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Abstract

The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and
under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object
recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In
parallel, recent advances in machine learning have led to ever higher performing models of object recognition using
artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs
rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts
for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials,
and computational limitations, such as the complexity of the decoding classifier and the number of classifier training
examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational
considerations. As part of our methodology, we propose an extension of ‘‘kernel analysis’’ that measures the generalization
accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the
latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show
that models that perform well on measures of representational performance also perform well on measures of
representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely
on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-
inspired models, that possibility cannot be ruled out merely on representational performance grounds.
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Introduction

Primate vision achieves a remarkable proficiency in object

recognition, even in brief visual presentations and under changes to

object exemplar, geometric transformations, and background

variation. Humans [1] and macaques [2] are known to solve this

task with high accuracy at low latency for presentation times shorter

than 100 ms [3,4]. This ability is likely related to the presence and

rate of saccadic eye movements, which for natural viewing typically

occur at a rate of one saccade every 200–250 ms [5]. Therefore,

when engaged in natural viewing the primate visual system is

proficient at recognizing and making rapid and accurate judge-

ments about the objects present within a single saccadic fixation.

While not encompassing all of primate visual abilities, this ability is

an important subproblem that we operationally define and refer to

as ‘‘core visual object recognition’’ [6].

A key to this primate visual object recognition ability is the

representation that the cortical ventral stream creates from visual

signals from the eye. The ventral stream is a series of cortical visual

areas extending from primary visual area V1, through visual areas

V2 and V4, and culminating in inferior temporal (IT) cortex. At

the end of the ventral stream, IT cortex creates a representation of

visual stimuli that is selective for object identity and tolerant to

nuisance parameters such as object position, scale, pose, and

background [7–10]. The responses of IT neurons are remarkable

because they indicate that the ventral stream has transformed the

complicated, non-linear object recognition problem at the retinae

into a new neural representation that separates objects based on

their category [6,11]. Results using linear classifiers have shown

that the IT neural representation creates a simpler object

recognition problem that can often be solved with a linear

function predictive of object category [9,10]. It is thought that this

transformation is achieved through the ventral stream by a series

of recapitulated modules that each produce a non-linear

transformation of their input that becomes selective for objects

and tolerant to nuisance variables unrelated to object identity [6].

A number of bio-inspired models have sought to replicate the

phenomenology observed in the primate ventral stream (see e.g.
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[12–16]) and recent, related models in the machine learning

community, generally referred to as ‘‘deep neural networks’’ share

many properties with these bio-inspired models. The computa-

tional concepts utilized in these models date back to early models

of the primate visual system in the work of Hubel and Wiesel

[17,18], who hypothesized that within primary visual cortex more

complex functional responses (‘‘complex’’ cells) were constructed

from more simplistic responses (‘‘simple’’ cells). Models of

biological vision have extended this hypothesis by suggesting that

higher visual areas recapitulate this mechanism and form a

hierarchy [12,13,19–22]. In the last few years, a series of visual

object recognition systems have been produced that utilize deep

neural networks and have achieved state-of-the-art performance

on computer vision benchmarks (see e.g. [23–26]). These deep

neural networks implement architectures containing successive

layers of operations that resemble the simple and complex cell

hierarchy first described by Hubel and Wiesel. However, unlike

previous bio-inspired models, these latest deep neural networks

contain many layers of computation (typically 7–9 layers, while

previous models contained 3–4) and adapt the parameters of the

layers using supervised learning on millions of object-labeled

images (the parameters of previous models were either hand-

tuned, adapted through unsupervised learning, or trained on just

thousands of labeled images). Given the increased complexity of

these deep neural networks and the dramatic increases in

performance over previous models, it is relevant to ask, ‘‘how

close are these models to achieving object recognition represen-

tational performance that is similar to that observed in IT cortex?’’

In this work we seek to address this question.

Our methodology directly compares the representational

performance of IT cortex to deep neural networks and overcomes

the shortcoming of previous comparisons. There are four areas

where our approach has advantages over previous attempts.

Although previous attempts have addressed one or two of these

shortcomings, none has addressed all four. First, previous attempts

have not corrected for a number of experimental limitations

including the amount of experimental noise, the number of

recorded neural sites, or the number of recorded stimulus

presentations (see e.g. [9,10,27]). Our methodology makes explicit

these limitations by either correcting for, or modifying model

representations to arrive at a fair comparison to neural represen-

tation. We find that these corrections have a dramatic effect on our

results and shed light on previous comparisons that we believe may

have been misleading.

Second, previous attempts have utilized fixed complexity

classifiers and have not addressed the relationship between

classifier complexity and decision boundary accuracy (see e.g.

[9,10,27]). In our methodology we utilize a novel extension of

‘‘kernel analysis,’’ formulated in the works of [28–30], to measure

the accuracy of a representation as a function of the complexity of

the task decision boundary. This allows us to identify represen-

tations that achieve high accuracy for a given complexity and

avoids a measurement confound that arises when using cross-

validated accuracy: the decision boundary’s complexity and/or

constraints are dependent on the size and choice of the training

dataset, factors that can strongly affect accuracy scores.

Third, previous attempts have not measured the variations in

the neural or model spaces that are relevant to class-level object

classification [31]. For example the work in [31] examined the

variation present in neural populations to visual stimuli presen-

tations and compared this variation to the variation produced in

model feature spaces to the same stimuli. This methodology does

not address representational performance and does not provide an

accuracy-complexity analysis (however, see [32] and [33], for

discussion of methodologies to account for dissimilarity matrices

by class-distance matrices). Our methodology of analyzing

absolute representational performance using kernel analysis

provides a novel and complementary finding to the results in

[27,32,34]. Because of this complementarity, in this paper we also

directly measure the amount of IT neural variance captured by

deep neural networks as IT encoding models and by measuring

representational similarity.

Finally, our approach utilizes a dataset that is an order of

magnitude larger than previous datasets, and captures a degree of

stimulus complexity that is critical for assessing IT representational

performance. For example, the analysis in [10] utilized 150 images

and the comparison in [31] utilized 96 images, while in this work

we utilize an image set of 1960 images. The larger number of

images allows our dataset to span and sample a relatively high

degree of stimulus variation, which includes variation due to object

exemplar, geometric transformations (position, scale, and rota-

tion/pose) and background. Importantly this variation is critical to
distinguish between models based on object classification perfor-
mance: only in the presence of high variation are models

distinguishable from each other [35,36] and from IT [27].

In this work, we propose an object categorization task and

establish measurements of human performance for brief visual

presentations. We then present our novel extension of kernel

analysis and show that the latest deep neural networks achieve

higher representational performance on this visual task compared

to previous generation bio-inspired models. We next compare

model representational performance to the IT cortex neural

representation on the same task and images by matching the

number of model features to the number of IT recordings and to

the amount of observed experimental noise for both multi-unit

recordings and single-unit recordings. We find that the latest

DNNs match IT performance whereas previous models signifi-

cantly lag the IT neural representation. In addition, we replicate

the findings using a linear classifier approach. Finally, we show

that the latest DNNs also provide compelling models of the actual

IT neural response by measuring encoding model predictions and

Author Summary

Primates are remarkable at determining the category of a
visually presented object even in brief presentations, and
under changes to object exemplar, position, pose, scale,
and background. To date, this behavior has been
unmatched by artificial computational systems. However,
the field of machine learning has made great strides in
producing artificial deep neural network systems that
perform highly on object recognition benchmarks. In this
study, we measured the responses of neural populations in
inferior temporal (IT) cortex across thousands of images
and compared the performance of neural features to
features derived from the latest deep neural networks.
Remarkably, we found that the latest artificial deep neural
networks achieve performance equal to the performance
of IT cortex. Both deep neural networks and IT cortex
create representational spaces in which images with
objects of the same category are close, and images with
objects of different categories are far apart, even in the
presence of large variations in object exemplar, position,
pose, scale, and background. Furthermore, we show that
the top-level features in these models exceed previous
models in predicting the IT neural responses themselves.
This result indicates that the latest deep neural networks
may provide insight into understanding primate visual
processing.

DNNs Rival the Representation of IT Cortex for Core Object Recognition
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performing a representational similarity analysis. We conclude

with a discussion of the limitations of the current approach and

future directions for studying models of visual recognition and

primate object recognition.

Results

To evaluate the question of representational performance we

must first make a choice about the task to be analyzed. The task

we examine here is visual object category recognition in a natural

duration fixation. This task is a well studied subproblem in visual

perception and tests a core problem of visual perception: context

independent basic-level object recognition within brief visual

presentation. The task is to determine the category of an object

instance that is presented under the effect of image variations due

to object exemplar, geometric transformations (position, scale, and

rotation/pose), and background. This task is well supported by

behavioral measurements: humans [1] and macaques [2] are

known to solve this task with high proficiency. It is well supported

by neural measurements: evidence from IT cortex indicates that

the neural representation supports and performs highly on this task

[37]. Furthermore, this task provides a computationally challeng-

ing problem on which previous computational models have been

shown to severely underperform [35,36]. Therefore, this task is

difficult computationally and is performed at high proficiency by

primates, with evidence that the primate ventral visual stream

produces an effective representation in IT cortex.

