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Abstract—This note extends the superset method for sparse
signal recovery from bandlimited measurements to the two-
dimensional case. The algorithm leverages translation-invariance
of the Fourier basis functions by constructing a Hankel tensor,
and identifying the signal subspace from its range space. In the
noisy case, this method determines a superset which then needs to
undergo pruning. The method displays reasonable robustness to
noise, and unlike `1 minimization, always succeeds in the noiseless
case.
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I. INTRODUCTION

We investigate a simple 2D super-resolution problem, where
the goal is to recover a sparse image from its low frequency
components. We call “spike” any image consisting of a single
nonzero pixel; a sparse image X0 ∈ Rn1×n2 is a weighted
superposition of a small number of spikes. The only available
data are the noisy 2D low-frequency components

Y = F(1)X0F
T
(2) + E, (1)

where F(1) ∈ Cm1×n1 and F(2) ∈ Cn2×m2 are partial, short
and wide Fourier matrices, F(a)(j, k) = e−i2πkj/na , 0 ≤ j <
ma, −na/2 ≤ k < na/2, a = 1, 2, (n1, n2 are even), and E
is the noise term whose entries are assumed i.i.d. N (0, σ2).

Though various techniques have been proposed in the
literature to tackle the super-resolution problem in the 1D
setting, few algorithms are set up for this problem in higher
dimensions. Among those, the most notable contributions are
the generalized matrix pencil approaches of Hua and Sarkar
[?], Andersson et al. [1], and Potts and Tasche [3]; Fannjiang
and Liao’s greedy algorithm [5]; and `1 minimization [2].
Already in one dimension, the performance of the matrix-
pencil-based algorithms is poorly understood in the presence
of noise. In addition, the algorithm requires to know the
support size, a value that is not often available in practice. In
contrast, `1 minimization is a natural idea for super-resolution
problems, but often fails in situations where cancellations
occur. Candès and Fernandez-Granda [2] show that `1 min-
imization can recover the signal or image faithfully from its
consecutive Fourier measurements as long as locations of any

two consecutive spikes are separated by a constant times the
super-resolution factor, SRF = max{ n1

m1
, n2

m2
}.

We should note that the data model considered here has
the same form as the well-known compressed sensing (CS)
problem, except for the crucial difference that we observe
consecutive rather than random samples of the discrete Fourier
transform.

In this paper, we extend the algorithm proposed in [4]
for 1D signals to solve the super-resolution problem in 2D.
In 1D, this algorithm has been experimentally shown to
outperform methods such as matrix pencil and `1 minimization
in situations when the distances between spikes are much
smaller than the Rayleigh limit. The superset method consists
of two main ingredients:

• Selection of a set Ω which contains the spike locations
of X0 (with high probabiity), by inspection of the range
space of a Hankel tensor; and

• Pruning to tighten the superset Ω by gradually removing
atoms that do not associate with the true support T .

The 2D superset method considers the same object as the
generalized matrix pencil methods, namely the tensor of all
translates of the original image X0 in both spatial direc-
tions. This 4-index object has an invariance property along
the new translation indices, hence we may call it a Hankel
tensor. Where traditional matrix pencil methods consider rank-
reducing numbers of shifted versions of this Hankel tensor, the
selection step of the superset method is simpler and deals with
membership tests of individual atoms in the tensor’s range
space. The resulting procedure is not entirely fragile to the
presence of additive noise, though this short note does not
attempt to resolve the important associated theoretical recovery
questions.

In the rest of the paper, we make use of the following
notations. Let [n] be the set {0, 1, ..., n − 1}, we denote
T ∈ ([n1], [n2]) as the support of X0. For a matrix A, we
write AS for the restriction of A on its columns in S. The
k-th column of A is denoted as A•,k, while the k-th row is
Ak,•. The (j, k)-th entry of A is A(j, k). We also denote the
restriction of A to its first L rows as A(L). Finally, vec (A) is
the vector constructed from vectorizing A.



