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4 Konkoly Observatory, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences,
H-1121 Budapest, Konkoly Th. M. út 15-17, Hungary
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ABSTRACT

Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets
orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data
allows us to measure the planet’s occultation (secondary eclipse) and phase curve in the optical, which we combine
with occultations observed by warm Spitzer at 4.5 μm and 3.6 μm and a ground-based occultation observation in
the Ks band (2.1 μm). We derive a day-side hemisphere temperature of 2750 ± 160 K as the effective temperature
of a black body showing the same occultation depths. Comparing the occultation depths with one-dimensional
planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows
evidence for a relatively high geometric albedo, Ag = 0.33+0.04

−0.06. While measured with a simplistic method, a high
Ag is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth
in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was
measured, due to the visual stellar binary companion 1.′′15 ± 0.′′05 away. The revised stellar parameters measured
using these spectra are combined with other measurements, leading to revised planetary mass and radius estimates
of Mp = 4.94–8.09 MJ and Rp = 1.406 ± 0.038 RJ. Finally, we measure a Kepler midoccultation time that is 34.0 ±
6.9 s earlier than expected based on the midtransit time and the delay due to light-travel time and discuss possible
scenarios.

Key words: planetary systems – stars: early-type – stars: individual (Kepler-13, BD+46 2629) –
techniques: photometric – techniques: spectroscopic

Online-only material: color figures, machine-readable tables

1. INTRODUCTION

The study of exoplanetary atmospheres is one of the most
exciting aspects of the discovery of planets outside the solar
system. When the system is in a favorable edge-on geometric
configuration, the atmosphere of the unseen planet can be probed
by measuring the decrease in observed flux during planetary
transit (the planet moves across the disk of its host star) or
planetary occultation (secondary eclipse, when the planet moves
behind the star), at different wavelengths. This approach favors
large, hot, gas giant planets with large atmospheric scale heights,
commonly known as hot Jupiters. This class of planets earns
its name by having a radius about the radius of Jupiter while
orbiting at short orbital periods, close in to their host star. Tidal
interaction is expected to lock (synchronize) the planet spin with
the orbit, keeping the same planetary hemisphere constantly

17 NASA Sagan Fellow.

facing the star (a permanent day side) and the other hemisphere
constantly facing away from the star (a permanent night side).
Such planets do not exist in the solar system, so only by probing
the atmospheres of these distant worlds can we learn about
atmospheric processes and atmospheric chemistry in such exotic
environments.

The number of hot Jupiters whose atmospheres were studied
using occultations is continuously rising and currently number
in the several dozens. As the field transitions from the detailed
study of individual objects to the characterization of a significant
sample, several correlations or patterns are emerging. Several
authors (e.g., Cowan & Agol 2011; Perna et al. 2012; Perez-
Becker & Showman 2013) have noticed that among the hot
Jupiters, the hottest planets tend to have a low albedo and poor
heat redistribution from the day-side hemisphere to the night-
side hemisphere, pointing to a decreased advection efficiency.
Knutson et al. (2010) noticed that planets with an inversion layer
in their upper atmosphere, where temperature increases with
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decreasing pressure, tend to orbit chromospherically quiet (i.e.,
nonactive) stars, whereas planets with no inversion layer orbit
chromospherically active stars. The inversion can be attributed
to an absorber in the upper atmosphere that is being destroyed
by UV radiation from chromospherically active stars (Knutson
et al. 2010). However, the occurrence of atmospheric inversions
might also be related to atmospheric chemical composition,
specifically the C-to-O elemental abundance ratio compared
to the solar composition value (Madhusudhan et al. 2011;
Madhusudhan 2012). Another interesting correlation involving
chromospheric activity was identified by Hartman (2010), who
showed that planets with increased surface gravity tend to orbit
stars with increased chromospheric activity.