Methodologically, the task is defined through an image

generation process. An image is constructed by first choosing

one of seven categories, then one of seven 3D object exemplars

from that category, then a randomly chosen background image

(each background image is used only once), and finally the

variation parameters are drawn from a distribution to span two full

octaves of scale variation, the full width of the image for translation

variation, and the full sphere for pose variation. For each object

exemplar we generated 40 unique images using this process,

resulting in 1960 images in total. See Fig. 1 for example images

organized by object category and Methods for further description

of the image generation process. The resulting image set has

several advantages and disadvantages. Advantageously, this

procedure eliminates dependencies between objects and back-

grounds that may be found in real-world images [38], and

introduces a controlled amount of variability or difficulty in the

task, which we have used to produce image datasets that are

known to be difficult for algorithms [35,36,39]. Though arguably

not fully ‘‘natural’’, the resulting images are highly complex (see

Discussion for further advantages and disadvantages).

In evaluating the neural representational performance we must

also define the behavioral context within which the neural

representation supports behavior. This definition is important

because it determines specific choices in the experimental setup.

The behavioral context that we seek to address is a sub-problem of

general visual behavior: vision in a natural duration fixation, or

visual object recognition within one fixation without contextual

influence, eye movements, or shifts in attention (also called ‘‘core

visual object recognition’’ [6]). In our neural experiments we have

chosen a presentation time of 100 milliseconds (ms) so as to be

relevant for this behavior (see Discussion for further justification

and Supporting Information (SI) for behavioral measurements on

this task).

As a first step to evaluate the neural representation, we recorded

multi-unit and single-unit neural activity from awake behaving

rhesus macaques during passive fixation. We recorded activity

using large scale multi-electrode arrays placed in either IT cortex

or visual area V4. To create a neural feature vector, which we use

to assess object representational performance, we presented each

image (1960 images in total) for 100 ms and measured the

normalized, background subtracted firing-rate in a window from

70 ms to 170 ms post image onset, averaged over 47 repetitions

(see Methods). Over two macaques we measured 168 multi-unit

sites in IT cortex, and 128 multi-unit sites in V4. From these

recordings we also isolated single-units from IT and V4 cortex.

Using conservative criteria (see Methods), we isolated 40 single-

units from IT and 40 single-units from V4 with 6 repetitions per

image for each single-unit.

To evaluate the performance of neural or model representations

we utilize a novel extension of kernel analysis. Kernel analysis

evaluates the efficacy of the representation by measuring how the

precision of the category regression problem changes as we allow

the complexity of the regression function to increase [30].

Intuitively, more effective representations will achieve higher

precision at the same level of complexity because they have

removed irrelevant variability from the original representational

space (here irrelevant variability in the original space is due to

object exemplar, geometric transformation, and background). To

measure precision vs. complexity of the regression function, we

perform kernel ridge regression using a Gaussian kernel (see

Methods for details). We define complexity as the inverse of the

regularization parameter (1=l) and precision as 1 minus the

normalized mean-squared leave-one-example-out generalization

error, such that a precision value of 0 is chance performance and 1

is perfect performance. The regularization parameter restricts the

complexity of the resulting regression function. By choosing a

Gaussian kernel we can move between regression functions that

are effectively linear, to functions that interpolate between the data

points (a ‘‘complex’’ regression function) [40]. Note that complex

regression functions may not generalize if there are not enough

training examples (known as ‘‘sample complexity’’), which will

result in saturation or reduction in accuracy as complexity

increases.

Fig. 1. Example images used to measure object category recognition performance. Two of the 1960 tested images are shown from the
categories Cars, Fruits, and Animals (we also tested the categories Planes, Chairs, Tables, and Faces). Variability within each category consisted of
changes to object exemplar (e.g. 7 different types of Animals), geometric transformations due to position, scale, and rotation/pose, and changes to
background (each background image is unique).
doi:10.1371/journal.pcbi.1003963.g001
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We compared the neural representation to three convolutional

DNNs and three other biologically relevant representations. Note

that the development of these representations did not utilize the

1960 images we use here for testing in any way. The three recent

convolutional DNNs we examine are described in Krizhevsky et

al. 2012 [24], Zeiler & Fergus 2013 [25], and Yamins et al. 2014

[27,34]. The Krizhevsky et al. 2012 and Zeiler & Fergus 2013

DNNs are of note because they have each successively surpassed

the state-of-the-art performance on the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) datasets. Note that

results have continued to improve on this challenge since we ran

our analysis. See http://www.image-net.org/for the latest results.

The DNN presented in Yamins et al. 2014 [27] is created using a

supervised optimization procedure called hierarchical modular

optimization (we refer to this model by the abbreviation HMO).

The HMO DNN has been shown to match closely representa-

tional dissimilarity matrices of the ventral stream and to be

predictive of IT and V4 neural responses [27]. We also evaluated

an instantiation of the HMAX model of invariant object

recognition that uses sparse localized features [41] and has

previously been shown to be a relatively high performing model

among artificial systems [16]. Finally, we also evaluated a V2-like

model and a V1-like model that each attempt to capture a first-

order account of secondary (V2) [42] and primary visual cortex

(V1) [35], respectively.

Each of the three convolutional DNNs was developed,

implemented, and trained by their respective researchers and for

those developed outside of our group we obtained features from

each DNN computed on our test images. The convolutional DNN

described in Krizhevsky et al. 2012 [24] was trained by supervised

learning on the ImageNet 2011 Fall release (,15 M images, 22K

categories) with additional training on the LSVRC-2012 dataset

(1000 categories). The authors computed the features in the

penultimate layer of their model (4096 features) on the 1960

images we used to measure the neural representation. The similar

8-layer deep neural network of Zeiler & Fergus 2013 [25] was

trained using supervised learning on the LSVRC-2012 dataset

augmented with random crops and left-right flips. This model took

advantage of hyper-parameter tuning informed by visualizations of

the intermediate network layers. The 4096 dimensional feature

representation was produced by taking the penultimate layer

features and averaging them over 10 image crops (the 4 corners,

center, and horizontal flips for each). The model of Yamins et al.

2014 [27] is an extension of the high-throughput optimization

strategy described in [16] that produces a heterogeneous

combination of hierarchical convolutional models optimized on

a supervised object recognition task through hyperparameter

optimization using boosting and error-based reweighing (see [27]

for details). The total output feature space per image for the HMO

model is 1250 dimensional.

Before comparing the representational performance of the

neural and model representations, we first evaluate the absolute

representational performance of these models on the task to verify

that the task we have chosen is computationally difficult. As

described in our previous work [35], we determined that a task is

computationally difficult if ‘‘simple’’ computational models fail on

the task. For the models tested here, the V1-like and V2-like

models represent these computationally simple models. Using

kernel analysis we evaluated both the DNNs and the bio-inspired

models on the task and plot the precision vs. the complexity curves

for each model representation in Fig. 2. This analysis indicates

that both the V1-like and V2-like models perform near chance on

this task over the entire range of complexity. Furthermore, the

HMAX model performs only slightly better on this task. If we

reduce the difficulty of the task by reducing the magnitude range

of the variations we introduce (not shown here, but see [35,43] for

such an analysis), these models are known to perform well on this

task; therefore, it is object recognition under variation that makes

this problem difficult, and the magnitude range we have chosen for

this task is quite difficult in that the HMAX model performs

poorly. In contrast, the three DNNs perform at much higher

precision levels over the complexity range. A clear ranking is

observed with the Zeiler & Fergus 2013 [25] model followed by

the Krizhevsky et al. 2012 [24] model and the HMO model [27].

These results indicate that these models outperform models of

early visual areas, and we next ask which model, if any, can match

the performance of high-level visual area IT.

In order to directly compare the representational performance

of the IT neural representation to the model representations we

take a number of steps to produce a fair comparison. The

experimental procedure that we used to measure the neural

representation is limited by the number of neural samples (sites or

number of neurons) that we can measure and by noise induced by

uncontrolled experimental variability and/or intrinsic neural

noise. To equalize the sampling between the neural representation

and the model representations we fix the number of neural

samples (80 for the multi-unit analysis and 40 for the single-unit

analysis) and model features (we will vary this number in later

experiments). To correct for the observed experimental noise, we

add noise to the model representations. To add noise to the models

we estimate an experimental neural noise model. Following the

observation that spike counts of neurons are approximately

Poisson [44,45] and similar analyses of our own recordings, we

model response variability as being proportional to the mean

response. Precisely, the estimated noise model is additive to the

mean response and is a zero-mean Gaussian random variable with

variance being a linear function of the mean response. We

estimate the parameters of the noise model from the empirical

distribution of multi-unit responses and single-unit responses. Note

that our empirical estimate of these quantities is influenced by both

uncontrolled experimental variability (e.g. variability across

recording sessions) as well as intrinsic neural noise. See Methods

for further description and S1 Fig. for a verification that the noise

model reduces performance more greatly than empirical noise,

thus demonstrating that the noise model is conservative and over-

penalizes models. To produce noise-matched model representa-

tions, we sample the model response dependent noise and measure

the representational performance of the resulting representation

using kernel analysis. We repeat this procedure 10 times to

measure the variability produced by the additive noise model.