II. HANKEL TENSOR IN BLOCK MATRIX FORM

In this section, we start by describing the construction of
the Hankel tensor in block matrix form. Throughout the paper,
we use a convenient, vectorized form of the observations in
(1) with respect to the elements of X0. With 1na

the na × 1
vector of ones, denote

A = 1n2
⊗ F(1) = [F(1) F(1) · · · F(1)]︸ ︷︷ ︸

n2 times

,

and

B =

 1n1
⊗ (FT(2))1,•

...
1n1
⊗ (FT(2))n2,•

 .

Then (1) can be written as the product

Y = AZ0B + E = Y0 + E, (2)

where Z0 ∈ Rn1n2×n1n2 is the diagonal matrix with the
vectorized form of X0 along its diagonal. Let S be the set
that associates with nonzero entries on the diagonal of Z0,
then the observation matrix is Y = ASZ0S

BTS + E. Notice
that S is simply the vectorized form of the support T of X0.

In the absence of Gaussian noise, it is clear from (1)
that rank (Y0) ≤ |S|. Strict inequality occurs whenever the
locations of any two spikes align horizontally or vertically – a
phenomenon that did not occur in 1D. Therefore, RanY0 ∈
RanAS and RanY T0 ∈ RanBS . One way to definitively
link |S| to a “rank” is to introduce the Hankel tensor, or
“enhanced matrix”, Y0e as in [?]. Let K ∈ [0,m1) and
L ∈ [0,m2) be numbers that can be picked by users. We
define the (block matrix realization of the) Hankel tensor as
the K × (m1 −K + 1) block Hankel matrix

Y0e ,


H0 H1 · · · Hm1−K
H1 H2 · · · Hm1−K+1

...
...

...
...

HK−1 HK · · · Hm1−1

 . (3)

where each block Hj is a L × (m2 − L + 1) Hankel matrix
constructed from the j-th row of Y0. The form of Hj is as
follows:

Y0(j, 0) Y0(j, 1) · · · Y0(j,m2 − L)
Y0(j, 1) Y0(j, 2) · · · Y0(j,m2 − L+ 1)

...
...

...
...

Y0(j, L− 1) Y0(j, L) · · · Y0(j,m2 − 1)

 .

(4)
From (2) and (4), each block Hj can be expressed as Hj =
B(L)Z0D

j(B(m2−L))T , where D , diag(A1,•). Substituting
the formulation of Hj into (3) allows to express Y0e as the
products of three matrices,

Y0e = AZ0BT , (5)

where we use calligraphic letters A and B to denote matrices

A =


B(L)

B(L)D
...

B(L)DK−1

 (6)

and B =


B(m2−L)

B(m2−L)D
...

B(m2−L)Dm1−K

 . (7)

If we denote AS = B
(L)
S DS and BS = B

(m2−L)
S DS , then

we can write Y0e = ASZ0S
BS . The following lemma is an

important observation which allows us to exploit the subspace
of the enhanced matrix to find the support S. The proof is
presented in [?].

Proposition 1. If K,m1 − K + 1, L, and m2 − L + 1 are
greater than |S|, then the rank of Y0e is |S|, and

Ran (Y0e) = Ran (AS).

The lemma implies that if we loop over all the candidate
atoms A•,k for 0 ≤ k < n1n2 and select those with

∠(A•,k,RanY0e) = 0, (8)

then those candidate set is associated with the true support.
Once the set S is detected, the image is recovered by solving
the determined system

Y0 = ASZ0S
(BS)T , diag(Z0Sc ) = 0.

III. SUBSPACE IDENTIFICATION AND PRUNING

The strategy just presented is not quite as simple in the
noisy setting, when

Y = AZ0B + E, (9)

where E is the noise matrix. In this situation, Proposition 1 is
no longer satisfied. However, selecting indices that associate
with the smallest angles ∠(A•,k,RanYe) is still a useful idea.

