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In most ferromagnets the magnetization rotates from one domain to the next with no 

preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, 

leading to topologically-rich spin textures such as spin-spirals
1,2

 and skyrmions
3–5

 via the 

Dzyaloshinskii-Moriya interaction (DMI)
6
. Here we show that in ultrathin metallic 

ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral 

domain walls (DWs)
2,7

 whose spin texture enables extremely efficient current-driven 

motion
8–11

. We show that spin torque from the spin Hall effect
12–15

 drives DWs in opposite 

directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs 

assume a Néel configuration
7,16

 with left-handed chirality. We directly confirm the DW 

chirality and rigidity by examining current-driven DW dynamics with magnetic fields 

applied perpendicular and parallel to the spin spiral. This work resolves the origin of 

controversial experimental results
10,17,18

 and highlights a new path towards interfacial 

design of spintronic devices. 

 

*e-mail: gbeach@mit.edu 
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Current-controlled DW displacement underpins the operation of an emerging class of 

spintronic memory
19

 and logic
20,21

 devices.  In out-of-plane magnetized ferromagnets 

sandwiched between an oxide and a heavy metal, current-induced DW motion is anomalously 

efficient.
8–11

  This observation has been widely attributed to a Rashba effective field
17,22,23

 that 

stabilizes Bloch DWs against deformation, permitting high-speed motion
10

 via conventional 

spin-transfer torque (STT)
24

.  However, current-induced DW motion is absent in symmetric 

Pt/Co/Pt
8,9,11,25

 stacks, and semiclassical transport calculations
25

 suggest the spin-polarized 

current in the ultrathin (< 1 nm) Co is vanishingly small. Moreover, DWs in Pt/Co/oxide move 

against electron flow
8,10,11

, contrary to the action of STT
24

.  Together, these results suggest that 

conventional STT contributes negligibly to DW dynamics in these ultrathin structures and that 

interfacial phenomena
26,27

 are instead responsible.  

The Rashba field lacks the correct symmetry to drive DWs directly
16,26,27

, and the spin 

Hall effect (SHE) in the adjacent heavy metal has emerged as a possible alternative 

mechanism
12–16,27

.  SHE-driven spin accumulation at the heavy-metal/ferromagnet interface 

generates a Slonczeswki-like torque
16,26,27

 strong enough to switch uniformly-magnetized 

films
12–15,18

. However, the Bloch DWs expected in typical nanowire geometries
8–11,28

 have their 

plane oriented perpendicular to the nanowire axis, in which case the Slonczewski-like torque 

vanishes
16

. This behavior was recently confirmed in asymmetric Pt/Co/Pt stacks in which the 

SHE-induced torques from the Pt layers did not cancel completely
15

. In that case, current-

assisted DW depinning was observed when an applied field rotated the DW plane towards the 

current axis, but up-down and down-up DWs were driven in opposite directions and the current 

had no effect in the absence of the bias field. The SHE alone is therefore incapable of uniformly 
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driving trains of DWs in devices, and is insufficient to explain the high spin-torque efficiencies 

and DW velocities observed in Pt/Co/oxide
8–11

 without applied fields. 

Here we characterize current-induced torques and DW dynamics in out-of-plane 

magnetized Pt/CoFe/MgO and Ta/CoFe/MgO stacks that are nominally identical except for the 

heavy-metal underlayers, whose spin Hall angles are large and of opposite sign
12–14

.  By 

considering the symmetry of the measured current-induced torque along with the DW dynamics 

driven by this torque, we uniquely identify the DW configuration as Néel with a fixed chirality.  

Magnetostatics alone makes this configuration unstable and does not favor one chirality over the 

other, but the DMI has been theoretically shown to promote chiral Néel DWs
2,7

.  By applying in-

plane magnetic fields, we verify that the DW magnetization aligns rigidly along the nanowire 

axis, and that the DW spin spiral exhibits a global chirality common to both Pt/CoFe/MgO and 

Ta/CoFe/MgO.  Current-driven DW motion in heavy-metal/ferromagnet/oxide structures is 

naturally explained by the combination of the SHE, which produces the sole current-induced 

torque, and the DMI, which stabilizes chiral DWs whose symmetry permits uniform motion with 

very high efficiency. 

 DW motion was characterized in 500-nm wide, 40-μm long nanowires overlaid with an 

orthogonal DW nucleation line and lateral contacts for current injection (Fig. 1a).  We first 

examine the effect of current on the threshold field Hprop for DW propagation through the defect 

landscape.  Measurements were performed as in Ref. 11, by first nucleating a reversed domain 

with the Oersted field from a current pulse through the nucleation line and then sweeping an out-

of-plane field Hz to drive the DW along the nanowire.  DW motion was detected via the polar 

magneto-optical Kerr effect, with a ~3 m laser spot positioned at the midpoint of the nanowire. 

Comparing Figs. 1d,e, Hprop varies linearly with electron current density je, but DW propagation 
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is hindered in the electron flow direction in Pt/CoFe/MgO and assisted along electron flow in 

Ta/CoFe/MgO. This remarkable difference, produced simply by changing the nonmagnetic metal 

in contact with the ferromagnet, was independent of the sense of magnetization (up-down or 

down-up) across the DW.  The magnitude of the spin-torque efficiency, taken as the slope of 

Hprop versus je, was 120 Oe/10
11

 A m
-2

 for Pt/CoFe/MgO and 170 Oe/10
11

 A m
-2 

for 

Ta/CoFe/MgO.  These large efficiencies are comparable to those reported for Pt/Co/AlOx
9,10

 and 

Pt/Co/GdOx
11

, suggesting that a universal mechanism governs current-driven DW motion in 

heavy-metal/ferromagnet/oxide. 

 In Figs. 1f,g, we directly compare field-driven and current-driven DW velocities, 

measured  using a time-of-flight technique
11

.  Again, DWs moved against electron flow in 

Pt/CoFe/MgO (Fig. 1f) and along electron flow in Ta/CoFe/MgO (Fig. 1g).  The maximum field 

was limited by random domain nucleation, and the exponential dependence of velocity on Hz and 

je indicates thermally activated motion
11,29

.  The field-driven and current-driven velocities exhibit 

the same dynamical scaling across three decades in velocity when je is scaled by a constant (110 

Oe/10
11

 A m
-2

 for Pt/CoFe/MgO and 160 Oe/10
11

 A m
-2

 for Ta/CoFe/MgO).  These field-to-

current ratios closely match those extracted from Figs. 1d,e.  We therefore conclude that the 

effect of current on DW motion is phenomenologically equivalent to an out-of-plane field
9,11

, 

which reveals the symmetry of the current-induced torque as discussed later in this Letter. 

In addition to robust DW motion, current enables switching between uniformly 

magnetized “up” and “down” states with the assistance of a constant in-plane magnetic 

field
12,15,18

.   This switching phenomenon was demonstrated in 1200-nm wide Hall crosses (Fig. 

2a).  A sequence of 250-ms long current pulses with increasing (or decreasing) amplitude was 

injected along the x-axis, and in between each pulse the out-of-plane magnetization component 
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Mz was measured from the anomalous Hall voltage using a low-amplitude (~10
9
 A m

-2
) AC 

sense current and a lock-in amplifier.  Figs. 2d,e plot Mz versus je, under a constant applied 

longitudinal field HL.  This field tilted the magnetization away from the z-axis by ≈ 5
o
 in 

Pt/CoFe/MgO at 500 Oe  and ≈ 3
o
 in Ta/CoFe/MgO at 100 Oe, but did not bias Mz up or down, 

as evidenced by the nearly symmetric switching profile (Figs. 2d,e).  With sufficiently large HL 

and je in the +x direction, the up magnetized state was favored in Pt/CoFe/MgO (Fig. 2d, solid 

line), whereas the down state was favored in Ta/CoFe/MgO (Fig. 2e, solid line).  When the 

direction of HL or je was reversed, the preferred magnetization direction was also reversed (Figs. 

2d, e, dotted lines).   

