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Abstract
Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated
with stabilized lipid nanocapsules for delivery of a model vaccine formulation. Poly(lactide-co-
glycolide) (PLGA) microneedle arrays were coated with multilayer films via layer-by-layer (LbL)
assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively-charged
interbilayer-crosslinked multilamellar lipid vesicles (ICMVs). To test the potential of these
nanocapsule-coated microneedles for vaccine delivery, we loaded ICMVs with a protein antigen
and the molecular adjuvant monophosphoryl lipid A (MPLA). Following application of
microneedle arrays to the skin of mice for 5 minutes, (PBAE/ICMV) films were rapidly
transferred from microneedle surfaces into the cutaneous tissue, and remained in the skin
following removal of the microneedle arrays. Multilayer films implanted in the skin dispersed
ICMV cargos in the treated tissue over the course of 24 hours in vivo, allowing for uptake of the
lipid nanocapsules by antigen presenting cells (APCs) in the local tissue and triggering their
activation in situ. Microneedle-mediated transcutaneous vaccination with ICMV-carrying
multilayers promoted robust antigen-specific humoral immune responses with a balanced
generation of multiple IgG isotypes, whereas bolus delivery of soluble or vesicle-loaded antigen
via intradermal injection or transcutaneous vaccination with microneedles encapsulating soluble
protein elicited weak, IgG1-biased humoral immune responses. These results highlight the
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potential of lipid nanocapsules delivered by microneedles as a promising platform for non-
invasive vaccine delivery applications.
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The generation of polyelectrolyte multilayers (PEMs) through the iterative and sequential
adsorption of complimentary materials is an attractive approach for nanoscale assembly of
functional systems capable of controlled encapsulation and delivery of diverse therapeutics.
The inherent adaptability of multilayer processing, as well as its biocompatibility,
scalability, and simplicity make it an ideal strategy for the creation of conformal coatings on
complex surfaces (reviewed in 1, 2). Recently, multilayers have been optimized for the
encapsulation of lipid vesicles, with the aim of increasing the drug loading capacity of
multilayer films, allowing for biological cargos to be entrapped in films in native aqueous
conditions, and providing triggered materials release through programmed vesicle
disruption.3–10 A key issue for incorporation of liposomal carriers in multilayer films is the
need for stabilization of vesicles against rupture during the assembly process or drying of
the resulting films. Previous approaches have relied on vesicle stabilization strategies such
as in situ silica polymerization3, 4 or polyelectrolyte adsorption on the vesicle surface prior
to multilayer assembly.5–10 Without such stabilizing measures, LbL deposition results in
spontaneous vesicle disruption into lipid bilayers on the target substrate.

We recently reported a new approach for lipid vesicle stabilization, where covalent
crosslinks are introduced between adjacent phospholipid bilayers in the walls of
multilamellar vesicles to create robust lipid nanocapsules.11, 12 These interbilayer-
crosslinked multilamellar vesicles (ICMVs) encapsulate protein cargos within their interior
and exhibit enhanced serum stability in extracellular conditions, but can be readily degraded
upon cellular internalization.11 Vaccination with ICMVs elicited potent cellular and humoral
immune responses against the model antigen ovalbumin (OVA), and enhanced long-term
humoral responses to a recombinant malaria antigen following subcutaneous injection.11, 12

Given their enhanced stability and unique potency in the context of protein vaccine delivery,
we hypothesized that LbL deposition of ICMVs would provide an interesting opportunity
for the design of ICMV-containing multilayer delivery systems for subunit vaccination.

In parallel studies, we and others have recently demonstrated the utility of microneedle
arrays for the safe, rapid, and convenient delivery of drugs through the pain-free disruption
of the stratum corneum to access the immune-competent epidermal and dermal tissue.13–15

Microneedles have particularly shown promise in vaccine delivery.15–17 Microneedle
application is known to improve safety, eliminate pain upon treatment, and reduce the
generation of hazardous medical waste associated with needle-based delivery.18–20 Further,
creation of conformal surface coatings on microneedle arrays has proven to be an effective
method for therapeutic formulation and delivery into the skin via rapid, topical microneedle
application.15, 21 We therefore set out to design a PEM system for the stable encapsulation
and release of ICMVs for transcutaneous delivery into the skin via microneedle insertion.
We envisioned several potential advantages for such an approach including (i) improved dry
state storage through PEM-embedding of ICMVs, (ii) controlled encapsulation and release
of ICMVs from degradable PEMs implanted in the skin, (iii) delivery of ICMVs to an
inherently immunogenic tissue for enhanced immunity through microneedle application, and
(iv) convenient and self-contained combination of vaccine and administration device for
rapid, safe, and painless vaccine delivery that could potentially be self-administered in
minutes.
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Here we report studies intended to test these hypotheses, focusing on the generation of a
PEM system capable of stable ICMV encapsulation and release for protein immunization.
We first show the ability of degradable PEMs to stably incorporate ICMV particles, both on
flat silicon substrates as well as PLGA microneedles, controlling film thickness and ICMV
dosage, and verifying that incorporated ICMVs are intact within dried multilayer films. We
then demonstrate the ability for PEM-coated microneedles to transfer their ICMV-loaded
films into the cutaneous tissue upon brief application to the skin of mice. Following film
degradation and ICMV dispersion in the epidermal tissue, ICMVs were found to be taken up
by resident APCs within the skin, which were activated in situ by adjuvants delivered by the
particles. Finally, we show that transcutaneous vaccination with ICMVs embedded in
microneedle-based multilayers significantly enhanced humoral immune responses to a
protein antigen, compared to mice vaccinated with either conventional intradermal bolus
injection of antigen or microneedle-mediated delivery of soluble protein antigen. Together,
these results suggest the potential of microneedle-based multilayers for the effective
transcutaneous delivery of functional nanoscale vesicles. In this work, we have improved
protein subunit vaccination by taking advantage of the immunogenicity of ICMVs delivered
to the skin, a site known for high frequency of epidermal and dermal APCs; however, this
work describing vesicle deposition on multilayer-coated microneedles can be readily
adapted as a modular, general strategy for non-invasive drug delivery to the skin.

