 

 589 

Issues affecting sequence and distribution accuracy 590 

 The sequences and distribution of OTUs across libraries should represent the 591 

true distribution as accurately as possible. Recommendations made from previous 592 

studies were followed during library construction to reduce PCR amplification 593 

biases, including reducing the cycle number and pooling replicate PCR reactions (31, 594 

32). While these measures help, the resulting sequences and distributions across 595 

libraries is primarily affected by two things: mismatches between the primer and 596 

template sequences and sequence-specific errors of the Illumina sequencing 597 

platform from a poor quality run. 598 

 599 

Sequence-specific sequencing errors 600 

 The distribution-based clustering method is sensitive to errors that are 601 

generated in a non-random way across samples. Since the algorithm assumes that 602 

differences in the distribution of sequences across samples represent important 603 

information, this assumption is invalid when differences are due to methodological 604 

errors. In our analysis, the most obvious cause of non-random errors results from 605 
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combining sequencing data from different runs with varying quality scores (Fig. S5), 606 

as certain errors were generated at a higher frequency on one flow-cell than the 607 

other (Fig. S6a). This causes the erroneous sequences to have a significantly 608 

different distribution than the sequences they were derived from (Fig. S6b), and are 609 

thus retained as distinct OTUs. As expected, distribution-based clustering performs 610 

very well on simulated data when the error rate is constant across libraries, but is 611 

substantially worse when error rates are non-constant (Table S5). Thus, 612 

distribution-based clustering would be even more accurate had all of the samples 613 

been sequenced on the same flow-cell. 614 

 Sequence specific errors are obvious when a stringent quality filter is applied 615 

to a low-quality sequencing lane. After removing templates with primer site 616 

mismatches, Fig. 6 shows little decrease in the correlation between the observed 617 

and expected frequencies for a good quality sequencing run after quality filtering 618 

(Fig. 6a and 6b). In a library from the poor quality lane (Flow 2 lane 1, com4-com6), 619 

the correlation with the input concentration is high for unfiltered data (R2=0.96287; 620 

Fig. 6c). However, the correlation between the input concentration and the resulting 621 

sequences breaks down with more stringent quality filtering (R2=0.49601; Fig. 6d). 622 

This is likely due to sequence specific errors, a problem identified previously with 623 

Illumina sequencing technology (33-35). When using data from poor quality 624 

sequencing runs, OTUs from more stringent quality filtering represent true 625 

sequences, but the relative abundances may be highly skewed. 626 

 627 

Discussion 628 
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 We present a novel method of calling OTUs that uses the ecology of the 629 

organisms they represent to inform the clustering. Typically, only genetic 630 

information is considered when forming OTUs. Incorporating information such as 631 

abundance and distribution into the OTU formation process creates OTUs that more 632 

accurately cluster sequences by the template or organism of origin and improves 633 

the information content of the resulting OTUs.  634 

 The gross trends in the data are similar, regardless of clustering algorithms. 635 

Principal coordinates analysis (PCoA) plots, which identify the most obvious 636 

differences between samples, were similar across clustering methods (Fig. S7 and 637 

S8). PCoA are particularly effective when the variable of interest (e.g. depth, disease 638 

state) is associated with major changes in community structure, but are less 639 

effective at detecting subtle variations in community structure. Furthermore, they 640 

cannot pinpoint the specific sequences that drive these associations. Other 641 

approaches, such as univariate tests including the Mann-Whitney U test and Fisher's 642 

exact test, and statistical learning techniques such as random forest classification 643 

can test for associations between bacterial species abundance and environmental 644 

metadata (36). Optimizing the clustering algorithm to detect such associations will 645 

increase the chances of gaining important biological insight. Thus, accurate OTU 646 

formation may not be as critical when trends in the data can be discerned at higher 647 

taxonomic levels, such as the ratio of Bacteroidetes to Firmicutes in obesity (37). 648 

However, differences between closely related organisms are crucial for identifying 649 

evolutionary and ecological mechanisms (18). In such cases, distribution-based 650 
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clustering may be one of only a few tools that can be used to distinguish the signal 651 

from the noise of sequencing errors. 652 

 Run time is currently a severe limitation to implementing distribution-based 653 

clustering on very large datasets. Although many improvements can be made to the 654 

algorithm itself to increase the speed of the program (likely with lower accuracy), 655 

any implementation will likely be more computationally intensive than other 656 

methods since it involves processing additional information. Steps can be taken to 657 

reduce total runtime, such as increasing the abundance skew (e.g. 100-fold more 658 

abundant representative sequences) or decreasing the total distance cut-off allowed 659 

for forming clusters (e.g. cutoff=0.05), or filtering out low abundance sequences (e.g. 660 

filter out singletons). All of these steps decrease the total number of pairwise 661 

comparisons and reduce runtime. However, these will also decrease accuracy of the 662 

algorithm at removing incorrect OTUs (Fig. S4).  663 

 There are some cases when the distribution-based clustering method should 664 

be used with caution. Distribution-based clustering predicts the most accurate OTUs 665 

when sequences are distributed in an ecologically meaningful way across samples, 666 

as in the mock community or in a stratified lake. However, methodological issues 667 

creating non-random errors across samples (e.g. different error rates across 668 

sequencing cells or runs) will increase the number of erroneous sequences that 669 

distribution-based clustering will keep as distinct OTUs (Table S5). However, 670 

distribution-based clustering still creates the most accurate OTUs of all clustering 671 

methods, even with the methodological errors found in this analysis. Users should 672 
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also consider whether grouping sequences using a statistical test of similarity will 673 

impact the statistics of their downstream analyses. 674 

 Although no method formed OTUs that were as accurate as the distribution-675 

based method with these mock communities, there are situations when different 676 

methods might be a more appropriate choice. Closed-reference clustering has the 677 