The patterns mentioned above are not fully explained. Gain-
ing a better understanding of these patterns requires testing them
with a larger sample and studying planets at extreme environ-
ments or with different characteristics, while observing over a
wide range of wavelengths and obtaining a rough characteriza-
tion of their spectrum. Kepler-13Ab is such an extremely hot
Jupiter, orbiting an A-type star every 1.76 days at a distance
of only 0.034 AU. The close proximity to a hot, early-type star
makes this planet one of the hottest currently known. With an
irradiation at the planetary surface over 15,000 times that of
Jupiter in the solar system, the expected blackbody temperature
of Kepler-13Ab is up to over 3000 K (for zero albedo and no heat
redistribution from the day to night sides), comparable to the
smallest stars, motivating the study of its atmosphere. Moreover,
main-sequence A-type stars are inaccessible to spectroscopic
radial velocity (RV) planet searches because their spectrum
does not allow high-precision RV measurements, making this
a unique opportunity to study a planet in a short-period orbit
around a main-sequence A-type star. The only other currently
known hot Jupiter orbiting a bright A-type star is WASP-33b
(Collier Cameron et al. 2010; Kovács et al. 2013), although that
system is not in the Kepler field, and the host star’s pulsating
nature hampers the measurement of occultation depths.

Here we carry out an atmospheric characterization of
Kepler-13Ab by measuring its occultation in four different
wavelength bands, from the infrared (IR; Spitzer/Infrared array
camera (IRAC) 4.5 μm and 3.6 μm), through the near-IR (NIR;
Ks band), to the optical (Kepler). We also analyze the Kepler
phase curve and obtain Keck/high-resolution echelle spectrom-
eter (HIRES) spectra that result in revised parameters for the ob-
jects in the system. We describe the analysis of our various data
sets in Section 2. In Section 3, we study the planet’s atmosphere,
and in Section 4, we discuss our results.

1.1. The Kepler-13 System

The Kepler-13 system is a four-body system, as far as we
currently know. A high angular resolution image is shown in
Figure 1, taken from the publicly accessible Kepler Community
Follow-up Observing Program (CFOP) website.18 The image
was obtained in the Ks (K short) band with the Palomar
high angular resolution observer (PHARO) camera (Hayward
et al. 2001) and the adaptive optics system mounted on the
Palomar 200 inch (5 m) Hale telescope (P200). The two bright
components seen in Figure 1 are two A-type stars, where
the brighter one, the primary (Kepler-13A), hosts a transiting
planet (Kepler-13Ab19), while the fainter one, the secondary
(Kepler-13B), is orbited by a third star (Kepler-13BB) of

18 https://cfop.ipac.caltech.edu/
19 In the literature it is occasionally referred to as simply Kepler-13b.

Figure 1. High angular resolution adaptive optics imaging of the Kepler-13
system, obtained with P200/PHARO in the Ks band. North is up and east is to
the left. The system is a visual binary, composed of two A-type stars at a sky-
projected separation of 1.′′15 ± 0.′′05. The brighter one, the primary, Kepler-13A,
is to the east (left) and is the planet host. The fainter component, the secondary,
Kepler-13B, is to the west (right) and is itself a stellar binary system, where the
A-type star hosts a late-type star (Santerne et al. 2012).

(A color version of this figure is available in the online journal.)

spectral type G or later (Santerne et al. 2012). The observed
angular separation between the two A-type stars was measured
to be 1.′′12 ± 0.′′08 by (Adams et al. 2012; E. Adams private
communication, 2014) and 1.′′16 ± 0.′′06 by Law et al. (2013),
resulting in a weighted mean of 1.′′15 ± 0.′′05. The distance to the
system is 530 pc (Pickles & Depagne 2010) with an uncertainty
of 20% (A. Pickles, private communication, 2014), giving a
sky-projected separation of 610 ± 120 AU.

The availability of Kepler data for a short-period planet
transiting an A-type star in a bright (V = 9.95 mag) hierarchical
system makes it an interesting astrophysical laboratory. It is
the first planet whose mass was estimated using photometric
light curves (Shporer et al. 2011; Mazeh et al. 2012; Mislis &
Hodgkin 2012; Esteves et al. 2013; Placek et al. 2013), and the
first star–planet system where the star’s obliquity was measured
by modeling the asymmetric transit light curve due to stellar
gravity darkening (Szabó et al. 2011; Barnes et al. 2011). In
addition, orbital precession was also identified (Szabó et al.
2012, 2014).

2. OBSERVATIONS AND DATA ANALYSIS

All data used in this work are publicly available, either
through dedicated archives of the relevant observatory or by
request from the authors.