RESULTS AND DISCUSSION
We recently demonstrated that microneedles coated with PLGA nanoparticle-loaded PEMs
could be used for rapid implantation of particle-loaded films in skin.15 PLGA particles are
attractive for small-molecule drug delivery but have limitations for delivery of biologics
such as vaccines, due to the low doses of proteins that can be encapsulated and the potential
for antigen denaturation during processing. We hypothesized that the deposition of an
ICMV-containing multilayer coating on the surface of microneedles would provide a
solution to these issues and enable a simple, self-contained, and effective method for
recombinant protein vaccine storage and delivery to the skin, an attractive tissue target due
to its dense matrix of resident innate immune cells (Figure 1).22–24 To fabricate an erodible
PEM system capable of encapsulating and delivering intact nanoscale vesicles we selected
Poly-1 (Figure S1) a biocompatible, hydrolytically degradable polymer from a class of
polyelectrolytes known as poly(β-amino esters) (PBAEs), to serve as a complimentary
degradable partner for ICMV encapsulation in multilayers. Poly-1 has been extensively
studied in a variety of contexts and has been proven effective in generating erodible
multilayer films containing many diverse cargos for controlled drug release.15, 21, 25–29 We
selected ICMVs to serve as a stable poly-anionic vesicular partner for Poly-1 in multilayer
deposition, taking advantage of their colloidal stability and potency as vaccine delivery
vehicles.11, 12 In this context, ICMVs could serve as a modular delivery vehicle for antigen
and adjuvant incorporated either in the aqueous vesicle core or the hydrophobic lipid capsule
walls of ICMVs, and the covalent inter-bilayer maleimide crosslinks would provide stability
for multilayer encapsulation (Figure 1a). We hypothesized that (Poly-1/ICMV) multilayers
would be deposited into the skin through brief topical microneedle application (Figure 1b),
where hydrolytic degradation of Poly-1 over time would lead to ICMV release (Figure 1c)
into the surrounding tissue, followed by uptake into local APCs (Figure 1d) that would
initiate adaptive immunity.

Negatively-charged ICMVs encapsulating fluorescent OVA and composed of DOPC and
maleimide-lipid MPB (Figure S1) in a 1:1 mole ratio (diam. 240 ± 10 nm, 0.19 ± 0.05
polydispersity index, zeta potential −41 ± 1.0 mV, incorporating 0.1 wt% DiI as a
fluorescent tracer in the vesicle walls) were prepared as previously described.11, 12 To
determine whether ICMVs could be stably embedded into degradable multilayer films, we
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first synthesized model LbL films on atomically-flat silicon substrates. First, 20 bilayers of
protamine sulfate (PS) and sulfonated poly(styrene) (SPS) were deposited to form a base
layer of uniform surface charge.15, 30 Through subsequent LbL steps, we attempted to
construct ICMV-encapsulating multilayers through sequential immersion in aqueous Poly-1
and ICMV suspensions of varying concentrations. As shown in Figure 2a, when LbL
assembly was performed using ICMVs at 0.5 mg/ml in phosphate buffered saline (PBS) at
pH 5.0, we observed insignificant and irregular film growth, with film thickness remaining
steady after 15 deposition cycles at ~400 nm as measured by profilometry. However, using a
more concentrated 1 mg/ml ICMV dispersion, we observed a regular linear increase in
measured film thickness (~50 nm/bilayer) with each deposition cycle up to 35 rounds of
LbL deposition, resulting in films more than 1.5 μm thick (Figure 2a). For comparison with
the crosslink-stabilized ICMVs, we also synthesized non-crosslinked multilamellar vesicles
(MLVs) via the same process used to prepare ICMVs, leaving out the final interbilayer
crosslinking step. In contrast to ICMVs, MLVs (diam. 270 ± 17 nm, 0.23 ± 0.014
polydispersity index, zeta potential −33.6 ± 0.9 mV) displayed inconsistent and irregular
film growth plateauing at ~500 nm after 15 bilayers (Figure 2a). This result is consistent
with previous evidence showing ineffective LbL growth of phospholipid vesicles without
sufficient stabilization to prevent spontaneous disruption upon adsorption.31, 32