advantage of speed and convenience, especially for downstream processing because 678 

information about the reference sequences can be pre-computed (e.g. phylogenetic 679 

trees, taxonomic information). De novo clustering may be a good choice for higher 680 

taxonomic level analyses, as over-clustering species should not affect phylum-level 681 

changes across samples, especially when the total number of predicted OTUs can 682 

affect the results. Open-reference clustering is less discriminating and tends to 683 

grossly over-estimate the number of OTUs. However, it seems to a good alternative 684 

when looking for trends between closely related organisms, especially if low 685 

abundance OTUs can be filtered out. 686 

 When applied appropriately, each of the different clustering methods 687 

analyzed here can facilitate the discovery of important trends in 16S rRNA library 688 

sequence data. The introduction of the distribution-based clustering method gives 689 

researchers an additional tool that allows distinct OTUs to be retained even if they 690 

differ at a single base pair in a background of high micro-diversity or sequencing 691 

error. 692 
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Titles and Legends to Figures 833 

 834 

Figure 1 Schematic of how the distribution-based clustering algorithm forms OTUs. 835 

Symbols represent sequences originating from the same template, organism or 836 

population. Gray coloring represent dominant sequences, and white coloring 837 

represent lowly abundant variants or errors. OTUs are represented as ovals 838 

encompassing one or more symbols. (a) Hypothetical phylogenetic tree of the 839 

genetic relationship between various sequences represented by different symbols 840 

and colors. The distribution of two dominant sequences across one environmental 841 

parameter is shown. Using both the genetic and distribution information, 842 

distribution-based clustering identifies these as sequences originating from 843 

different organisms or populations, and puts them in different OTUs. (b) The 844 

phylogenetic relationship and distribution of a dominant sequence and a lowly 845 

abundant variant across some ecological parameter. Based on the sequence identity 846 

and distribution, distribution-based clustering merges these sequences in the same 847 

OTU.  (c) Using genetic information alone, there is no way to achieve the desired 848 

clustering of sequences by symbol. Using a higher percent sequence identity cut-off 849 

will keep all dominant sequences in separate OTUs, but will keep some lowly 850 

abundant or erroneous sequences in different OTUs. Alternatively, using a lower 851 

identity cut-off, all lowly abundant variants will be merged with the abundant 852 

variants, but the diamond and square symbols are merged as well. 853 

 854 
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Figure 2 An outline of the decision making process used during distribution-based 855 

clustering. Rounded rectangles indicate the beginning and end of the process and 856 

arrow point to the next step in the process. Hexagons indicate a loop with the 857 

sorting criteria indicated within the hexagon. Diamonds indicate a decision step, 858 

with the question contained within the diamond and arrows directing how the 859 

program will respond. Rectangles indicate action steps, where sequences are 860 

categorized as either representatives of a new OTU or merged into an existing OTU. 861 

 862 

Figure 3 Distribution-based clustering results in more correct OTUs, fewer 863 

incorrect OTUs and more accurately clustered reads originating from the same 864 

template in a mock community. a.) The number of total correct (black- left axis) and 865 

incorrect (hatched- right axis) OTUs predicted by each clustering method. A correct 866 

OTUs is one in which the representative sequence matches one of the input 867 

sequences. b.) The accuracy of each clustering method at grouping together reads 868 

originating from the same template as measured by both F-score (black bar) and 869 

Matthew's coefficient correlation (hatched bar).  c.) The Jensen-Shannon divergence 870 

(JSD) is used as a measure of distance from the input of resulting communities 871 

created by applying each clustering method. 872 

 873 

Figure 4 Distribution-based clustering predicts fewer OTUs and more accurately 874 

clustered reads originating from the same organism in cleaned, denoised and 875 

chimera-free mock community. a.) The number of total OTUs predicted by each 876 

clustering method. b.) The accuracy of each clustering method at grouping together 877 
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sequences that originated from the same organism as measured by both F-score 878 

(black bar) and Matthew's coefficient correlation (hatched bar).  c.) The Jensen-879 

Shannon divergence (JSD) is used as a measure of distance from the input of 880 

resulting communities created by applying each clustering method. 881 

 882 

Figure 5 Evaluation of clustering methods on environmental samples from a 883 

stratified lake. a.) The total number of OTUs predicted by each clustering method for 884 

the entire lake. b.) Sequences displaying distinct ecological distributions but are 885 

merged by all clustering algorithms except distribution-based clustering. The solid 886 

line is the distribution of the resulting cluster, comprised mainly of two sequences 887 

(dotted and dashed lines). Distribution-based clustering keeps the two sequences 888 

distinct, but all other methods merge them into one OTU.  c.) Sequences that 889 

represent micro-diversity within the environmental sample. The distribution-based 890 

clustering algorithm can be adjusted such that these sequences either remain 891 

distinct or can be clustered. 892 

 893 

Figure 6 Template abundance is highly correlated with input concentration when 894 

templates do not have mismatches in the primer-binding site. Additionally, stringent 895 

quality filtering can decrease the correlation with input concentration for poor 896 

quality sequencing runs. a) and b) show data from a high quality sequencing run and 897 

c.) and d.) show data from a low quality sequencing run. a) and c) show unfiltered 898 

data and b.) and d.) show filtered data. Abundance is determined as the number of 899 

reads with best blast hit to the mock community sequence. Input concentrations 900 
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were measured experimentally from mock community DNA template. Trendlines 901 

and corresponding correlation coefficients (R2) shown for reads with primer site 902 

