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Abstract 

Speech recognition failures and limited vocabulary coverage 
pose challenges for speech interaction with characters in 
games. We describe an end-to-end system for automating 
characters from a large corpus of recorded human game 
logs, and demonstrate that inferring utterance meaning 
through a combination of plan recognition and surface text 
similarity compensates for recognition and understanding 
failures significantly better than relying on surface 
similarity alone. 

Introduction   

In today's world of speech-enabled technologies (e.g. Siri, 
Watson, Kinect), characters in games are begging for us to 
talk to them. Yet, understanding spoken natural language 
remains a challenge. The most robust speech recognition 
solutions, trained on enormous corpora, running on the 
cloud, can be hampered by background noise, microphone 
quality, speaking volume, speaking styles, or other factors. 
Even with perfect recognition, characters may find words 
or phrases unfamiliar or ambiguous. 

Non-player characters (NPCs) require adequate 
coverage of all utterances they might be expected to 
understand. Thus, understanding language is subject to the 
same authoring bottleneck that plagues generation of 
behavior and dialogue. In the age of big data, where it is 
increasingly easy to record, store, and process data from 
players interacting online, we can revisit this problem.  

We describe a system that leverages a corpus of 
thousands of recorded human interactions to not only 
address the coverage problem, but to also compensate for 
speech recognition failure by exploiting narrative context. 
Speech is understood by mapping player input to an 
utterance in our corpus -- a two-step process. Like a search 
engine, the system first retrieves a list of relevant 
utterances from the corpus, semantically similar to the 
input, possibly expressed with different words. Next, the  
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Figure 1: Intelligent interface compensates for misrecognition. 
 

single best match must be selected from the retrieved list. 
Here we focus on the first step, and leave the second step 
to the player. We present an intelligent interface that 
dynamically populates a list of dialogue options based on 
speech input, and allows the player to select what s/he is 
actually trying to say. Including a human in the selection 
process allows us to measure the quality of our search 
results, in terms of the rank of the selected utterance, and 
the frequency of aborting, when the player can find no 
satisfactory option. 

We have integrated this interface into The Restaurant 

Game (TRG), and observed human customers interacting 
with waitress NPCs. TRG is a long-term project working 
toward data-driven NPCs who understand and generate 
language by exploiting a large corpus of human 
demonstrations. We have previously described automating 
NPC-NPC interactions with statistical models (Orkin & 
Roy 2009). This paper describes and evaluates an end-to-
end system for automating human-NPC interactions from 
annotated data, with integrated speech recognition. 

 We present results from an experiment comparing three 

different means of retrieving and filtering dialogue options, 

and find that combining text surface similarity with plan 

recognition is 18% more likely to find a relevant dialogue 

option than relying on surface similarity alone, and can 

often provide relevant options even in the event of 

complete speech recognition failure. Findings suggest that 

leveraging contextual knowledge provided by recorded 



demonstrations to compensate for language understanding 

failures can significantly improve the viability of speech 

interaction in interactive narratives. 

Collective A.I. for Interactive Narratives 

Collective A.I. refers to an end-to-end process for 

recording online games, discovering patterns in data, and 

automating data-driven NPCs. The intelligent interface 

supporting speech input relies on the same machinery that 

drives NPC behavior. We give an overview of the process, 

followed by a description of how the system supports 

human interaction. More details about data collection, 

annotation, and pattern discovery are available in previous 

publications (Orkin & Roy 2007; 2010). To date we have 

recorded 10,027 logs, and annotated 1,000 logs. This study 

evaluates humans interacting with an NPC driven by a 100 

game subset of the annotated logs. 

Crowdsourced Data Collection 

TRG anonymously pairs humans online as customers and 

waitresses in a restaurant (using Torque 3D for Windows 

and OSX). Players can converse via typed text, and interact 

with 47 types of objects in the 3D environment through a 

point-and-click interface. Games generate text-based logs 

of time-coded actions, state changes, and utterances. 