This switching behavior implies that je generates an effective field 
SLH


 associated with a 

Slonczewski-like torque
12,13,15,18

, given by   eSLSL jzmHH ˆˆˆ0 


16
.  Here m̂ , ẑ , and eĵ  are unit 

vectors along the magnetization, z-axis, and electron flow, respectively, and 0

SLH  parameterizes 

the torque.  The SHE in the heavy metal directly generates a Slonczewski-like torque, but the 

Rashba effect can also yield a torque of this form due to spin-relaxation
18,26,27

.  Assuming the 

SHE is the dominant source, justified experimentally below, 0

SLH  is related to the spin Hall angle 

SH in the heavy metal via )2(|0

FSeSHSL tMejH  16
, with SM  the saturation magnetization 

and Ft  the ferromagnet thickness.  From the sign of 0

SLH  extracted from current-induced 

switching (Figs. 2b,c), SH  is positive in Pt and negative in Ta, consistent with Refs. 12 and 13.  

We quantified the Slonczewski-like torque by detecting current-induced magnetization 

tilting using the technique in Ref. 30.  AC current exerts a periodic torque on the uniformly 

magnetized state, causing Mz to vary at the drive frequency, .  This leads to first and second 

harmonics in the anomalous Hall voltage, V  and 2V , from which the magnetization tilting can 
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be determined
22,30

.  We measured V  and 2V  while quasistatically sweeping a longitudinal field

LH , and extracted SLH  via    22

2 //2 LLSL dHVddHdVH   (Ref. 30, Supplementary 

Information).  Measurements were performed at several AC amplitudes to extract the scaling of 

SLH  with current. When the magnetization was up and je was in the +x direction, SLH  pointed 

along -x in Pt/CoFe/MgO (Figs. 3a,e) and +x in Ta/CoFe/MgO (Figs. 3b,f), in agreement with 

our analysis of magnetization switching (Figs. 2b, c). The direction of SLH  reversed when the 

magnetization was oriented down. The linear fit in Fig. 3a reveals a large 0

SLH  in Pt/CoFe/MgO 

of magnitude 50 Oe per 10
11

 A m
-2

, implying SH = +0.06 in Pt, which agrees well with Ref. 12. 

The magnitude of 0

SLH  in Ta/CoFe/MgO is ≈ 200 Oe per 10
11

 A m
-2

, implying SH  = -0.25 in Ta, 

twice as large as in Ref. 13 and closer to the value reported for W
14

. 

 The current-induced effective transverse field FLH , often associated with a “field-like” 

torque from the Rashba effect
16,17,22,23,26,27

, was quantified similarly by sweeping an applied 

transverse field TH :    22

2 //2 TTFL dHVddHdVH  .  Unlike SLH , the direction of FLH  

was independent of the magnetization orientation (Figs. 3 c,d).  The magnitude of FLH  in 

Pt/CoFe/MgO (Fig. 3c) was ≈ 20 Oe/10
11

 A m
-2

, two orders of magnitude lower than reported in 

Refs. 17 and 22, although its directionality was the same as in Pt/Co/AlOx
17,22

.  Since current-

induced DW motion had a very high efficiency and occurred against the electron flow direction  

in Pt/CoFe/MgO, the fact that FLH  was negligible indicates that the Rashba effect cannot be the 

source of these features
8–11,26,27

. Furthermore, since any contribution to the Slonczewski-like 

torque by the Rashba effect
18

 enters as a correction proportional to the nonadiabicity parameter 
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<< 1
26,27

, the fact that SLH  is here much larger than FLH  implies that the Rashba effect 

contributes negligibly to the Slonczewski-like torque. 

In Ta/CoFe/MgO (Fig. 3d), FLH  was by contrast quite large, ≈ 400 Oe/10
11

 A m
-2

, and its 

direction was the same as in Ta/CoFeB/MgO
23

 and opposite to Pt/CoFe/MgO and 

Pt/Co/AlOx
17,22

, suggesting a strong Rashba field
17,22,23

 in this sample.  However, as noted in Ref. 

12, macrospin modeling shows that a large Slonczewski-like torque can pull the magnetization 

out of the x-z plane, which in the measurements here and elsewhere
17,22,23,30

 would have a similar 

effect as a field-like torque.  Considering the weaker perpendicular magnetic anisotropy (see 

Methods) and the much larger 0

SLH  in Ta/CoFe/MgO compared to Pt/CoFe/MgO, the 

Slonczewski-like torque could contribute to the apparently large FLH . 

As summarized in Figs. 3e,f, the current-induced torques are opposite in Pt/CoFe/MgO 

and Ta/CoFe/MgO, as are the direction of current-driven DW motion and the sign of the spin 

Hall angles in Pt and Ta. Here we consider in detail the case of Pt/CoFe/MgO, in which the field-

like torque is unambiguously small. One-dimensional (1D) model calculations
29

 in Fig.4b (see 

Methods and Supplementary Information) show that Bloch DWs cannot be driven by the SHE 

alone, in agreement with prior reports
16,27

  and with the symmetry of the Slonczewski-like torque. 

In the 1D model with SH  > 0 and with no transverse Rashba field, the addition of conventional 

STT enables sustained DW motion, but its direction is along electron flow (Fig. 4b). No 

combination of the SHE and STT reproduces the experimentally-observed DW motion against 

electron flow (Supplementary Information), and moreover conventional STT is likely absent as 

argued above. Thus, an alternate mechanism is required whereby the SHE alone can drive DW 

motion. 
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Néel DWs have an internal magnetization that would align with the nanowire axis, such 

that the Slonczewski-like torque would manifest as a z-axis field
16

 as experimentally observed 

(Fig. 1).  However, the direction of HSL depends of the sense of the DW magnetization, and the 

direction of DW motion varies accordingly (Supplementary Information).  Fig. 4a illustrates 

Néel DWs with oppositely-directed internal magnetization for up-down and down-up transitions, 

exhibiting a left-handed chiral texture
2
.  Based on the sign of the measured Slonczewski-like 

torque (Figs. 2 and 3), these chiral DWs move against electron flow in Pt/CoFe/MgO and along 

electron flow in Ta/CoFe/MgO. Although Bloch DWs are magnetostatically preferred
28

, adding 

the DMI to the 1D model stabilizes such chiral Néel DWs
7
 (Methods, Supplementary 

Information), leading to qualitative behavior in agreement with experiment (Fig. 4b). 

Finally, we assess the rigidity and chirality of the Néel DWs in Pt/CoFe/MgO using 

applied in-plane fields. In Figs. 4c,d we show that the spin-torque efficiency, extracted similarly 

to Fig. 1d, is insensitive to HL up to at least 600 Oe, but declines significantly with increasing 

|HT|.  This behavior is opposite to that reported for Bloch DWs in Ref. 15, but is precisely what is 

expected for DMI-stabilized Néel DWs: HL is collinear with the DW magnetization and exerts 

no torque, whereas HT exerts a torque that cants the DW magnetization away from the x-axis and 

reduces the z-axis-oriented HSL. That the sense of internal DW magnetization could not be 

reversed at the experimentally-available maximum HL of 600 Oe attests to the strength of the 

DMI in this system. 

We also measured the effects of HL and HT on the velocity of fast current-driven DWs 

(Figs. 4e,f), which was reproduced qualitatively by the 1D model with the SHE and DMI (Figs. 4 

g,h). HL modified the velocities of up-down and down-up DWs with opposite slopes (Figs. 4e,g), 

whereas HT modified both velocities identically (Figs. 4f,h).  The 1D model predicts DW motion 
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reversal under very large HL coinciding with reversal of the DW sense, and impeded motion for 

large HT due to rotation towards a Bloch configuration (see Supplementary Information).  

Interestingly, the velocity increased with HT in the direction of the previously reported Rashba 

field in Pt/Co/AlOx
10,17,22

, although here HFL in Pt/CoFe/MgO was vanishingly small.  Our 

experimental and computational results indicate that, even without the Rashba effect, HT can 

modify the dynamics of Néel DWs driven by the SHE-induced Slonczewski-like torque.   