matches only (black square). 903 













Table	1	The	ability	of	each	clustering	algorithm	to	groups	reads	from	the	same	1	

input	sequence	together	into	the	same	OTU	2	

	3	

	 Distribution-based De novo Reference-based

	 Complete Parallel USEARCH Average5 Open Closed 

TP1	
8.57E+08  8.45E+08 9.46E+08 8.60E+08 6.61E+08  6.68E+08

FP2	
6.86E+07  5.08E+07 7.36E+08 3.92E+08 1.32E+04  1.10E+04

TN3	
1.48E+11  1.48E+11 1.48E+11 1.48E+11 1.48E+11  1.37E+11

FN4	
2.02E+08  2.14E+08 1.13E+08 1.99E+08 3.98E+08  1.15E+10

	4	

1	TP:	True	positives	when	two	reads	with	best	blast	hits	to	the	same	mock	5	

community	input	sequence	cluster	in	the	same	OTU	6	

2	FP:	False	positives	when	two	reads	with	best	blast	hits	to	different	mock	7	

community	input	sequences	cluster	in	the	same	OTU	8	

3	TN:	True	negatives	when	two	reads	with	best	blast	hits	to	different	mock	9	

community	input	sequences	cluster	in	different	OTUs	10	

4	FN:	False	negative	when	two	reads	with	best	blast	hits	to	the	same	mock	11	

community	and	in	different	OTUs	or	when	one	of	the	reads	is	not	assigned	to	any	12	

OTUs	(Closed‐reference	only)	13	

5	Average:	Average‐linkage	hierarchical	clustering	14	

	15	



Table	2.	Total	number	of	OTUs	remaining	after	filtering	out	low	abundance	OTUs	
	

	 Mock	Community	 Environmental	Sample	
Method	 No	filter2	 >1	 >10	 No	filter	 >1	 >10	

DBC1	(complete)	 124  82  63  NA	 NA	 NA	
DBC	(parallel)	 175  136  83  14,234  11,762  6,087 

De	novo	
(USEARCH)	 390  226  86 

23,616  17,261  7,875 

De	novo	(average	‐
linkage)	 336  169  70 

NA	 NA	 NA	

Closed‐reference	 700  430  160  9,799  7,867  4,046 

Open‐reference	 385  257  119  23,047  15,833  6,310 
1	DBC:	Distribution‐based	clustering	
2	Filtering	criteria:	Either	all	OTUs	were	included	(No	filter),	or	only	OTUs	with	
greater	than	1	(>1)	or	greater	than	10	(>10)	counts	were	included			



Table	3.	Representative	clustering	times	for	mock	community	samples	with	various	
algorithms	
	
	 Total	Run	Time	(hr:min:sec)1	
Clustering	Method	 Mock	community2	 Environmental	Sample3	
Distribution‐based	
clustering	(complete)	

1:09:40	 NA4	

Distribution‐based	
clustering	(parallel)5	

0:21:31	 7:58:57	

De	novo	(average	neighbor)	 0:06:36	 NA	
De	novo	(USEARCH)	 0:00:23	 0:00:26	
Closed‐reference	 0:06:09	 1:26:23	
Open‐reference	 0:06:05	 1:23:25	
	

1	Times	are	approximated	by	the	difference	between	the	start	time	and	end	time	in	
the	shell	script	examples	in	SI.	
2	The	mock	community	contains	565,498	total	reads	and	5489	unique	sequences	
3	The	environmental	sample	contains	7,539,779	total	reads	and	120,601	unique	
sequences.	
4	NA	indicates	that	this	method	was	not	performed.	
5	The	distribution‐based	clustering	algorithm	was	the	only	one	was	parallelized.	60‐
100	different	processes	were	run	at	one	time.	Other	methods	would	have	had	
improved	speeds	if	run	in	parallel.	
 
	



Supplementary Information 

Environmental sample collection 

  Water was collected from Upper Mystic Lake, (Winchester, MA, ~ 42 

26.155N, 71 08. 961W) on Aug, 13, 2008 using a peristatic pump and plastic Tygon 

tubing. Tubing was lowered to a point ~1 m from the bottom, running the pump in 

reverse to prevent water from entering the tubing until the appropriate depth was 

reached. Water from depth was allowed to flow through the tubing for 5 minutes 

before 14 mls were collected into a 15 ml sterile falcon tube and immediately placed 

on dry ice. The first sample was taken from 22m depth and subsequent samples 

were taken every meter until 3m, then at 1.5m and the surface. Samples were 

transported on dry ice and stored at ‐80 °C until processing (about 1 year later).  
 

DNA extraction 

  DNA was extracted as previously described (Blackburn 2010). Briefly, DNA 

was extracted with a modified version of the Qiagen DNeasy Blood and Tissue Kit 

(Qiagen, USA). Water was filtered through Swinnex filter holders onto 0.22 μm 

filters (Millipore, Billerica, MA). Filters were sterilely cut and added to a 2 ml screw 

cap tube containing 0.25 g of 0.1 mm zirconium/glass beads (MoBio Laboratories, 

Inc., Carlsbad, CA). 180 μl of lysis buffer consisting of 20 mM Tris HCl, 2 mM EDTA, 

and 1.2% Triton‐X100 (pH 8.0) was added and samples were placed on a Mini 

Beadbeater‐1 (BioSpec Products, Inc., Bartlesville, OK) for 1 minute at maximum 

speed. 180 μl of lysis buffer with 40 mg/ml lysozyme was added and the sample was 

incubated at 37 °C for 1 hr with shaking (450 rpm). 50 μl of proteinase K was added 
along with 400 μl of AL buffer (Qiagen DNeasy kit) without ethanol. Samples were 

mixed and incubated at 56 °C for 45 min. followed by a 5 min. incubation at 95 °C. 

Samples were centrifuged and the liquid was transferred to a sterile 1.5 ml tube. 

400 μl of 100% ethanol was added and the liquid was added to the Qiagen DNeasy 

column. DNA was washed on the column following the Qiagen DNeasy protocol, 

including 500 μl wash with AW1 and AW2 and a final elution in 100 μl AE.  