In all of our photometric light curve analyses, from the
IR (Spitzer/IRAC) through the NIR (P200/wide-field infrared
camera/Ks) to the optical (Kepler), we assume that the measured
flux is the combined flux from the two stars in the visual binary
system (see Figure 1), i.e., the two stars are fully blended
together. We first analyze the data as is, without correcting for the
dilution, and derive the measured occultation depth. Only then
do we correct the measured depth, by estimating the amount
of dilution, and derive the undiluted or corrected occultation
depth. As shown in Section 2.6, we estimate the dilution at
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each observed wavelength band by using Keck/HIRES resolved
spectra of the two stars along with spectral models.

Before moving to the description of the analysis of individual
data sets we note that throughout this paper we have estimated
the scatter in a given sample using the median absolute deviation
from the median, also called median absolute deviation (MAD),
defined as

MAD = medianj

∣∣Xj − mediani(Xi)
∣∣ . (1)

This statistic is more robust than the root mean square because
it is less sensitive to outliers and hence provides a more reliable
estimate of the standard deviation (StD) of the underlying
distribution (e.g., Hoaglin et al. 1983). The StD, or 1σ , is
calculated as

σ = 1.4826 · MAD. (2)

In addition, we note that when estimating the scatter in a given
sample or when performing model fitting, we removed outliers
iteratively while recalculating the scatter in each iteration until
no outliers are left. The threshold, n, in units of σ , which
is the distance from the mean beyond which outliers were
removed, was chosen to give an expectation value of less than
0.5 for the total number of outlier data points that exist in
the sample, assuming a Gaussian distribution. This way, the
threshold depends on the sample size because as a sample
grows larger so does the probability of data points having values
further away from the median. This criteria can be written as
the following inequality, which n must satisfy given a sample of
size N with mean μ and standard deviation σ :

1 − 1

2N
<

1

σ
√

2π

∫ μ+nσ

μ−nσ

e
− (x−μ)2

2σ2 dx. (3)

For the sample sizes in this paper, ranging from about 1000 up
to about 50,000, the minimal value for n ranges from 3.5 to 4.5.
Removing data points in this way ensures a negligible decrease
in the measured scatter due to outlier removal, following a
possible removal of data points belonging to the same Gaussian
distribution but located at the distribution tails. We have also
performed a visual inspection to verify that points identified
as outliers do not appear to belong to the same Gaussian
distribution.

2.1. Spitzer 4.5 μm Data

Our analysis was done on Spitzer Basic Calibrated Data
produced by IRAC pipeline version S18.18.0 and obtained as
part of Program ID 80219 (PI: H. Knutson). Our Spitzer/IRAC
photometric and model fitting pipeline was implemented in
Matlab, and we make our code publicly available.20

We obtained a total of 3,973 full-frame exposures, with an
effective integration time of 4.4 s and a median cycle time of
7.2 s. The entire data set spans 7.83 hr.

Before analyzing the data we visually examined the 5.′2 × 5.′2
IRAC full-frame images to verify that there are no bright stars
other than the target within the intended photometric aperture or
sky annulus. We also verified that the visual binary nature of the
target does not affect its point-spread function (PSF) shape and
that its width is comparable to that of other stars in the frame’s
field of view. The latter is expected because the IRAC pixel scale
of 1.′′2 per pixel is comparable to the angular distance between
the visual binary components, so the two stars are fully blended
on Spitzer/IRAC pixels.

20 http://gps.caltech.edu/∼shporer/spitzerphot/

2.1.1. Preprocessing

First, we extracted the midexposure Barycentric Julian Date
(BJD) of all images using the information in the image keyword
headers. We used the BMJD_OBS keyword timestamps, which
is in UTC time, and added the leap seconds given by the
difference between the ET_OBS and UTCS_OBS keyword
timestamps. Next we added half the cycle time, given by the
FRAMTIME header keyword, to get the midexposure BJD:

BJD = BMJD OBS + (ET OBS − UTCS OBS)

+ FRAMTIME/2 + 2,400,000.5, (4)

where ET_OBS, UTCS_OBS, and FRAMTIME were converted
to units of days. Equation (4) gives an approximate BJD_TDB to
better than one second (Eastman et al. 2010), which is sufficient
for our needs.