We compare the sample and noise corrected model represen-

tations to the multi-unit neural representations in Fig. 3A. The

kernel analysis curves are plotted for neural and model represen-

tations sampled at 80 neural samples or 80 model features,

respectively. The model representations have been corrected for

the neural noise observed in the multi-unit IT neural measure-

ment. Note that we do not attempt to correct the V4 sample to the

noise level observed in IT because we observed similar noise

between the V4 and IT neural measurements and each sample is

averaged over the same number of trials (47 trials). Compared to

the model representational performance in Fig. 2, model perfor-

mance is reduced because of the subsampling and because of the

added noise correction (without added noise and subsampling

maximum precision is above 0.5 and with noise and subsampling

does not pass 0.35). Consistent with previous work [10,36], we

observed that the sampled IT neural representation significantly

exceeds the similarly-sampled V4 neural representation. Unsur-

prisingly, HMAX, V2-like, and V1-like representations perform

DNNs Rival the Representation of IT Cortex for Core Object Recognition
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near chance. All three recent DNNs perform better than the V4

representation. The IT representation performs quite well,

especially considering the sampling and noise limitations of our

recordings and would be quite competitive if directly compared to

the model results in Fig. 2. After correcting for sampling and

noise, the IT representation is only matched by the top performing

DNN of Zeiler & Fergus 2013. Interestingly, this relationship holds

for the entire complexity range.

We present the equivalent representational comparison between

models and neural representations for the single-unit neural

recordings in Fig. 3B. Because of the increased noise and fewer

trials collected for the single-unit measurements compared to our

multi-unit measurements, the single-unit noise and sample

corrected model representations achieve lower precision vs.

complexity curves than under the multi-unit noise and sample

correction (compare to Fig. 3A). This analysis shows that the

single-unit IT representation performs better than the HMO

representation, slightly worse than the Krizhevsky et al. 2012

representation, and is outperformed by the Zeiler & Fergus 2013

[25] representation. Furthermore, a comparison of the relative

performance of the multi-unit sample and the single-unit sample

indicates that the multi-unit sample outperforms the single-unit

sample. See Discussion for elaboration of this finding and S4 Fig.

for trial corrected performance comparison between single- and

multi-units.

In Figs. 4A and 4B we analyze the representational perfor-

mance as a function of neural sites or model features for multi-unit

and single-unit neural measurements. To achieve a summary

number from the kernel analysis curves we compute the area-

under-the-curve and we omit the HMAX, V2-like, and V1-like

models because they are near zero performance in this regime. In

Fig. 4A we vary the number of multi-unit recording samples and

the number of features. Just as in Fig. 3A, we correct for neural

noise by adding a matched neural noise level to the model

representations. Fig. 4A indicates that the representational

performance relationship we observed at 80 samples is robust

Fig. 2. Kernel analysis curves of model representations. Precision, one minus loss (1{looe(l)), is plotted against complexity, the inverse of the
regularization parameter (1=l). Shaded regions indicate the standard deviation of the measurement over image set randomizations, which are often
smaller than the line thickness. The Zeiler & Fergus 2013, Krizhevsky et al. 2012 and HMO models are all hierarchical deep neural networks. HMAX [41]
is a model of the ventral visual stream and the V1-like [35] and V2-like [42] models attempt to replicate response properties of visual areas V1 and V2,
respectively. These analyses indicate that the task we are measuring proves difficult for V1-like and V2-like models, with these models barely moving
from 0.0 precision for all levels of complexity. Furthermore, the HMAX model, which has previously been shown to perform relatively well on object
recognition tasks, performs only marginally better. Each of the remaining deep neural network models performs drastically better, with the Zeiler &
Fergus 2013 model performing best for all levels of complexity. These results indicate that the visual object recognition task we evaluate is
computationally challenging for all but the latest deep neural networks.
doi:10.1371/journal.pcbi.1003963.g002

DNNs Rival the Representation of IT Cortex for Core Object Recognition

PLOS Computational Biology | www.ploscompbiol.org 5 December 2014 | Volume 10 | Issue 12 | e1003963



Fig. 3. Kernel analysis curves of sample and noise matched neural and model representations. Plotting conventions are the same as in
Fig. 2. Multi-unit analysis is presented in panel A and single-unit analysis in B. Note that the model representations have been modified such that they
are both subsampled and noisy versions of those analyzed in Fig. 2 and this modification is indicated by the { symbol for noise matched to the multi-
unit IT cortex sample and by the { symbol for noise matched to the single-unit IT cortex sample. To correct for sampling bias, the multi-unit analysis
uses 80 samples, either 80 neural multi-units from V4 or IT cortex, or 80 features from the model representations, and the single-unit analysis uses 40
samples. To correct for experimental and intrinsic neural noise, we added noise to the subsampled model representation (no additional noise is
added to the neural representations) that is commensurate to the observed noise from the IT measurements. Note that we observed similar noise
between the V4 and IT Cortex samples and we do not attempt to correct the V4 cortex sample of the noise observed in the IT cortex sample. We
observed substantially higher noise levels in IT single-unit recordings than multi-unit recordings due to both higher trial-to-trial variability and more
trials for the multi-unit recordings. All model representations suffer decreases in accuracy after correcting for sampling and adding noise (compare
absolute precision values to Fig. 2). All three deep neural networks perform significantly better than the V4 cortex sample. For the multi-unit analysis
(A), IT cortex sample achieves high precision and is only matched in performance by the Zeiler & Fergus 2013 representation. For the single-unit
analysis (B), both the Krizhevsky et al. 2012 and the Zeiler & Fergus 2013 representations surpass the IT representational performance.
doi:10.1371/journal.pcbi.1003963.g003

Fig. 4. Effect of sampling the neural and noise-corrected model representations. We measure the area-under-the-curve of the kernel
analysis measurement as we change the number of neural sites (for neural representations), or the number of features (for model representations).
Measured samples are indicated by filled symbols and measured standard deviations indicated by error bars. Multi-unit analysis is shown in panel A
and single-unit analysis in B. The model representations are noise corrected by adding noise that is matched to the IT multi-unit measurements (A, as
indicated by the { symbol) or single-unit measurements (B, as indicated by the { symbol). For the multi-unit analysis, the Zeiler & Fergus 2013
representation rivals the IT cortex representation over our measured sample. For the single-unit analysis, the Krizhevsky et al. 2012 representation
rivals the IT cortex representation for low number of features and slightly surpasses it for higher number of features. The Zeiler & Fergus 2013
representation surpasses the IT cortex representation over our measured sample.
doi:10.1371/journal.pcbi.1003963.g004
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between 10 samples and 160 samples. Fig. 4B indicates that the

performance of the IT single-unit representation is comparatively

worse than the multi-unit, with the single-unit representation

falling below the performance of the Krizhevsky et al. 2012

representation for much of the range of our analysis.

These results indicate that after correcting for noise and

sampling effects, the Zeiler & Fergus 2013 DNN rivals the

performance of the IT multi-unit representation and that both the

Krizhevsky et al. 2012 and Zeiler & Fergus 2013 DNNs surpasses

the performance of the IT single-unit representation. The

performance of these two DNNs in the low-complexity regime is

especially interesting because it indicates that they perform

comparably to the IT representation in the low-sample regime

(i.e. low number of training examples), where restricted represen-

tational complexity is essential for generalization (e.g. [46]).

To verify the results of the kernel analysis procedure we

measured linear-SVM generalization performance on the same

task for each neural and model representation (Fig. 5). We used a

cross-validated procedure to train the linear-SVM on 80% of the

images and test on 20% (regularization parameters were estimated

from the training set). We repeated the procedure for 10

randomizations of the training-testing split. The linear-SVM

results reveal a similar relationship to the results produced using

kernel analysis (Fig. 3A). This indicates that the Zeiler & Fergus

2013 representation achieves generalization comparable to the IT

multi-unit neural sample for a simple linear decision boundary.

We also found near identical results to kernel analysis for the

single-unit analyses and the analysis of performance as a function

of the number of neural sites or features (see S4 Fig.).

While the goal of our analysis has been to measure represen-

tational performance of neural and machine representations it is

also informative to measure neural encoding metrics and measures

of representational similarity. Such analyses are complementary

because representational performance relates to the task goals (in

this case category labels) and encoding models and representa-

tional similarity metrics are informative about a model’s ability to

capture image-dependent neural variability, even if this variability

is unrelated to task goals. We measured the performance of the

model representations as encoding models of the IT multi-unit

responses by estimating linear regression models from the model

representations to the IT multi-unit responses. We estimated

models on 80% of the images and tested on 20%, repeating the

procedure 10 times (see Methods). The median predictions

averaged over the 10 splits are presented in Fig. 6A. For

comparison, we also estimated regression models using the V4

multi-unit responses to predict IT multi-unit responses. The results

show that the Krizhevsky et al. 2012 and the Zeiler & Fergus 2013

DNNs achieve higher prediction accuracies than the HMO model,

which was previously shown to achieve high predictions on a

similar test [27]. These predictions are similar in explained

variance to the predictions achieved by V4 multi-units. However,

no model is able to fully account for the explainable variance in

the IT multi-unit responses. In Fig. 6B we show the mean

explained variance of each IT multi-unit site as predicted by the

Fig. 5. Linear-SVM generalization performance of neural and model representations. Testing set classification accuracy averaged over 10
randomly-sampled test sets is plotted and error bars indicate standard deviation over the 10 random samples. Chance performance is ,14.3%. V4
and IT Cortex Multi-Unit Sample are the values measured directly from the neural samples. Following the analysis in Fig. 3A, the model
representations have been modified such that they are both subsampled and have noise added that is matched to the observed IT multi-unit noise.
We indicate this modification by the { symbol. Both model and neural representations are subsampled to 80 multi-unit samples or 80 features.
Mirroring the results using kernel analysis, the IT cortex multi-unit sample achieves high generalization accuracy and is only matched in performance
by the Zeiler & Fergus 2013 representation.
doi:10.1371/journal.pcbi.1003963.g005
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V4 cortex multi-unit sample and the Zeiler & Fergus 2013 DNN.