Data Interpretation by Humans 

While powerful algorithms exist for learning patterns from 

data, we choose to rely on human interpretation. Our 

motivation for recording humans online is to capture the 

nuance and variety of behavior and language, subtleties 

that wash away statistically due to sparse data. By 

employing humans to interpret data, we can capture valid 

examples of interaction that may have only been observed 

in few games, or even only once. 
We hire non-experts online to interpret and generate 

abstract representations of data. Annotators use browser-
based tools (AS3/Flex) to view game logs as timelines of 
nodes representing actions and utterances, and tag them 
with four varieties of meta-data: events, event hierarchies, 
causal chains, and references. Annotators draw boxes 
around sequences of nodes to tag events, and draw bigger 
boxes around multiple events to tag event hierarchies. 
Events may contain actions and utterances, arbitrarily 

intermixed. We have 31 low-level events (e.g. GET_SEATED, 

ORDER, PAY_BILL), grouped into five higher-level events 

(e.g. BEGIN_DINING, CONCLUDE_DINING, FULFILL_ORDER). A 
domain expert defines the list of event labels, and provides 
examples for annotators. Based on a ten game subset, we 
found substantial agreement between event annotations of 
an expert and five novice annotators (mean kappa 0.81). 
Arrows from one node to another tag causal chains 

(forward) and references (backward). Causal chains 
explain that the customer asking for steak caused the 
waitress to bring back a steak from the kitchen. A 
reference explains that a waitress who asks “How was your 
lobster?” is referring to the previously served lobster.   

Annotators do not require specialized skills, aside from 
English fluency. We hired people from the Philippines, 
India, Pakistan, and the U.S. via oDesk.com. Seven people 
completed annotation of 1,000 logs in 415 hours total, for 
about $3,000. We manually spot checked tags for quality, 
iterating on corrections with annotators. Work was spread 
over two months, but seven people working 40 hours/week 
could complete 415 hours of work in 1.5 weeks. 

Once logs have been annotated, we extract all unique 
utterances included in events, and have humans cluster 
them semantically by dragging utterances that serve the 
same purpose into folders. An annotator might drag “Hi” 
and “Hello” into one folder, and “I’m ready for the bill” 
and “Check please” into another folder. Prior to clustering, 
we collapse variables based on a hand-crafted, domain-
specific ontology (e.g. “Can I have steak?” and “Can I 

have salmon?” merge into “Can I have [FOOD]?”). 
Manually grouping utterances can be accomplished with 
minimal training or specialized knowledge, and allows for 
flexible, fine-grained groupings. We are clustering in-
house, but plan to outsource this in the future. 

Automatic Pattern Discovery 

We learn a dictionary of discreet sequences, representing 
events, from the annotations. This process first requires 
actions and utterances from the text-based logs to be 
transformed into discreet tokens, stored in an Action 

Lexicon (AL) and Dialogue Library (DL). 
We generate the AL by recording every unique action in 

the entire corpus of 10,027 logs. Actions are context-
sensitive and role-dependent, stored with pre- and post-
conditions based on observed state changes (e.g. 
<pickup(waitress, pie), pre: on(counter, pie), 

post: holding(waitress, pie)>). Our AL has 10,198 
unique actions. We refer to indices into the AL as Action 
IDs (ACTIDs). 

The DL stores unique utterances as sequences of key 

words -- any word observed in at least 25 games. We prune 
non-keys from the previously clustered utterances, and 
refer to resulting key word strings as signatures. A folder 
of signatures is a signature set, given a unique ID (SSID). 

Using the AL and DL, we compile logs into discreet 
sequences of time-coded ACTID and SSIDs. Fluidly 
intermixing physical and dialogue actions as a common 
currency is inspired by the concept of speech acts 
(Austin1962). Time codes associate annotations with 
tokens in compiled logs, allowing extraction of each 
unique event pattern. Low-level events are stored in the 
Event Dictionary (ED) as sequences of ACTIDs and 
SSIDs. Higher-level events are stored as sequences of 
event start points. Our 100 game subset includes 135



 
Figure 2: Revising the Plan Recognizer’s inferred event hierarchy: before (left) and after (right) observing “can I get a menu?” 

 

patterns for high-level events, and 1,161 for low-level 
events, composed of 1,051 unique ACTIDs, and 406 
SSIDs representing 1,552 unique utterances. 

The compiled logs and ED are stored in the Event Log 
Index (ELI), along with a lookup table indicating the start 
points of events within log files. The table maps specific 
event patterns to instances within logs, allowing an NPC to 
efficiently find logs that match observation sequences at 
runtime. The ELI also stores associated meta-data, such as 
references and causal chains. 

Data-Driven Episodic Planning 

NPCs are driven by an Episodic Planner, which selects 
actions and utterances through a process that combines 
plan recognition (Kautz & Allen 1986) with case-based 
planning (CBP) (Hammond 1990). Cases refer to entire 
recorded episodes, in the form of annotated logs, indexed 
by events within. The NPC observes actions and 
utterances, infers an event hierarchy, proposes games with 
similar event histories, and critiques proposals until one is 
found with a valid next action. 