In summary, we show that current alone drives DWs with high efficiency but in opposite 

directions in Pt/CoFe/MgO and Ta/CoFe/MgO through the Slonczewski-like torque due to the 

SHE
12–15

.  However, the SHE-induced torque alone cannot directly drive the magnetostatically-

preferred Bloch DWs
28

 in these materials.  We show experimentally and computationally that the 

DMI
1–7

 provides the missing ingredient to explain current-induced DW motion in heavy-

metal/ferromagnet/oxide systems
8–11

 by stabilizing Néel DWs with a built-in chirality, such that 

the SHE alone drives them uniformly and with high efficiency. Engineering both the DW spin 

structure and the current-induced torque simply by selecting the materials adjacent to the 

ferromagnet presents unprecedented opportunities for designing current-controlled spintronic 

devices. 

 

Methods 

Sample fabrication. The stack structure of Pt/CoFe/MgO was Ta(3 nm)/Pt(3 

nm)/Co80Fe20(0.6 nm)/MgO(1.8 nm)/Ta(2 nm), and that of Ta/CoFe/MgO was Ta(5 

nm)/Co80Fe20(0.6 nm)/MgO(1.8 nm)/Ta(2 nm).  Both were deposited on Si/SiO2(50 µm) 

substrates.  The metal layers were deposited by DC magnetron sputtering at 2 mTorr Ar (for Pt, 3 

mTorr Ar), and MgO was RF sputtered at 3 mTorr Ar.  The deposition rates were < 0.1 nm s
-
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1
,calibrated with X-ray reflectivity.  Co80Fe20 was chosen, instead of pure Co, to attain sufficient 

perpendicular magnetic anisotropy on both Ta and Pt underlayers.  The bottom Ta(3 nm) layer in 

Pt/CoFe/MgO served as a seed layer to enhance perpendicular magnetic anisotropy and  

adhesion between Pt and the substrate.  The Ta(2 nm) capping layer protected the MgO layer in 

each structure.  Vibrating sample magnetometry on continuous films revealed full out-of-plane 

remanent magnetization and in-plane (hard-axis) saturation fields of ≈ 5 kOe for Pt/CoFe/MgO 

and ≈ 3 kOe for Ta/CoFe/MgO.  The saturation magnetization was ≈700 emu/cm
3
, 

approximately half of the bulk value, suggesting a magnetic dead layer due to roughness or 

oxidation. Both films exhibited weak DW pinning, with DW propagation at fields < 20 Oe. 

The nanowires and Hall crosses were fabricated using electron beam lithography, 

magnetron sputtering, and liftoff.  Electrical contacts consisting of Ta(2 nm)/Cu(100 nm) were 

placed with a second layer of electron beam lithography.  To estimate the current density through 

these devices, current was assumed to flow only through the ultrathin CoFe layer and the 

adjacent heavy metal layer, so that the effective conductive thickness was 3.6 nm for 

Pt/CoFe/MgO and 5.6 nm for Ta/CoFe/MgO.   We neglected current shunting in the bottom Ta 

seed layer in the Pt/CoFe/MgO, as sputtered Ta (beta phase) typically has a much higher 

resistivity than Pt.  The resistance of the Ta/CoFe/MgO device was 3.5 times greater than the 

Pt/CoFe/MgO device, and the Ta layer was estimated to be 5 times more resistive than the Pt 

layer. Current shunting through the Ta capping layer, assumed to be oxidized, was also neglected. 

One dimensional model. DW velocity was calculated using the standard one-

dimensional (1D) model
29

, which describes the DW in terms of two collective coordinates: 

position )(tX  and angle )(t , defined as the in-plane (xy) angle with respect to the positive x-

axis. The current xjj aa
ˆ


 is injected along the x-axis, and is positive along the positive x-axis. 
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(Note that the electron flow je in the text is in the opposite direction with respect to ja.) The 1D 

model including adiabatic and nonadiabatic STT, Slonczewski-like torque from the SHE, and the 

DMI
7
 is given by 

     

   

   
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H
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d
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


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




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   (2) 

where   is the DW width, KH  is the shape anisotropy field,   is the Gilbert damping, 0  is the 

gyromagnetic ratio, and bJ is related to the adiabatic spin-transfer torque (STT), and is given by 

a

s

B
J j

eM

P
b


 ,         (3) 

and   is the non-adiabatic parameter.  In (3), P is the spin polarization of the current, 

2410274.9 B  J/T is the Bohr magneton and 
19106.1 e  C is the electron charge. The 

applied magnetic field has components (Hx, Hy, Hz).  The Slonczewski-like torque from the SHE 

enters the 1D model equations via the effective field parameter 

Fs

aSH
SHE

teM

j
H

02


         (4) 

where SH  is the spin Hall angle and Ft  is the thickness of the ferromagnetic layer. The effective 

field describing the Dzyaloshinskii-Moriya Interaction (DMI) is
7
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


s

DMI
M

D
H

0
        (5) 

where D is the DMI parameter.   In the 1D model, the DMI enters as an effective field directed 

along the x-axis inside the DW
7
, and promotes Néel DWs with internal magnetization oriented in 

either direction along the x-axis depending on the sign of D.  The same chirality is therefore 

introduced for up-down and down-up DWs by using D with opposite signs. 

In order to qualitatively understand the experimental observations, archetypal parameters 

of a high perpendicular magnetic anisotropy (PMA) sample, with easy-axis along the z-axis, 

were considered: saturation magnetization Ms = 3×10
5
A/m, exchange constant A = 10

−11
J/m, 

uniaxial anisotropy constant Ku = 2×10
5
J/m

3
, Gilbert damping α = 0.2, polarization factor P = 0.5, 

non-adiabatic parameters = 0.4, spin Hall angle SH = 0.1, and Dzyaloshinskii-Moriya constant 

|D| = 0.5 mJ/m
2
. The 1DM inputs were chosen to be  = 8.32 nm and HK = 12533 A/m, which 

correspond to a ferromagnetic strip of rectangular cross-section Ly×Lz = 120 nm×3 nm explored 

in detail in Ref. 29. For these parameters and dimensions the static DW configuration in the 

absence of DMI was a Bloch DW magnetized along the y-axis, which was the initial DW 

configuration. Further details and model results are described in Supplementary Information. 
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Figure 1 | Effect of current on domain wall motion. a, Scanning electron micrograph of the  

nanowire.  The current pulse on the left nucleates a domain wall, which is then propagated to the 

right by current or applied out-of-plane field. b, c, Illustrations of the direction of current-driven 

domain wall motion in the Pt/CoFe/MgO (b) and Ta/CoFe/MgO (c) nanowires.  Electron current 

je is defined positive when conduction electrons flow away from the nucleation line, from left to 

right in the micrograph (a).  d, e, Domain wall propagation field Hprop as a function of driving 

electron current density je for Pt/CoFe/MgO (d) and Ta/CoFe/MgO (e).  The slope of the linear 

fit extracts the spin-torque efficiency for each structure. f, g, Domain wall velocity as a function 

of je and applied out-of-plane field Hz for Ta/CoFe/MgO (f) and Pt/CoFe/MgO (g).  The field-

driven data are scaled by a field-to-current ratio (see text) so that they are directly on top of the 

current-driven data.   

 

Figure 2 | Current-induced switching under a constant in-plane longitudinal field. a, 

Scanning electron micrograph of a Hall cross. b, c, Illustrations of Pt/CoFe/MgO (b) and 

Ta/CoFe/MgO (c) in the up magnetization state with the injected electron current and applied 

longitudinal field HL in the +x direction.  Because of the combination of the current-induced 

Slonczewski-like torque (producing an effective field HSL) and the applied longitudinal field, up 

magnetization is stable in Pt/CoFe/MgO whereas it is unstable in Ta/CoFe/MgO.  d, e, Out-of-

plane magnetization Mz (normalized anomalous Hall signal) as a function of electron current 

density je under a constant HL in Pt/CoFe/MgO (d) and Ta/CoFe/MgO (e).  The magnitude of HL 

is 500 Oe for Pt/CoFe/MgO (d) and 100 Oe for Ta/CoFe/MgO (e).  When HL is reversed from +x 

(solid line) to –x (dotted line), the stable magnetization direction under a given current polarity 

reverses.   
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Figure 3 | Current-induced effective fields. a, b, Current-induced effective longitudinal field 

HSL, arising directly from the Slonczewski-like torque, as a function of electron current density je 

(from AC excitation current amplitude) in Pt/CoFe/MgO (a) and Ta/CoFe/MgO (b).  c, d, 

Current-induced effective transverse field HFL as a function of je in Pt/CoFe/MgO (c) and 

Ta/CoFe/MgO (d).  e, f, Illustration of the directions of the current-induced effective fields HSL 

and HFL in Pt/CoFe/MgO (e) and Ta/CoFe/MgO (f), when the magnetization is up and the 

electron flow is in the +x direction.   