There is a relatively weak relationship between the encoding

performance of the neural V4 and DNN representations (r = 0.48

between V4 and Zeiler & Fergus 2013, compared to r = 0.96 and

r = 0.74 for correlations between Krizhevsky et al. 2012 and Zeiler

& Fergus 2013, and HMO and Zeiler & Fergus 2013,

respectively), indicating that V4 and DNN representations may

account for different sources of variability in IT (see Discussion).

Finally, we measured representational similarity using the

analysis methodology proposed in [32]. This analysis methodology

measures how similar two representations are and is robust to

global scalings and rotations of the representational spaces. To

compute the representational similarity between the IT multi-unit

and model representations, we computed object-level representa-

tional dissimilarity matrices (RDMs) for model and neural

representations (matrices are 49x49 dimensional as there are 49

total objects). We then measured the Spearman rank correlations

between the model derived RDM and the IT multi-unit RDM (see

Methods). In Fig. 7A we show the results of the representational

similarity measurements for the model representations and in

Fig. 7B we show depictions of the RDMs for select representa-

tions. For comparison we present the result between the V4 multi-

unit representation and the IT multi-unit representation. To

determine the variability due to the IT neural sample, we also

present the similarity measurement between one-half of the IT

multi-units and the other half (IT Cortex Split-Half). In addition,

we provide results following the methodology in [27], which first

predicts the IT multi-unit site responses from the model

representation and then uses these predictions to form a new

representation. We refer to these representations with an

appended ‘‘+IT-fit’’. Our measurements of the HMO + IT-fit

representation are in general agreement with the results in [27] but

vary slightly because of differences in the image set used to

produce these measurements and details of the methodology used

to produce the IT predictions. Interestingly, by fitting a linear

transform at the image-level to IT multi-units, the Krizhevsky et

al. 2012 and Zeiler & Fergus 2013 DNNs fall within the noise limit

of the IT split-half object-level RDM measurement. However, the

HMO, Krizhevsky et al. 2012, and Zeiler & Fergus 2013

representations, without the added linear mapping, have devia-

tions from the IT representation that are unexplained by noise

variation. While it is informative that a linear mapping can

produce RDMs in correspondence with the IT RDM, we

conclude that there remains a gap between DNN models and

IT representation when measured with object-level representa-

tional similarity.

Discussion

In summary, our measurements indicate that the latest DNNs

rival the representational performance of IT cortex on a rapid

object category recognition task. We evaluated representational

performance using a novel kernel analysis methodology, which

measures precision as a function of classifier complexity. Kernel

analysis allows us to measure a desirable property of a

representation: a good representation is highly performant with a

simple classification function and can thus accurately predict class

labels from few examples, while a poor representation is only

performant with complex classification functions and thus requires

a large number of training examples to accurately predict (see

Methods for elaboration on this point). Importantly, we made

comparisons between models and neural measurements by

correcting the models for experimental limitations due to

sampling, noise, and trials. In this analysis we found that the

Zeiler & Fergus 2013 DNN achieved comparable representational

performance to the IT cortex multi-unit representation and both

the Krizhevsky et al. 2012 and Zeiler & Fergus 2013 represen-

tations surpassed the performance of the IT cortex single-unit

representation. These results reflect substantial progress of

computational object recognition systems since our previous

evaluations of model representations using a similar object

recognition task [35,36]. These results extend our understanding

over recent, complimentary studies, which have examined

representational similarity [27], by evaluating directly absolute

Fig. 6. Neural and model representation predictions of IT multi-unit responses. A) The median predictions of IT multi-unit responses
averaged over 10 train/test splits is plotted for model representations and V4 multi-units. Error bars indicate standard deviation over the 10 train/test
splits. Predictions are normalized to correct for trial-to-trial variability of the IT multi-unit recording and calculated as percentage of explained,
explainable variance. The HMO, Krizhevsky et al. 2012, and Zeiler & Fergus 2013 representations achieve IT multi-unit predictions that are comparable
to the predictions produced by the V4 multi-unit representation. B) The mean predictions over the 10 train/test splits for the V4 cortex multi-unit
sample and the Zeiler & Fergus 2013 DNN are plotted against each other for each IT multi-unit site.
doi:10.1371/journal.pcbi.1003963.g006
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representational performance for this task. In contrast to the

representational performance results, all models that we have

tested failed to capture the full explainable variation in IT

responses (Figs. 6 and 7). Nonetheless, our results, in conjunction

with the results in Yamins et al. 2014 [27], indicate that the latest

DNNs provide compelling models of primate object recognition

representations that predict neural responses in IT cortex [27] and

rival the representational performance of IT cortex.

To address the behavioral context of core visual object

recognition our neural recordings were made using 100 ms

presentation times. We chose only a single presentation time (as

opposed to rerunning the experiment at different presentation

times) to maximize the number of images and repetitions per

image given time and cost constraints in neurophysiological

recordings. This choice is justified by previous results that indicate

human subjects are performant on similar tasks with just 13 ms

presentation times [4], that human performance on similar tasks

rapidly increases from 14 ms to 56 ms and has diminishing returns

between 56 ms and 111 ms [3], that decoding from IT at 111 ms

presentation times achieves nearly the same performance at

222 ms presentation times [3], that for 100 ms presentation times

the first spikes after stimulus onset in IT are informative and peak

decoding performance is at 125 ms [9], and that maximal

information rates in high-level visual cortex are achieved at a

rate of 56 ms/stimulus [47]. Furthermore, we have measured

human performance on our task and observed that the mean

response accuracy at 100 ms presentation times is within 92% of

the accuracy at 2000 ms presentation times (see S2 Fig.). While

reducing presentation time below 50 ms likely would lead to

reduced representational performance measurements in IT (see

[3]), the presentation time of 100 ms we used for our evaluation is

applicable for the core recognition behavior, has previously been

shown to be performant behaviorally and physiologically, and in

our own measurements on this task captures the large majority of

long-presentation-time (2 second) human performance.

The images we have used to define the computational task allow

us to precisely control variations to object exemplar, geometric

transformations, and background; however, they have a number of

disadvantages that can be improved upon in further studies. For

example, this image set does not expose contextual effects that are

present in the real world and may be used by both neural and

machine systems, and it does not include other relevant variations,

e.g. lighting, texture, natural deformations, or occlusion. We view

these current disadvantages as opportunities for future datasets

and neural measurements, as the approach taken here can

naturally be expanded to encompass these issues.

There are a number of issues related to our measurement of

macaque visual cortex, including viewing time, behavioral

paradigm, and mapping the neural recording to a neural feature,

that will be necessary to address in determining the ultimate

representational measurement of macaque visual cortex. The

presentation time of the images shown to the animals was

intentionally brief (100 ms), but is close to typical single-fixation

durations during natural viewing (,200 ms), and human behav-

ioral testing (S2 Fig.) shows that the visual system achieves high

performance at this viewing time. It will be interesting to measure

how the neural representational space changes with increased

viewing time and multiple fixations. Another aspect to consider is

that during the experimental procedure, animals were engaged in

passive viewing and human subjects were necessarily performing

an active task. Does actively performing a task influence the neural

representation? While several studies report that such effects are

present, but weak at the single-unit level [48–51], no study has yet

examined the quantitative impact of these effects at the population

level for the type of object recognition task we examined. Active

task performance may be related to what are commonly referred

to as attentional phenomena [e.g. biased competition]. In addition,

the mapping from multi-unit and single-unit recordings to the

neural feature vector we have used for our analysis is only one

possible mapping, but it is a parsimonious first choice. Finally,

visual experience or learning may impact the representations

observed in IT cortex. Interestingly, the macaques involved in

these studies have had little or no real-world experience with a

number of the object categories used in our evaluation, though

they do benefit from millions of years of evolution and years of

postnatal experience. However, significant learning effects in adult

IT cortex have been observed [52–54], even during passive

viewing [55]. We have examined the performance of computa-

tional algorithms in terms of their absolute representational

performance. It is also interesting to examine the necessary

processing time and energy efficiency of these algorithms in

comparison to the primate visual system. While a more in depth

analysis of this issue is warranted, from a ‘‘back-of-the-envelope’’

calculation (see SI) we conclude that model processing times are

currently competitive with primate behavioral reaction times but

model energy requirements are 2 to 3 orders of magnitude higher

than the primate visual system.