Proposition 2. Let Y = Y0 + E with e ∼ N(0, σ2Im), and
form the corresponding KL × (m1 − L + 1)(m2 − K + 1)
enhanced matrix Ye as in (5). Denote the j-th singular values
of the block symmetric matrix Y (m1−K)

0e by s0,j . Then there
exists positive c1, C1 and c, such that with probability at least
1− c1(m1m2)−C1 ,

sin∠(A•,k,RanYe) ≤ c ε1 (10)

for all indices k in the support set and

ε1 =
|S|

‖A•,k‖2
σ
√
KL logm1m2

|X0min |

√
|X0max

|
s0,|S|

, (11)

where |X0min
| and |X0max

| are respectively the smallest and
largest nonzero entries of X0.



This proposition provides a procedure that guarantees the
selection of a superset Ω of the true support T , with high
probability.

Even though Proposition 2 reveals a constructive approach
to define the superset, there are a few unknown quantities
involved in the bound (10). The support size |S|, though
not specified, can be upper bounded by a constant such as
min(m1,m2). |x0min

| and |x0max
| can be estimated if we know

the dynamic range of the image’s intensity. These estimations
might loosen the bound (10) and make increasing the superset
size. However, T will be included in Ω with high probability.

A second, pruning step is required to extract T from Ω. The
idea is the same as in the 1D case, namely that the quality of
the data fit is tested for each subset Ω\k of Ω where a single
atom k is removed.

First rewrite Y = AΩZ0Ω
BΩ + E =

∑
j∈Ω Z0(j, j)A•,j ⊗

Bj,• + E. Then express this identity in the vectorized form
vec (Y ) = MΩvec (Z0Ω

) + vec (E) where the matrix MΩ =
[vec (A•,j ⊗Bj,•)]j∈Ω and vec (Z0Ω) is the vector containing
the diagonal of Z0 at location Ω. Observe that in the noiseless
setting, any k /∈ S will give zero angle between vec (Y ) and
RanMΩ\k – the range of MΩ with the k-th column removed.
Hence ∠(vec (Y ),RanMΩ\k) 6= 0 iff k ∈ S. This suggests
using this criterion for check the membership of k in T . We
then iterate until all k /∈ S are removed.

In the presence of noise, instead of using
∠(vec (Y ),RanMΩ\k), we use the slightly better
variant ∠(PΩvec (Y ),RanMΩ\k), or equivalently∥∥(PΩ − PΩ\k)vec (Y )

∥∥
2
, where PΩ is the orthogonal

projection of vec (Y ) onto MΩ. This process helps filtering
out some of the noise embedded in vec (Y ). The pruning
step will loop over k ∈ Ω and estimate k ∈ S only when the
angle is above a certain threshold.

Algorithm 1 describes superset selection followed by prun-
ing to estimate the solution’s support.

A good choice of threshold ε2 for the pruning step is
suggested by the following result.

Proposition 3. Assume the set Ω obtained from the t-th
iteration of the pruning step still contains the true support
S. Also assume that

min
k∈S

∥∥(PΩ − PΩ\k)vec (Z0S
)M•,k

∥∥
2
≥ 3σ. (12)

Then there exists positive constants c1 and c2 such that with
probability at least 1− c1(m1m2)−1,

min
k/∈S

∥∥(PΩ − PΩ\k)vec (Y )
∥∥

2
< ε2

and min
k∈S

∥∥(PΩ − PΩ\k)vec (Y )
∥∥

2
≥ ε2

with the choice ε2 = c2σ.

Proposition 3 implies that as long as the noise level is
sufficiently small so that (12) is satisfied, at each iteration,
the pruning step is able to remove an atom k /∈ S.