 

Figure 4 | Current-driven dynamics of chiral Néel domain walls. a, Illustration of  left-

handed chiral Néel domain walls in  Pt/CoFe/MgO.  The effective field HSL from the 

Slonczewski-like torque moves adjacent up-down and down-up domains with velocity vDW in the 

same direction against electron flow je.  b, Domain wall velocity as a function of electron current 

density je, calculated using the one-dimensional model, with the spin Hall effect only (SHE only), 

the spin Hall effect and spin-transfer torque (SHE+STT), and the spin Hall effect and the 

Dzyaloshinskii-Moriya interaction (SHE+DMI).  The parameters used in this calculation are in 

the Methods section.  c, d,  Spin-torque efficiency for domain wall motion in Pt/CoFe/MgO 

under applied longitudinal field HL (c) and transverse field HT (d). e, f, Domain wall velocity at a 

constant current je = -3.0×10
11

 A m
-2

 as a function of HL (e) and HT (f).  g, h, Calculated domain 

wall velocity at je = -3.0×10
11

 A m
-2

 as a function of HL (g) and HT (h) using the one-

dimensional model.     
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I. Measurement of the domain wall propagation field Hprop 

A lithographically patterned 40-µm long, 500-nm wide magnetic nanowire is shown in 

Fig. S1a.  Magnetization switching was measured using our custom scanning magneto-optical 

Kerr effect (MOKE) system
1
 with a ~3 µm focused laser beam placed at a fixed position midway 

along the nanowire.  For each value of electron current density je injected through the nanowire, 

MOKE hysteresis loops were obtained under an applied out-of-plane field Hz with a triangular 

waveform of amplitude 150 Oe and frequency 12.5 Hz.  After saturating the magnetic nanowire 

(e.g. uniformly magnetized down), a reverse domain (e.g. up) was nucleated using a 25-ns, 50-

mA nucleation pulse just after the field zero-crossing.  With the increasing Hz expanding the 

reverse domain, a domain wall (DW) propagated away from the nucleation line, and 

magnetization switching was detected by MOKE as the DW passed through the laser spot.  After 

saturating the magnetic nanowire by domain expansion, Hz was swept in the other direction.  For 

this side of field sweep, no DW was initialized so that magnetization switching occurred through 

domain nucleation at random locations in the nanowire.  At a sufficiently large Hz, the 
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magnetization was saturated again in the initial direction.  This measurement cycle was repeated 

at least 50 times and an averaged hysteresis loop was obtained to attain a sufficient signal-to-

noise ratio and take into account the stochasticity of magnetization switching.  The DW 

propagation field Hprop was taken as the field at which the normalized MOKE signal (Fig. S1b) 

crossed zero.  As seen on the positive side of Hz in Fig. S1b, we observed a clear shift of Hprop 

even at small currents < 10 µA (|je| < 10
10

 A m
-2

), resulting in a linear correlation between Hprop 

and driving current as shown in Fig. 1 of the Letter.   By contrast, no systematic variation in the 

nucleation field (switching field in the absence of an initialized DW) was observed with respect 

to current, as shown on the negative field side of Hz in Fig. S1b.  

 

Figure S1 | a, Schematic of the domain wall propagation field measurement superposed on a 

scanning electron micrograph of a nanowire.  The focused laser spot is placed halfway along the 

nanowire for magneto-opical Kerr effect (MOKE) measurements.  b, Exemplary MOKE 

hysteresis loops on a Pt/CoFe/MgO device at under polarities of current densities (here, |je| = 

0.07×10
11

 A m
-2

).  A domain wall is initialized only on the rising side of the positive applied 

field, so that here the positive coercive field is the DW propagation field while the negative 

coercive field is the reverse domain nucleation field.   

 

Some data of DW propagation field were obtained with a high-impedance DC source 

outputting the current to drive DWs.  However, initialized DWs were occasionally pinned around 
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the initialization line at larger magnitudes of driving current.  We speculate that the voltage drop 

across the thin MgO layer might have locally modified magnetic anisotropy in the vicinity of the 

initialization line, through an effect similar to what was observed in Ref 2.   To circumvent any 

issues associated with this pinning effect, we conducted most propagation field measurements in 

the following way: With the nanowire saturated (e.g. fully magnetized in the down direction), an 

out-of-plane field was ramped to ~20-30 Oe (less than the nucleation field) in 100 µs.  While this 

field was maintained, a reverse domain (e.g. up) was nucleated with a current pulse in the 

initialization line.  The field was maintained for another 50 µs to de-pin and drive the DW away 

from the initialization line by ~5 µm.  After 1 ms, we then injected a current through the 

magnetic nanowire (output by a function generator with a rise-time of ~10 ns) and began 

sweeping the out-of-plane field at the same time.  The difference in the extracted spin-torque 

efficiency depending on the measurement method was as much as ~20 %, but the polarity of the 

spin-torque efficiency did not change with the measurement method.   

The DW motion data presented in Fig. 1 of the Letter were conducted at a constant 

substrate temperature of 308 K, maintained to within ±0.1 K with a thermoelectric module.  The 

DW motion data under applied in-plane fields shown in Fig. 4 were not conducted on the 

thermoelectric module; the substrate temperature was within 295-300 K.   

 

II. Current-driven domain wall motion for opposite senses of magnetization  

A recent report by Haazen et al.
3
 on all-metal asymmetric Pt/Co/Pt stacks shows that 

current effectively promoted domain expansion or contraction, i.e. up-down and down-up DWs 

moved in opposite directions with respect to current under an in-plane longitudinal field.  

Current could displace DWs only under a sufficient in-plane longitudinal field that locked the 
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Néel wall configuration.   Adjacent up-down and down-up Néel walls were expected to have 

opposite chiralities, with their internal magnetic moments oriented parallel to the longitudinal 

field, which would result in opposite directions of motion with respect to current.  When the 

direction of the longitudinal field was reversed, the direction of motion for each DW was 

reversed.  These results of current-driven DW motion in Pt/Co/Pt were attributed to the 

Slonczewski-like torque from the spin Hall effect.   

By contrast, recent studies on Pt/Co/AlOx
4,5

 and Pt/Co/GdOx
6
 have reported up-down 

and down-up DWs moving in the same direction under current.  We measured several different 

nanowires of Pt/CoFe/MgO and Ta/CoFe/MgO, and current-driven DW motion was also 

unidirectional in those devices irrespective of the magnetization sense across the DW.  In 

particular, for both senses of magnetization across the DW (“Up-Down” and “Down-Up” DWs), 

the same trend was observed (Fig. S2): With electron flow in the same direction as field-induced 

DW motion, the propagation field increased in Pt/CoFe/MgO and decreased in Ta/CoFe/MgO.  

In other words, the motion of both Up-Down and Down-Up DWs was hindered in the direction 

of electron flow in Pt/CoFe/MgO and assisted in Ta/CoFe/MgO. The unidirectional motion of 

Up-Down and Down-Up DWs requires a Néel configuration with fixed chirality as discussed in 

the Letter and in Sections IX and X of this Supplementary document.    
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Figure S2 | a,b Direction of current-induced motion in Pt/CoFe/MgO and Ta/CoFe/MgO for an 

up-down domain wall (up domain expanding under an upward applied field) (a) and a down-up 

domain wall (down domain expanding under a downward applied field) (b). c,d Domain wall 

propagation field Hprop as function of driving electron current density je exhibiting the same trend 

for Up-Down (filled symbols) and Down-Up domain walls (empty symbols) in Pt/CoFe/MgO (c) 

and Ta/CoFe/MgO (d).    