For each NPC that exists in the world, an associated 
agent is running on an AI server (Java), networked with the 
game engine. As the game engine logs players’ actions, 
resulting state changes, and utterances to a file, the engine 
broadcasts the same data over the network.  The agent uses 
the AL and DL to process incoming data into discreet 
observations – ACTIDs and SSIDs. Agents process all 
observations through the same channel, regardless of 
whether they are associated with another player or the 
agent itself. Based on these observations, the agent makes 
decisions about what to do next, which are transmitted to 
the NPC in the game engine for execution.   

The agent tries to understand each new observation 
within the context of what it has observed previously, 
using the Plan Recognizer (PR) to infer how new 
information extends the event hierarchy recognized so far. 
The PR maintains a hierarchy of token sequences 
representing events, some of which may be incomplete. A 
sequence is complete if it exactly matches a pattern in the 
ED. The agent strives to complete incomplete sequences. A 
new observation may (in order of preference): extend an 
incomplete sequence, extend a subsequence of an 
incomplete sequence, start a new sequence, or extend a 

complete sequence. We refer to each potentially modified 
sequence as a candidate. 

The PR iterates over candidates, and enters an 
exhaustive, recursive process of trying to apply and 
validate each. A candidate is applied by truly extending the 
candidate’s corresponding sequence in the hierarchy, or 
inserting a new sequence into the hierarchy. Possible event 
labels for a candidate are determined by matching patterns 
in the ED. Based on the possible labels, the PR tries to use 
the candidate event to extend, or insert a new, higher-level 
parent event. Labels are non-committal, and may be 
disambiguated as new information arrives (figure 2). Each 
level of the modified hierarchy is validated by matching 
patterns in the ED. If the entire structure is validated for a 
candidate, the process is complete -- the observation has 
been recognized, and the modified structure of the 
hierarchy persists. Otherwise, the modification is reversed, 
and the process continues until a candidate is validated, or 
the observation is discarded as unrecognizable. 

Once an observation has been recognized, the agent 
selects the next action by either advancing the current plan, 
or searching for a new plan. A plan is a compiled log, and 
the agent continues following the same plan as long as new 
observations continue to match the next token in the log, 
and are validated by the PR. If the observation does not 
match the next token, or is unrecognizable, the plan is 
invalidated and the agent re-plans.   

Planning begins by iterating over a set of prioritized 
interaction goals. Goals employ a variety of strategies to 
propose plans that will move the interaction forward 
coherently. Using the ELI, goals retrieve proposals – 
pointers into logs that begin after a particular sequence of 
tokens, or at the start of a specified type of event. 

G_RespondToSequence finds logs that contain the most 
recently extended sequence, and points to the subsequent 

token. G_ExtendStructure finds logs with events that 
could extend an incomplete higher-level event. 

G_CompleteCausalChain finds logs with events that could 
complete an initiated, but unresolved, causal chain (e.g. 

SERVE_FOOD or SERVE_DRINK if open orders exist). We have 
implemented eight goals.  

For each goal, the agent iterates over the proposals, and 
re-runs the PR, treating the proposed next action as an 
imagined observation. Proposals with next actions that 



cannot be recognized are rejected. Remaining proposals 
must be validated by a set of critic processes. Planning is 
complete when a proposal is found that is approved by all 
critics, or when all goals have been evaluated, and no valid 
proposal has been found. In the case of failure, the agent 
repeats the process, iterating the focus of attention 
backward in time to respond to earlier observations. 

Critic processes ensure future actions maintain 
coherence, with respect to past observations. We have 

implemented nine critics. C_Reference leverages meta-
data to invalidate utterances that refer to events which have 
not been observed (e.g. do not say “How’s your steak?” if 

steak was never served). C_ResourceConflict prevents 
beginning an event that requires a resource already in use 
(e.g. the waitress cannot serve beer if her hands are full 

with steak). C_InvalidAction prevents repeatedly trying to 
execute an action that the game engine reports has failed.  

Critics are domain independent, with the exception of 

C_Domain, which can invalidate a proposal based on 
domain-specific validation functions stored in the Domain 
Knowledge Manager. Each event type may optionally have 
procedural preconditions which constrain when that type of 
event may be initiated or extended. Domain-specific 
knowledge may be necessary for two reasons: (1) sparse 
data (e.g. we do not have examples of serving every 
combination of food, so we encode domain knowledge to 
ensure we serve entrees before desserts), and (2) 
discrepancies between NPC and human behavior. Our 
corpus captures examples of human behavior that we do 
not want NPCs to execute. Programmatically restricting 
these behaviors allows them to remain in the corpus for 
recognition, without risk of execution. 