Spectroscopic measurement of fluorescent signal obtained after (Poly-1/ICMV) film
disruption in NaCl for 24 hours indicated a loading of ~5 μg OVA/cm2 and ~15 μg lipids/
cm2 for multilayers containing 35 bilayers (~1.6 μm in thickness), consistent with the
known OVA loading density of intact ICMVs;11 this loading is within the effective dose
range needed for ICMVs to generate potent immune responses in vivo when administered by
traditional routes.11, 12 Further, previous studies have demonstrated enhanced potency of
transcutaneously-administered vaccines, suggesting that additional dose sparing might be
possible in this context.33–35

Given the success of film growth at these initial conditions, we then measured the effect of
deposition time on the growth of (Poly-1/ICMV) containing films, and observed no
significant increase in film growth per bilayer when the duration for Poly-1 and ICMV
adsorption was increased from 5 to 10 minutes (Figure 2b). We thus concluded that 5
minutes was a sufficient time period to achieve ICMV adsorption and reversal of surface
charge for successful LbL adsorption. To confirm that ICMVs were stably incorporated into
Poly-1 films, we performed confocal laser scanning microscopy (CLSM) on (Poly-1/ICMV)
multilayers constructed using ICMVs labeled with DiI in the lipid phase of the particles and
encapsulating fluorescent AF647-OVA. CLSM imaging showed the presence of overlaid
punctate fluorescent signals indicating colocalization of AF647-OVA and DiI in submicron
spherical particles, suggesting the incorporation of intact, OVA-loaded ICMVs into Poly-1
multilayers (Figure 2c). This punctate fluorescent signal was not observed in films
constructed using MLVs formed in the absence of interbilayer crosslinks, and only low
levels of OVA fluorescence were detected in such films, providing evidence for the
importance of the stabilizing inter-bilayer crosslinks of ICMVs for preventing vesicle
disruption during LbL processing (Figure 2c). In addition, large contiguous patches of the
DiI lipid tracer were observed in films prepared with non-crosslinked MLVs, suggesting
fusion among vesicles occurring in this case (Figure 2c). To obtain further confirmation of
intact ICMV incorporation into multilayers, we performed atomic force microscopy (AFM)
to investigate the surface of (Poly-1/ICMV) films on silicon. Consistent with previous
studies showing intact vesicle incorporation,3, 4, 8–10 we observed individual spherical
structures 100–300 nm in diameter in height and phase AFM images, suggesting that
multilayer-embedded ICMVs were intact and unchanged following LbL deposition (Figure
2d–e). This was readily apparent upon 3-D rendering of AFM height data (Figure 2f) and in
analysis of height traces (Figure 2g), suggesting individual ICMVs embedded within the
(Poly-1/ICMV) multilayers. The exposed dimensions of particles at the top of films
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measured in this way showed diameters of ~100–300 nm and heights of ~50–75 nm,
consistent with the previously measured average bilayer thickness and suggesting some
deformation and burial of the particles in underlying Poly-1 layers, as observed in prior
studies of vesicles incorporated in multilayers.6, 9 Additional AFM measurement of dry
films stored at room temperature for 7 days revealed similar punctate patterns with no
significant change in dimension, indicating the potential for multilayer encapsulated ICMVs
to maintain their structure upon dry-state storage (Figure S2), an attractive feature for
potential vaccine delivery systems in the developing world.

Given the ability of Poly-1 multilayers to encapsulate intact ICMVs, we next sought to use
this approach for ICMV delivery and release into the skin. We and others have recently
reported the successful generation of multilayer films on the surface of microneedle arrays
for transcutaneous delivery in vivo.15, 21 We hypothesized that a similar approach could
allow for ICMV-loaded multilayer delivery, and given the demonstrated potency of ICMVs
for generating adaptive immunity,11, 12 we anticipated that ICMV delivery to the APC-rich
epidermis might provide enhanced dose sparing immunogenicity. To test whether ICMV-
loaded multilayers could be deposited as surface coatings on microneedles, we first
fabricated PLGA microneedles using poly(dimethyl siloxane) (PDMS) molding as
previously described,15 yielding arrays of conical microneedles each ~650 μm in height and
250 μm in diameter at the base. Then, following (PS/SPS) base-layer deposition on these
microneedles, we performed LbL assembly using fluorescently-labeled DiI-ICMVs
encapsulating AF647-OVA as before. CLSM on the resulting multilayer-coated
microneedles revealed consistent and uniform fluorescent signal localized to the surface of
each microneedle, indicating effective multilayer deposition as observed for flat silicon
substrates (Figure 3a). Using confocal z-scanning, we then performed quantitative analysis
of the total fluorescent signal on individual microneedles following deposition of 10, 20, or
30 bilayers. This analysis demonstrated a similar linear growth profile for both DiI-labeled
ICMVs and the encapsulated AF647-OVA cargo, consistent with the thickness increase
measured with profilometry on silicon (Figure 3b). In addition to confirming the similar
growth of silicon- and microneedle-based films, these results provide additional evidence for
intact ICMV incorporation on microneedle surfaces, consistent with our previous
demonstration of nanoparticle encapsulation on microneedle arrays through spray LbL
deposition.15 Finally, we imaged the resulting multilayer-coated microneedles using
scanning electron microscopy (SEM) and observed the presence of consistent surface
coatings uniformly covering the entire microneedle array surface (Figure 3c).