 

III. Velocity measurements of current-driven DWs 

Current-driven DW velocity measurements were carried out by first driving a DW away 

from the nucleation line with the out-of-plane field pulse (as described in Section I) and then 

injecting the current to drive the DW.   The field-driven DW velocity was measured by first 
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ramping the field to the setpoint driving level (because of the slow rise-time of the magnet ~100 

µs) and then initializing a DW, which was subsequently driven to the other end of the nanowire 

by the constant driving field.  The DW arrival time was extracted from MOKE signal versus time 

averaged over at least 50 measurement cycles, and the velocity was obtained by linearly fitting 

the plot of the arrival time at several positions along the nanowire, as shown in Fig. S3.   

 

Figure S3 | a, Scanning electron micrograph of a 500-nm wide nanowire.  The current pulse on 

the left initializes a domain wall, which is then driven to the right by an applied field or injected 

current.  b, Magneto-optical Kerr effect signal showing magnetization switching due to domain 

wall propagation at different positions along the nanowire.  c, Domain wall arrival time plotted 

against position along the nanowire.  The domain wall velocity is extracted by linear fit.   

 

IV. Domain wall velocity at higher current densities 

 In Fig. S4, we present the velocity of DWs up to electron current densities je larger than 

the range shown in Fig. 1 of the Letter.  Interestingly, with |je| > 1×10
11

 A/m
2
, the DW velocity is 

higher in Pt/CoFe/MgO than in Ta/CoFe/MgO, despite the smaller spin-torque efficiency and 

spin Hall angle exhibited by Pt/CoFe/MgO.  This paradox suggests that the DW velocity is not 
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necessarily an accurate metric of the current-induced torque, and that caution must be used when 

relying on velocity data alone to compare the current-induced torques in different materials.  The 

origin of the paradox may be the difference in magnetization damping for these two structures: 

Pt-based magnetic thin films typically exhibit much stronger damping (with damping parameters 

~0.1 or greater)
7–9

 than Ta-based ones (~0.01)
10,11

.  The higher velocity in Pt/CoFe/MgO is then 

explained if the current-driven DW mobility scales with the damping parameter.  Further 

computational and experimental studies will elucidate the effect of damping on chiral Néel DWs 

driven by the Slonczewski-like torque.  

 

Figure S4 | Domain wall velocity as a function of electron current density je in Pt/CoFe/MgO 

and Ta/CoFe/MgO. 

 

V. Measurement of current-induced switching 

Magnetization switching was induced by 250-ms long current pulses injected in the 

longitudinal (x) direction of the cross (Fig. 2a).  250 ms after the current pulse was turned off, the 

out-of-plane component of the magnetization was measured from the anomalous Hall voltage 

using a 400-Hz low-amplitude (~10
9
 A m

-2
) AC sense current and a lock-in amplifier.  The out-

of-plane magnetization was measured successively in this fashion by stepping through a range of 

current pulse amplitudes, producing hysteresis loops as shown in Fig. 2 of the Letter.   
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VI. Measurement of current-induced effective longitudinal field 

Figs. S5a,b illustrate the measurement setup for determining the magnitude and direction 

of the effective in-plane longitudinal field SLH  in a uniformly magnetized Hall cross.  Two lock-

in amplifiers were used to measure the first and second harmonics in the anomalous Hall voltage 

signal simultaneously. The frequency of the AC (sinusoidal) excitation current  2/ was 80 Hz.  

The measured second harmonic was set 90 degrees out of phase with respect to the first 

harmonic (see equations below). The applied in-plane longitudinal field LH  from an 

electromagnet was swept from +600 Oe to -600 Oe and then back to +600 Oe quasistatically.  

An air-coil was placed directly beneath the sample substrate to apply a constant out-of-plane 

field of 32 Oe to keep the magnetization from switching.   

The work by Kim et al.
12

 describes the derivation of the model used in our study to 

extract SLH  produced by the Slonczewski-like torque.   When the Hall cross is uniformly 

magnetized along the out-of-plane (z) direction, the AC excitation current generates an effective 

field along the longitudinal (x) axis, which modulates LH , i.e.  

tHHH SLL

total

L sin .   

This sinusoidal modulation of the longitudinal field results in an anomalous Hall voltage AHV  of 

the form 

tVtVVV DCAH   2cossin 2 ,   

where DCV is the component that does not depend on the frequency of the AC excitation, V is 

the in-phase first harmonic, and 2V  is the out-of-phase second harmonic.   The expressions for

V and 2V are 
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where AHR  is the difference in the anomalous Hall resistance between the up and down 

magnetized states and OI is the amplitude of the AC excitation current.  D is a constant defined 

by the out-of-plane uniaxial anisotropy constant UK , saturation magnetization SM , and applied 

out-of-plane field 
zH :   zSSU HMMKD  4/2 .  The ± in front of the equations 

correspond to the up (+ z) magnetized and down (- z) magnetized states, respectively.  The ratio 

of the first derivative of 2V to the second derivative of V is taken to solve for SLH :    
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In the above expression, the sign of SLH  indicates the direction of SLH  (+x or –x) when 

conventional current is positive, i.e. in the + x-direction.  In the Letter, we discuss the directions 

of SLH  when electron flow is in the + x-direction (conventional current in the –x direction).  

Therefore, the appropriate expression for SLH  in the Letter has the opposite sign.   
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There are a few key assumptions that go into this model
12

. (1) The Hall cross is uniformly 

magnetized.  (2) The tilting θ of the out-of-plane magnetization is small (small angle 

approximation sinθ ≈ θ).  (3) The magnetization is not tilted in the transverse direction, although 

in general current can generate a torque that pulls the magnetization in the transverse direction as 

well.   
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 Exemplary data of V  and 2V are shown in Figs. S5c-j.  As expected, V  data for both 

Pt/CoFe/MgO and Ta/CoFe/MgO vary quadratically with 
LH  as the magnetization tilts away 

from the perpendicular axis.  We observed different offsets in V in various devices due to a 

voltage drop from < 0.1% of excitation current flowing in the transverse direction of the Hall 

cross (≈ 17 kΩ for Ta/CoFe/MgO, ≈ 5 kΩ for Pt/CoFe/MgO).   The maximum magnetization 

tilting at 600 Oe of applied longitudinal field is ≈ 20
 o 

(0.35 rad) in Ta/CoFe/MgO and ≈ 10
 o 

 

(0.17 rad) in Pt/CoFe/MgO.  The variation of 2V is linear with respect to longitudinal field in 

Pt/CoFe/MgO, consistent with the model described above.  

 

Figure S5 | a,b Schematics of the anomalous Hall voltage measurement to determine the 

effective longitudinal field HSL arising from the Slonczewski-like torque in Pt/CoFe/MgO (a) and 

Ta/CoFe/MgO (b).  c-f, First harmonic of the anomalous Hall voltage as a function of applied in-
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plane longitudinal field HL in Pt/CoFe/MgO (c,d) and Ta/CoFe/MgO (e,f).  g-j, Second harmonic 

of the anomalous Hall voltage as a function of HL in Pt/CoFe/MgO (g,h) and Ta/CoFe/MgO (i,j).   

 

However, for Ta/CoFe/MgO, different linear slopes of 2V were observed, with a larger 

slope for |HL| < 100-200 Oe and a reduced slope for |HL| > 100-200 Oe.  We observed this 

behavior in all measured Ta/CoFe/MgO Hall crosses.  To explore the origin of this behavior, V

and 2V were measured under different constant bias out-of-plane fields as shown in Fig. S6.  For 

a small excitation current (Figs. S6a,c,e), magnetization switching was observed and 2V

diverged around 
LH  = 100 Oe under zero out-of-plane field.  The switching and divergence 

were suppressed under nonzero out-of-plane fields, although the transition in the 2V slope 

remained.  At an even higher excitation current amplitude (Fig. S4b,d,f), diverging features at 

LH  ≈ 100 Oe could no longer be suppressed by out-of-plane field.  Although we do not have a 

complete explanation for the origin of these features, we can attribute the transition in the 2V

slope appearing at 
LH ≈100-200 Oe to the formation of a multi-domain state (i.e. deviation from 

uniform magnetization) or the onset of instability in the magnetization direction.   For example, 

the combination of a sufficient longitudinal field and excitation current could possibly destabilize 

the magnetization around the edges of the Hall cross, where perpendicular magnetic anisotropy 

might be weaker.  In extracting SLH , we took the steeper slope of 2V around zero longitudinal 

field, where the out-of-plane magnetization was expected to be uniform and LH  is not large 

enough to drive the instability.   We also limited the range of excitation current amplitude (Fig. 4 

main text) so that both V and 2V  data could be fit quadratically and linearly, respectively, over 

a sufficient range of LH .   
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The estimated Hall angle in Ta based on SLH  ≈ -200 Oe/10
11

 A m
-2

 presented in the main 

text (Fig. 4) is extraordinarily large at -0.25.  We further note that an even larger SLH  of around   

-400 Oe/10
11

 A m
-2

 was observed for another Ta/CoFe/MgO Hall cross. This suggests that our 

results deviate from the ideal extraction of SLH  described in Ref. 12, likely due to the instability 

in the magnetically soft Ta/CoFe/MgO (with relatively weak perpendicular magnetic anisotropy).  