Algorithm 1 Superset selection and pruning
input: Matrices A ∈ Cm1×n1n2 , B ∈ Cn1n2×n2 , Y =
AX0B + E, parameter L and K, thresholds ε1 and ε2.
initialization: Enhanced matrix Ye ∈
CKL×(m1−K+1)(m2−L+1), matrices A ∈ CKL×n1n2

and B ∈ Cn1n2×(m1−K+1)(m2−L+1) defined in (6) and (7)
support identification

decompose: Q̃R̃ = YeẼ, Q̃ ∈ CL×r
project: ak ← A•,k ( for all k)

γk ←
∥∥∥ak − Q̃Q̃∗ak∥∥∥ / ‖ak‖

Ω = {k : γk ≤ ε1}
while true do

vectorize: MΩ = [vec (A•,j ⊗Bj,•)]j∈Ω

decompose: QR = MΩE, Q ∈ Cm×|Ω|
remove: ∀k ∈ Ω: Q(k)R(k) = MΩ\kE(k)

δk ← ‖(Q(k)Q
∗
(k) −QQ

∗)vec (Y )‖2
k0 ← argmink δk
if δk0 < ε2, Ω← Ω\k0

else break
end while
output: X̂ = argminX ‖Y −AΩXBΩ‖

IV. SIMULATIONS

In the first simulation, we fix the image dimension to be
n1 = 60 and n2 = 60. Only m1 = 12 and m2 = 12
frequency components are observed in each each dimension.
We generate an n1 × n2 image with spikes separated by
b2.5n1/m1c grid points vertically and b2.5n2/m2c grid points
horizontally. The spike magnitudes are randomly set to ±1
with equal probability. The noise matrix E is generated from
a Gaussian distribution whose entries are i.i.d. N(0, σ2) with
σ = 10−2. The parameters K and L used to construct the
Hankel tensor are set to b2m1/3c and b2m2/3c, respectively,
as advised by Hua and Sarkar. We also set the threshold
ε1 in the superset selection via (11) with |S| replaced by
min(m1,m2), |X0min

| = |X0max
| = 1, and s0,|S| replaced

by the smallest singular value of the block symmetric matrix
Y

(m1−K)
e . The constant c in (10) is fixed c = 1 and the

threshold in the pruning step is ε2 = σ
√

logm1m2. Figure 1
shows the recovered images via `1 minimization (basis pursuit)
and the superset method (or SSP, for superset selection and
pruning). Both methods accurately recover the image, hence
are able to super-locate the spikes.

The next simulation demonstrates a more challenging situa-
tion in which the spacings between the spikes are well below
the Rayleigh length, n1

m1
horizontally and n2

m2
vertically. As

explained in [2], `1 minimization fails to recover the image.
With the same setting as in the previous simulation and with
m1 = 6, m2 = 6, and σ = 10−5, we plot the images
recovered by the two methods in figure 2. The Rayleigh box
(with sidelength equal to the Rayleigh length) is also plotted
for reference. It is clear from the figure that the recovery via
SSP is accurate, while `1 minimization isn’t.

For the record, the SSP method fails when σ = 10−3 in
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Fig. 1. An image with well-separated spikes. Top: recovered image
via `1 minimization. Bottom: recovered image via SSP method. Both
methods recover the image accurately. In this example, σ = 1e− 2.
The “Rayleigh box” is shown for reference.

the configuration of the second example. This failure is due to
the violation of the assumption (12) in Proposition 3. Super-
resolution remains an ill-posed problem which can only be
mitigated to a certain extent. The super-resolution problem in
the form considered here will only be resolved once a method
is exhibited for which the admissible noise level provably
reaches the statistical recoverability limit.

V. CONCLUSION

This paper desribes the superset method for dealing with the
image super-resolution problem. The method is still compet-
itive and not entirely unstable in the presence of noise, even
when the distance between spikes is below the Rayleigh limit
– a situation in which few other methods operate.
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Fig. 2. An image with spacing between spikes well below the
Rayleigh length. Top: image recovered via `1 minimization. Right:
image recovered via the SSP method, visually indistinguishable from
the original image. In this example, σ = 1e−5. The “Rayleigh box”
is shown for reference.

Recovered image via SSP
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Fig. 3. With the noise level σ = 1e − 3, SSP fails to recover the
image shown in the bottom of Fig. 2.
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