How do our measurements of representational performance

relate to overall system performance for this task? Measuring

representational performance fundamentally relies on a measure

of the representation, which we have assumed is a neural measure

such as single-unit response or multi-unit response. This poses

difficulties for obtaining an accurate measure of human represen-

tational performance. Using only behavioral measurements the

representation must be inferred, which may be possible through an

investigation of the psychological space of visually presented

objects. However, more direct methods may be fruitful using fMRI

(see [31]), or a process that first equates macaque and human

performance and uses the macaque neural representation as a

proxy for the human neural representation. One approach to

directly measure the overall system performance is to replicate the

cross-validated procedure used to measure models in humans.

Fig. 7. Object-level representational similarity analysis comparing model and neural representations to the IT multi-unit
representation. A) Following the proposed analysis in [32], the object-level dissimilarity matrix for the IT multi-unit representation is compared to
the matrices computed from the model representations and from the V4 multi-unit representation. Each bar indicates the similarity between the
corresponding representation and the IT multi-unit representation as measured by the Spearman correlation between dissimilarity matrices. Error
bars indicate standard deviation over 10 splits. The IT Cortex Split-Half bar indicates the deviation measured by comparing half of the multi-unit sites
to the other half, measured over 50 repetitions. The V1-like, V2-like, and HMAX representations are highly dissimilar to IT cortex. The HMO
representation produces comparable deviations from IT as the V4 multi-unit representation while the Krizhevsky et al. 2012 and Zeiler & Fergus 2013
representations fall in-between the V4 representation and the IT cortex split-half measurement. The representations with an appended ‘‘+ IT-fit’’
follow the methodology in [27], which first predicts IT multi-unit responses from the model representation and then uses these predictions to form a
new representation (see text). B) Depictions of the object-level RDMs for select representations. Each matrix is ordered by object category (animals,
cars, chairs, etc.) and scaled independently (see color bar). For the ‘‘+ IT-fit’’ representations, the feature for each image was averaged across testing
set predictions before computing the RDM (see Methods).
doi:10.1371/journal.pcbi.1003963.g007
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Such a procedure should control the human exposure to the

training set and provide the correct labels on the training set. The

procedure for measuring human performance presented in the SI

does not follow this procedure. However, a comparison between

human performance at 100 ms presentation times (see S2 Fig.) and

overall DNN model performance on the test-set (see S3 Fig.)

indicates that there is likely a gap between human performance

(85% mean accuracy) and DNN performance (77% mean

accuracy) on this task because allowing the human subjects

exposure to 80% of the images with the correct labels is only likely

to increase the human performance number. Furthermore, there is

individual variability in the human performance with some

individuals performing well above the mean. Therefore, while

we have not attempted to make a direct comparison between

human performance and DNN performance, we infer that human

performance exceeds current DNN performance.

Our methodology and approach relates to the encoding and

decoding approaches in systems neuroscience, which, in our view,

provide complementary insights into neural visual processing. The

kernel analysis methodology we use here is a neural decoding

approach because it measures the relationship between the neural

(or model) representation and unobserved characteristics of the

stimuli (class labels). The linear-SVM methodology is also a

decoding approach because it tests the generalization performance

of predicting the unobserved class label from the neural (or model)

representation. The approaches of predicting IT multi-unit

response (Fig. 6) and measuring representational similarity to IT

representation (Fig. 7) are encoding approaches because they

measure the relationship between functions or measurements

derived from the stimuli (pixels in the images) and the neural

variation present in IT. The complementary nature of these

approaches is demonstrated in our results. For example, while the

Zeiler & Fergus 2013 DNN rivals the decoding performance of IT

cortex, it fails to capture over 40% of the explainable variance in

the IT neural sample and therefore does not produce a complete

neural encoding model. Conversely, the V4 multi-unit represen-

tation severely underperforms the DNNs and IT cortex when

measured with decoding approaches but produces comparable

results to these representations when predicting IT multi-unit

responses with an encoding approach. It is currently unclear what

variation in the IT cortex multi-unit representation is not captured

by DNNs or the V4 multi-unit representation. Furthermore, the

IT variation that is captured by DNNs and V4 is, relative to

correlations between DNN models, weakly correlated (Fig. 6B).

Overall, the remaining unexplained IT variation may be exposed

through a decoding approach (by, for example, exploring

additional task labels), through an encoding approach (by

exploring additional stimulus transformations), or through ap-

proaches that take into account intrinsic neural dynamics (e.g.

[56]). The comparably high performance of the V4 multi-unit

representation at predicting IT multi-unit responses may be due to

its ability to capture intrinsic neural dynamics present in IT that

are unrelated to stimulus derived variables.

We found that multi-units outperform single-units in our

evaluation, as evidenced in the relative performance increase of

DNNs over single-units in Figs. 3 and 4 and in a trial corrected

comparison between multi- and single-units in S4 Fig. It may be

surprising that multi-units outperform single-units on this task. A

priori, we might assume that the averaging process introduced by

the multi-unit recording, which aggregates the spikes from

multiple spatially-localized single-units, would ‘‘wash-out’’ or

average away neural selectivity for visual objects. However, when

considering generalization performance, it is possible that aver-

aged single-units could outperform the original single-units by

removing noise or non-class specific signal variation. In this way,

multi-units may provide a form of regularization that is

appropriate for this task. This regularization may be due to

averaging out single-unit noise, and/or reducing variation in the

representational space that is irrelevant, and therefore spurious, for

the task. Alternatively, the single-unit variation may be appropri-

ate for different tasks that we have not measured, such as fine

distinctions between objects or 3-dimensional object surface

representation. The spatial arrangement of functional cortical

responses (topographic maps, and functional clustering) also

indicates a current limitation of DNNs as models of high-level

visual cortex. There is no notion of tissue or cortical space in the

DNN layers that we utilize as features: the features correspond to

fully connected layers which do not have convolutional topology,

which may be trivially mapped to physical space, nor do they have

localized operations, such as local divisive normalization. For this

reason, it is non-trivial to include a biologically realistic averaging

process to the DNN representations.

Could the regularizing properties of multi-unit responses be

indicative of broader regularization mechanisms related to spatial

organization in cortex (topographic maps, and functional cluster-

ing)? Just as our multi-unit recordings average together a number

of single-units, neurons ‘‘reading-out’’ signals from IT cortex could

average over cortical topography and thus regularize the

classification decision boundary. This suggests the future goal of

finding an appropriate mapping of biological phenomenology and

physical mechanism to the computational concepts of kernels,

regularizers, and representational spaces. The overall performance

of learning algorithms strongly depends on the interconnections

between the choice of kernel, regularizer, and representation. In

our current work (and the predominant mode in the field), we have

made specific choices on the kernel and regularizer and examined

aspects of the representational space. However, a full account of

biological learning and decision making must determine accurate

descriptions for all three of these computational components in

biological systems.

Interestingly, many of the computational concepts utilized in the

high performing DNNs that we have measured extend back to

early models of the primate visual system. All three DNNs we

examined [24,25,27] implement architectures containing succes-

sive layers of operations that resemble the simple and complex cell

hierarchy first described by Hubel and Wiesel [17,18]. In

particular, max-pooling was proposed in [13] and is a prominent

feature of all three DNNs. Additional computational concepts are

convolution or weight sharing, which was introduced in [57] and

utilized in [24,25], and backpropagation [58], which is utilized in

[24,25].

The success of the Krizhevsky et al. 2012 and the Zeiler &

Fergus 2013 DNNs raises a number of interesting questions. The

categories we used for testing (the 7 classes used in the kernel

analysis measurements) are a small fraction of the 1000 classes that

these models were trained on, and it is not clear if there is a direct

correspondence between the classes in the two image sets. At this

point it is not clear how the non-relevant classes in the set used to

train the models affects our performance estimate. As more

detailed analyses are conducted it will be interesting to determine

which categories are necessary to replicate ventral stream

performance and similarity. For example, there may be biases in

the necessary category distribution toward ecologically relevant

categories, such as faces. Of biological relevance, it is not clear if

natural primate development is comparable to the 15M labeled

images used to train these DNNs and it seems likely that more

innate knowledge of the visual world (acquired during evolution)

and/or more unsupervised training (during development) are
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utilized in biological systems. Finally, given their similar architec-

tures, it is unclear why some DNNs perform well and others do

not. However, our analyses provide cursory evidence that models

with more layers perform better and models that effectively reduce

the dimensionality of the original problem perform better. More

work is necessary to determine best practices using these

architectures and to determine the importance of hierarchical

representations and representations that reduce dimensionality.

The principled approach we have provided here allows for

practical evaluations between models and neurons, and may

provide a tool in assessing progress in the development of DNNs.

Going forward, we would ideally like a better theoretical

understanding of these architectures that would lead to more

consistent implementations and would produce a detailed,

mechanistic hypothesis for ventral stream processing (see [59] for

an example of such an effort).

Methods

Ethics statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

surgical and experimental procedures were approved by the

Massachusetts Institute of Technology Committee on Animal

Care (Animal protocol: 0111-003-014). All human behavioral

measurements were approved by the Massachusetts Institute of

Technology’s Committee on the Use of Humans as Experimental

Subjects (number: 0812003043).