 

Mock community template preparation 



  To make the clone library, 16S rRNA sequences were amplified with Phusion 

polymerase (New England Biolabs, Ipswich, MA) and 27F and 1492R primers (Lane 

1991). PCR products were cloned into the pCR Blunt II plasmid with the Zero Blunt 

TOPO PCR cloning kit (Invitrogen, Carlsbad, CA) and sequenced in at least one 

direction with Sanger sequencing (Genewiz, South Plainfield, NJ). Plasmids were 

purified using the plasmid DNA isolation reagent system (Carolina Biological Supply 

Co., Burlington, NC) and digested with restriction enzyme NotI (New England 

Biolabs, Ipswich, MA) to linearize the plasmid. 

 

Illumina library preparation 

  Real‐time PCR reactions were done first to normalize template 

concentrations and avoid cycling any templates past mid‐log phase. PCR reactions 

for Illumina libraries were carried out as follows: 0.5 units of Phusion with 1 x High 

Fidelity buffer, 200 µM of each dNTP, 0.3 µM of PE16S_V4_U515_F and 

PE16S_V4_E786_R first step primers and approximately 40 ng of mixed DNA 

template were added for each 25 µl reaction. Additionally, 5 X SYBR Green I nucleic 

acid stain (Molecular Probes, Eugene, OR) was added for real‐time PCR. Samples 

were cycled with the following conditions: denaturation at 98 °C for 30 sec 
annealing at 52 °C for 30 sec and extension at 72 °C for 30 sec. 14 cycles was mid‐
log for all samples and was subsequently used as the number of cycles for the first 

step PCR. The first step PCR reaction was cycled as four 25 µl reactions for each 

sample. PCR reactions were pooled and cleaned with Agencourt AMPure XP‐ PCR 

purification (Beckman Coulter, Brea, CA) according to the manufacture's protocol. 

  Illumina specific adaptors were added during a second step amplification. 

The conditions for the second step PCR were similar to the first step, although 4 µl 

of the purified first step reaction was used as a template and 0.4 µM of each PE‐III‐

PCR‐F and the barcoded reverse primer was used with 9 cycles. Samples were 

cycled as four 25 µl reactions and cleaned with Agencourt AMPure XP‐ PCR 

purification system. The nine libraries were sequenced in groups of three across 

three lanes (two flow cells) on both the Illumina GA II and HiSeq at the Biomicro 



Center (MIT, Cambridge, MA) with 93 other samples per lane. 

 

Calculation of error rate per sample 

Raw data from reads with an exact match to one of the nine barcodes used for this 

experiment were used for comparing error rates across flow cells and lanes. This 

was necessary because these samples were multiplexed into lanes containing up to 

93 additional unrelated samples. The raw, unfiltered fastq files were converted into 

a fasta file using a custom perl script. Blast was used to map the raw sequences to 

the mock community members, where the mock community database was trimmed 

to the amplified region between, but not including, the forward and reverse primer 

site. Raw sequences were only considered if the query and subject start and stop 

positions corresponded to the full length of the Illumina forward read. The perfect 

match, and single and double base mismatches, taken from the blast output, were 

calculated as a percent of the total that map to the full length Illumina sequence (Fig. 

S6). Sequences with less than 100% query or subject coverage were not considered 

in this calculation. 

 

Commands used during processing 

The following commands were used during processing. 

Closed‐reference clustering with QIIME (Shell): 

#! /bin/sh 

#$ ‐S /bin/bash 

# ‐cwd 

 

source /etc/profile.d/modules.sh 

module load qiime‐default 

module load mothur 

#fasta file name in QIIME format from first string after command 

FASTAFILE=$1 

#output directory as second string after command 

OUTPUT=$2 



#reference fasta file (latest greengenes OTUS) 

REFERENCEFA~/greengenes/gg_12_10_otus/rep_set/97_otus.fasta 

#reference taxonomies 

REFERENCETAX=~/greengenes/gg_12_10_otus/taxonomy/97_otu_taxonomy.txt 

PARAMS~/bin/methods_scripts/closed_ref_params.txt 

 

echo "Start time" 

date +"%m‐%d‐%y" 

date +"%T" 

 

pick_reference_otus_through_otu_table.py ‐o ${OUTPUT} ‐i ${FASTAFILE} ‐r 

${REFERENCEFA} ‐t ${REFERENCETAX} ‐p ${PARAMS} 

 

pick_rep_set.py ‐‐input ./${OUTPUT}/uclust_ref_picked_otus/*_otus.txt ‐‐

rep_set_picking_method most_abundant ‐‐fasta_file ${FAST 

AFILE} ‐o ./${OUTPUT}/uclust_ref_picked_otus/otus_rep_set.fa  

 

echo "End time" 

date +"%m‐%d‐%y" 

date +"%T" 

 

 

Closed‐reference QIIME parameters: 

pick_otus:otu_picking_method uclust_ref 

pick_otus:refseqs_fp  /greengenes/gg_12_10_otus/rep_set/97_otus.fasta 

pick_otus:enable_rev_strand_match True 

pick_otus:suppress_new_clusters    True 

 

Open‐reference clustering with QIIME (shell) 

#! /bin/sh 

#$ ‐S /bin/bash 



# ‐cwd 

 

source /etc/profile.d/modules.sh 

module load qiime‐default 

module load mothur 

#fasta file name in QIIME format 

FASTAFILE=$1 

#output folder (unique) 

OUTPUT=$2 

#reference fasta file (latest greengenes OTUS) 

REFERENCEFA=/data/spacocha/Qiime_dir/greengenes/gg_12_10_otus/rep_set/97

_otus.fasta 

#reference taxonomies 

REFERENCETAX=/data/spacocha/Qiime_dir/greengenes/gg_12_10_otus/taxonomy

/97_otu_taxonomy.txt 

PARAMS=/home/spacocha/bin/methods_scripts/open_ref_params.txt 

 

echo "Start time" 

date +"%m‐%d‐%y" 

date +"%T" 

