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Metastases represent the end products of a multistep cell-biological process termed the invasion-
metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ
sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events
is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the
co-option of nonneoplastic stromal cells, which together endow incipientmetastatic cells with traits
needed to generate macroscopic metastases. Recent advances provide provocative insights into
these cell-biological and molecular changes, which have implications regarding the steps of the
invasion-metastasis cascade that appear amenable to therapeutic targeting.
Whereas surgical resection and adjuvant therapy can cure well-

confined primary tumors, metastatic disease is largely incurable

because of its systemic nature and the resistance of dissemi-

nated tumor cells to existing therapeutic agents. This explains

why > 90% of mortality from cancer is attributable to metas-

tases, not the primary tumors from which these malignant

lesions arise (Gupta and Massagué, 2006; Steeg, 2006). Thus,

our ability to effectively treat cancer is largely dependent on

our capacity to interdict—and perhaps even reverse—the pro-

cess of metastasis.

These clinical realities have been appreciated for decades.

Yet, only recently have molecular and cell-biological details of

the mechanisms underlying metastasis emerged. We focus

here on the tumors arising in epithelial tissues—carcinomas—

which together constitute �80% of life-threatening cancers.

We highlight recent discoveries, discuss their conceptual impli-

cations, and consider their potential clinical utility. Taken

together, these advances have established new paradigms

that are likely to guide future research on metastasis, as well as

the development of new diagnostic and therapeutic strategies.

The Invasion-Metastasis Cascade
The metastases spawned by carcinomas are formed following

the completion of a complex succession of cell-biological

events—collectively termed the invasion-metastasis cascade—

whereby epithelial cells in primary tumors: (1) invade locally

through surrounding extracellular matrix (ECM) and stromal

cell layers, (2) intravasate into the lumina of blood vessels, (3)

survive the rigors of transport through the vasculature, (4) arrest

at distant organ sites, (5) extravasate into the parenchyma of

distant tissues, (6) initially survive in these foreign microenviron-

ments in order to form micrometastases, and (7) reinitiate their
proliferative programs at metastatic sites, thereby generating

macroscopic, clinically detectable neoplastic growths (the step

often referred to as ‘‘metastatic colonization’’) (Figure 1) (Fidler,

2003). As discussed below, many of these complex cell-biolog-

ical events are orchestrated by molecular pathways operating

within carcinoma cells. Importantly, cell-nonautonomous inter-

actions between carcinoma cells and nonneoplastic stromal

cells also play vital roles throughout the invasion-metastasis

cascade (Figure 2). Deregulation of these intrinsic and extrinsic

signaling cascades allows incipient metastatic carcinoma cells

to generate high-grade, life-threatening malignancies.

Local Invasion

Local invasiveness involves entry of cancer cells that have re-

sided within a well-confined primary tumor into the surrounding

tumor-associated stroma and thereafter into the adjacent normal

tissue parenchyma. In order to invade the stroma, carcinoma

cells must first breach the basement membrane (BM), a special-

ized ECM that plays vital roles in organizing epithelial tissues, in

part by separating their epithelial and stromal compartments. In

addition to structural roles played by the BM, components of

thisECMcontaina repositoryof tetheredgrowth factormolecules

that can be liberated by carcinoma-secreted proteases. More-

over, the BM also plays crucial roles in signal transduction events

within carcinoma cells via pathways initiated by integrin-medi-

ated cell-matrix adhesions, leading to alterations in cell polarity,

proliferation, invasiveness, and survival (Bissell andHines, 2011).

Emerging evidence indicates that the precisely controlled

tissue architecture of normal epithelium serves as an intrinsic

barrier to invasiveness that must be overcome by incipient

metastatic carcinoma cells before they can develop into overt

malignancies. For example, in themammary gland,myoepithelial

cells oppose invasionbyhelping tomaintainBM integrity; indeed,
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Figure 1. The Invasion-Metastasis Cascade
Clinically detectable metastases represent the
end products of a complex series of cell-biological
events, which are collectively termed the invasion-
metastasis cascade. During metastatic progres-
sion, tumor cells exit their primary sites of growth
(local invasion, intravasation), translocate sys-
temically (survival in the circulation, arrest at a
distant organ site, extravasation), and adapt to
survive and thrive in the foreign microenviron-
ments of distant tissues (micrometastasis forma-
tion, metastatic colonization). Carcinoma cells are
depicted in red.
coimplantationwithmyoepithelial cells reversed the invasiveness

of breast carcinoma xenografts (Hu et al., 2008). Similarly, in

ovarian carcinomas, the mesothelial cell layer that lines perito-

neal and pleural organs serves as an obstacle to further dissem-

ination that can be overcomeby carcinoma cell-exerted,myosin-

dependent traction forces that physically displace mesothelial

cells (Iwanicki et al., 2011). Moreover, modulation of ECM stiff-

ness, achieved by altering collagen crosslinking, affects breast

carcinoma progression via altered integrin signaling (Levental

et al., 2009).

At a cell-biological level, most types of carcinomas can invade

as cohesivemulticellular units through a process termed ‘‘collec-
276 Cell 147, October 14, 2011 ª2011 Elsevier Inc.
tive invasion.’’ Alternatively, individual

tumor cells may invade via two distinct

programs: the protease-, stress-fiber-,

and integrin-dependent ‘‘mesenchymal

invasion’’ program or the protease-,

stress-fiber-, and integrin-independent,

Rho/ROCK-dependent ‘‘amoeboid inva-

sion’’ program (Friedl and Wolf, 2003).
Indeed, differential expression of molecules that enable either

mesenchymal or amoeboid invasion can be observed in signa-

tures of local invasiveness derived from mammary carcinoma

models (Wang et al., 2004).

Tumor cells can apparently interconvert between these

various invasion strategies in response to changing microenvi-

ronmental conditions. This has caused some to propose that

robust suppression of single-cell invasion requires concomitant

inhibition of the mesenchymal and amoeboid invasion programs

(Friedl and Wolf, 2003). Indeed, certain regulators of invasion

function as pleiotropically acting factors that simultaneously

modulate components of both pathways. For example, the
Figure 2. Stromal Cells Play Vital Roles

during the Invasion-Metastasis Cascade
Metastatic progression is not an exclusively cell-
autonomous process. Indeed, carcinoma cells
enlist nonneoplastic stromal cells to aid in each
step of the invasion-metastasis cascade. Exam-
ples of the roles of stromal cells during metastasis
are illustrated. Carcinoma cells are depicted in
red. Angptl4, angiopoietin-like 4; CSF-1, colony-
stimulating factor 1; EGF, epidermal growth
factor; IL-4, interleukin 4; MMP-9, matrix metal-
loproteinase 9; OPN, osteopontin; SDF-1, stromal
cell-derived factor 1.



microRNA (miRNA) miR-31 inhibits breast cancer invasion via

concurrent suppression of key effectors of both the mesen-

chymal (such as integrin a5) and amoeboid (such as RhoA) inva-

sion programs (Valastyan et al., 2009).

The single-cell invasion pathways cited above are clearly

incompatible with one critical element of epithelial tissue organi-

zation, specifically the E-cadherin-mediated intercellular junc-

tions that knit together epithelial cell sheets and prevent dissoci-

ation of individual epithelial cells from their neighbors. In order

to overcome this and other obstacles to invasion, carcinoma

cells may co-opt a cell-biological program known as epithelial-

mesenchymal transition (EMT), which is critical for multiple

aspects of normal embryonic morphogenesis. The EMT pro-

gram, which involves dissolution of adherens and tight junctions

and a loss of cell polarity, dissociates the cells within epithelial

cell sheets into individual cells that exhibit multiplemesenchymal

attributes, including heightened invasiveness (Thiery et al.,

2009).

EMT programs are orchestrated by a set of pleiotropically

acting transcription factors, including Slug, Snail, Twist, ZEB1,

and ZEB2, which organize entrance into a mesenchymal state

by suppressing expression of epithelial markers and inducing

expression of other markers associated with the mesenchymal

state (Thiery et al., 2009). Indeed, several of these transcription

factors directly repress levels of E-cadherin, the keystone of

the epithelial state. Certain miRNAs, notably those belonging

to the miR-200 family, also regulate EMT programs. One impor-

tant mechanism by which miR-200 promotes an epithelial

phenotype involves its ability to posttranscriptionally suppress

expression of the ZEB1 and ZEB2 EMT-inducing transcrip-

tion factors. Acting in the opposite direction, ZEB1 and ZEB2

transcriptionally repress miR-200 family members, thereby

establishing a double-negative-feedback loop that operates as

a bistable switch, reinforcing the residence of cells in either the

mesenchymal or epithelial state (Thiery et al., 2009).

Ultimately, loss of the BM barrier allows direct invasion by

carcinoma cells of the stromal compartment. Active proteolysis,

effected principally by matrix metalloproteinases (MMPs), drives

this loss. In normal tissue, the activity of MMPs is carefully

controlled via transcriptional and posttranslational mechanisms.