We next tested whether microneedle-based multilayers encapsulating ICMVs were delivered
into skin following microneedle application in vivo. We have previously shown that
microneedles similar to those used here are effective in providing consistent disruption of
the stratum corneum and insertion into the outer layers of the skin following brief topical
application to the skin of mice.15 We confirmed this result using trypan blue staining of
treated skin and observed uniform staining patterns indicating microneedle insertion as
before (data not shown). To test for transcutaneous delivery, multilayer-coated microneedles
carrying AF647-OVA-loaded, DiI-labeled ICMVs were applied to the dorsal ear or flank
skin of C57Bl/6 mice. We then performed quantitative CLSM image analysis to determine
the relative loss of fluorescent signal from individual microneedles following application.
Microneedles applied for only 5 minutes showed significant losses of both DiI and AF647-
OVA fluorescent signal over the entire microneedle surface, with ~80% reduction in
fluorescent intensity observed on the microneedle surfaces (Figure 4a–c). Fluorescent signal
reduction was equivalent for both the lipophilic tracer and protein cargo, suggesting delivery
of intact multilayer-embedded ICMVs. These results are consistent with our previous
demonstration of polymer nanoparticle-loaded multilayer delivery, in which we observed
that, unlike multilayers composed only of polymeric materials, PEMs containing embedded
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particles were rapidly transferred to the skin after brief application of microneedle arrays.15

This difference in the kinetics of multilayer transfer may reflect a decreased degree of
interpenetrating molecular entanglements between complementary polymer and nanoparticle
pairs, compared to multilayers composed of complementary polymers alone. The
microneedles themselves make up 45% of the total coated surface area on the microneedle
array, meaning that with 80% delivery of the coated material, overall ~36% of the vaccine
components coated on the microneedles are estimated to be delivered into the skin.
Approaches to increase this fraction can be readily envisioned by using a hydrophobic base
to prevent wetting of the backing and/or employing strategies to carry out LbL deposition
only on the microneedle tips.21, 36

We next examined microneedle-treated skin to observe deposition of ICMV-loaded
multilayers into the tissue. ICMVs were prepared with AF647-OVA loaded in the aqueous
core as a model protein antigen. As adjuvants to provide local inflammatory cues necessary
to drive the immune response, we embedded the Toll like receptor (TLR)-4 agonist MPLA
in the ICMV capsule walls, and further applied aqueous solutions of the TLR-3 agonist
polyI:C (a double-stranded RNA mimic of viral RNA) directly to the skin just prior to
microneedle application. To observe ICMV delivery in relation to target APC populations in
the skin, we applied microneedles to the skin of MHC II-GFP mice. These animals express
all major histocompatibility class II (MHC II) molecules as a fusion with green fluorescent
protein (GFP), allowing MHC II+ APCs in the viable epidermis/dermis to be observed
through CLSM imaging in auricular or flank skin.37 Microneedles were applied to ear skin
for 5 min, which was then dissected 6 or 24 hr later for CLSM imaging. After 6 hr, we
observed AF647-OVA and DiI fluorescence in clusters around microneedle insertion sites;
these signals were colocalized in the same z-plane as epidermal APCs expressing MHC II-
GFP and extended several hundred microns below the skin surface (Figure 4d and S3). In
skin collected 24 hours following treatment, we observed similar fluorescent signal
colocalization (Figure 4e) at microneedle insertion sites. However, after 24 hours, low and
high magnification CLSM imaging revealed the emergence of punctate fluorescent signal
dispersed throughout the tissue, similar to that observed for multilayer-embedded ICMVs,
suggesting multilayer disintegration and release/diffusion of ICMVs in situ (Figure 4e–f).
This finding is consistent with the known degradation kinetics of Poly-1 multilayers, which
undergo complete breakdown within 24 hours.15, 38 Dispersed particles were consistently
localized within the viable epidermal layers as evidenced by colocalization within the same
z-plane as MHC II-GFP+ APCs (likely Langerhans cells). Further imaging indicated direct
interaction between epidermal APCs and ICMVs within the treated skin, as GFP+ cells were
observed with internal fluorescent signal from both AF647-OVA and DiI (Figure 4f). In
some cases, MHC II-GFP+ APCs were observed with membrane extensions around punctate
fluorescent particles, suggesting that ICMVs released from implanted multilayers were
actively being phagocytosed by resident immune cells in the skin (Figure 4g).