 

 

pick_reference_otus_through_otu_table.py ‐o ${OUTPUT} ‐i ${FASTAFILE} ‐r 

${REFERENCEFA} ‐t ${REFERENCETAX} ‐p ${PARAMS} 

 

pick_rep_set.py ‐‐input ./${OUTPUT}/uclust_ref_picked_otus/*_otus.txt ‐‐

rep_set_picking_method most_abundant ‐‐fasta_file ${FAST 

AFILE} ‐o ./${OUTPUT}/uclust_ref_picked_otus/otus_rep_set.fa  

 

echo "End time" 

date +"%m‐%d‐%y" 



date +"%T" 

 

 

Open‐reference QIIME parameters: 

pick_otus:otu_picking_method uclust_ref 

pick_otus:refseqs_fp greengenes/gg_12_10_otus/rep_set/97_otus.fasta 

pick_otus:enable_rev_strand_match True 

pick_otus:suppress_new_clusters    False 

 

De novo USEARCH (shell) 

#! /bin/sh 

#$ ‐S /bin/bash 

# ‐cwd 

 

#fastafile 

FASTAFILE=$1 

#matfile 

MATFILE=$2 

 

echo "Start time" 

date +"%m‐%d‐%y" 

date +"%T" 

 

perl ~/bin/fasta2uchime_mat.pl ${MATFILE} ${FASTAFILE} > ${FASTAFILE}.ab 

~/bin/usearch6.0.307_i86linux32 ‐cluster_fast ${FASTAFILE}.ab ‐id 0.97 ‐uc 

${FASTAFILE}.uc 

perl ~/bin/UC2list2.pl ${FASTAFILE}.uc > ${FASTAFILE}.list 

perl ~/bin/list2mat.pl ${MATFILE} ${FASTAFILE}.list eco > ${FASTAFILE}.list.mat 

perl ~/bin/fasta2filter_from_mat.pl  ${UNIQUE}.list.mat ${FASTAFILE} > 

${FASTAFILE}.list.mat.fa 

 



echo "End time" 

date +"%m‐%d‐%y" 

date +"%T" 

 

Mothur command (batch) 

unique.seqs(fasta=unique.uchime.remove.tocluster.fa) 

align.seqs(fasta=unique.uchime.remove.tocluster.unique.fa, 

reference=/data/spacocha/tmp/silva.bacteria.fasta) 

screen.seqs(fasta=unique.uchime.remove.tocluster.unique.align, 

name=unique.uchime.remove.tocluster.names, start=13862, 

end=15958,minlength=76) 

filter.seqs(fasta=unique.uchime.remove.tocluster.unique.good.align, vertical=T, 

trump=.) 

unique.seqs(fasta=unique.uchime.remove.tocluster.unique.good.filter.fasta, 

name=unique.uchime.remove.tocluster.good.names) 

system(cp unique.uchime.remove.tocluster.unique.good.filter.unique.names 

final.names) 

system(cp unique.uchime.remove.tocluster.unique.good.filter.names final.names) 

dist.seqs(fasta=final.fasta, cutoff=0.15) 

cluster(column=final.dist, name=final.names) 

 

 

Generation of principal component analysis plots 

Principal component analysis was done on the final OTU by library matrices for each 

clustering algorithm using QIIME beta_diversity_through_plots.py. The lowest 

number of sequences in a library was determined using QIIME's per_library_stats.py 

and input into beta_diversity_through_plots.py (‐e). Trees of the representative 

samples were made with FastTree. 

 

Simulated mock community data with varying error rates across libraries 



To determine the impact of different error rates across libraries on distribution‐

based clustering performance, simulated mock community was generated using the 

template sequences for each members added across libraries. The total number of 

sequences generated was proportional to measured concentration and resulted in 

the creation of 748,463 total in silico reads. The geometric mean (R version 2.12.1; 

rgeom) was used to create error rates of both 0.9 and 0.8 to simulate high and low 

quality sequencing runs, respectively. The constant error rate dataset used in Table 

S5 was 0.9 for all libraries while the variable error rate dataset was 0.90 for 6 

libraries and 0.08 for 3 of the libraries.  

  The geometric mean was used to determine which of the simulated reads 

would contain errors and how many errors it would contain. This was implemented 

in R (version 2.12.1) with rgeom using the total read count needed for each 

sequence and the error rate. For example, if a template was supposed to have 10 

reads with an error rate of 0.8, the results would look similar to the following: 

> rgeom(10,0.8) 

 [1] 1 0 0 0 0 0 1 4 0 0 

 

Where two sequences would have one bp different, one would have four 

mismatches and seven sequences would have no errors. 

  After determining how many errors to generate for each read, the position of 

the errors was also determined in R using the hypergeometric mean (rhyper). The 

distribution results in either 0 or 1 and depends on the input probability. Starting at 

the 3' ending position, the hypergenometric mean was used to determine whether 

to alter the base to another random base (1=alter, 0=evaluate next base).  The 

probability of having an error decreased toward the 5' end to mimic sequence 

quality being poor at the 3' end. This was repeated until the required number of 

errors was generated. 