Carcinoma cells have devised numerous means by which to

derail the normally tight control of MMP activity, almost invari-

ably leading to enhanced MMP function. While degrading the

BM and other ECM that lie in the path of invading tumor cells,

MMP-expressing cells also liberate growth factors that are

sequestered there, thereby fostering cancer cell proliferation

(Kessenbrock et al., 2010).

Once invading carcinoma cells have dissolved the BM, they

enter the stroma. Here, they are confronted with a variety of

tumor-associated stromal cells, whose composition is gov-

erned by the state of tumor progression. As primary tumor

progression proceeds, the stroma becomes increasingly ‘‘reac-

tive’’ and acquires many of the attributes of the stroma of

tissues that are in the midst of wound healing or are chronically

inflamed (Grivennikov et al., 2010). Accordingly, tumor cells

invading into a reactive stroma encounter fibroblasts and myo-

fibroblasts, endothelial cells, adipocytes, and various bone

marrow-derived cells such as mesenchymal stem cells, as
well as macrophages and other immune cells (Joyce and

Pollard, 2009).

These stromal cells are capable of further enhancing the

aggressive behaviors of carcinoma cells through various types

of heterotypic signaling. For example, breast cancer invasive-

ness can be stimulated through the secretion of interleukin-6

(IL-6) by adipocytes present in the local microenvironment

(Dirat et al., 2011). Furthermore, stromal CD4+ T-lymphocytes

promote mammary carcinoma invasion by stimulating tumor-

associated macrophages (TAMs) to activate epidermal growth

factor receptor (EGFR) signaling in the carcinoma cells (DeNardo

et al., 2009). Similarly, secretion of IL-4 by breast cancer cells

triggers cathepsin protease activity in TAMs, further augmenting

carcinoma cell invasiveness (Gocheva et al., 2010). These find-

ings provide examples of the bidirectional interactions that occur

between tumor cells and the nearby stroma: carcinoma cells

stimulate the formation of an inflamed stroma, and the latter

reciprocates by enhancing the malignant traits of the carcinoma

cells, thereby establishing a potentially self-amplifying positive-

feedback loop.

Detailed characterizations of stromal cells provide further

evidence of their critical roles in enabling the malignant behavior

of carcinoma cells. For example, microarray profiling of the

tumor-associated stroma derived from breast cancer patients

reveals characteristic expression signatures associated with

metastatic outcome (Finak et al., 2008). Additionally, an expres-

sion signature that typifies the transcriptional response of

cultured fibroblasts to serum and thus reflects one component

of wound-healing responses correlates with increased risk of

metastatic recurrence in human breast, gastric, and lung carci-

nomas (Chang et al., 2004). Such observations are consistent

with the role of an increasingly activated stroma in driving malig-

nant behavior in closely apposed carcinoma cells, but they

hardly prove causality. Instead, such evidence has begun to

emerge from experimental models. For example, perturbation

of Hedgehog signaling or caveolin-1 specifically within the

stroma alters tumor progression in neighboring carcinoma cells

(Olive et al., 2009; Goetz et al., 2011).

Independent of the detailed mechanisms of stromal-epithelial

interactions within primary carcinomas, it is clear that entry of

neoplastic cells into the stroma provides abundant opportunities

for tumor cells to directly access the systemic circulation and

thereby disseminate to distant sites.

Intravasation

Intravasation involves locally invasive carcinoma cells entering

into the lumina of lymphatic or blood vessels. Although lymphatic

spread of carcinoma cells is routinely observed in human tumors

and represents an important prognostic marker for disease

progression, dissemination via the hematogenous circulation

appears to represent the major mechanism by which metastatic

carcinoma cells disperse (Gupta and Massagué, 2006).

Intravasation can be facilitated by molecular changes that

promote the ability of carcinoma cells to cross the pericyte and

endothelial cell barriers that form the walls of microvessels.

For example, the transcriptional modulator amino-terminal

enhancer of split (Aes) inhibited the intravasation of colon car-

cinoma cells by impairing trans-endothelial invasion through

Notch-dependent mechanisms (Sonoshita et al., 2011).
Cell 147, October 14, 2011 ª2011 Elsevier Inc. 277



Conversely, the cytokine-transforming growth factor-b (TGFb)

enhances mammary carcinoma intravasation, ostensibly by

increasing carcinoma cell penetration of microvessel walls or

augmenting invasiveness more generally (Giampieri et al.,

2009). Additionally, the intravasation of breast carcinoma cells

can be enhanced by perivascular TAMs via a positive-feedback

loop comprised of the reciprocal secretion of epidermal growth

factor (EGF) and colony-stimulating factor-1 (CSF-1) by TAMs

and carcinoma cells, respectively (Wyckoff et al., 2007).

The mechanics of intravasation are likely to be strongly influ-

enced by the structural features of tumor-associated blood

vessels. Through a variety of mechanisms—many of which con-

verge on the actions of vascular endothelial growth factors

(VEGFs)—tumor cells stimulate the formation of new blood

vessels within their local microenvironment via the process

termed neoangiogenesis. In contrast to blood vessels present

in normal tissues, the neovasculature generated by carcinoma

cells is tortuous, prone to leakiness, and in a state of continuous

reconfiguration (Carmeliet and Jain, 2011). The weak interac-

tions between adjacent endothelial cells that form the tumor-

associated microvasculature and the absence of extensive

pericyte coverage are likely to facilitate intravasation. In support

of this notion, the capacity of cyclooxygenase-2 (COX-2), epire-

gulin (EREG), MMP-1, and MMP-2 to synergistically promote

breast carcinoma intravasation was tied to their ability to stimu-

late neoangiogenesis and the formation of leaky blood vessels

(Gupta et al., 2007a).

Survival in the Circulation

Once carcinoma cells have successfully intravasated into the

lumina of blood vessels, they can disseminate widely through

the venous and arterial circulation. Recent technological

advances have facilitated detection of circulating tumor cells

(CTCs) within the bloodstream of carcinoma patients (Nagrath

et al., 2007; Pantel et al., 2008; Stott et al., 2010). CTCs osten-

sibly represent carcinoma cells that are en route between

primary tumors and sites of dissemination and therefore may

represent ‘‘metastatic intermediates.’’

CTCs in the hematogenous circulation must survive a variety

of stresses in order to reach distant organ sites. For example,

they would seem to be deprived of the integrin-dependent

adhesion to ECM components that is normally essential for cell

survival. In the absence of such anchorage, epithelial cells nor-

mally undergo anoikis, a form of apoptosis triggered by loss of

anchorage to substratum (Guo and Giancotti, 2004). Some of

the signaling events that oversee anoikis responses impinge

upon metabolic programs, such as the pentose phosphate

pathway and control of glucose uptake (Schafer et al., 2009).

Also of interest, the tyrosine kinase TrkB was identified as a

suppressor of anoikis whose expression is required for meta-

static progression in transformed intestinal epithelial cells

(Douma et al., 2004).

A more nuanced understanding of the lives of CTCs is

precluded at present by the dearth of simple facts: we do not

know how long cancer cells linger in the circulation. Some

have estimated that their dwell time in breast cancer patients

may be several hours (Meng et al., 2004). However, given the

relatively large diameters of carcinoma cells (20–30 mm) and

the luminal diameter of capillaries (�8 mm), the vast majority of
278 Cell 147, October 14, 2011 ª2011 Elsevier Inc.
CTCs are likely to become trapped in various capillary beds

during their first pass through the circulation (that is, within

minutes of intravasation). It is therefore possible that many tumor

cells spend only relatively brief periods of time in the blood-

stream, allowing CTCs to escape from the circulation long before

anoikis alarms are sounded.

In addition to stresses imposed by matrix detachment, tumor

cells in the circulation must overcome the damage incurred by

hemodynamic shear forces and predation by cells of the innate

immune system, specifically natural killer cells. Conveniently,

carcinoma cells seem to simultaneously evade both of these

threats through a single mechanism that depends on co-opting

one aspect of normal blood coagulation. More specifically, by

forming relatively large emboli via interactions with blood plate-

lets, a process that appears to be mediated by the expression

of tissue factor and/or L- and P-selectins by the carcinoma cells,

tumor cells are able to both shield themselves from shear forces

and evade immune detection (Joyce and Pollard, 2009). Thus,

platelet-coated tumor cells are better able to persist within the

circulation until they arrest at distant tissue sites, an event whose

likelihood may be further increased due to the large effective

diameter of these microemboli.

Arrest at a Distant Organ Site

Despite the theoretical ability of CTCs to disseminate to a wide

variety of secondary loci, clinicians have long noted that indi-

vidual carcinoma types form metastases in only a limited subset

of target organs (Figure 3) (Fidler, 2003). A major unresolved

issue concerns whether this tissue tropism simply reflects a

passive process whereby CTCs arrest within capillary beds

due to the layout of the vasculature and size restrictions imposed

by blood vessel diameters or, instead, indicates a capacity of

CTCs to actively home to specific organs via genetically tem-

plated ligand-receptor interactions between these cells and the

luminal walls of the microvasculature.