The presence of TLR-3 and TLR-4 molecular adjuvants triggered striking changes in the
APC populations present in the skin of mice with implanted ICMV multilayers (Figure 5).
To determine the effect of co-delivery of ICMVs with MPLA and polyI:C, mice were
treated with either uncoated microneedles, or microneedle arrays delivering ICMVs with or
without MPLA and polyI:C. A representative series of CLSM images from the 6 and 24
hour timepoints following treatment were analyzed using Image J software particle analysis
algorithms39 to determine various phenotypically significant parameters including total cell
number per field, individual cell area and perimeter, and individual cell MHC II-GFP mean
fluorescent intensity (MFI). From representative CLSM fields (Figure 5a–b), as well as the
dependent quantitative analysis, we observed a dramatic increase in MHC II+ cells present
in the skin tissue between 6 and 24 hours for mice treated with polyI:C and microneedles
coated with ICMVs encapsulating OVA with MPLA, compared to microneedles alone or
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microneedles coated with only ICMVs (Figure 5c). This recruitment of APCs to the
microneedle application site contrasts with recent studies using microneedle arrays
composed of shorter (100 μm in length) silicon needles (either bare or coated with antigens
and saponin adjuvants), where a slight decrease in the density of MHC II+ cells was
observed by 24 hr, suggesting activation and migration of dendritic cells toward lymphatics
following patch application.40, 41 However, APC accumulation is consistent with the normal
physiological response to inflammation following vaccination, as local chemokine release
from stimulated keratinocytes and innate immune cells triggers both resident cell division
and homing of blood-borne APCs to the inflamed tissue microenvironment.22–24 Notably,
prior studies using adjuvants such as the TLR agonist imiquimod42 or cytokines such as
GM-CSF or FLT-3L43, 44 have shown similar infiltration of dendritic cells to skin
vaccination sites (including in human trials), which correlates with greater frequencies of
antigen-carrying APCs arriving at draining lymph nodes. Such dramatic APC recruitment to
the application site was not observed for bare microneedles, suggesting that the response
observed in this study vs. the silicon microneedle studies cited above are not simply due to
greater wounding of the skin by the larger microneedles used here.

In addition, TLR agonists trigger activation of APCs, which is accompanied by
morphological changes and upregulation of MHC expression,45–47 which we also saw
reflected in skin treated with ICMVs with MPLA and polyI:C. Here individual GFP+ APCs
were observed to take on an extended dendritic morphology (Figure 5a, b) and increase in
area (~3x), perimeter (~2x), and mean MHC II-GFP fluorescence intensity (~10x, Figure 5c)
as compared to bare microneedle or ICMV-only treatments. Together these parameters are
indicative of a shift towards an activated phenotype in APCs, as stimulated dendritic cells
increase cellular processes to more effectively capture antigen and increase expression of
MHC II for effective communication with naive lymphocytes in the generation of adaptive
immunity. Thus, we have observed the effective delivery of ICMV-containing multilayers
from microneedle arrays into treated skin, the subsequent disintegration of multilayer depots
releasing ICMVs, which are dispersed throughout the skin for uptake by resident APCs,
ultimately resulting in coincident antigen delivery and activation and maturation of the
resident APC population.

Finally, we tested whether transcutaneous administration of microneedle-based multilayers
encapsulating ICMVs could elicit immune responses against an antigen incorporated within
ICMVs. Groups of C57Bl/6 mice were immunized on day zero and given booster
immunizations after 4 weeks and 8 weeks with 1 μg OVA (model antigen), 0.03 μg MPLA,
and 10 μg polyI:C. For each immunization, mice received transcutaneous administration of
microneedles delivering Poly-1 multilayers encapsulating either ICMVs (containing OVA
and MPLA, OVA-ICMV-MN) or equivalent doses of soluble OVA (OVA-MN, Figure 6a).
In both cases microneedle multilayer delivery was performed in the presence of soluble
polyI:C (and MPLA in the case of OVA multilayers) applied to the skin surface before
treatment. Multilayers loaded with soluble OVA were constructed based upon previously
reported methods adapted for microneedle deposition.27 Characterization of OVA-
multilayer loading and delivery in vivo demonstrated effective OVA loading into
microneedle-based multilayers, and efficient transcutaneous delivery upon microneedle
application (Figure S4). To further delineate the efficacy of microneedle-based
transcutaneous vaccination from conventional bolus injection of immunogens, we also
vaccinated control groups of mice by intradermal injection of ICMVs (containing OVA and
MPLA, OVA-ICMV-ID) with polyI:C or soluble formulations delivering the same doses of
antigen and adjuvants as in the microneedle treated groups (OVA-ID, Figure 6a). All groups
received the same total dose of OVA, MPLA, and polyI:C. Notably, following the first
booster immunization all groups responded with increased OVA-specific serum IgG titers,
and the total IgG titer of ICMV vaccines were identical for injected vs. microneedle
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formulations by day 56 (Figure 6b). However, only mice immunized with microneedle
delivery of ICMV-carrying multilayers responded to the second boost at day 56, with serum
IgG titers showing an additional >10-fold increase for this group, while the other
immunization regimens elicited stable or declining titers at subsequent timepoints. The need
for multiple vaccinations to achieve this high titer is offset by the potential for enhanced
protection by such a substantial increase in strength of the humoral response and the self-
administrable nature of microneedle patch vaccines. We further analyzed sera obtained on
day ~110 post-immunization to determine the isotypes of antibodies generated by
transcutaneous vs. intradermal administration of either soluble or ICMV vaccine
formulations. Vaccination with free OVA protein either via microneedles or intradermal
injection resulted in Th2-biased IgG1 responses without any detectable level of Th1-
associated IgG2c antibodies (Figure 6c, d). In contrast, ICMVs administered by traditional
syringe intradermally or delivered by multilayer-coated microneedles elicited a more
balanced Th1/Th2 response with both IgG1 and IgG2c titers, with transcutaneous delivery of
ICMV-carrying microneedles achieving 10-fold higher IgG2c titers than “free” ICMV
injection (Figure 6c, d). This is of interest since IgG2 antibody isotypes have been
implicated in enhanced protection in both infectious disease and cancer vaccines.48–50 Thus,
these results suggest that microneedle-based multilayers encapsulating ICMVs are a
promising platform for delivery of vaccine antigen and adjuvant to skin-resident APCs via a
non-invasive, needle-free route for promotion of long-lived, high-titer humoral immune
responses.