Regardless of the deviation in the magnitude, the slopes of 2V  are clearly opposite in 

Pt/CoFe/MgO and Ta/CoFe/MgO.  We emphasize that the directions of the Slonczewski-like 

torque, and hence the resulting effective fields, in Pt/CoFe/MgO and Ta/CoFe/MgO are opposite.  

 

Figure S6 | a,b, First harmonic of the anomalous Hall voltage in Ta/CoFe/MgO at several 

different out-of-plane bias magnetic fields.  c-f, Second harmonic of the anomalous Hall voltage 
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in Ta/CoFe/MgO at several different out-of-plane bias magnetic fields.  Close-ups of the slope 

transition are also shown (e,f).  

 

VII. Measurement of current-induced effective transverse field 

The measurement of the current-induced effective transverse field HFL was carried out in 

the same fashion as the measurement of HSL, except with the applied in-plane field HT in the 

transverse (y) direction.  Based on Ref. 12, the expressions for the first and second harmonics of 

the anomalous Hall voltage are 
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The resulting expression for HFL is then 
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In the Letter, we again discuss the directions of FLH  when electron flow is along +x, so the 

appropriate expression for FLH  is 
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Figure S7 | a,b, Schematics of the anomalous Hall voltage measurement to determine the 

effective transverse field HFL in Pt/CoFe/MgO (a) and Ta/CoFe/MgO (b).  c-f, First harmonic of 

the anomalous Hall voltage as a function of applied in-plane transverse field HT in Pt/CoFe/MgO 

(c,d) and Ta/CoFe/MgO (e,f).  g-j, Second harmonic of the anomalous Hall voltage as a function 

of HT in Pt/CoFe/MgO (g,h) and Ta/CoFe/MgO (i,j).   

 

 The opposite directions of HFL observed in Pt/CoFe/MgO and Ta/CoFe/MgO may arise 

from the Rashba effect, although we cannot conclude whether there is any difference in 

Pt/CoFe/MgO and Ta/CoFe/MgO that may induce opposite polarities of the Rashba field.  A 

more straightforward explanation, as pointed out in the Letter and in Ref. 13, is that the observed 

HFL may be an artifact of the Slonczewski-like torque in the presence of an applied transverse 

field.  Further work is required to verify the origin of the large HFL observed for Ta/CoFe/MgO.   
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VIII. Current-driven DW motion in various out-of-plane magnetized ultrathin layered 

structures  

 In this present work, we discuss the anomalously efficient current-driven DW dynamics 

in heavy-metal/ferromagnet/oxide structures.  Similar DW dynamics have been observed in 

Pt(15 Å)/Co(3 Å)/Ni(7 Å)/Co(1.5 Å) capped by a TaN overlayer
14

.  This suggests that insulating 

materials other than oxides can be used for efficient motion of chiral DWs propelled by the 

Slonczewski-like torque from the spin Hall effect.  Furthermore, Ref. 15 reports multiple DWs 

moving uniformly against electron flow in an ultrathin structure of Pt/Co/Pt with different 

thicknesses for Pt underlayer and overlayer.  Many studies have also shown current-induced DW 

displacement in Co/Pt multilayers, whereas others have reported no such current-induced effect 

other than Joule heating.   The recent study by Haazen et al.
3
 reports DW displacement in 

asymmetric Pt/Co/Pt due to the spin-Hall effect only when a finite longitudinal magnetic field is 

applied, in contrast to the report
16

 of systematic current-induced DW displacement in similar 

structures without any applied longitudinal field.    

This wide discrepancy may arise from the requirement for current-induced DW motion 

governed by the spin Hall effect:  asymmetry in the interfaces is necessary to stabilize a Néel 

wall through the Dzyaloshinskii-Moriya interaction.  Recent studies
17,18

 have been shown that, in 

Pt/Co/Pt, the magnetic anisotropy arising from the bottom Pt/Co interface is significantly 

stronger than that from the top Co/Pt interface.  On the other hand, the relative strengths of 

interfacial anisotropy may vary in structures with different underlayers, deposition conditions, 

and post-deposition treatment processes (e.g. ion irradiation).  Such subtle interfacial differences 

could have resulted in the disparate efficiencies of current-induced DW displacement in Co/Pt-

based structures.   
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 More generally, the interface between the ferromagnet and the overlayer (in addition to 

the interface between the ferromagnet and the underlayer) may also influence the efficiency of 

current-driven DW motion.  For example, according to our recent work on Pt/Co/GdOx
6
, 

disrupting the Co/GdOx interface with a 4-Å thick Pt layer nearly halved the spin-torque 

efficiency, compared to the equivalent structure with an uninterrupted Co/GdOx interface.  This 

Pt dusting layer was likely not continuous, and its thickness was significantly smaller than the 

spin diffusion length in Pt (≈ 1.4 nm)
19

.  Therefore, the Pt dusting layer did not generate a 

Slonczewski-like torque that counteracted the torque from the Pt underlayer; the reduction in the 

spin-torque efficiency instead was caused directly by the altered Co/GdOx interface.  Although 

the Dzyaloshinskii-Moriya interaction (DMI) in an ultrathin ferromagnet has been reported to 

arise from its interface with a nonmagnetic heavy metal
20,21

, it is possible that a 

ferromagnet/oxide (or ferromagnet/insulator) interface contributes to the DMI as well.   

 

IX.  Micromagnetic description of torques 

 The general form of the Landau-Lifshitz-Gilbert equation including the spin-transfer 

torque (STT) and the Slonczewski-like torque (SLT) from the spin Hall effect (SHE) is 

SHE

SLTSTTeff
t

m
mHm

t

m

















0 ,   (1) 

where sMMm /


  is the normalized local magnetization ( 1m


), and 21.20  ×10
5
 m/(As) is 

the gyromagnetic ratio. The terms on the right-hand-side represent the different torques on the 

local magnetization.  

The first term is the precessional torque,  

effprecesion Hm


 0 ,      (2) 



38 
 

which describes the precession of the magnetization around the local effective field effH


. This 

effective field includes exchange, demagnetizing, anisotropy and external field contributions. In 

the present analysis, a high perpendicular magnetic anisotropy (PMA) strip is considered with 

the easy axis pointing along the z-axis.  

The second term is the damping torque,  

t

m
mdamping









 ,      (3) 

where   is the dimensionless Gilbert damping parameter. This torque describes relaxation of the 

local magnetization m


 toward its equilibrium, aligned parallel to the local effective field effH


.   

The third term is the spin-transfer torque (STT) that includes both adiabatic and non-

adiabatic contributions: 

   mumbmub xJxJSTT


      (4) 

where the applied current is xaa ujj


 .  Note that “current” ja here denotes conventional current 

(flow of positive charge carrier), which is in the opposite direction with respect to the electron 

flow je in the Letter.  The coefficient bJ is given by 

a

s

B
J j

eM

P
b


        (5) 

and   is the dimensionless non-adiabatic parameter. J/T10274.9 24B  is the Bohr 

magneton and Ce 19106.1   is the electron charge. 