The issue of physical trapping of CTCs in microvessels looms

large here. For example, the anatomical layout of the vasculature

precludes arrest of carcinoma cells within the capillary beds of

certain distant organs when those capillary beds lie downstream

of other microvessels whose diameter is insufficient to permit

passage of CTCs. Most frequently cited is the large-scale trap-

ping of colorectal carcinoma cells in the liver, which is dictated

by the portal vein that drains the mesenteric circulation directly

into the liver (Gupta and Massagué, 2006). Nevertheless, some

CTCs may elude this rapid trapping because of their unusual

plasticity or chance passage through arteriovenous shunts,

thereby enabling them to become lodged in the microvessels

of more distal organs.

The alternative hypothesis is that CTCs have predetermined

predilections to lodge in certain tissues. Indeed, some carci-

noma cells are capable of forming specific adhesive interactions

in particular tissues that preferentially favor their trapping. For

example, some have proposed that Metadherin expression in

breast cancer cells causes homing to the lungs by facilitating

binding to the pulmonary vasculature (Brown and Ruoslahti,

2004). Similarly, entry of colorectal and lung carcinoma cells

into the hepatic microvasculature can initiate a proinflammatory

cascade that results in Kupffer cells being triggered to secrete

chemokines that upregulate various vascular adhesion



Figure 3. Metastatic Tropism
Carcinomas originating from a particular epithelial tissue form detectable
metastases in only a limited subset of theoretically possible distant organ sites.
Shown here are the most common sites of metastasis for six well-studied
carcinoma types. Primary tumors are depicted in red. Thickness of black lines
reflects the relative frequencies with which a given primary tumor type
metastasizes to the indicated distant organ site.
receptors, thereby enabling adhesion of CTCs in the microvas-

culature of the liver (Auguste et al., 2007). The relative impor-

tance of these and other molecularly driven strategies that serve

to facilitate the organ-specific arrest of CTCs awaits future study.

Extravasation

Once lodged in the microvasculature of distant organs, CTCs

may initiate intraluminal growth and form a microcolony that

eventually ruptures the walls of surrounding vessels, thereby

placing tumor cells in direct contact with the tissue parenchyma

(Al-Mehdi et al., 2000). Alternatively, carcinoma cells may cross

from vessel lumina into the tissue parenchyma by penetrating the

endothelial cell and pericyte layers that separate vessel lumina

from the stromal microenvironment, a process known as extrav-

asation.

This latter form of extravasation would seem to represent, at

least superficially, the reverse of the earlier step of intravasation.
However, there are reasons to believe that these processes

may, in fact, oftentimes be quite different mechanistically.

Although intravasation can be fostered by certain co-opted

cell types present in the primary tumor stroma, such as the

TAMs described earlier (Wyckoff et al., 2007), these same sup-

porting cells are unlikely to be equally available to facilitate the

extravasation of disseminated carcinoma cells. Indeed, macro-

phage populations that reside in primary tumors are phenotyp-

ically and functionally distinct from those present at sites of

metastasis formation (Qian and Pollard, 2010). In addition, as

discussed previously, the neovasculature formed by primary

tumors is tortuous and leaky (Carmeliet and Jain, 2011),

whereas microvessels in distant normal tissues—the destination

sites of disseminated cancer cells—are likely to be highly

functional, which can result in low intrinsic permeability. For

example, disseminated carcinoma cells attempting to reach

the brain parenchyma must traverse the blood-brain barrier;

similarly, endothelial cells lining pulmonary microvessels nor-

mally create a largely impermeable barrier. In contrast, carci-

noma cells arriving in the bone or liver encounter fenestrated

sinusoids that are highly permeable even in their normal state

and consequently would seem to pose only minor obstacles

to extravasating tumor cells (Nguyen et al., 2009). Hence, the

characteristics of specific microenvironments present at meta-

static sites may strongly influence the fate of disseminated

carcinoma cells, a critically important point that will be revisited

below.

In order to overcome physical barriers to extravasation that

operate in tissues with low intrinsic microvessel permeability,

primary tumors are capable of secreting factors that perturb

these distant microenvironments and induce vascular hyperper-

meability. For example, the secreted protein angiopoietin-like-4

(Angptl4), as well as the pleiotropically acting factors EREG,

COX-2, MMP-1, and MMP-2, disrupt pulmonary vascular endo-

thelial cell-cell junctions in order to foster the extravasation of

breast carcinoma cells in the lungs (Gupta et al., 2007a; Padua

et al., 2008). Also of interest, angiopoietin2 (Angpt2), MMP-3,

MMP-10, placental growth factor, and VEGF secreted by various

types of primary tumors are capable of inducing pulmonary

hyperpermeability prior to the arrival of carcinoma cells in the

lungs, thereby facilitating the subsequent extravasation of

CTCs (Weis et al., 2004; Huang et al., 2009; Hiratsuka et al.,

2011b). Finally, inflammatory monocytes recruited to pulmonary

metastases via CCL2-dependent mechanisms promote the

extravasation of breast carcinoma cells in the lungs by secreting

VEGF (Qian et al., 2011).

Of special interest, whereas Anglptl4 enhanced the extravasa-

tion of breast carcinoma cells in the lungs, it failed to augment

extravasation of these same breast cancer cells in the bone

or their intravasation efficiency (Padua et al., 2008). Hence,

Anglptl4 specifically promoted the process of extravasation

and did so only within the pulmonary tissue microenvironment.

These findings provide evidence for a model in which extravasa-

tion at certain distant organ sites necessitates cell-biological

programs that are not required either for intravasation or

for extravasation at alternative sites of dissemination, again high-

lighting the critical role of the specific tissue microenvironments

present at possible sites of metastasis formation.
Cell 147, October 14, 2011 ª2011 Elsevier Inc. 279



Micrometastasis Formation

In order to form micrometastases, extravasated carcinoma cells

must survive in the foreign microenvironment that they en-

counter in the parenchyma of distant tissues. The microenviron-

ment at the metastatic locus usually differs greatly from that

present in the site of primary tumor formation. This dictates

that disseminated cancer cells are, at least initially, poorly adapt-

ed to their newfound homes. These microenvironmental differ-

ences may include the types of stromal cells, ECM constituents,

available growth factors and cytokines, and even the microarch-

itecture of the tissue itself.

Some have proposed that carcinoma cells can address the

problem of an incompatible microenvironment at the metastatic

site via the establishment of a ‘‘premetastatic niche’’ (Psaila and

Lyden, 2009). According to this model, primary tumors release

systemic signals, perhaps including lysyl oxidase (LOX) (Erler

et al., 2009), that induce organ-specific upregulation of fibro-

nectin from resident tissue fibroblasts. This leads, in turn, to

mobilization of VEGF receptor 1-positive (VEGFR1+) hematopoi-

etic progenitor cells from the bone marrow to these future sites

of metastasis via homing interactions between the deposited

fibronectin and its cognate receptor, integrin a4b1, which is

expressed by the hematopoietic progenitor cells. These hemato-

poietic progenitor cells then modify the local microenvironments

at these loci by secreting MMP-9. Activation of MMP-9 at future

sites of metastasis is believed to result in stimulation of various

integrins, as well as liberation of molecules that have been

sequestered in the ECM, such as the carcinoma cell chemoat-

tractant stromal cell-derived factor 1 (SDF-1) (Psaila and Lyden,

2009). Importantly, all of these events are thought to occur

prior to the arrival of carcinoma cells at the metastatic loci.

Accordingly, these predisposing changes convert distant micro-

environments into more hospitable sites for future settling by

disseminated tumor cells.

Provocatively, the formation of a supportive premetastatic

niche could represent a broadly important determinant of both

metastatic propensity and tissue tropism, as the spectrum of

organ-specific metastases generated by disseminating lung

carcinoma cells can be altered simply by rerouting the niche-

forming hematopoietic cells to different organs (Psaila and

Lyden, 2009). We note that certain molecular details underlying

the premetastatic niche concept have been questioned (Dawson

et al., 2009). More generally, however, it is clear that tumor cells

deploy complex mechanisms to modify foreign microenviron-

ments in order to initially survive at these ectopic locations and

form small micrometastases.

At the same time, disseminated cancer cells must utilize cell-

autonomous programs in order to adapt to the demands

imposed by foreign tissues. One example of such a mechanism

involves activation of Src tyrosine kinase signaling. Depletion of

Src activity impairs the capacity of breast carcinoma cells to

persist in bone without influencing their initial homing to this

tissue. These effects were attributed to Src-dependent modu-

lation of the responsiveness of these carcinoma cells to

stroma-derived SDF-1 and TNF-related apoptosis-inducing

ligand (TRAIL). Of additional interest, the same Src signaling

fails to enhance the ability of breast carcinoma cells to persist

in the lung, again underscoring the organ-specific nature of the
280 Cell 147, October 14, 2011 ª2011 Elsevier Inc.
latter steps of the invasion-metastasis cascade (Zhang et al.,

2009).