Image dataset generation
Synthetic images of objects were generated using POV-Ray, a

free, high-quality ray tracing software package (http://www.

povray.org). 3-d models (purchased from Dosch Design and

TurboSquid) were converted to the POV-Ray format. This

general approach allowed us to generate image sets with arbitrary

numbers of different objects, undergoing controlled ranges of

identity preserving object variation/transformation. The 2-d

projection of the 3-d model was then combined with a randomly

chosen background. In our image set, no two images had the same

background, in some cases the background was, by chance,

correlated with the object (plane on a sky background, car on a

street) but more often they were uncorrelated, giving no

information about the identity of the object. A circular aperture

with radial fall-off was applied to create each final image.

Neural data collection
We collected neural data from V4 and IT across two adult male

rhesus monkeys (Macaca mulatta, 7 and 9 kg) by using a multi-

electrode array recording system (BlackRock Microsystems,

Cerebus System). We chronically implanted three arrays per

animal and recorded the 128 most visually driven neural

measurement sites (determined by separate pilot images) in one

animal (58 IT, 70 V4) and 168 in another (110 IT, 58 V4). During

image presentation we recorded multi-unit neural responses to our

images from the V4 and IT sites. Images were presented on an

LCD screen (Samsung, SyncMaster 2233RZ at 120 Hz) one at a

time. Each image was presented for 100 ms with a diameter of 8u
(visual angle) at the center of the screen on top of the half-gray

background and was followed by a 100 ms half-gray ‘‘blank’’

period. The animal’s eye position was monitored by a video eye

tracking system (SR Research, EyeLink II), and the animal was

rewarded upon the successful completion of 6–8 image presenta-

tions while maintaining good eye fixation (within 62u) at the

center of the screen, indicated by a small (0.25u) red dot.

Presentations with larger eye movements were discarded. In each

experimental block, we recorded responses to all images. Within

one block each image was repeated once. Over all recording

sessions, this resulted in the collection of 47 image repetitions,

collected over multiple days. All surgical and experimental

procedures were done in accordance with the National Institute

of Health guidelines and the Massachusetts Institute of Technol-

ogy Committee on Animal Care.

To arrive at the multi-unit neural representation, we converted

the raw multi-unit neural responses to a neural representation

through the following normalization process. For each image in a

block, we compute the vector of raw firing rates across

measurement sites by counting the number of spikes between

70 ms and 170 ms after the onset of the image for each site. We

then subtracted the background firing rate, which is the average

firing rate during presentation of a gray background (‘‘blank’’

image), from the evoked response. In order to minimize the effect

of variable external noise, we normalize each site by the standard

deviation of each site’s response to a block of images. Finally, the

neural representation is calculated by taking the mean across the

repetitions for each image and for each site, producing a scalar

valued matrix of neural sites by images. This post-processing

procedure is only our current best-guess at a neural code, which

has been shown to quantitatively account for human performance

[60]. Therefore, it may be possible to develop a more effective

neural decoding for example influenced by intrinsic cortical

variability [56], or dynamics [61,62].

To arrive at the single-unit neural representation, we followed a

similar normalization process as the multi-unit representation, but

first conducted spike-sorting on the multi-unit recordings. We

sorted single-units from the multi-unit IT and V4 data by using

affinity propagation [63] together with the method described in

[64]. Using a conservative criteria we isolated 160 single-units

from the IT recordings and 95 single-units from the V4 recordings

with 6 repetitions per image for each single-unit. Given these

single-unit responses for each image we followed a processing

procedure identical to the multi-unit procedure, which included

counting the number of spikes between 70 ms and 170 ms after

the onset of the image, subtracting the background firing rate, and

normalizing by the standard deviation of the site’s response to a

block of images. Finally, we selected from these single-units the top

40 based on response consistency over trials on a separate image

set (units with high SNR). Specifically, we measured the

response to 280 images not included in our evaluations of

performance but drawn from a similar stimulus distribution.

These images contained 7 unique objects not contained in the

original set with 1 object from each of the 7 categories. For each

object there are 40 images, each with a unique background and

with the object position, scale, and pose randomly sampled. For

each single-unit, we separated the responses over trials into two

groups, averaged across trials, and measured the correlation of

these response vectors. We then sorted the single-units based on

this correlation and selected the 40 with highest correlation and

therefore most consistent single-units. We repeated this proce-

dure separately for V4 and IT. The resulting consistency

measurement for the IT single-units was comparable to other

measurements using single-unit electrophysiology [10]. The

consistency of the 40 IT single-units was higher than the 15th

percentile of single-units measured in [10]. In other words, the

least consistent IT single-unit in the group of 40 was more

consistent than the bottom 15% of single-units analyzed in [10].

Unless otherwise noted, all analyses of single-units use these 40

high-SNR single-units.
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Kernel analysis methodology
We would also like to measure accuracy as we change the

complexity of the prediction function. To accomplish this, we use

an extension of the work presented in [30], which is based on

theory presented in [28], and [29], and we refer to as kernel
analysis. We provide a brief description of this measure and refer

the reader to those references for additional details and

justification on measuring precision against complexity. This

procedure is a derivative of regularized least squares [65], which

arrises as a Tikhonov minimization problem [46], and can be

viewed as a form of Gaussian process regression [66]. We do not

elaborate on the relationships between these views, but each is a

valid interpretation on the procedure.

The measurement procedure, which we refer to here as kernel
analysis, utilizes regularized kernel ridge regression to determine

how well a task in question can be solved by a regularized kernel.

A highly regularized kernel will allow only a simple prediction

function in the feature space, and a weakly regularized kernel will

allow a complex prediction function in the feature space. A good
representation will have high variability in relation to the task in

question and can effectively perform the task even under high

regularization. Therefore, if the eigenvectors of the kernel with the

largest eigenvectors are effective at predicting the categories, a

highly regularized kernel will still be effective for that task. In

contrast, an ineffective representation will have very little variation

relevant for the task in question and variation relevant for the task

is only contained in the eigenvectors corresponding to the smallest

eigenvalues of the kernel and only a weakly regularized kernel will

be capable of performing the task efficiently. Changing the

amount of regularization changes the complexity of the resulting

decision function: highly regularized kernels allow for only simple

decision functions in the feature space and weakly regularized

kernels allow for complex decision functions. Intuitively, a good

representation is one that learns a simple boundary (highly

regularized) from a small number of randomly-chosen examples,

while a poor representation makes a more complicated boundary

(weakly regularized), requiring many examples to do so.

In our formulation, kernel analysis consists of solving a

regularized least squares or equivalently a kernel regression

problem over a range of regularization [65]. The regularization

parameter l controls the complexity of the function and the

precision or performance is measured as the leave-one-out

generalization error (looe). We refer to the inverse of the

regularization parameter (1=l) as the complexity and 1{looe(l)
as the precision. Thus, the curve 1{looe(l) provides us with a

measurement of the precision as a function of the model

complexity for the given representational space. The curves

produced by different representational spaces will inform us about

the simplicity of the task in that representational space, with higher

curves indicating that the problem is simpler for the representa-

tion.

One of the advantages of kernel analysis is that the kernel PCA

method converges favorably from a limited number of samples.

[29] shows that the kernel PCA projections obtained with a finite

and typically small number of samples n (images in our context)

are close with multiplicative errors to those that would be obtained

in the asymptotic case where n.?. This result is especially

important in our setting as the number of images we can

reasonably obtain from the neural measurements is comparatively

low. Therefore, kernel analysis provides us with a methodology for

assessing representational effectiveness that has favorable proper-

ties in the low image sample regime, here thousands of images.

We next present the specific computational procedure for

computing kernel analysis. Given the learning problem p(x,y) and

a set of n data points f(x1,y1),:::,(xn,yn)g drawn independently

from p(x,y) we evaluate a representation defined as a mapping

x.w(x). For our case, the inputs x are images, the y are

normalized category labels, and the w denotes a feature extraction

process.

As suggested by [30], we utilize the Gaussian kernel because this

kernel implies a smoothness of the task of interest in the input

space [67] and does not bias against representations that may be

more adapted to non-linear regression functions. We compute the

kernel matrix Ks associated to the data set as

Ks~

ks(w(x1),w(x1)) ::: ks(w(x1),w(xn))

..

. ..
.

ks(w(xn),w(x1)) ::: ks(w(xn),w(xn))

0
BBBB@

1
CCCCA, ð1Þ

where the standard Gaussian kernel is defined as

ks(x,x’)~ exp ({DDx{x’DD2=2s2) with scale parameter s.

The regularized kernel regression problem is

minH[Rn
1

2

Xn

i~1

EY{KsHE2
2z

l

2
HtKsH, ð2Þ

where Y are the normalized vector of category labels, H is the

vector of regression parameters and l is the regularization scalar.

The solution to the regularized regression problem for a fixed s
and l is denoted as Hs(l) and is given as

H�s(l)~(KszlI){1Y , ð3Þ

where I is the identity matrix.

The leave-one-out error can be calculated as

LOOEs(l)~
H�s(l)

diag((KszlI){1)
, ð4Þ

where diag(M) denotes the column vector satisfying

diag(M)i~Mii and the division is elementwise. Note that

LOOEs(l) is a vector of errors for each example and we

compute the mean squared error over the examples as

looes(l)~
1

n

X
i
(LOOEs(l)i)

2, which is considered a good

empirical proxy for the error on future examples (generalization

error). We note that the leave-one-out error can be computed

efficiently given an eigendecomposition of the kernel matrix. We

refer to [65] for derivation and details on this computation.