CONCLUSIONS
In summary, we have shown the successful incorporation of intact multilamellar
phospholipid vesicles into erodible multilayer films through the use of an inter-bilayer
molecular crosslinking stabilization strategy. We have further demonstrated the potential
utility of such functional multilayer coatings constructed on microneedle arrays for rapid
transfer of particle-carrying multilayers into microneedle-treated skin, and for the
subsequent release of vesicle cargos through multilayer degradation in situ. Thus, this
platform may ultimately serve as a potent platform for protein vaccination providing
enhanced immunogenicity, simple and safe administration, and the potential for dry-state
storage. These advantages provide the opportunity for more effective and less costly vaccine
storage and distribution to the developing world, as multilayer stabilized formulations could
be stored easily without refrigeration until rehydration upon microneedle insertion into the
target tissue. Though we employed a LbL dipping process in multilayer fabrication for these
lab-scale studies for convenience, note that commercial scale processes could readily
employ spray deposition to eliminate loss of precious vaccine materials during fabrication.51

The combination of multilayer deposition with microneedle application for transcutaneous
delivery also addresses the need for a safe, potent, and non-invasive alternative to
hypodermic needle-based administration. The simplicity of microneedle application also
provides the prospect of rapid self-administration potentially streamlining mass vaccination
and eliminating the need for healthcare worker training.34, 52, 53 In addition, the ability of
ICMVs and multilayers to incorporate diverse drug compounds and biologics makes this
approach of broader interest for enhanced transcutaneous delivery of therapeutics.

METHODS
Materials

Poly-1 (16 kDa) was synthesized according to previous literature.26 Alexa Fluor 647-
conjugated ovalbumin, and 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI)
were purchased from Invitrogen (Eugene, OR). PLGA (50:50, IV 1.9 dL/g) was purchased
from Lakeshore Biomaterials (Birmingham, AL). DOPC (1,2-Dioleoyl-sn-Glycero-3-
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Phosphocholine) and MPB (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-
maleimidophenyl) butyramide) were purchased from Avanti Polar Lipids (Alabaster, AL).
MPLA was purchased from Sigma Aldrich (St. Louis, MO). PolyI:C was obtained from
Invivogen (SanDiego, CA). Chromatographically purified ovalbumin, purchased from
Worthington (Lakewood, NJ), was processed through Detoxi-Gels (Pierce, Rockford, IL) to
remove any residual endotoxin.

PLGA Microneedle Fabrication
PDMS molds (Sylgard 184, Dow Corning) were fabricated by laser ablation using a Clark-
MXR CPA-2010 micromachining system (VaxDesign Inc.). PLGA pellets (IV 0.35 dL/g)
were melted over the molds under vacuum (−25 in. Hg) at 140°C for 40 min, and then
cooled to −20°C before separating the cast PLGA microneedles from the PDMS mold.
Microneedles were characterized by SEM using a JEOL 6700F FEG-SEM.

ICMV Synthesis
Synthesis of ICMVs was performed as described previously.11, 12 Briefly, dried films of
1.26 μmol of lipids (DOPC:MPB at 1:1 mol ratio) and 2.9 μg of MPLA were rehydrated in
20 mM bis-tris propane at pH 7.0 with 325 μg ovalbumin for 1 hr with vortexing every 10
min, and sonicated in alternating power cycles of 6 watts and 3 watts in 30s intervals for 5
min on ice (Misonix Microson XL probe tip sonicator, Farmingdale, NY). DTT and Ca2+

were then sequentially added at final concentrations of 3 mM and 40 mM, respectively, and
incubated for 1 hr at 37°C to form ICMVs. The particles were recovered by centrifugation,
washed twice, resuspended in PBS at pH 5.0, and stored at 4°C until usage. In some
experiments, ICMVs were prepared including a lipophilic tracer, DiI, at 0.2 molar %
concentration, and 325 μg of Alexa Fluor 647-conjugated OVA was used to hydrate the
lipid films.