Metastatic Colonization

In the event that disseminated carcinoma cells survive their initial

encounter with the microenvironment of a foreign tissue and

succeed in persisting, they still are not guaranteed to proliferate

and form large macroscopic metastases—the process of meta-

static colonization. Instead, it seems that the vast majority of

disseminated tumor cells suffer either slow attrition over periods

of weeks and months or persist as microcolonies in a state of

apparent long-term dormancy, retaining viability in the absence

of any net gain or loss in overall cell number (Chambers et al.,

2002).

In fact, these occult micrometastases may persist in one of

two ways. The disseminated tumor cells may be largely quies-

cent, with their proliferation at metastatic sites greatly impaired

due to incompatibilities with the foreign microenvironments

that surround them (Chambers et al., 2002). In mammary carci-

noma cells, this quiescence has been attributed to an inability

to engage the focal adhesion kinase (FAK), integrin b1, and Src

pathways within distant tissues (Barkan et al., 2008, 2010;

Shibue and Weinberg, 2009). Moreover, the ability of dissemi-

nated tumor cells to escape dormancy and to begin active prolif-

eration may depend on cell-nonautonomous mechanisms that

are needed to convert foreign microenvironments into more

hospitable niches. For example, the outgrowth of otherwise

indolent disseminated tumor cells may depend on the activation

and mobilization into the circulation of bone marrow-derived

cells and the subsequent recruitment of these cells to a meta-

static site; in some cases, these processes may be stimulated

by systemic signals released by carcinoma cells, such as osteo-

pontin (OPN) or SDF-1 (McAllister et al., 2008; Hiratsuka et al.,

2011a).

Alternatively, the cancer cells in occult micrometastases may

proliferate continuously; however, a net increase in their overall

number may not occur due to the counterbalancing effects of

a high apoptotic rate. The mechanisms underlying such high

rates of attrition remain poorly understood, but a failure of the

disseminated tumor cells to trigger neoangiogenesis has been

proposed as one explanation for this phenomenon (Chambers

et al., 2002). Consistent with this notion, prostate tumor cell-

secreted prosaposin (Psap) may inhibit metastatic colonization

by inducing expression of the anti-angiogenic factor thrombo-

spondin-1 in stromal cells (Kang et al., 2009). Conversely,

Angpt2 appears to facilitate the metastatic colonization of mam-

mary and pancreatic carcinomas by promoting the capacity of

infiltrating myeloid cells to support the vascularization of meta-

static nodules (Mazzieri et al., 2011).

The appreciation that disseminated tumor cells often en-

counter significant obstacles as they attempt to reactivate their

growth machinery at metastatic sites is hardly a new concept.

More than 120 years ago, Stephen Paget articulated his ‘‘seed-

and-soil’’ hypothesis of metastatic outgrowth. From autopsy

records, Paget observed preferential metastasis of a given type

of cancer to one or more particular distant organ sites, which

led him to posit that, although tumor cells are broadly dissemi-

nated during the course of malignant progression, detectable

metastases only develop at those sites (‘‘soils’’) where the tumor



cells (‘‘seeds’’) are suitably adapted for survival and proliferation

(Fidler, 2003). Stated differently, the anatomical layout of the

vasculature is not sufficient to account for the clinically observed

patterns of overt metastasis formation; instead, these patterns

of metastatic outgrowth must also reflect the adaptability of

tumor cells to particular foreign microenvironments.

Consistent with the seed-and-soil hypothesis, evidence from

a number of laboratories has documented that specific organ

microenvironments are indeed intrinsically more or less hospi-

table for the proliferation and survival of certain types of dissem-

inated tumor cells. For example, melanoma cells readily meta-

stasized to subcutaneous grafts of lung tissue but failed to

metastasize to identically placed and comparably vascularized

subcutaneous grafts of renal tissue, thereby recapitulating the

known proclivity of melanomas to form pulmonary metastases

(Hart and Fidler, 1980).

More recently, a number of genes whose expression facilitates

the metastatic colonization of breast cancer cells specifically to

either bone (Kang et al., 2003), lung (Minn et al., 2005), brain (Bos

et al., 2009), or liver (Tabariès et al., 2011) have been identified.

These genes seem to dictate organ-specific metastatic tropism

due to their ability to compensate for and overcome incompati-

bilities between the intrinsic growth programs of the dissemi-

nated carcinoma cells and the demands imposed by the partic-

ular foreign tissue microenvironment around them.

One striking example of this is provided by the osteoclastic

cytokine IL-11, which facilitates the formation of osteolytic

bone metastases by breast cancer cells. IL-11 acts via mecha-

nisms that involve perturbing the normal physiologic signaling

between osteoblasts and osteoclasts mediated by receptor

activator for nuclear factor kB (RANK) (Kang et al., 2003). Analo-

gously, in breast cancer cells, the Notch ligand Jagged1 pro-

motes the formation of osteolytic bonemetastases by enhancing

osteoclast activity through a mechanism involving osteoblast-

secreted IL-6 (Sethi et al., 2011). By favoring osteoclast function,

IL-11 and Jagged1 can drive osteolysis and the release of rich

deposits of growth factors that are normally sequestered in the

bone matrix. Conversely, IL-11 and Jagged1 are expected to

offer little benefit to breast carcinoma cells that have landed in

the lungs or brain, where osteoclasts do not operate. More

generally, this notion that distinct tissue microenvironments

impose dramatically different organ-specific requirements for

metastatic colonization is illustrated by the minimal overlap

between genes identified as candidate mediators of the meta-

static colonization of breast cancer cells in bone, lung, brain,

or liver (Kang et al., 2003; Minn et al., 2005; Bos et al., 2009;

Tabariès et al., 2011).

These findings hold important implications for our under-

standing of the molecular mechanisms underlying this final

step of the invasion-metastasis cascade because they imply

that the distinct adaptive programs governing metastatic coloni-

zation may number in the dozens, with each determined by both

(1) the identity of the organ site at which metastatic colonization

occurs and (2) the tissue of origin of the disseminating primary

tumor cells. Stated differently, it is known, for example, that (1)

breast carcinoma cells colonizing the lungs utilize different

genetic and/or epigenetic programs than do the same breast

carcinoma cells colonizing the bone, brain, or liver and (2) breast
carcinoma cells colonizing the bone utilize different molecular

programs than do prostate carcinoma cells colonizing the

same bone tissue (Figure 4).

Success in metastatic colonization is also likely to be influ-

enced by another attribute of the founding cells: they must

possess a high self-renewal capacity in order to spawn large

malignant growths. Some have proposed that only a subpopula-

tion of the neoplastic cells present within a tumor—the so-called

‘‘tumor-initiating cells’’ (TICs)—possess such an extensive

self-renewal capacity. Indeed, xenograft serial transplantation

studies involving several tumor types lend support to this model,

although the applicability of these findings to all types of human

malignancies continues to be debated (Shackleton et al., 2009;

Clevers, 2011). Of particular relevance to metastatic coloniza-

tion, the TIC hypothesis asserts that one or more self-renewing

TICs must disseminate during the course of disease progression

in order for macroscopic metastases to develop; conversely, the

limited self-renewal capacity of disseminated non-TICs may

preclude them from spawning macroscopic metastases.

One class of molecules that promote entrance into the TIC-

state is EMT-promoting transcription factors, such as Snail,

Twist, and ZEB1. As discussed above, these transcription

factors were initially characterized in the context of cancer for

their powers to enhance local invasion. Subsequently, however,

EMT-inducing transcription factors were also discovered to

confer self-renewal properties upon carcinoma cells (Thiery

et al., 2009). This unexpected convergence between amolecular

pathway that promotes both invasiveness and self-renewal is

noteworthy, as these transcription factors appear to concomi-

tantly facilitate physical dissemination of carcinoma cells and,

following dissemination, the proliferation of these cells at distant

organ sites. Similarly, several miRNAs involved in regulating

the EMT also exert control over the TIC state, including those

of the miR-200 family (Shimono et al., 2009).

In addition to components of the EMT regulatory circuitry, the

transcription factors that are members of the inhibitor of

cell differentiation (ID) family (namely, ID1 and ID3) and the

homeobox transcription factor Nkx2-1 appear to regulate meta-

static colonization in carcinomas of the breast and lung, respec-

tively, due to their capacity to modulate the TIC state (Gupta

et al., 2007b; Winslow et al., 2011). Of additional interest,

GATA 3, a transcription factor that promotes luminal cell differen-

tiation, suppresses mammary carcinoma metastasis through

pathways that appear to impinge upon TIC biology (Kouros-

Mehr et al., 2008). Finally, the ECM protein tenascin C is capable

of stimulating metastatic colonization of the lung by breast

cancer cells via perturbation of the Notch and Wnt signal trans-

duction cascades, two circuitries that have previously been

linked to the TIC phenotype (Oskarsson et al., 2011).