Using the target’s median pixel position across all images,
we extracted the 80 × 80 pixel region centered on the target
from all 3,973 exposures. Those subframes were uploaded into
a three-dimensional (3D) matrix, whose dimensions are X pixel
coordinate, Y pixel coordinate, and image number.

Next, we removed the first 197 (= 5.0%) images in the so-
called Spitzer “ramp,” which is a fast asymptotically shaped
instrumental increase in observed flux at the beginning of the
observation. The cause for this fast initial ramp is not completely
clear, but it may be due to telescope pointing settling or charge
trapping. It has become common practice to trim out the initial
part of the data, ranging from a few tens of minutes up to an
hour or more, in order to minimize the scatter in the residuals
from the best-fit model (e.g., Knutson et al. 2012; Todorov et al.
2012; Lewis et al. 2013). The data removed here includes the
first 23 minutes (= 0.39 hr) of the observation.

We have examined each pixel time series separately, along the
image number dimension of the 3D matrix, and marked as bad
pixels those deviating by more than 5σ from the series moving
median. Such pixels were marked only in the specific frames
where they showed a large deviation. No alignment between
subframes was done prior to this step because for this purpose
the small pixel shifts between exposures, at the level of a few
0.01 pixel (see below), are negligible.

A final preprocessing step included conversion of pixel values
from MJy sr−1 to electrons. This was done using the information
in the flexible image transport system (FITS) image header
keywords, as described in the IRAC Instrument Handbook,
Section 6.2.21

2.1.2. Aperture Photometry

In each exposure, the target’s central pixel position was es-
timated by fitting a two-dimensional Gaussian. We have also
experimented with determining the central pixel position us-
ing the two-dimensional center of mass (X and Y first mo-
ments), but we achieved better results using a Gaussian fit, with
a decreased scatter in the residuals from the best-fit model.
The resulting scatter in central-position X and Y coordinates
is ≈0.01–0.02 pixels. Figure 2 shows the X and Y pixel-
position time series, where the familiar sawtooth behavior with
a timescale of approximately 40 minutes is evident. This cen-
tral position variation is attributed to an oscillation in Spitzer
pointing, which when combined with the nonuniform sensi-
tivity across IRAC pixels results in similar oscillations in the
measured flux.
21 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/54/#_Toc296497452
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Figure 2. Spitzer pixel position and raw photometry binned time series, in 3.6 μm (left) and 4.5 μm (right). Top panels show the Y pixel position, middle panels the
X pixel position, and bottom panels the raw photometry. The overplotted solid red line is a Savitzky–Golay smoothing, showing the familiar sawtooth pattern, with a
timescale of 40 minutes.

(A color version of this figure is available in the online journal.)

We next calculated the target’s flux in each image using
aperture photometry with a circular aperture centered on the
target and summing over the sky-subtracted pixel values of
pixels within the aperture. We used a time-varying aperture
calculated using the “noise pixel” parameter (Mighell 2005;
Knutson et al. 2012; Lewis et al. 2013, see also IRAC Instrument
Handbook Section 2.2.222). In this method, we first calculate

β̃ = (ΣiIi)
2

ΣiI
2
i

, (5)

where Ii is the measured intensity in pixel i. This parameter
gives the equivalent number of pixels that contribute to the
point spread function, so it is an approximation for the aperture
radius squared. Hence, we take the aperture radius to be

rj = c0 + c1

√
β̃j , (6)

where rj is the photometric aperture radius in image j, where
the noise pixel parameter is β̃j , and c0 and c1 are additive and
multiplicative coefficients, respectively, that we optimize. Our
best results were obtained for c1 = 1.1 and c0 = 0, meaning
no additive factor. This approach resulted in a decreased scatter
of the residuals from the best-fit model compared to using the
same aperture for all frames.

22 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/5/

The sky value was estimated as the median value of pixels
within an annulus centered on the target, while iteratively
removing 5σ outliers. The inner and outer annulus radii for
which we obtained the best results were 10 and 30 pixels,
respectively, although varying these values by a few pixels did
not change the results significantly. Typically no more than five
sky pixels were identified as outliers in each image.