To remove the dependence of the kernel on s we find the value

that minimizes looes(l) at that value of l: looe(l)~minslooes(l).
Finally, for convenience we plot precision (1{looe(l)) against

complexity (1=l). Note that because we optimize the value of s for

each value of complexity, s (the width of the Gaussian kernel) will

regularize the feature space when l does not provide sufficient

regularization. Because of this effect, the precision-complexity

curves in Fig. 2 plateau at high values of complexity because the

optimal value of s increases in the high complexity regime (low

values of l). We would otherwise expect that at high complexity,

the regression would over fit and produce poor generalization (low

1{looe(l) or high error). At low values of complexity (l) we

observe that there is an optimal value for s, which is dependent on

the representation, and is robust over image splits. Therefore, it is

not possible to achieve high precision at low complexity simply by
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reducing s; the variation in the representational space must be

aligned with the task in order to achieve high precision at low

complexity.

Note that we have chosen to use a squared error loss function for

our multi-way classification problem. While it might be more

appropriate to evaluate a multi-way logistic loss function, we have

chosen to use the least-squares loss because it provides a stronger

requirement on the representational space to reduce variance within

category and to increase variance between categories, and it allows

us to distinguish representations that may be identical in terms of

separability for a certain complexity but still have differences in their

feature mappings. The kernel analysis of deep Boltzmann machines

in [68] also uses a mean squared loss function in the classification

problem setting and is widely used in machine learning.

In the discussion above, Y~(y1, . . . ,yn) represents the vector of

task labels for the images (x1, . . . ,xn). In our specific case, the yi

are normalized category identity values (normalized such that

predicting 0 will result in a precision equal to 0 and perfect

prediction will result in a precision equal to 1). To generalize to the

case of multiway categorization, we use a version of the common

one-versus-all strategy. Assuming k distinct categories, for each

category j we compute the per-class leave-one-out error looes(l)j

by replacing Y in equations 2 and 3 with Yj . The overall leave-

one-out error is then the average over categories of the per-

category leave-one-out error. Minimization over s then proceeds

as in the single category case.

To evaluate both neural representations and machine repre-

sentations using kernel analysis we measure the 1{looe(l) curve.

The image dataset consists of 1960 images containing seven object

categories with seven instances per object category. The categories

are Animals, Cars, Chairs, Faces, Fruits, Planes and Tables. To

measure statistical variation due to subsampling of image variation

parameters we compute the 1{looe(l) curve ten times, each time

sampling 80% of the images with replacement. The ten samples

are fixed for all representations and within each subset we equalize

the number of images from each category. For each representa-

tion, we maximize over the values of the Gaussian kernel s
parameter as follows. We evaluate the Gaussian kernel scale

parameter s for each representation at a range of values centered

on the median distance over the distribution of distances for that

representation. With sm denoting the value equal to the median

distance, we evaluated kernels with s~asm for 32 values of a in

the range of 0:1 to 10 with logarithmic spacing. We found that in

practice the values of s that minimized the leave-one-out error

were close to sm and well within this range. To span a large range

of complexity we evaluate looe(l) at 56 values of l from 10{4 to

103 with logarithmic spacing. For each representation, this

procedure produces a curve for each of the subsets, where the

mean and spread (range of the values over the 10 subsets for each

value of l) are shown in Fig. 2. As a summary value, we also

compute the area under the curve (KA-AUC) for each of the

image set randomizations and report the mean and standard

deviation. We use these mean KA-AUC values for the measure-

ments in Figs. 4A and 4B.

Machine representations
We evaluate a number of model representations from the

literature, including several recent best of breed representational

learning algorithms and visual representation models. In particular

we examine three recent convolutional DNNs [24,25] + Yamins.

The DNNs in [24,25] are of note because they have each

successively surpassed the state-of-the-art performance on the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

Note that results have continued to improve on this challenge since

we ran our analysis. See http://www.image-net.org/for the latest

results.

Given the similarity of these DNNs to models of biological

vision and our particular interest in the primate visual system, we

also tested two representations that attempt to capture ventral

stream processing. The ‘‘V1-like’’ model attempts to replicate

functional responses in the primary visual area, the ‘‘V2-like’’

model similarly replicates response properties of the secondary

visual area, and the HMAX instantiation is a model of ventral

visual processing that implements the simple and complex cell

hierarchy proposed in [13].

V1-like [35]. We evaluate the V1-like representation from

Pinto et al.’s V1S+ [35]. This model attempts to capture a first-

order account of primary visual cortex (V1). It computes a

collection of locally-normalized, thresholded Gabor wavelet

functions spanning orientation and frequency. This model is a

simple, baseline biologically-plausible representation, against

which more sophisticated representations can be compared. This

model has 86400 dimensions.

V2-like [42]. We evaluated a recent proposal for the

functional role of visual area V2 [42]. This model constructs a

representation from conjunctions of Gabor outputs, which is

similar to the V1-like model. The Gabor outputs are combined

non-linearly and averaged within receptive field windows. The

representation formed by this model has been shown to

correspond to visual area V2 and explains visual crowding [42].

The output representation for the V2-like model has 24316

dimensions.

HMAX instantiation [41]. We evaluate the model in [41],

which is a biologically inspired hierarchical model utilizing sparse

localized features. This model has been shown to perform

relatively well on previous measures of invariant object recognition

[16], and to explain some aspects of ventral stream responses

[13,22]. This representation has 4096 dimensions. Counting the

simple-complex module as a single layer, this model has two layers.

HMO, Yamins et al. 2014 [27]. The model uses hierarchi-

cal modular optimization (HMO) to develop a large, deep network

that is a combination of convolutional neural networks and is

described in [27]. The HMO algorithm is an adaptive boosting

procedure that interleaves hyper-parameter optimization (see [27]

and references therein). The specific model we examine here is

identical to the one in Yamins et al. 2014 [27]. This model is

developed on a screening task that contains images of objects

placed on randomly selected backgrounds. This task is similar in its

construction to the task we use here to evaluate representational

performance, however, it contains entirely different objects in

totally non overlapping semantic categories, with none of the same

backgrounds and widely divergent lighting conditions and noise

levels. The specific model we examine was produced by the HMO

optimization procedure on this screening task and is a convolu-

tional neural network with 1250 top-level outputs. Therefore, the

total dimensionality of the HMO representation is 1250 and the

model is composed of four layers. The model is identical to the one

presented in Yamins et al. 2014 [27]. However, the analysis

methodology in [27] has a number of important differences to the

analyses presented in this paper. The following differences are

noteworthy: in this paper we examine only the high variation task

and a subset of the images in the high variation task (7 categories

with 7 objects per category in this paper vs. 8 categories with 8

objects per category in [27]), and in this paper we compute

representational similarity on the raw HMO features, while in [27]

representational similarity is calculated on the HMO-based IT

model population.
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Krizhevsky et al. 2012 [24] (SuperVision). We evaluate

the deep convolutional neural network model ‘‘SuperVision’’‘‘

described in [24], which is trained by supervised learning on the

ImageNet 2011 Fall release (,15M images, 22K categories)

with additional training on the LSVRC-2012 dataset (1000

categories). The authors computed the features of the penulti-

mate layer of their model (4096 features) on the testing images

by cropping out the center 224 by 224 pixels (this is the input

size to their model). This mimics the procedure described in

[24], in which this feature is fed into logistic regression to

predict category labels. This model has seven layers as tested

(counting a layer for each linear-convolution or fully connected

dot-product).

Zeiler and Fergus 2013 [25]. The model is a very large

convolutional network with 8 layers [25] trained using supervised

learning on the LSVRC-2012 dataset to predict 1000 output

categories. The training data is augmented by taking random

crops and flips out of the 256 by 256 pixel images as in [24] to

prevent overfitting. Additionally, visualization experiments explor-

ing what deep models learn lead to hyperparameter choices which

yield better performance. The feature representation is the 4096

features input to the softmax classifier averaged over crops from

the 4 corners, center, and horizontal flips (producing ten 4096

dimensional vectors that are averaged to produce the 4096

dimensional representation used here). This model also has seven

layers.

Experimental noise matched model
In our evaluation of representational performance we are

limited by the observed noise in the neural representation. To

produce a fair comparison we alter the model representational

measurements by adding a level of noise that is matched to that

observed in the neural representation. Note that we are unable to

fully remove noise from the neural representation, and therefore

we add noise to the model representations. The sources of the

observed neural noise are various and we do not make an attempt

to distinguish the sources of noise. Broadly, these noise sources are

experimental in nature (e.g. physical electrode movement over

time) or are intrinsic to the system. Examples of noise variation

that are intrinsic to the system include the arousal state of the

animal, trial-to-trial variability of neural responses, and correlated

neural activity that is intrinsic to the system and not related to the

stimulus condition.