By concurrently solving microenvironmental incompatibilities

and activating self-renewal pathways, a small minority of

disseminated carcinoma cells may succeed in completing

the process of metastatic colonization and thereby generate

macroscopic, clinically detectable metastases. The formation

of robustly growing macroscopic metastases represents the

endpoint of the invasion-metastasis cascade. In many respects,

only those foci that have completed metastatic colonization

should be referred to as ‘‘metastases,’’ as these are the only
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Figure 4. Organ Site and Primary Tumor Type Specificity of

Metastatic Colonization
The number of distinct molecular programs required for metastatic coloniza-
tion is incredibly high due to considerations stemming from both the distant
organ site that is being colonized and the tissue of origin of the primary tumor
from which the metastases were initially spawned.
(A) An individual primary tumor deploys distinct genetic and/or epigenetic
programs in order to colonize different metastatic sites. Accordingly, a primary
breast tumor (depicted in red) utilizes unique signal transduction pathways to
metastasize to bone, brain, liver, or lung.
(B) Carcinomas originating from two different tissues may deploy distinct
molecular programs in order to colonize the same metastatic organ site. For
example, primary breast tumors (upper red lesion) initiate signaling pathways
that yield osteolytic bonemetastases, whereas primary prostate tumors (lower
red lesion) spawn osteoblastic bone metastases that are driven by unrelated
molecular programs.
IL-11, interleukin 11; SPARC, secreted protein acidic and rich in cysteine;
ST6GALNAC5, ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase-5.
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malignant growths that have overcome the daunting series of

obstacles that normally operate to opposemetastasis formation.

Of note, many identified regulators of metastasis function

pleiotropically to orchestrate multiple steps of the invasion-

metastasis cascade. One example of this is supplied by the

miRNA miR-31, which suppresses breast cancer metastasis by

concurrently impinging upon at least three distinct steps of the

invasion-metastasis cascade: local invasion, one or more early

postintravasation events, andmetastatic colonization (Valastyan

et al., 2009). Such pleiotropy provides a rationale for the high

frequency with which this complex series of events is accom-

plished over the course of a typical human life span.

Hence, via the accumulation of genetic and/or epigenetic

alterations, as well as the co-option of nonneoplastic stromal

cells, carcinoma cells are capable of completing an intricate,

multistep, cell-biological process that culminates in the forma-

tion of macroscopic, life-threatening growths at distant organ

sites.

Metastasis Is a Highly Inefficient Process
As might be logically inferred from the preceding discussions,

the invasion-metastasis cascade is extraordinarily inefficient.

For example, large numbers of CTCs can be detected within

the bloodstream of the overwhelming majority of carcinoma

patients, including those who develop few, if any, overt metas-

tases (Nagrath et al., 2007). In fact, some have estimated

that < 0.01% of tumor cells that enter into the systemic circula-

tion ultimately develop into macroscopic metastases (Chambers

et al., 2002), and this may represent an overestimate.

This point was vividly demonstrated by observing 15 ovarian

cancer patients who were provided palliative remediation of

their peritoneal ascites via the installation of peritoneovenous

shunts. In addition to relieving discomfort, this treatment, which

evacuates ascitic fluid directly into the venous circulation,

continuously liberated millions of cancer cells into their systemic

circulation. Nevertheless, these patients largely failed to develop

detectable metastases even several years later (Tarin et al.,

1984). Taken together, these observations suggest that one or

more of the later steps of the invasion-metastasis cascade—

namely, survival in the circulation, arrest at distant sites, extrav-

asation, micrometastasis formation, and/or metastatic coloniza-

tion—are successfully completed only very infrequently.

In fact, detailed work in experimental models has further

defined the particular steps of metastasis that appear to be

rate limiting. More specifically, survival in the circulation, arrest

at distant sites, and extravasation occur quite efficiently in

various carcinoma cell types (>80% of intravenously implanted

cells succeed in extravasating). In contrast, once tumor cells

exit the microvasculature into the parenchyma of foreign tissues,

high rates of attrition are observed (<3% of intravenously

implanted cells survive to form micrometastases). Importantly,

although a substantial proportion of successfully extravasated

tumor cells failed to initially survive within distant tissue sites to

generate micrometastases, the subsequent process of meta-

static colonization is even more inefficient, perhaps by several

orders of magnitude (<0.02% of intravenously implanted cells

generate macroscopic metastases) (Figure 5) (Luzzi et al.,

1998). Collectively, these findings converge on the conclusion



Figure 5. Inefficiency of the Invasion-

Metastasis Cascade
Certain steps of the invasion-metastasis cascade
are extraordinarily inefficient. Work in experi-
mental models has revealed that the process of
metastatic colonization typically represents the
rate-limiting step of the invasion-metastasis cas-
cade, with a rate of attrition that often exceeds
99% of those cells that initially survive in a foreign
microenvironment to form micrometastases. De-
picted here is the approximate fraction of intra-
venously implanted tumor cells that have died
after passage through the indicated steps of the
invasion-metastasis cascade.
that metastatic colonization often represents the dominant rate-

limiting step of the invasion-metastasis cascade.

Consistent with this notion, among 1,438 breast carcinoma

patients who harbored hundreds to thousands of micrometasta-

ses in their bonemarrow at the time of initial diagnosis, only 50%

developed clinically detectable metastases within 10 years

(Braun et al., 2005). Further support for the belief that metastatic

colonization frequently represents the rate-limiting step of the

invasion-metastasis cascade comes from clinical observations

describing the kinetics of distant relapse and disease recur-

rence. In many human tumor types—for example, breast carci-

nomas—detectable metastases often arise years or even

decades after the apparent complete resection of a patient’s

primary tumor (Aguirre-Ghiso, 2007). Because the metastatic

cells must have disseminated from the primary tumor prior to

its surgical removal, this implies that these cells persisted in an

occult yet viable state for many years at anatomically distant

organ sites. The most parsimonious interpretation of these clin-

ical observations is that, although the incipient metastatic pre-

cursor cells are capable of disseminating and retaining viability

at distant loci, the appearance of detectable metastases was

greatly delayed due to the gross inefficiency of metastatic colo-

nization. Ostensibly, during this long period of latency, a small

minority of disseminated carcinoma cells underwent gradual

genetic and/or epigenetic evolution in order to acquire the adap-

tive traits required for metastatic colonization.

Importantly, certain human tumor types, notably lung and

pancreatic adenocarcinomas, do not display characteristic

years- or decades-long latency periods prior to overt metastasis

formation. Instead, these tumors progress rapidly to macro-

scopic metastases upon infiltration of distant organ sites

(Nguyen et al., 2009). Such clinical observations suggest that

lung and pancreatic adenocarcinoma cells exiting their primary

sites of growth are already reasonably well equipped to generate

macroscopic metastases. This may be due, at least in part, to

the differentiation programs of the normal epithelial cells from

which these neoplasias were derived. These findings fail,

however, to provide insight regarding the specific rate-limiting

step(s) of the invasion-metastasis cascade in these particular

tumor types, as the relative efficiency of the various steps of

metastasis in lung and pancreatic adenocarcinomas remain

largely unexplored.

Despite the high rates of attrition that accompany certain

steps of the invasion-metastasis cascade, overt metastases do

eventually arise in many carcinoma patients, where they almost
invariably represent the source of terminal disease (Gupta and

Massagué, 2006). These points draw attention to questions

regarding the origins of the cells that serve as precursors of overt

metastases, as well as the timing of—and the anatomical sites at

which—the genetic and/or epigenetic events that drive the

molecular evolution of these cells toward metastatic compe-

tence transpire.

How, When, and Where Do the Precursors
of Overt Metastases Arise?
The notion that tumor cell populations evolve via a process akin

to Darwinian selection has found widespread acceptance.

Stated simply, this model posits that genetic variation is contin-

ually introduced into the population via stochastic mutational

events and that those cell clones that happen to acquire alleles

conferring proliferative and/or survival advantages become

overrepresented via a process of purifying selection. Thereafter,

these new, genetically altered populations become the sub-

strates for subsequent rounds of mutation and clonal selection.

In recent years, this Darwinian model has been expanded to

include heritable cellular traits that are acquired via epigenetic

mechanisms (Gupta and Massagué, 2006).

However, the Darwinian model must somehow accommodate

conclusions flowing from the preceding discussions, which indi-

cated that (1) the molecular and cell-biological requirements

for carcinoma cells to thrive at primary sites versus metastatic

sites can be very different and (2) metastatic colonization is often

and perhaps always the rate-limiting step of the invasion-metas-

tasis cascade. These considerations raise the question of how,

according to the Darwinian selection model, cell clones that

possess traits enabling them to form metastases in specific

distant organ sites arise within primary tumors.