  Two datasets were generated in this manner. One set had a constant error 

rate across all libraries, and another had three libraries with a higher error rate. The 

dataset was clustered using the distribution based clustering algorithm as normal 

and the results are presented in Table S5. 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Figure S1. Unique distributions across the mock libraries help to identify a 

mislabeled sequence in the reference dataset. a. The distribution of a sequence 

matching the reference sequence labeled Providencia rettgeri and the input 

distribution of Providencia alcalifaciens. This sequence also matched others strains 

labeled Providencia alcalifaciens in NCBI's nr database. It was changed to 

Providencia alcalifaciens. b.) The distribution of another sequence which 

corresponds to the correct input of Providencia rettgeri. This other sequence also 

hits many other Providencia rettgeri  strain in NCBI's nr database. This sequence 

was included in the analysis as the reference sequence for Providencia rettgeri. 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Figure S2. 16S rDNA library construct from two‐step PCR. a.) 5' end of the Illumina 
library construct, including both first and second step forward primer sequences 
and sequencing primers. b.) 3' end of Illumina library construct including barcoded 
region and first step and second step reverse primers. 



 
 
Figure S3. Distribution‐based clustering results in a distribution of sequences that 
is most similar to the input distribution. Additionally, an intermediate amount of 
quality filtering results in a better representation of the input community for all 
clustering methods. The Jensen‐Shannon divergence (JSDiv) is used as a measure of 
distance between the input concentration and resulting OTU counts after applying 
each clustering method at different levels of quality filtering. At the highest error 
rates, incorrect OTUs add to the distance from the true distribution. At the lowest 
error rates, the small number of reads kept creates the large distance values. Both 
parallel and complete distribution‐based clustering methods result in OTUs that are 
most similar to the true distribution at intermediate levels of quality filter 
stringency. 
 
 
 



 



Figure S4. Sensitivity of the resulting OTUs to changes in the distribution‐based 
algorithm parameters. a.) Increasing the significance cut‐off value of the chi‐sq test 
creates more incorrect OTUs whereas lower p‐value cut‐offs tend to merge 
sequences. X‐ axis in plotted in log scale b.) Decreasing the abundance criteria 
merges true input sequences with similar distributions, but increasing the cut‐off to 
10 mainly detects sequencing errors. X‐axis is plotted in log scale c.) Lower genetic 
similarity cutoffs generate more incorrect OTUs, whereas at high genetic cut‐off 
values, some mock community sequences with similar distributions are merged. 
"Correct" are the number of OTUs containing a single exact match to an input 
sequence. "Incorrect" are the number of OTUs that do not have any sequences 
exactly matching the input community. "Merged" are the number of OTUs that 
contain more than one sequence matching an input sequence. 
 





 
Figure S5. Per base quality scores for the three lanes of Illumina. The quality of one 
set of samples was substantially worse than the others. (a) Flow 1, Lane 1, samples 
com4‐com6  (b) Flow 2, Lane 1, samples com1‐com3 (c) Flow 2, Lane 2, samples 
com7‐com9. 
 
 
 

 
 
Figure S6. Error rates were higher on Flow cell 1 (Flow1) than Flow cell 2 (Flow2) 
causing non‐random distribution of erroneous sequences across samples. (a) Exact 
match, single base mismatches (single error) and double base mismatches (double 



error) as a percent of the total number of raw (not quality filtered) sequences that 
blast to the entire 76 bp of any mock community member. Samples are labeled with 
the flow cell number (Flow1 or Flow2) corresponding to two different Illumina 
runs. Additionally, the corresponding sample name (mix1‐9) is labeled on the X‐axis. 
(b) The distribution of the true sequence (6m‐94‐27F) and a sequence with a single 
bp error sequence across samples after quality filtering and clustering. Although the 
single bp error sequence was generated from the true sequence, it does not have the 
same distribution across samples because of the difference in error rates across 
flow cells. Y‐axis is log scale. 
 



 
 



Figure S7. Principal components analysis of mock community libraries com1‐com9. 
The primary (P1) and secondary (P2) components are plotted for the (a) true input 
community and for each clustering method: (b) distribution‐based clustering, 
complete; (c) distribution‐based clustering, parallel; (d) de novo, usearch; (e) open‐
reference clustering; (f) closed‐reference clustering. Samples are colored according 
to the total number of input sequences: 1‐10 input sequences, red triangle; 11‐20, 
blue circle; 21‐30 orange square; 31‐40 green triangle. 
 



 

 
 
Figure S8. Principal components analysis of environmental samples from a 
stratified lake is similar across clustering algorithms. The primary (P1) and tertiary 
(P3) components are plotted for (a) distribution‐based clustering, (b) de novo 
(USEARCH), (c) closed‐reference and (d) open‐reference clustering. Samples are 
colored according to depth: surface to 5 meters (m) depth, red circles; 6‐10 m, blue 
square; 11‐12 orange triangle; 13‐15 m, green triangle; 16‐22 m, purple triangle; 
surface and end blank, yellow triangle. 
 
 
  



 
Supplementary Tables 
 
Table S1. Mock community template concentrations and primer mismatches 
 

Name  Set no.  Added to libs.1 
Concentration 
(pg/ul)  Notes 

21m‐94‐27F  1  com1‐com9  22.67  NA 
6m‐05‐27F  1  com1‐com9  4.9  NA 
6m‐16‐27F  1  com1‐com9  1.988  NA 
6m‐10‐27F  1  com1‐com9  26.36  NA 

21m‐66‐27F  1  com1‐com9  38.07 
2 mismatches 8 and 9 bp from 3' end 
of F primer 

21m‐32‐27F  2  com2‐com9  60.4875  NA 
6m‐09‐27F  2  com2‐com9  7.5625  NA 

6m‐44‐27F  2  com2‐com9  6.95 
1 mismatch 1 bp from 3' end of F 
primer 

6m‐06‐27F  2  com2‐com9  17.6875  NA 

21m‐41‐27F  2  com2‐com9  39.5625 

An additional 21.575 pg/ul of 21m‐41  
was added to com7, com8 and com9 
as a mislabeled template. 