Multilayer Film Preparation
All LbL films were assembled using a Carl Ziess HMS DS50 slide stainer. Films were
constructed on Si wafers and PLGA microneedle arrays. To build (PS/SPS) base layers,
substrates were dipped alternatively into PS (2 mg/mL, PBS, Sigma-Aldrich) and SPS (5
mM, PBS, Sigma-Aldrich) solutions for 10 min, separated by two sequential 1 min rinses in
PBS. (Poly-1/ICMV) and (Poly-1/MLV) multilayers were deposited similarly, alternating 5
min dips in Poly-1 (2 mg/mL, PBS) and ICMV/MLV solutions (1 mg/mL, PBS) separated
by two sequential 30 sec rinsing steps in PBS. (Poly-1/OVA) multilayers were deposited by
alternating 10 min dips in Poly-1 (2 mg/mL, 0.2M sodium acetate) and OVA solutions (0.1
mg/mL, 0.2M sodium acetate) separated by two sequential 1 min rinsing steps in deionized
water. All solutions were adjusted to pH 5.0 and filtered (0.2μm, except ICMV/MLV and
OVA) prior to dipping.

Multilayer Film Characterization
Film thickness on Si wafers was characterized using a Veeco Dektak (Plainview, NY)
surface profilometer and a Veeco Dimension 3100 AFM. Film growth and morphology on
PLGA microneedles was characterized by SEM using a JEOL 6700F FEG-SEM and CLSM
using a Carl Zeiss LSM 510. Data analysis was performed using Image J39 and Graphpad
Prism (La Jolla, CA). Film loading was determined for fluorescent cargos using a
SpectraMax 250 spectrophotometer (Molecular Devices, Sunnyvale, CA) following elution
of films in PBS, pH 7.4, 2M NaCl for 24 hours.
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Characterization of Film Delivery In Vivo
ICMV or soluble OVA delivery was measured in vivo following application of coated
microneedles to the skin of mice. Animals were cared for in the USDA-inspected MIT
Animal Facility under federal, state, local, and NIH guidelines for animal care. Microneedle
application experiments were performed on anesthetized 6–10-week-old female C57BL/6
(Jackson Laboratories) and C57Bl/6-MHC II-GFP transgenic mice (a gift from Prof. Hidde
Ploegh, MIT) at the dorsal ear or flank skin. Skin was rinsed briefly with PBS and dried
before application of microneedle arrays by gentle pressure. Following application, mice
were euthanized at subsequent time points and the application site was dissected. Excised
skin was stained with trypan blue before imaging for needle penetration. In separate
experiments treated skin and applied microneedle arrays were imaged by confocal
microscopy to assess transcutaneous delivery of encapsulated ICMVs or soluble OVA.
MHC II-GFP+ cell number and morphology were analyzed by CLSM in dissected tissue
following microneedle treatment. Image analysis was performed using NIH Image J
software.39

Vaccinations and Characterization of Humoral Immune Responses
Groups of 6–10-wk old female C57Bl/6 mice were immunized on days 0, 28, and 56 with 1
μg OVA, 0.03 μg MPLA, and 10 μg polyI:C either in suspension or microneedle
formulations. Microneedle coating compositions were chosen so that the dose of antigen/
MPLA delivered into the skin matched the injected cases: microneedle coatings were
dissolved in sodium chloride buffer and the amount of antigen present was assessed using a
spectrofluorimeter for as-prepared and post-skin-application microneedles; the delivered
dose was determined as the difference between these two values. For intradermal
administration, immunogens in 15 μL PBS were injected intradermally in the dorsal
auricular skin. Transcutaneous administration of microneedles was performed as described
above, following brief rinsing with sterile PBS at the dorsal ear skin. For multilayers
containing OVA/MPLA-loaded ICMVs, polyI:C was administered in 5μl PBS to the surface
of the skin prior to treatment and left in place during the duration of microneedle
application. For multilayers containing soluble OVA, polyI:C and MPLA were similarly
administered to the skin prior to microneedle treatment. Microneedles were secured in place
for 5 minutes for both ICMV- and soluble OVA-containing multilayer coating variations.
Sera obtained from immunized mice at various time points were analyzed for IgG, IgG1, and
IgG2c antibodies by ELISA using OVA-coated plates Anti-OVA IgG titers were defined as
the lowest serum dilution at which the ELISA OD reading was ≥ 0.5.