In some instances, the answer may be somewhat trivial:

certain molecular changes can confer acquired abilities that

promote proliferation and/or survival at both primary and meta-

static sites. Genes whose altered activities participate in tumor

pathogenesis in this manner have been termed ‘‘metastasis

initiation genes’’ or ‘‘metastasis progression genes’’ (Nguyen

et al., 2009). In the case of pleiotropically acting regulatory

factors, the biochemical functions responsible for endowing

these growth-promoting attributes may differ between primary

tumors and foreign microenvironments; nevertheless, selection

for heightened activity of the factor in the context of primary

tumor development may inadvertently benefit growth at a distant

organ site.
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More puzzling is the problem of how cells expressing ‘‘metas-

tasis virulence genes’’—genetic factors that fail to affect primary

tumor development and confer proliferation and/or survival

advantages only within the context of specific foreign microenvi-

ronments (Nguyen et al., 2009)—can arise at appreciable fre-

quencies during the course of malignant progression. Because

the altered activity of these genes does not, by definition, impact

primary tumor development, cancer cells expressing these

factors cannot be selected during the evolution of primary

tumors. However, in light of the fact that metastatic disease often

involves the aberrant activity of metastasis virulence genes, it is

clear that cells bearing these molecular alterations do arise at

reasonably high frequencies at some point during malignant

progression. The expression of some of these genes may reflect

the continuing influence of the differentiation programs of the

cells of origin from which certain primary tumors are derived

(Figure 6A).

In addition, cells may arise in the primary tumor that are only

partially metastasis competent (that is, tumor cells that have

undergone molecular changes that render them capable of

disseminating to distant sites but that still require additional

molecular changes in order to successfully colonize those

organs). Upon dissemination to distant organs, these cells may

undergo additional genetic and/or epigenetic evolution in these

foreign tissue microenvironments—notably, sites where the

acquisition of alterations in metastasis virulence genes are

indeed selectively advantageous (Figure 6B).

An alternative model explaining the acquisition of metastasis

virulence genes involves the stochastic accumulation of molec-

ular changes in such genes during primary tumor evolution.

For example, mutations in metastasis virulence genes may be

acquired as ‘‘passenger mutations’’ within highly mutable tumor

cell populations that possess unrelated ‘‘driver mutations’’

(Stratton, 2011), the latter serving to drive the clonal expansion

of these cells within primary tumors. Accordingly, purely by

chance, subpopulations of cells within primary tumors may inad-

vertently acquire mutations in metastasis virulence genes and

thus possess high proclivities to metastasize (Figure 6C).

A fourth explanation is provoked by the phenomenon of

‘‘tumor self-seeding.’’ This mechanism was formulated based

on observations of xenograft models of breast and colon carci-

nomas, where it was demonstrated that carcinoma cells present

in metastases are capable of re-infiltrating their primary tumor of

origin (Kim et al., 2009). If primary tumors successfully spawn

metastases in distant organs, and if already metastasized cells

are capable of reseeding the primary tumors from which they

arose, then it becomes possible that these primary tumors will

progressively acquire the molecular signatures of the metas-

tases that they have previously spawned. This would include

changes in metastasis virulence genes that may have been

selected while the disseminated cells were evolving at distant

organ sites or that accumulated via stochastic mechanisms

(Figure 6D).

Though it has been widely assumed that the majority of malig-

nant progression occurs within primary tumors, a recent pro-

posal suggests something quite different: that this genetic evolu-

tion can instead occur largely at sites that are distant from

primary tumors, resulting in the acquisition of genes that enable
284 Cell 147, October 14, 2011 ª2011 Elsevier Inc.
both tumorigenicity and metastatic virulence. According to this

thinking, quasi-normal cells may disseminate from preneoplastic

lesions relatively early during the course of tumor progression.

Independent of the molecular evolution that is occurring in the

corresponding primary tumor, these quasi-normal cells are

then proposed to undergo multiple rounds of genetic diversifica-

tion followed by clonal selection within the distant organ sites in

which overt metastases ultimately develop—specifically, micro-

environments where mutations in metastasis virulence genes

can now be selectively advantageous (Figure 6E) (Klein, 2009).

This so-called ‘‘parallel progression model’’ (in contrast to the

traditional ‘‘linear progression model’’ of carcinoma metastasis

described above) was recently proposed in light of several inde-

pendent observations from human breast carcinoma patients

and experimental mammary tumor models: (1) cells that are

not yet fully neoplastic are routinely disseminated in a systemic

manner from even early premalignant lesions (Nagrath et al.,

2007; Hüsemann et al., 2008), (2) untransformed epithelial cells

present in the systemic circulation can survive within the vascu-

lature, arrest at distant organ sites, extravasate, and then survive

in foreign microenvironments for prolonged intervals (Podsypa-

nina et al., 2008), (3) early disseminating preneoplastic cells

possess at least some capacity for cell proliferation at distant

organ sites (Hüsemann et al., 2008; Podsypanina et al., 2008),

and (4) patient-matched primary tumors and metastases can

harbor significantly different spectra of molecular alterations

(Schmidt-Kittler et al., 2003). Thus, it is possible that largely

normal breast epithelial cells that disseminate relatively early

during the course of tumor progression can represent the

precursor cells of overt metastases, owing to their gradual evolu-

tion at sites of eventual metastasis formation.

Importantly, the parallel progression model is not disproved

by observations that expression signatures predictive of pro-

pensity for metastatic relapse can be identified via microarray

analysis of breast carcinoma patient primary tumors (van ’t

Veer et al., 2002; Ramaswamy et al., 2003; Paik et al., 2004).

This is because these ‘‘metastasis signatures’’ could, in actu-

ality, represent ‘‘dissemination signatures’’ that facilitate the

escape of not-yet fully neoplastic cells to distant organ sites,

where they would then serve as substrates for additional rounds

of Darwinian selection.

Instead, the major conceptual problem that must be ad-

dressed by the parallel progression model concerns how these

disseminated quasi-normal mammary cells can actually evolve

in distant organ sites. Both genetic and epigenetic evolution

would appear to require repeated rounds of cell division in

order to generate the genetic and phenotypic diversity that

yields cell populations with increased fitness. However, these

disseminated quasi-normal cells confront major obstacles to

their proliferation, as even cancer cells that are fully neoplastic

have extremely low chances of actively proliferating at sites of

dissemination, and the proliferation of quasi-normal cells is

further handicapped by the fact that these cells lack many of

the mutant genes that are required to drive active cell prolifera-

tion in the primary tumor site.

Additionally, although some studies have documented exten-

sive molecular differences between patient-matched primary

breast tumors and metastases (Schmidt-Kittler et al., 2003),



Figure 6. Acquisition of Molecular Alterations in Metastasis Virulence Genes
A number of models have recently been proposed to explain how tumor cell populations evolve to acquire molecular alterations in metastasis virulence genes.
(A) The normal differentiation programs of the cells of origin from which certain primary tumors are derived may already dictate the altered activity of various
metastasis virulence genes (depicted in green). Upon subsequent oncogenic transformation and systemic dissemination, these cells may therefore be capable of
completing the process of metastatic colonization.
(B) Cells that are only partially metastasis competent (that is, tumor cells that have acquired a series of mutations that confer the capacity to disseminate
systemically but are initially unable to colonize foreign microenvironments) may arrive at distant organs, where they then undergo further genetic and/or
epigenetic evolution within these foreign microenvironments to achieve full metastatic competence. Such molecular evolution would likely include alterations in
metastasis virulence genes.
(C) Purely by chance, mutations in metastasis virulence genes may accumulate stochastically as ‘‘passenger mutations’’ within tumor cell clones that bear
unrelated ‘‘driver mutations’’ that serve to fuel the clonal expansion of these cells within primary tumors.
(D) The phenomenon of tumor self-seeding indicates that already metastasized cells are capable of re-infiltrating the primary tumor from which they originated.
Hence, carcinoma cells present in metastases (which have come to acquire molecular alterations in metastasis virulence genes via either of themodels proposed
above, as indicated by the asterisk) may become increasingly represented within their primary tumor of origin (re-infiltrating cells are depicted in blue).
(E) The parallel progression model asserts that quasi-normal epithelial cells (depicted in orange) disseminate very early from preneoplastic lesions. Subsequently,
these cells undergo molecular evolution at future sites of metastasis formation. Notably, such sites represent locations where mutations in metastasis virulence
genes are now selectively advantageous.
Carcinoma cells are depicted in red.
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many other investigators have foundmetastases and their corre-

sponding primary breast tumors to be quite similar (Ramaswamy

et al., 2003; Weigelt et al., 2003; Ding et al., 2010; Navin et al.,

2011). Moreover, whole-genome sequencing of 20 patient-

matched primary pancreatic tumors and metastases docu-

mented that the majority of genomic alterations present in the

metastases were also present in the corresponding primary

tumors (Campbell et al., 2010; Yachida et al., 2010). An analo-

gous conclusion was reached by sequencing 289 candidate

exons in 10 patient-matched primary colorectal carcinomas

and metastases (Jones et al., 2008). Finally, genomic analyses

of patient-matched primary prostate tumors and metastases

revealed that the metastases bear the copy number signature

of the primary tumor from which they were initially spawned

(Liu et al., 2009). These molecular analyses make it unlikely

that the precursor cells of overt metastases in pancreatic, colo-

rectal, and prostate carcinomas disseminate early to sites where

they proceed to undergo their own divergent genetic evolution.