6m‐80‐27F  3  com3‐com9  8.0735 
1 mismatch 13 bp from 3' end of the R 
primer 

21m‐90‐27F  3  com3‐com9  1.77 
1 bp mismatch 9 bps from 3' end of F  
primer 

6m‐70‐27F  3  com3‐com9  1.99875  NA 
6m‐89‐27F  3  com3‐com9  28.85  NA 

21m‐02‐27F  4  com4‐com9  1.6525 
2 bp mismatch 8 and 9 bp from 3' end 
of F primer 

6m‐22‐27F  4  com4‐com9  19  NA 
6m‐69‐27F  4  com4‐com9  8.625  NA 
6m‐50‐27F  4  com4‐com9  47.825  NA 

21m‐83‐27F  4  com4‐com9  56.05 
1 mismatch 14 bp from 3' end R 
primer 

6m‐94‐27F  5  com5‐com9  59.775  NA 
21m‐25‐27F  5  com5‐com9  19.5  NA 
21m‐29‐27F  5  com5‐com9  38.7875  NA 
21m‐05‐27F  5  com5‐com9  10.3375  NA 
6m‐86‐27F  6  com6‐com9  0.60475  NA 

21m‐87‐27F  6  com6‐com9  36.2 
1 mismatch 7 bp from 3' end of R 
primer 

6m‐65‐27F  6  com6‐com9  40.3625  1 mismatch 1 bp from 3' end F primer 



 
1 Samples were added to libraries in sequential order, starting with com1 and 
ending with com9. If a set was added to com1, it was also added to all subsequent 
libraries com2 through com9.  
 

21m‐61‐27F  6  com6‐com9  94.7125 
4 bps mismatch 12, 8, 7 and 2 bp from 
3' end of F primer 

6m‐04‐27F  7  com7‐com9  3.657  NA 
21m‐54‐27F  7  com7‐com9  30  NA 
6m‐20‐27F  7  com7‐com9  17.175  NA 
6m‐40‐27F  7  com7‐com9  26.8625  NA 

21m‐08‐27F  8  com8‐com9  0.5205 
2 mismatch 8 and 9 bp from 3' end of 
F primer 

6m‐81‐27F  8  com8‐com9  40.2875  NA 
6m‐13‐27F  8  com8‐com9  26.1625  NA 
6m‐52‐27F  8  com8‐com9  1.2065  NA 
6m‐75‐27F  9  com9  16.675  NA 
6m‐82‐27F  9  com9  22.675  NA 
21m‐68‐27F  9  com9  13.875  NA 
6m‐19‐27F  9  com9  8.85  NA 
6m‐87‐27F  9  com9  0.8125  NA 



 
Table S2. Expected relative amounts of each DNA template per library 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Table S3. Barcode sequences and sequencing outline 
 

Sample ID 
Barcode 
Sequence  Description 

Flow cell 
No.  Lane No. 

Diversity 

com1  CGAATAT 
E8, plate 
63umP2  1  1 

 

com2  AAGGAAC 
E9, plate 
63umP2  1  1 

 

com3  GATTGAA 
E10, plate 
63umP2   1  1 

 

com4  CCGCACC 
H1, plate 
63umP1  2  1 

 

com5  ATGCCAG 
H2, plate 
63umP1  2  1 

 

com6  TCGAACA 
H3, plate 
63umP1  2  1 

 

com7  GTACGTT 
H10, plate 
63umP3  1  2 

 

com8  AGTAGAT 
H11, plate 
63umP3  1  2 

 

com9  TCATTAA 
H12, plate 
63umP3  1  2 

 

 



Table S4. Correlation of OTUs from various clustering methods with matching 
Sanger environmental clone sequence 
 

Sanger Clone 
USEARCH 
correlation 

Open‐
reference 
correlation 

Closed‐
reference 
correlation 

DBC 
correlation 

21m‐02‐27F  0.999831867  0.988437304  NA  NA 
21m‐03‐27F  0.999999465  0.999768514  0.999768514  0.999953024 
21m‐04‐27F  0.982567028  0.999991003  0.999991003  0.999968253 
21m‐05‐27F  0.99998637  0.999952053  NA  0.999967953 
21m‐08‐27F  0.998120162  0.996556495  NA  0.999521037 
21m‐09‐27F  0.999922215  0.999952171  0.999952171  0.999858585 
21m‐11‐27F  0.997205609  0.994006215  NA  0.947095652 
21m‐13‐27F  0.999971592  0.999971592  0.999971592  0.999973636 
21m‐14‐27F  NA  NA  NA  NA 
21m‐22‐27F  0.999999929  0.999995556  0.999995763  0.999993992 
21m‐24‐27F  0.999936853  0.999945906  NA  0.999948108 
21m‐29‐27F  0.999999379  0.999996912  0.999996912  0.999995608 
21m‐30‐27F  0.999044469  0.999185914  NA  0.99998369 
21m‐31‐27F  0.999999836  0.999997084  0.999997084  0.999997146 
21m‐32‐27F  0.999995376  0.999458687  0.999458687  0.999969546 
21m‐36‐27F  0.999999722  0.999964949  NA  0.999955969 
21m‐40‐27F  0.999999988  0.999998671  0.999998649  0.99999804 
21m‐41‐27F  NA  0.997646314  0.997646314  0.999758171 
21m‐45‐27F  0.999999156  NA  NA  0.99995629 
21m‐48‐27F  0.976110722  1  0.99750752  0.976621605 
21m‐49‐27F  0.999982722  NA  NA  0.999980964 
21m‐52‐27F  NA  NA  NA  0.999698894 
21m‐60‐27F  0.999999952  0.998506324  0.998504326  0.999990881 
21m‐63‐27F*  0.880625476  0.825360924  0.822861822  0.990520344 
21m‐65‐27F  0.986325434  0.999990787  0.999990787  0.999895439 
21m‐66‐27F  NA  NA  NA  NA 
21m‐67‐27F  0.999999957  0.99999697  0.999996992  0.999966109 
21m‐68‐27F  0.99999981  0.99998327  NA  0.999983149 
21m‐70‐27F  0.999999359  0.999996268  0.999996268  0.999991529 
21m‐71‐27F  0.99985004  0.999995199  0.999995199  0.999771713 
21m‐72‐27F  0.99999655  0.996681307  NA  0.999996955 
21m‐76‐27F  0.999999988  0.999998354  0.999998363  0.999996232 
21m‐81‐27F  0.999999928  0.999987794  0.999986911  0.999978358 
21m‐82‐27F  NA  0.999832758  0.999832758  0.999819939 
21m‐83‐27F  0.999579834  0.999993462  0.999993667  0.99995589 
21m‐84‐27F  0.999999816  0.999986865  0.999986865  0.999983076 
21m‐85‐27F  0.850149712  0.999982378  0.999981951  0.999993487 