Finally, the last term is the Slonczewski-like torque (SLT) due to the Spin-Hall effect 

(SHE), which according to Refs. 22 and 23, is given by 





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


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LeM
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where SH  is the spin-Hall angle, and Lz is the thickness of the ferromagnetic sample, and 

Js10× 1.054 34-   is the Planck's constant. This SHE torque (Eq. 6) can be re-written in a 

similar form to the standard precession torque (Eq. 2) as 

SHE

SHE

SLT Hm


 0       (7) 

where SHEH


 is the spin Hall effective field, which is the term between brackets in (Eq. 6), and 

therefore can be written as: 

y

zs

aSH
SHE um

LeM

j
H




02


     (8) 

The direction of this effective field depends on the internal magnetization direction of the Néel 

DW (Right or Left) and on the magnetization directions of the domains on left and right sides of 

the DW.  This effective field then determines the direction of DW motion (DWM). See 

discussions below.  

 

X. Direction of domain wall motion (DWM)  

In a thin ferromagnetic strip with high PMA along the z-axis, there are two possible 

senses of magnetization across a DW: (a) Up-Down and (b) Down-Up.  These are depicted in the 

following Fig. S8, along with the coordinate system. 

 

Figure S8 | DW configurations depending on the magnetization on either side of the DW: Up-

Down (a) and Down-Up (b). 

 

DW DW

x>0

y>0
(a) Up-Down (b) Down-Up

z>0
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 We first consider the simplest case of DW motion driven solely by an out-of-plane (z) 

magnetic field  

zextext uHH


 ,       (9) 

where extH  can be positive ( zextext uHH


 ,with extH >0, so pointing along the Up domain) or 

negative ( zextext uHH


 with extH >0, so pointing along the Down domain).  No current is 

considered in this case so that the STT (Eq. 4) and SLT (Eq. 6) vanish.  The combination of the 

precessional and damping torques drives the magnetization to the direction of extH


.  Therefore, a 

domain oriented in the direction of extH


 grows. As summarized in Fig. S9, with extH > 0 the Up-

Down DW propagates to the right (x > 0) and the Down-Up DW propagates to the left (x < 0); 

with extH < 0 the Up-Down DW propagates to the left (x < 0) and the Down-Up DW propagates 

to the left (x > 0).  The magnetization configuration of the DW itself, whether it is Bloch or Néel, 

does not affect the direction of motion.  Thus, two adjacent DWs (one Up-Down and the other 

necessarily Down-Up) in a magnetic strip propagate in opposite directions under the application 

of a uniform out-of-plane field (Eq. 9).  This feature may not be desirable in many device 

applications (e.g. DW shift register or “racetrack memory”), because uniform shifting of adjacent 

digital bits encoded as magnetic domains is required.       
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Figure S9 | Direction of DWM under positive and negative out-of-plane field for the Up-Down 

(a) and Down-Up (b) configurations. The direction of field-driven DWM does not depend on the 

internal magnetization configuration of the DW.   

 

Contrary to the field-driven case, the sense of the current-driven DWM due to the SHE  

depends on the internal DW magnetization, because the SLT from the SHE depends on the 

magnetization direction (Eq. 6).  The SLT cannot exert a torque on a Bloch DW, whose internal 

magnetization points along the transverse (y) axis, i.e. 0 yum


 in Eq. 6.   We therefore focus 

on the SLT acting on Néel DWs, whose internal magnetization is oriented along the longitudinal 

(x) axis and four possible configurations, as illustrated in Fig. S10.    

DW DW

x>0

y>0
(a) Up-Down (b) Down-Up
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0
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Figure S10 | DW configurations: Up-Down domains with Neel-Right DW [U-NR-D] (a), Up-

Down domains with Neel-Left [U-NL-D] (b), Down-Up domains with Neel-Right [D-NR-U] (c), 

and Down-Up domains with Neel-Left [D-NL-U] (d). The sign criteria for the current and the 

electron flow are shown at the bottom. 

 

The DWM direction in the presence of the SHE is determined from the direction of the 

effective field SHEH


 acting on the DW magnetization.  In particular, SHEH


 acts in the same way 

as an applied out-of-plane field only on a Néel DW.   (Note that the direction of SHEH


 depends 

on the magnetization direction m


as shown in Eq. 8).   We show the direction of DWM for each 

of the possible Néel DW configurations with a positive spin Hall angle ( 0SH ) and positive 

conventional current (ja>0).  Note also that the electron charge is a negative quantity here, e < 0.  

Case 3(a): Up-Neel-Right-Down: xDWNR um


 , so according to (Eq. 8) 
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That is, SHEH


 acts like an out-of-plane external magnetic field along the negative z-axis, favoring 

growth of the Down domain, which in this case on the right side of the DW. Therefore, the DW 

moves to the left, against conventional current, in the direction of electron flow. 

Case 3(b): Up-Neel-Left-Down: xDWNL um


 , so according to (Eq. 8) 
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That is, SHEH


 acts like an out-of-plane external magnetic field along the positive z-axis, favoring 

growth of the UP domain, which in this case on the left side of the DW. Therefore, the DW 

moves to the right, along conventional current, against the direction of electron flow. 

Case 3(c): Down-Neel-Right-Up: xDWNR um


 , so according to (Eq. 8) 
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That is, SHEH


 acts like an out-of-plane external magnetic field along the negative z-axis, favoring 

growth of the Down domain, which in this case on the left side of the DW. Therefore, the DW 

moves to the right, along conventional current, against the direction of electron flow. 

Case 3(d): Down-Neel-Left-Up: xDWNL um


 , so according to (Eq. 8) 
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That is, SHEH


 acts like an out-of-plane external magnetic field along the positive z-axis, favoring 

growth of the UP domain, which in this case on the right side of the DW. Therefore, the DW 

moves to the left, against conventional current, in the direction of electron flow. 

The above predictions are summarized schematically in Fig. S11. 
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Figure S11 | Direction of DW motion (DWM) under a positive current (ja>0, in the +x direction) 

for each of the DW configurations shown in Fig. S10. 

 

 The chirality (or the “handedness”) of the Néel DW is defined according to the 

convention illustrated in Fig. S12 and Ref. 21.  The Up-Néel-Right-Down (Fig. S11a) and 

Down-Néel-Left-Up (Fig. S11d) DWs are “Right-Handed,” whereas the Up-Néel-Left-Down 

(Fig. S11b) and Down-Néel-Right-Up (Fig. S11c) DWs are “Left-Handed.”  With 0SH , the 

Right-Handed DWs move along electron flow, whereas the Left-Handed DWs move along 

conventional current.  In other words, both Up-Down and Down-Up Néel DWs move in the 

same direction if they have the same chirality, which is fixed by the DMI.  This is a key 

conclusion of our study as illustrated in Fig. 4 of the Letter.  We conclude that the Néel DWs in 

Pt/CoFe/MgO are Left-Handed, because 0SH  and the direction of DWM is along 
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conventional current.  The DWs in Ta/CoFe/MgO must also be Left-Handed, because both SH  

and DWM direction are opposite with respect to those of Pt/CoFe/MgO. 

 

Figure S12 | Two chiralities of Néel DWs.   

 

XI. One-dimensional model of domain wall motion  

We calculate the DW velocity under different conditions using the one-dimensional 

model (1DM).  The 1DM describes the DW dynamics in terms of two collective coordinates: the 

DW position )(tX  along the strip axis (x-axis), and the DW angle )(t , which, as in standard 

spherical coordinates, here is defined as the in-plane (xy) angle with respect to the positive x-axis. 

Therefore, a Néel-Right (NR) DW has its internal magnetization aligned along the positive x-axis 

( 0NR ), and a Néel-Left (NL) is along the negative x-axis ( NL ), as shown in Figs. S10 

and S11.  The internal magnetization of a Bloch DW can be either 
2
BU (Bloch-Up) or 

2
3BD (Bloch-Down).   

The current xaa ujj


  is injected along the strip/wire axis (x-axis), and it is positive (ja > 

0) along the positive x-axis (x > 0, from left to right). Note that the direction of this 

(conventional) current ja is in the opposite direction with respect to the electron flow je in the 
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Letter.  Therefore, the direction of the electron flow for a positive current (ja > 0) is along the 

negative x-axis (x < 0, from right to left).  The electric charge e is C 106.1 19 .  