We estimate a rate-dependent additive noise model from either

the multi-unit or single-unit neural responses. The neural

responses entering this noise model estimation follow the same

averaging and background subtraction step as described previous-

ly. The rate-dependent additive noise model follows the common

observation that spike counts of neurons are approximately

Poisson [44,45]. We first normalize the variance of the neural

response to 1,

1

NMT

X
ijk

(rijk{m)2~1, ð5Þ

where rijk indicates the neural response with indices i over N

neural sites, j over M images, and k over T trials, and m is the

mean over sites, images and trials. For each neural site we estimate

a linear fit of the relationship between the mean response over

trials (mij ) and the variance over trials (sij ) as,

aimijzbi~sij ð6Þ

with coefficients ai and bi. We then average these coefficients over

the sites to produce a single relationship between mean rate and

variance. For the multi-unit sites we estimate a~0:14 and b~0:92
and for the single-unit sites we estimate a~0:76 and b~0:71.

The noise model assumes that the empirically observed response

variation is due to an underlying and unobserved signal

contribution and a noise contribution. We can estimate the total

variance of the empirical response (s2
signalznoise) as,

s2
signalznoise ~

1

NM

X
ij

1

T

X
k

rijk

 !
{m

" #2

,

s2
signalznoise ~s2

signalzs2
noise:

ð7Þ

Note that we cannot observe s2
signal and we use the subscript

‘‘noise’’ to denote the standard error of the mean of the signal

estimate and not ordinary trial to trial variability. Therefore, the

estimate of the standard error of the signal is given as,

s2
noise~

1

NM

X
ij

(amijzb)2

 !
=T : ð8Þ

Note that we estimate the standard error of the mean using the

noise model, which has the benefit of being jointly estimated from

the population of neural responses. In other words, if different

neural sites share a similar noise model our estimate of that noise

model is improved by estimating its parameters from all of the sites

jointly. However, we have verified that using the empirical

estimate of s2
noise gives nearly identical results.

To add noise to the model representations we first scale the total

variance of the representation such that the variance after adding

noise will be approximately equal to the variance observed in the

neural sample. To do this we scale the model representation such

that:

1

LM

X
lj

(slj{n)2~s2
signalznoise{s2

noise, ð9Þ

where slj indicates the model representation value with index l

over L feature dimensions and n is the mean over image and

features for the model representation. Finally we add signal

dependent noise to the model representation:

ŝslj~sljzN (0,(asljzb)2=T), ð10Þ

where N (m,s2) indicates a sample from the normal distribution

with mean m and variance s2 and ŝs indicates the noise corrupted

model representation. We verified empirically that the resulting

variance of the noise corrupted model representation was close to

the empirical neural signal variance. We repeat this procedure for

the multi-units and single-units to arrive at model representations

that are corrected for the observers noise in the respective neural

measurement.

See S1 Fig. for a validation of the experimental noise matched

model.

Linear-SVM methodology
See Supporting Information.
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Predicting IT multi-unit sites from model representations
We performed generalized linear model analysis using ridge

regression to predict the IT multi-unit responses from the model

representations [69]. We utilized the same cross-validation

procedure as the linear-SVM analysis, estimating encoding models

on 80% of the data and evaluating the performance on the

remaining 20% and repeating this for 10 randomizations. For

each IT multi-unit we estimated an encoding model, predicted the

testing responses, and determined the explained explainable

variance for that multi-unit. To measure explainable variance

we measured for each multi-unit site and each training set, the

Spearman-Brown corrected split-half self-consistency over image

presentations (trials). To arrive at a summary statistics we took the

median explained explainable variance over the multi-units for

each model representation. We also used the V4 multi-unit

responses to produce encoding models of the IT multi-unit

response. The results of this analysis are presented in Fig. 6. Note

that the predictions produced by the V2-like representation

proved to be unstable and produced high variance compared to

the other representations.

Representational similarity analysis
To measure representational similarity we followed the analysis

methodology in [32]. We first computed a feature vector per

object for each representation by averaging the representational

vectors over image variations. The representational dissimilarity

matrix (RDM) is defined as

RDM(w(x))ij~1{
cov(w(xi),w(xj))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(w(xi)):var(w(xj))
p , ð11Þ

where w(x) indicates the representation averaged for each object, i

and j index the objects, cov indicates the covariance between the

vectors and var the variance of the vector. Because we have 49

unique objects in our task the resulting RDM is a 49x49 matrix.

To measure the relationship between two RDMs we measured the

Spearman rank correlation between the upper-triangular, non-

diagonal elements of the RDMs. We computed the RDM on 20%

of the images and repeated the analysis 10 times. To compute

noise due to the neural sample, we computed the split-half

consistency between one half of the IT multi-units and the other

half. We repeated this measurement over 50 random groupings

and over the 10 image splits. Following the methodology in [27],

we also predicted IT multi-unit responses to form a new

representation, which we measured using representational simi-

larity analysis. To produce IT multi-unit predictions for each

model representation, we followed the same methodology as

described previously (Predicting IT multi-unit sites from model

representations). For each image split, we estimated encoding

models on 80% of the images for each of the 168 IT multi-units

and produced predictions for each multi-unit on the remaining

20% of the images. We then used these predictions as a new

representation and computed the object-level RDM for the 20%

of held-out images. We repeated the procedure 10 times. Note that

the 20% of images used for each split was identical for all RDM

calculations and that the images used to estimate multi-unit

encoding models did not overlap with the images used to calculate

the RDM. The analysis of the representations with the additional

IT multi-unit fit can be seen as a different evaluation metric to the

results of predicting IT multi-units. In other words, in Fig. 6 we

evaluate the IT multi-unit predictions using explained variance at

the image-level, and in Fig. 7 for the ‘‘+ IT-fit’’ representations we

evaluate the IT multi-unit predictions using an object-level

representational similarity analysis.

Supporting Information

S1 Fig Effects on kernel analysis performance of
empirical noise vs. induced noise model. In the top left

panel we show the performance measurements, as measured by

kernel analysis area-under-the-curve, of the IT cortex multi-unit

sample and of the IT cortex multi-unit sample with trial dependent

added noise as we vary the number of experimental trials

(repetitions per image) or the trials in the noise model (T in Eq.

10). In all plots error bars indicate standard deviations of the

measure over 10 repetitions of the analysis. Results are replotted

and divided by the maximum performance (Relative Performance)

in the lower left panel. The same analysis is performed for the IT

cortex single-unit sample in the right panels. These results indicate

that the noise model reduces our performance measurement over

the empirically observed noise and is therefore a conservative

model for inducing noise in model representations. In other words,

these results indicate that the model representations with neural

matched noise are likely overly penalized.

(PDF)

S2 Fig Human performance on the visual recognition
task as a function of presentation time. We plot the mean

block-accuracy for different stimulates presentation durations from

responses measured using Amazon Mechanical Turk. The mean

accuracy is plotted as diamond markers and the error bars indicate

the 95% confidence interval of the standard error of the mean over

block-accuracies. Chance performance is ,14% for this task. The

accuracy quickly increases such that at 100 ms stimulus duration it

is within 92% of the performance at 2 seconds. This indicates that

on this task, human subjects are able to perform relatively highly

even during brief presentations of 100 ms. We refer to this ability

as ‘‘core visual object recognition’’ [6] and we seek to measure the

neural representational performance that subserves this ability.

(PDF)

S3 Fig Linear-SVM performance of model representa-
tions without sample or noise correction. Testing set

classification accuracy averaged over 10 randomly-sampled test

sets is plotted and error bars indicate standard deviation over the

10 random samples. Chance performance is ,14.3%. Unlike in

Fig. 5, the model representations in this figure has not been

modified to correct for sampling or noise.

(PDF)

S4 Fig Effect of sampling the neural and noise-correct-
ed model representations for the linear-SVM analysis.
We measure the mean testing-set linear-SVM generalization

performance as we change the number of neural sites (for neural

representations), or the number of features (for model represen-

tations). Measured samples are indicated by filled symbols and

measured standard deviations indicated by error bars. Multi-unit

analysis is shown in panel A and single-unit analysis in B. The

model representations are noise corrected by adding noise that is

matched to the IT multi-unit measurements (A, as indicated by the

{ symbol) or single-unit measurements (B, as indicated by the {
symbol). This analysis reveals a similar relationship to that found

using the kernel analysis methodology (compare to Fig. 5).

(PDF)

S5 Fig Comparison of IT multi-unit and single-unit
representations. In the left panel we plot the kernel analysis

AUC as a function of the number of single- or multi-unit sites. We
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plot results for two single-unit samples. ‘‘IT Cortex Single-Unit

All-SNR Sample’’ uses all 160 isolated single-units and ‘‘IT Cortex

Single-Unit High-SNR Sample’’ uses the 40 most consistent (least

noisy) single-units. In the right panel we show the same data, but

correct the number of multi-units to reflect an estimate of the

number of single-units contributing to each multi-unit recording,

thus plotting against the number of estimated neurons. Unlike

previous figures, these estimates have a fixed number of trials (6)

for both single- and multi-unit samples. Surprisingly, multi-unit

recordings surpass single-unit recordings in performance (left) and

are five times better per unit in performance to the all SNR single-

unit sample (right).

(PDF)

S1 Text Supporting Information for Methods and
Discussion. Validation of the experimental noise matched

model; Human performance on our task as a function of

presentation time; Linear-SVM methodology; Comparing IT

multi-unit and single-unit representations; Processing time and

energy consumption of computational models.

(PDF)
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