Statistical analysis
Data sets were analyzed using one- or two-way analysis of variance (ANOVA), followed by
Tukey’s HSD test for multiple comparisons with Prism 5.0 (GraphPad Software, San Diego,
CA). p-values less than 0.05 were considered statistically significant. All values are reported
as mean ± s.e.m.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Schematic illustration of (Poly-1/ICMV) multilayers deposited onto PLGA microneedle
surfaces. ICMV lipid nanocapsules are prepared with inter-bilayer covalent crosslinks
between maleimide head groups (M) of adjacent phospholipid lamellae in the walls of multi-
lamellar vesicles. (Poly-1/ICMV) PEMs were constructed on microneedles after (PS/SPS)
base layer deposition. (b) Microneedles transfer (Poly-1/ICMV) coatings into the skin as
cutaneous depots at microneedle insertion points. (c) Hydrolytic degradation of Poly-1 leads
to PEM disintegration and ICMV release into the surrounding tissue. (d) ICMV delivery to
skin-resident APCs provides coincident antigen exposure and immunostimulation, leading to
initiation of adaptive immunity.
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Figure 2.
Shown are poly-1/lipid film thicknesses determined by profilometry for deposited ICMVs or
MLVs varying (a) concentration and (b) deposition time (N = 12). (c) CLSM image of (PS/
SPS)20(Poly-1/ICMV)20 or (PS/SPS)20(Poly-1/MLV)20 multilayers deposited on silicon
(scale bar ~ 20μm). ICMVs and MLVs contained AF647-OVA (pink) and were labeled with
DiI (red). (d–g) AFM imaging of a dried (Poly-1/ICMV)5(PS/SPS)20 multilayers built on
silicon (scale bar 100 nm). Shown are (d) phase, (e) height, and (f) 3-D rendered AFM
height micrograph data for a (Poly-1/ICMV)5(PS/SPS)20 multilayer (scale bar 100 nm). (g)
Height trace data (trace shown in panel (e) for a single embedded ICMV in a (PS/
SPS)20(Poly-1/ICMV)5 multilayer.
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Figure 3.
(a) Representative confocal images of PLGA microneedles coated with (PS/SPS)20(Poly-1/
ICMV)35 films (left, transverse optical sections; right, lateral sections; 100 μm interval;
scale bar 100 μm; Red, DiI-ICMVs; Pink, AF647-OVA). (b) Quantification of DiI-ICMV
and AF647-OVA incorporation into (PS/SPS)20(Poly-1/ICMV)n films on microneedles.
Analysis was performed using Image J measurement of total fluorescent signal intensity in
confocal z-stacks collected along the length of microneedles, normalized to the total
intensity obtained for 30 bilayer films (results shown are averaged from N = 15 individual
microneedles per condition). (c) SEM micrographs of (PS/SPS)20(Poly-1/ICMV)35
multilayer-coated PLGA microneedles (scale bars: left 200 μm, right 50 μm).
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Figure 4.
(a–b) Representative confocal images of PLGA microneedles coated with (PS/
SPS)20(Poly-1/ICMV)35 films before application (a) and after a 5 minute application to
murine skin IN VIVO (b) (lateral sections, 100 μm Z-interval; scale bar 100 μm; Red, DiI-
ICMVs; Pink, AF647-OVA). (c) Quantitation of confocal fluorescence intensities (N = 15)
showing loss of DiI-ICMV and AF647-OVA films from coated microneedles upon
application to skin. (d–g) Representative confocal images of mouse skin treated for 5
minutes with (PS/SPS)20(Poly-1/ICMV)35 multilayer-coated PLGA microneedles after (d) 6
hr or (e) 24 hr showing ICMV delivery at microneedle insertion sites (outlined). Shown is
fluorescent signal from (top to bottom): MHC II-GFP (green), DiI-ICMVs (red), AF647-
OVA (pink), and overlay (yellow) at low (left) and high (right) magnification (scale bars
100 μm). (f) High magnification CLSM image (field location highlighted by box in panel
(e)) showing colocalization of ICMVs and OVA with APCs in the skin (scale bar - 20μm).
(g) High magnification CLSM image showing APC phagocytosis of ICMVs with OVA after
24 hr (scale bar 20 μm).

DeMuth et al. Page 17

ACS Nano. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Representative CLSM images of MHC II-GFP+ cells in skin dissected (a) 6 or (b) 24 hours
after (PS/SPS)20(Poly-1/ICMV)35–coated microneedle treatment for 5 minutes (insertion
points outlined); ICMVs were loaded with MPLA and polyI:C was added to the skin directly
before treatment (scale bar 200 μm). (c) Results of quantitative CLSM image analysis to
determine total cell number per field, individual cell area and perimeter, and MHC II-GFP
MFI, expressed as fold change relative to uncoated microneedle treated mice. Mice were
either treated with uncoated microneedles (MN), or microneedles coated with (PS/
SPS)20(Poly-1/ICMV)35 multilayers with or without added MPLA and polyI:C (MN+ICMV
and MN+ICMV+TLRa, respectively). Data was analyzed for significance using two-way
ANOVA (* - p<0.05, ** - p<0.01, *** - p<0.001).
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Figure 6.
(a) Schematic representation of vaccine treatments tested. (b) Anti-OVA serum IgG titers
were measured over time with immunizations on days 0, 28, and 56 with OVA-ICMVs or
soluble antigen administered VIA either microneedle-based multilayers or intradermal bolus
injection at dorsal auricular skin. (c, d) Quantification of anti-OVA IgG1 (b) and IgG2c (c)
subtypes in sera at day 107. #, P < 0.05 and ##, P < 0.01, compared to OVA-ICMV ID, and
***, P < 0.001, compared to OVA-MN or OVA ID, as analyzed by two-way ANOVA,
followed by Tukey’s HSD. *, P < 0.05, as analyzed by one-way ANOVA, followed by
Tukey’s HSD.
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