The two coupled differential equations of the 1DM are explained in the Methods section.  

In addition, the influence of pinning and thermal effects can be taken into account in the 1DM by 

including the pinning field Hp(X), and the thermal field Hth(t) contributions in the out-of-plane 

field Hz, so that Hz is replaced by Hz + Hp(X) + Hth(t). The spatially varying pinning field Hp(X) is 

given by  

   
X

XV

LLM
XH
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sys
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


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2
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where Vpin(X) is the local pining potential, which is assumed to be described by a periodic 

function Vpin(X) = V0sin
2
(X/p), with V0 representing the energy barrier between adjacent minima 

of the pinning profile and p the spatial periodicity. The values V0 = 1.65×10
−20 

J and p = 30 nm 

were selected to reproduce the deterministic full micromagnetically computed depinning field for 

the strip with a characteristic edge roughness size of 3 nm (Ref. 24). The thermal field is given 

by  
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


 , 

where KB is the Boltzmann constant, dt is the temporal step, and (t) is a Gaussian-distributed 

1D stochastic process with cero mean value (<(t)>=0) and uncorrelated in time  

(<(t) (t')>=(t-t')). The coupled 1DM equations were numerically solved by means of a 4
th

 

order Runge-Kutta algorithm with dt = 1 ps.  The deterministic (T = 0) results for the DW 

velocity were computed by considering a temporal window of 100 ns. At room temperature (T = 
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300 K), the results were averaged over 10 different stochastic realizations for each driving 

current.  

 

XII. 1DM results for the DW velocity as function of the current. 

Figure S13 shows the DW velocity (v) as a function of ja in several different cases 

calculated for an Up-Down DW: (a) DWM under STT only: P = 0.5,  = 0.5, SH = 0, D = 0; (b) 

DWM under SHE only: P = 0, SH = 0.1, D = 0; and (c) DWM under DMI only: P = 0, SH = 0, 

D = - 0.5mJ/m
2
. In these calculations, no external field is applied. As it is well-known, if the STT 

is the only driving force (Fig. S13(a)), the resulting DW motion (DWM) is along electron flow 

(against conventional current), i.e. v < 0 for ja > 0 and v > 0 for ja < 0.  The SHE alone cannot 

sustain DW motion (Fig. S13(b)) because it does not have the correct symmetry to exert a torque 

on a Bloch DW, whose internal DW magnetization (set by the magnetostatics of the srip) is 

parallel to the y-axis.   The DMI alone also does not move a DW in the out-of-plane (z) 

magnetized samples (Fig. S13(c)) because it is equivalent to an effective field on the DW along 

the x-axis.  
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Figure S13 | DW velocity as a function of driving conventional current ja for the cases: (a) P = 

0.5,  = 0.5, SH = 0, D = 0; (b) P = 0, SH = 0.1, D = 0; and (c) P = 0, SH = 0, D = -0.5mJ/m
2
. 

Black squares correspond to the perfect sample without pinning (Vpin(X) = 0) at zero temperature 

(T = 0). Open blue circles are results considering a realistic sample with pinning (Vpin(X)0) at T 

= 0, and solid red lines correspond to the realistic sample (Vpin(X)0) at T = 300K.   

 

Figure S14 shows the DW velocity (v) as a function of ja for different combinations of 

STT, SHE and DMI torques. The DW dynamics incorporating both the SHE and STT (Fig. 

S14(a)) are similar to the case with STT (Fig. S13(a)), and DWM is along the electron flow. This 

is again because the torque from the SHE is null on a Bloch DW.  Under the STT and the DMI 
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(Fig. S14(b)), the DW propagates again along electron flow but with higher DW mobility than in 

former cases, as the DW propagates without precessing and adopts a rigid Néel configuration. 

The inclusion of the DMI also increases the critical depinning current below which the DW does 

not propagates at zero temperature (see open blue circles in Fig. S14(b) as compared to Fig. 

S14(a)). 

 

Figure S14 | DW velocity as a function of driving conventional current ja for the cases: (a) P = 

0.5,  = 0.5, SH = 0.1, D = 0; (b) P = 0.5,  = 0.5, SH = 0, D = -0.5mJ/m
2
; (c) P = 0, SH = 0.1, D 

= 0.5mJ/m
2
; and (d) P = 0.5,  = 0.5, SH = 0.1, D = -0.5mJ/m

2
. Black squares correspond to the 

perfect sample without pinning (Vpin(X) = 0) at zero temperature (T = 0). Open blue circles are 
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results considering a realistic sample with pinning (Vpin(X)  0) at T = 0, and solid red lines 

correspond to the realistic sample (Vpin(X)0) at room temperature T = 300 K. 

 

When both the SHE and DMI torques are considered (Fig. S14(c)-(d)), the direction of 

DWM is reversed to along the current (against electron flow), i.e. v > 0 for ja > 0.  Due to the 

DMI, in these cases (Fig. S14(c)-(d)) the DW moves rigidly adopting a Néel configuration which 

is driven by the SHE. The DW mobility is smaller when STT is finite (Fig. S14(d)) as compared 

to the zero-STT case (Fig. S14(c)), because STT drives the DW into precession and opposes the 

stabilizing action of the DMI.  

 

XIII. 1DM results of the current-driven DWM as a function of in-plane field  

In Fig. S15, the influence of in-plane fields on the current-driven DW velocity is 

presented for a perfect sample at zero temperature. Both Longitudinal Lx HH   and Transversal 

fields Ty HH   are evaluated for an Up-Néel-Left-Down DW in the absence of STT (P = 0) but 

taking into account both the SHE (SH = 0.1) and the DMI (D = -0.5mJ/m
2
).  At zero longitudinal 

field (HL = 0 = Hx), the DW propagates along conventional current for both polarities (in the +x-

direction for ja = +0.3×10
12

 A/m
2
 and along the  –x-direction for ja = -0.3×10

12 
A/m

2
.  (Note that 

the case of ja = -0.3×10
12 

A/m
2
 is equivalent to the current-driven motion of a “Down-Néel-

Right-Up” DW shown in Figs. 4e-h (“down-up DW”) of the Letter.)  

A negative longitudinal field (HL < 0) supports the DMI (HL < 0 is parallel to the 

effective DMI field in the Up-Néel-Left-Down DW, D < 0), stabilizing the Left-Handed Néel  

internal DW magnetization.  Therefore, HL < 0 does not significantly modify the DW velocity, 

although a small slope can be observed within a small range around HL = 0 (shown in Fig. 4g of 
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the Letter).  When HL > 0, the applied field opposes the DMI with HL and the effective DMI field 

antiparallel to each other.  A sufficiently large HL > 0 overcomes the DMI and reverses the 

chirality of the DW, i.e. aligning the internal DW magnetization to the right (Up-Néel-Right-

Down).  Such reversal of the DW chirality occurs around HL = 2000 Oe in the calculated results 

(Fig. S14), and this is accompanied by the reversal of the DWM direction.   

The influence of the transverse field (HT) on the current-driven DWM is completely 

different. This in-plane field is orthogonal to the effective DMI field, and it therefore reduces the 

energy barrier between the Néel and Bloch configurations of the DW.  With increasing |HT|, the 

DW velocity decreases because the DW configuration is pulled away from the ideal Néel 

configuration that maximizes the Slonczewski-like torque.  Under an even larger |HT| (>10,000 

Oe in the calculations, not shown in Fig. S15), the DW adopts a Bloch configuration and the DW 

velocity approaches zero, as the Bloch DW does not experience a Slonczewski-like torque.   

 

 

Figure S15 | Current-driven DW velocity, calculated by the 1DM, as a function of applied in-

plane field in the longitudinal direction (a) and transverse direction (b).  A Up-Néel-Left-Down 

DW at zero temperature and no spatially-varying pinning potential with the following parameters 
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P = 0, SH = 0.1, and D = -0.5mJ/m
2
 is evaluated for ja = +0.3×10

12
A/m

2
 (black squares) and ja = -

0.3×10
12

A/m
2
 (red circles).   
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