Human Interaction 

The interface for human interaction re-uses the previously 
described planner. When a human controls a player, there 
is still an associated agent running in the background on 
the AI server. This agent runs the PR, but does not perform 
action selection. When the human interacts in the game 
world, physical actions are broadcast as usual, but human 
utterances are flagged for further processing by the 
human's agent, and are ignored by the NPC's agent. Human 
utterances originate from the text output of the Windows 
speech recognizer, running with a language model 
generated from our corpus. 

The human's agent is responsible for selecting a list of 
dialogue options from the corpus, semantically similar to 
the flagged human utterance. The agent begins by pruning 
non-key words from the utterance. Next, the agent retrieves 
a list of SSIDs from the DL for all signature sets that 
include an utterance containing the key words. The PR 
generates candidate sequences for all SSIDs that can be 
recognized as the next action. The agent then iterates over 
the candidates, applies each, and retrieves proposed plans 
from the ELI (which point to the SSIDs as the next action).  

C: Can I get table for one?

W: Sure right this way

W: would you like a drink to start?

C: can I get some water please

W: ok

W: would you like more time or 

are you ready to order?

C: can I have a menu?

. . .
W: our specials tonight are salmon, 

a vegtable soup, and a nectarine tart

C: ill have grilled salmon

please

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Actual transcript excerpt and 

dialogue options from 

human customer with

waitress NPC.

Selected utterance in bold.

Actual transcript excerpt and 

dialogue options from 

human customer with

waitress NPC.

Selected utterance in bold.

 
Figure 3: Top 10 dialogue options found for speech inputs. 

 

Finally, the agent runs the critique process, but rather than 
stopping at the first approved proposal, the agent continues 
critiquing, collecting a list of all approved proposals. 

If this process fails to generate at least five proposals 
(possibly zero if speech recognition fails), the agent uses 
context to compensate for failure to understand. The agent 
falls back to action selection driven by interaction goals, 
like an NPC, as described in the last section. All proposals 
from all goals are collected that are not rejected by critics. 

The agent now has a list of proposals for utterances 
deemed valid by the PR and critics. This list is sorted by 
the count of overlapping words with recognized human 
input (if any), and the top five utterances are sent to the 
game engine, for display to the player as dialogue options 
(figure 3, shows top 10). The human can repeatedly click 

MORE to retrieve the next five options, or CANCEL to abort if 
none of the options are satisfactory. When the human 
selects a dialogue option for execution, the selected 
utterance is broadcast as an ordinary unflagged utterance, 
for processing by agents through ordinary channels. 

Evaluation 

Our evaluation quantifies how different utterance retrieval 
methods respond to speech recognition failures and limited 
coverage. We observed 15 people (with no previous 
exposure to TRG) playing as a customer, using speech to 
interact with an NPC waitress. 

We divided subjects into three groups of five, each 
playing under one of three conditions for populating the 
list of dialogue options: (1) text+context, (2) text-only, (3) 
context-only. Text+context refers to the system described 
previously, which selects SSIDs based on key words from 
speech input, and falls back to interaction goals to 
compensate for failure to find valid proposals. Text-only 
presents a sorted list of all utterances in the corpus that 
match any of the words in the speech input, without using 
the plan recognizer or critics for filtering. Context-only 
completely ignores human input, and only relies on the 
inferred event hierarchy and interaction goals to select the 



Figure 4: SSIDs observed in 1st 10 inputs of 5 text+context runs. 
 

list of relevant utterances. 
Subjects were told to have dinner, and took ~10 minutes 

to play from entering, through getting seated, having a 
meal, paying the bill, and departing. Each time the subject 
spoke to the waitress, s/he was asked to flag as relevant all 
dialogue options that had the same meaning as what s/he 
was trying to say. We recorded these flags, the rank in the 
list of the subject’s actual selection, and a count of aborted 
interactions when no option was selected. 

Results and Discussion 

The number of speech inputs varies per game. We look at 
the first 10 in each game, 50 total per condition, for a fair 
comparison. Table 1 reports that text-only yields the 
highest percentage of relevant options (total for 50 inputs), 
and the lowest mean rank of the selected option (closest to 
the top of the list). However, this is not the whole story. 
When the speech recognizer fails completely, text-only has 
no other means of selecting utterances, giving the subject 

only a failure message, and CANCEL. In the text-only 
condition, subjects aborted 18% more often than 
text+context (44% vs. 26%, despite similar numbers of 
recognition failures), due to dissatisfaction with options, or 
lack of any options. Also, there were two instances where 
text-only allowed the subject to select an utterance that the 
plan recognizer could not understand in the current 
context(due to sparse data), while this never happens in the 
other conditions where options are filtered by critics. 

 text+context  text-only context-only 

mean selection rank 4.95 2.11 6.76 

% of opts flagged relevant 38.53 45.22 23.48 
    

% of interactions aborted 26.00 44.00 32.00 

# of plan rec. failures 0 2 0 

# of speech rec. failures  13 10 5 

Table 1: Comparing 3 methods for populating dialogue options. 
 