21m‐86‐27F  NA  0.99682474  0.99682474  0.999970848 
21m‐87‐27F  0.999999946  0.999459162  0.999459488  0.999991363 
21m‐91‐27F  0.999999143  0.999733801  0.999734327  0.999997782 
21m‐92‐27F  0.999999993  0.99999712  0.999997098  0.999997873 
21m‐94‐27F  0.999965615  0.999878505  0.999876502  0.999574867 
6m‐02‐27F  0.948124255  0.999886989  0.999886989  0.999973135 
6m‐04‐27F  0.9999997  0.999993308  0.999993308  0.999993803 
6m‐05‐27F  0.999999809  0.999973188  0.999973188  0.999969356 
6m‐06‐27F  0.999999945  0.99999637  0.999996606  0.999994691 
6m‐09‐27F  0.999999932  0.999996944  0.999996945  0.99999668 
6m‐10‐27F  0.999700326  0.999044474  0.999044474  0.999762791 
6m‐13‐27F  0.999999965  0.999990493  0.999990493  0.999983703 
6m‐14‐27F  0.999999946  0.999995685  0.999995721  0.999993595 
6m‐15‐27F  0.962483452  0.999985389  0.9999855  0.999964317 
6m‐16‐27F  0.99999992  0.999903105  NA  0.999982484 
6m‐17‐27F  0.999991884  0.999662611  0.999662787  0.999992086 
6m‐19‐27F  0.999999916  0.999959879  0.999959486  0.999940495 
6m‐22‐27F  0.97744411  0.998862541  0.998893941  0.999137677 
6m‐27‐27F  0.999999868  0.955022707  0.955057044  0.99998669 
6m‐28‐27F  0.99874705  0.99855622  NA  0.998620463 
6m‐29‐27F  0.999979883  0.999973291  0.999973291  0.999948297 
6m‐30‐27F  0.9999976  0.999981418  0.999981418  0.999970075 
6m‐33‐27F  0.99999998  0.999990445  0.999990445  0.999990895 
6m‐34‐27F  0.999980535  0.999999831  0.999999125  0.999981344 
6m‐37‐27F  0.999999308  0.999885815  0.999885815  0.99989468 
6m‐39‐27F  0.903636547  0.99999425  0.999994191  0.999996968 
6m‐40‐27F  0.999999319  0.999995966  0.999995966  0.999992703 
6m‐41‐27F  0.999713983  0.999604776  0.999604776  0.999953389 
6m‐43‐27F  0.99996984  0.999970768  0.999970768  0.999972493 
6m‐44‐27F  0.881376523  0.999989511  0.999989511  0.999989323 
6m‐50‐27F  NA  0.999867733  0.999867733  0.999823275 
6m‐51‐27F  0.999999964  0.999966258  NA  0.999981791 
6m‐53‐27F  0.999999969  0.999970441  0.999971235  0.999986506 
6m‐56‐27F  0.829520279  0.999994788  0.999994778  0.999974311 
6m‐58‐27F  0.999999702  0.999985723  0.999985723  0.999985641 
6m‐59‐27F  0.999999212  0.999929601  0.99992735  0.999918721 
6m‐63‐27F  0.99998016  0.999983384  0.999983384  0.999920585 
6m‐64‐27F  0.999999372  0.789783151  0.789950812  0.999990593 
6m‐65‐27F  0.999999759  0.999915811  0.999915811  0.99995473 
6m‐66‐27F  0.877146275  0.845708551  0.845780711  0.999983645 
6m‐70‐27F  0.999999199  0.999989507  0.999989513  0.999999429 
6m‐74‐27F  0.999994474  0.997338006  NA  0.999741203 



6m‐75‐27F  0.99998019  0.999686327  0.999686327  0.996771341 
6m‐77‐27F  0.999998362  0.999985919  0.999986018  0.999986266 
6m‐79‐27F  0.998191658  0.999811502  0.999811502  0.999399639 
6m‐81‐27F  0.999999983  0.999999171  0.999999173  0.999997648 
6m‐83‐27F  NA  0.999699594  0.999699594  0.99972764 
6m‐84‐27F  0.999999864  0.99999772  NA  0.999997007 
6m‐85‐27F  0.99999995  0.999989398  0.999989355  0.999996201 
6m‐87‐27F  0.999999702  NA  NA  0.999977672 
6m‐91‐27F  0.99999992  NA  NA  0.999987023 
6m‐94‐27F  0.999931904  0.999929312  0.999929312  0.999935375 

 
* Clone names and the corresponding correlations below 0.9 are in bold 
 
 
Table S5. Correct and incorrect OTUs predicted by distribution‐based clustering on 
simulated data 
 
Dataset  Correct OTUs  Incorrect OTUs 
Constant error rate1  40  3 
Variable error rate2  40  157 
 
1 Error rate generated from a geometric distribution was 0.9 for 9 libraries 
2 Error rate was 0.8 across 3 libraries and 0.9 across 6 libraries 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