In essence, though it now appears clear that quasi-normal

breast cells can enter into the systemic circulation early during

the course of tumor progression, direct evidence implicating

these early disseminating cells as the precursors of overt metas-

tases remains scant. Nonetheless, if ultimately proven correct,

the parallel progression model would necessitate a paradigm

shift and would hold serious implications for the design of effec-

tive therapeutic agents aimed at treating metastatic disease.

Emerging Clinical Opportunities to Target Metastatic
Disease
Of critical importance is the question of whether insights

gleaned from basic laboratory research will prove useful to the

diagnosis and treatment of clinical metastatic disease. Because,

as mentioned earlier, metastases are responsible for �90% of

cancer-associated patient mortality, truly informative prognostic

biomarkers and novel therapeutic targets represent areas of

great need.

Prognostic Biomarkers

Research conducted during the past decade has succeeded in

identifying a number of biomarkers whose levels in primary

breast tumors are associated with the propensity of a patient to

suffer metastatic relapse. Some of these biomarkers have been

subjected to extensive independent validation and have entered

into clinical use—for example, the MammaPrint and Oncotype

DX assays (van ’t Veer et al., 2002; Paik et al., 2004). These

assays employ multigene expression signatures to estimate the

likelihood of disease progression and recurrence and then utilize

this information to direct adjuvant treatment options. Interest-

ingly, though the specific genes that comprise these two prog-

nostic signatures are almost entirely nonoverlapping, applying

the two assays to an individual tumor specimen yields a concor-

dant prediction in > 80%of cases (Fan et al., 2006). Such findings

suggest that these two signatures identify a common set of bio-

logical outputs. At the same time, the minimal overlap between

these two sets of genes lessens the likelihood that the particular

genes included in these assays represent functionally critical

mediators of metastatic progression.

Importantly, these assays are principally informative for the

prognosis of patients within only certain subclasses of primary
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breast tumors and fail to identify individuals with heightened

risk who suffer from other subtypes of the disease (Desmedt

et al., 2008). Therefore, refinement of prognostic signatures

is required in order to increase further their power to predict

metastatic relapse. With the passage of time, the need for

such improvement has become increasingly acute: it is now

clear that the majority of women who are diagnosed with

breast cancer carry a form of the disease that is highly unlikely

to generate life-threatening metastases; nonetheless, these

women are treated as aggressively as those whose tumors carry

truly grim prognoses, resulting in enormous unnecessary expo-

sure of these women to the toxicities of antineoplastic therapies.

One possible avenue of improvement in prognosis comes

from the discovery that miRNAs play critical mechanistic roles

in a wide variety of cellular processes that are relevant for meta-

stasis formation. This suggests their potential utility to yield

useful biomarkers of metastatic propensity. Indeed, the levels

of several individual miRNAs (including miR-10b, miR-21, miR-

31, miR-126, miR-335, and miR-373) have been correlated

with metastatic outcome in carcinoma patients (Valastyan and

Weinberg, 2009). In fact, miRNA expression signatures have

proven to be even more useful than the corresponding mRNA

profiles at stratifying primary tumors based on their tissue of

origin (Lu et al., 2005), and multigene miRNA expression signa-

tures predictive of metastatic outcome have now been assem-

bled (Yu et al., 2008). Additionally, other classes of noncoding

RNAs, including large intervening noncoding RNAs (lincRNAs)

such as HOTAIR (Gupta et al., 2010), have also been proposed

as putative biomarkers for metastatic propensity in human

breast tumors. The application of miRNA or lincRNA expression

arrays to prognosis in the oncology clinic has yet to occur.

As of late, the development of instruments that detect CTCs

offers yet another prospect for developing a useful prognostic

parameter. Overall numbers of CTCs in patients afflicted with

any of a variety of carcinoma types provide a prognostic indicator

of disease outcome (Pantel et al., 2008). Moreover, changes in

CTC levels upon administration of neo-adjuvant or adjuvant ther-

apeutic agents may afford a minimally invasive means by which

to rapidly gauge patient responsiveness to these drug treatments

(Cristofanilli et al., 2004). It is worth noting, however, that the

prognostic significance of CTC numbers may not be universally

applicable (Pantel et al., 2008), and future work is necessary to

determine the criteria under which quantification of CTCs

provides additional information about patient outcome beyond

that generated by currently employed diagnostic modalities.

Moreover, at present, many of the devices that measure CTC

numbers rely on the expression of epithelial cell surface mole-

cules by the tumor cells; consequently, these analyses are osten-

sibly unable to detect subpopulations of CTCs that have, for

example, undergone an EMT and thus shed epithelial markers.

Nevertheless, CTC detection platforms, as well as, perhaps,

direct detection of tumor-specific molecular alterations in freely

circulating nucleic acids present in the bloodstream (Schwarzen-

bach et al., 2011), may come to represent important clinical tools

for diagnosing and guiding the treatment of metastatic disease.

Therapeutic Agents

A key consideration in the design of antimetastatic therapeutic

agents is the fact that carcinoma patients frequently already



Figure 7. Rationally Designed Therapeutic Agents to Treat Metastatic Disease
Because metastases are culpable for > 90% of cancer-associated mortality, truly efficacious antimetastatic therapies are desperately needed.
(A) Various rationally designed antimetastatic compounds trigger measurable responses in preclinical preventative settings where treatment is initiated prior to
the formation of primary tumors or metastases.
(B) Unfortunately, however, many agents that display efficacy in preventative preclinical models fail to impair metastasis in preclinical intervention settings where
treatment is initiated only after the formation of small micrometastases (depicted in blue). Because carcinoma patients frequently already harbor significant
numbers of disseminated tumor cells at the time of initial disease presentation, the ultimate translational utility of compounds that are unable to alter the behavior
of already formed metastases is likely to be quite limited. In contrast, dasatinib, medroxyprogesterone acetate (MPA), miR-31 mimetics, bisphosphonates,
denosumab, SD-208, and LY2157299 inhibit the metastatic outgrowth of already disseminated tumor cells in intervention assays (depicted in black).
(C) In the end, agents that are capable of eliciting the regression of already established macroscopic metastases may possess the greatest clinical utility.
Compounds displaying such efficacy in preclinical intervention settings are quite rare, though several examples have been reported, namely, miR-31 mimetics,
bisphosphonates, denosumab, SD-208, and LY2157299. In contrast, many other compounds are incapable of altering the behavior of already established
macroscopic metastases (indicated in blue), including agents that display efficacy against small micrometastases prior to their overt metastatic colonization.
Carcinoma cells are depicted in red. Therapeutic agents whose mechanism of action is believed to principally involve the targeting of nonneoplastic stromal cells
are presented within the orange boxes. MMP, matrix metalloproteinase; MPA, medroxyprogesterone acetate.
harbor significant numbers of disseminated tumor cells in their

blood, bone marrow, and distant organ sites upon initial presen-

tation in the oncology clinic (Braun et al., 2005; Nagrath et al.,

2007; Pantel et al., 2008). Consequently, truly effective antimeta-

static therapeutics must be capable of impairing the proliferation

and survival of already disseminated carcinoma cells, rather

than merely attempting to block the escape of these cells from

primary tumors (Figure 7). Unfortunately, however, the rationale

behind many targeted agents that were designed to impair

carcinoma metastasis, such as MMP inhibitors, the Axl kinase

inhibitor R428, miR-10b antagonists, and the fascin inhibitor

Migrastatin, is incompatible with these clinical observations, as

these compounds are believed to act principally by impairing

initial dissemination events (Kessenbrock et al., 2010; Holland

et al., 2010; Ma et al., 2010; Chen et al., 2010).

If antimetastatic drugs do not additionally impact the behavior

of already established metastases, then their ultimate clinical
utility will likely be confined to long-term prophylactic settings;

such use in the clinic is unlikely because of the almost inevitable

side effects of essentially all agents. Thus, the limited benefit,

as well as severe adverse side effects, observed in clinical trials

involving MMP inhibitors is not encouraging (Kessenbrock

et al., 2010). Moreover, preclinical studies reveal that R428,

miR-10b antagonists, and Migrastatin fail to affect the fates of

already disseminated tumor cells (Holland et al., 2010; Ma et al.,

2010; Oskarsson et al., 2010). Nevertheless, it may be premature

to entirely discount these and similar compounds as potential

therapeutic agents against clinical disseminated disease, as

preclinical model systems often do not adequately recapitulate

latent metastatic disease or reactivated metastatic showers.