Text+context performs better than context-only, validating 
that the words are important in this scenario, but context 
can compensate for failure to understand words. 

For any speech input, figure 5 plots the likelihood that 
the subject’s selected option will be rank N or less. Text-
only delivers the highest likelihood of providing the 
desired selection at rank five or less, and plateaus shortly 
thereafter. If the spoken words are recognized correctly, 
and a similar utterance exists in the corpus, text-only is 
most likely to provide a desirable option near the top of the 
list. For each method, the remaining likelihood in the space 
above the plateau represents the likelihood of aborting. The 
conditions leveraging context have a higher likelihood of 
providing a desirable option later in the list, rather than no 
satisfactory options at all, leading to fewer aborted 
interactions. 

 
 

 
Figure 5: Likelihood of selecting dialogue option rank N or less. 

Related Work 

Combining crowdsourced content creation, CBP, and 

speech distinguishes our system from previous interactive 

narrative systems (Riedl & Young 2003; Cavazza et al. 

2002; Magerko 2005). Façade accepts typed text input, 

employing hand-crafted templates to map text to dialogue 

acts (Mateas & Stern 2004), and compensates for 

understanding failure with two cleverly designed, self-

absorbed NPCs, who can move the narrative forward, 

ignoring the player when necessary. In an effort to support 

speech input while playing as the main character, who the 

story cannot progress without, our system proposes 

contextually appropriate alternatives for unrecognized 

input by mining data from previous players.  

The surprising variability of spontaneous word choice in 

applications has been documented by Furnas et al. (1987), 

finding that two people favor the same word < 20% of the 

time. Inspired by the success of the How May I Help You 

Actual dialogue paths 

taken by five human 

customers (C) with 

waitress NPCs (W). 

(Semantically similar 

utterances clustered into 

SSIDs labeled with 

exemplars for clarity). 



system (Gorin et al. 1997) in coping with varied input by 

leveraging data from 10,000 customer service calls, TRG 

was designed to collect examples of restaurant interaction. 

Other crowdsourcing efforts have collected text-based 

commonsense data and stories (Singh et al. 2002; Li et al. 

2012, Swanson & Gordon 2010), but not at the granularity 

of actions and utterances required for moment-to-moment 

interaction with humans. 

Hand-crafted representations of situations have enabled 

inferences required to understand stories (Schank & 

Abelson 1977); supported plan recognition to improve 

speech understanding (Gorniak & Roy 2005; Fleischman 

& Hovy 2006); and powered NPC collaboration and 

dialogue generation (Hanson & Rich 2010). Learning event 

hierarchies from annotated logs captures variety and nuance 

that hand-crafted models are likely to miss. 

CBP has been applied to simulation and strategy games 

(Fasciano 1996; Ortanon et al. 2007). We focus on 

planning for collaboration with humans. EM-ONE (Singh 

2005) employed CBP to model social interaction in a 

collaborative task. Cases were hand-crafted for one 

prescribed interaction between NPCs, rather than 

crowdsourced for interaction with humans. 

Corpus-based approaches have been applied to 

automating chat bots, dialogue generation, and inferring a 

player’s affective state (Huang et al. 2007; Lin & Walker 

2011; McQuiggan & Lester 2006). Our work differs in 

using a data-driven system for both understanding and 

generation of behavior and dialogue for an embodied NPC, 

playing a role in a narrative collaboratively with a human. 

Conclusion and Future Work 

We have evaluated speech interaction with an NPC, and 

demonstrated that exploiting crowdsourced data and 

inferred context can compensate for recognition and 

understanding failures. Future work will focus on scaling 

up, generalizing, and selecting the single best dialogue 

option. Migrating all 1,000 annotated logs should decrease 

text+context’s 26% likelihood of aborting, at the risk of 

introducing new challenges searching and critiquing in 

real-time. We will evaluate generalization with existing 

data sets from a virtual sci-fi film set, and a human-robot 

interaction. Automatic selection of the best option may be 

able to leverage utterance likelihoods, and data from 

previous human selections. 
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