Moreover, it remains possible that better, more specific MMP

inhibitors might exhibit enhanced efficacy and reduced toxicity.

Importantly, existing therapies designed to destroy primary

tumors, both general cytotoxic agents and rationally designed
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targeted compounds, often display only limited activity against

the corresponding metastatic lesions (Steeg, 2006). This lack

of efficacy could reflect physical limitations related to drug

delivery, dictated by either poor vascularization of metastatic

nodules or by anatomical locations of target organs (for example,

the blood-brain barrier may protect brain metastases from

therapeutic agents delivered via the hematogenous circulation)

(Carmeliet and Jain, 2011). Indeed, certain metastatic sites

may afford chemoprotective niches (Gilbert and Hemann, 2010).

It is also likely that occult, slowly growing micrometastases

can resist the effects of cytotoxic agents that principally target

cells in their active growth and division cycle (Aguirre-Ghiso,

2007). Furthermore, primary tumors and their derived metas-

tases may be molecularly distinct from one another, rendering

certain therapeutic strategies directed against the genotypes

of primary tumors ineffective against their corresponding meta-

stases (Klein, 2009). It is also possible that the neoplastic cells

within metastases are intrinsically more drug resistant than are

cells in the corresponding primary tumors; additional molecular

changes occurring within the disseminated cells, perhaps

involving acquisition of TIC-like properties, have been cited as

one possible source of such heightened resistance (Thiery

et al., 2009). Together, the preceding observations explain why

truly effective antimetastatic therapeutics have yet to enter into

clinical practice.

Collectively, these findings further reinforce the importance of

developing new agents that are capable of affecting the prolifer-

ation and survival of already established metastases. As an

example of such a compound, the Src inhibitor dasatinib antag-

onizes the formation of bone metastases by breast carcinoma

cells in xenograft models, doing so via impairing the survival of

already extravasated tumor cells prior to overt colonization of

themarrow (Zhang et al., 2009). Additionally, transcriptional acti-

vation of a suppressor of metastatic colonization, nonmetastatic

cells protein 23 (NM23), in already disseminated breast carci-

noma cells (achieved via administration of the NM23 transcrip-

tional activator medroxyprogesterone acetate [MPA]) diminished

both the overall numbers and relative sizes of metastatic foci in

tumor-bearing mice (Palmieri et al., 2005). These preclinical

studies principally evaluated the consequences of perturbing

Src or NM23 function in already seeded micrometastases.

Such an experimental setting may serve as a reasonable model

of the minimal residual disease state often encountered in carci-

noma patients following primary tumor resection but does not

address the more serious clinical problem of treating already

robustly growing macroscopic metastases.

In the end, the greatest translational therapeutic utility will

derive from agents that actively trigger the regression of estab-

lished macroscopic metastatic foci. For example, preclinical

studies have evaluated the consequences of acutely expressing

the miRNA miR-31 (a pleiotropically acting suppressor of local

invasion, early postintravasation events, and metastatic coloni-

zation) in already formed metastases generated by breast carci-

noma cells. Acute expression of miR-31 in already disseminated

tumor cells not only prevented the outgrowth of established

micrometastases, but also elicited the regression of already

robustly growing macroscopic metastases. These effects ap-

pear to be orchestrated through metastasis-specific suppres-
288 Cell 147, October 14, 2011 ª2011 Elsevier Inc.
sion of Akt-mediated signaling and induction of the proapopto-

tic molecule Bim (Valastyan et al., 2011). Therefore, these

observations begin to suggest that miR-31 mimetics may

possess the properties of a truly useful antimetastatic agent of

the future.

The therapeutic strategies cited above are focused on target-

ing the ‘‘seeds’’ (that is, tumor cells themselves); however, effec-

tive antimetastatic responses can also be achieved via delivery

of compounds that alter the ‘‘soil’’ of the foreign tissue microen-

vironments present at metastatic sites. For example, bisphosph-

onates, the anti-RANK antibody denosumab, and various TGFb

inhibitors like SD-208 and LY2157299 have been proposed as

inhibitors of bone metastasis in patients afflicted with breast

and lung carcinomas. These compounds prevent osteoclast-

mediated degradation of bone, an event that contributes to

the pathogenesis of bone metastatic colonization. Notably,

bisphosphonates and denosumab alter the proliferation and

survival of already disseminated tumor cells in experimental

models. Moreover, early results from clinical trials suggest that

bisphosphonates may lower the risk of bone metastasis in

high-risk individuals, as well as increase overall patient survival

(Weilbaecher et al., 2011). These successes in targeting the non-

neoplastic stromal cells that metastatic carcinoma cells require

when attempting to colonize the bone provide a strong impetus

for devising analogous strategies that target stromal cell types

involved in the metastatic colonization of other organ sites.

One such stromal cell type that has long been considered

to represent a viable target for antimetastatic therapeutics is

the endothelial cells that provide vascularization to growing

metastatic nodules. However, the provocative observation that

VEGF-targeting anti-angiogenic compounds paradoxically in-

crease metastatic propensity in murine models has provided

a cautionary tale regarding the possibly unanticipated effects

on metastases of these agents (Ebos et al., 2009; Pàez-Ribes

et al., 2009). However, other preclinical studies failed to docu-

ment increased metastasis upon treatment with VEGF-targeting

agents (Padera et al., 2008). Importantly, retrospective analysis

of 4,205 human patients with breast, colorectal, renal, or pancre-

atic carcinomaswhowere treated with the anti-VEGF compound

bevacizumab did not reveal an association of bevacizumab

treatment with either enhanced disease progression or in-

creased mortality (Miles et al., 2011). In light of these conflicting

data, further studies investigating the effects of anti-angiogenic

compounds on the behavior of metastases appear merited.

Together, the above discussions illustrate that, although

numerous clinically useful prognostic biomarkers for metastatic

propensity have been identified in recent years, the discovery of

effective antimetastatic therapeutics has lagged behind. None-

theless, the increased appreciation that antimetastatic thera-

peutics must target already established metastases and the

impressive recent progress cited earlier concerning various

mechanisms that control metastatic colonization give cause

for optimism moving forward. Importantly, however, in light of

their potentially metastasis-specific effects, clinical develop-

ment of putative metastatic colonization-targeting therapeutic

agents of the future will almost certainly require significant re-

evaluation of traditional clinical trial benchmarks and study

endpoints.



Concluding Remarks and Future Perspective
Although a number of fundamental questions concerning the

basic nature of carcinoma metastasis remain incompletely

understood, recent research has succeeded in implicating

specific molecules in the regulation of discrete cell-biological

aspects of the invasion-metastasis cascade.Moreover, the roles

played by stromal cells during each step of the metastatic

process are rapidly beginning to be appreciated. In many

instances, this work has revealed unanticipated complexities

and forced revision of established conceptual frameworks.

Looking ahead, we envision that technological advances will

continue to revolutionize cancer biology and the study of metas-

tasis. For example, improved imaging platforms have facilitated

previously unimaginable real-time visualization of the metastatic

process in vivo (Sahai, 2007). Additionally, an improved molec-

ular toolkit will permit more extensive evaluation of the heteroge-

neity that exists within tumor cell populations, as well as interro-

gation of its functional significance. Of relevance to this matter, it

has been reported that admixing two nonmetastatic subpopula-

tions of small cell lung cancer cells enables robust metastasis

formation due to incompletely understood promalignant cross-

talk between these distinct subclones (Calbo et al., 2011). Also

of interest, the observation that certain carcinoma cells are

capable of trans-differentiating into bona fide endothelial cells

that are competent to contribute to the tumor neovasculature

suggests a previously unexpected level of plasticity and func-

tional heterogeneity within tumor cell populations and their asso-

ciated stromal compartments (Ricci-Vitiani et al., 2010; Wang

et al., 2010).

Metastasis research has entered into a stage of remarkable

progress. Over the past 5 years, our comprehension of the

pathways that orchestrate the invasion-metastasis cascade

has evolved from almost total ignorance to a detailed molecular

circuitry diagram endowed with clear central control nodes.

Consequently, we envisage that metastatic behavior will in-

creasingly be understood to arise through a finite number

of organizing principles. In light of the dire clinical realities

associated with metastatic disease, we cannot overstate the

importance of ensuring that this impressive pace of discovery

continues and, additionally, is accompanied by the rapid trans-

lation of these basic research findings to the oncology clinic.
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vascular remodelling co-opted for sequential steps in lung metastasis. Nature

446, 765–770.

Gupta, G.P., Perk, J., Acharyya, S., de Candia, P., Mittal, V., Todorova-

Manova, K., Gerald, W.L., Brogi, E., Benezra, R., and Massagué, J. (2007b).
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