Images where a bad pixel (see Section 2.1.1) was identified
within the photometric aperture were ignored. This removed an
additional 76 exposures from further analysis, which are 1.9%
of all exposures that together with the removal of the initial
ramp amounts to 273 removed exposures, or 6.9%, leaving
3,700 exposures. When estimating the median sky level, bad
pixels within the sky annulus were ignored. We also checked
for exposures where the target’s position was beyond 4σ away
from the median position and did not find any.

Finally, we have median normalized the light curve measured
in electrons, converting it into a relative flux light curve. We refer
to this light curve as the raw photometry light curve, presented
in Figure 2 bottom panel.

2.1.3. Postprocessing and Model Fitting

To model the raw photometry light curve we assumed that
the relative flux is a function of pixel position and time,
F (x, y, t), and that light curve variability is a consequence of
three processes. The first is the planetary occultation, O(t), the
second is the nonuniform intrapixel sensitivity, M(x, y), and the
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third is a long-term time-dependent process, T (t).23 Therefore
our model is

F (x, y, t) = O(t) × M(x, y) × T (t). (7)

For the occultation model, O(t), we used a model based on the
Mandel & Agol (2002) transit model, with the occultation depth
as an additional parameter to account for the planet’s luminosity.
Also, the stellar limb darkening is irrelevant here, and we
assume uniform surface brightness across the planet’s disk. Our
model assumes a circular orbit, following the expectation of
complete circularization of such close-in planetary orbits (e.g.,
Mazeh 2008). Only the occultation depth was allowed to vary
freely. The ephemeris was fixed to the one derived here (see
Section 2.4), while the rest of the light curve parameters were
fixed to the known values (Barnes et al. 2011) because there
is not enough signal-to-noise in the Spitzer data to efficiently
constrain them. For the CCD position-dependent and time-
dependent components, we used polynomials:

M(x, y) = M0 + M1,xx + M2,xx
2 + M1,yy + M2,yy

2, (8)

T (t) = 1 + T1t, (9)

where adding higher order or mixed terms (in Equation (8)) did
not decrease the uncertainty on the fitted occultation depth or
improve the scatter of the residuals from the best-fit model.

The above model includes seven free parameters: the occul-
tation depth and six polynomial coefficients, which we fitted
using the Monte Carlo Markov Chain (MCMC) algorithm as
described in Shporer et al. (2009). We ran a total of five chains,
consisting of 106 steps each, resulting in Gaussian distributions
for the fitted parameters, after ignoring the initial 20% of each
chain. We took the distribution median to be the best-fit value
and the values at 84.13 and 15.87 percentiles to be the +1σ
and −1σ confidence limits, respectively. We compared the er-
rors from the MCMC approach with errors estimated using the
“residual permutation” method, referred to also as the “prayer
bead” method (e.g., Gillon et al. 2007; Carter & Winn 2009),
and adopted the larger of the two errors for each fit parameter. In
the prayer bead method, we cyclicly shifted the residuals with
respect to time and refitted. This way each fit is affected by the
same correlated noise that may exist in the original data. This
approach results in a distribution for each fitted parameter where
we take the values at 84.13 and 15.87 percentiles to be the +1σ
and −1σ confidence limits. We verified that the distributions’
medians were indistinguishable from the initial fitted values.

The resulting occultation depth is listed in Table 9 along
with the scatter of the residuals, which is 2.1% larger than the
expected Poisson noise. Table 9 also lists the scatter while using
one-minute bins, also referred to as the photometric noise rate
(PNR; e.g., Shporer et al. 2009; Fulton et al. 2011). The latter
allows an easy comparison between light curves obtained with
different instruments, with different exposure times and cycle
times.

We have experimented with other models and fitting methods
to confirm our results. First, we replaced the Mandel & Agol
(2002) model with a trapezoid model because they differ
only during the occultation ingress and egress phase, and the

23 This slowly varying temporal component is sometimes also referred to as a
ramp in the literature, not to be confused with the fast initial ramp that is
trimmed out (see Section 2.1.1).
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Figure 3. Light curve residuals scatter vs. bin width (black filled circles with
error bars), in log-log scale, for the Spitzer 3.6 μm light curve (bottom) and
the 4.5 μm light curve (top). The solid red line shows the expected decrease
in scatter according to Poisson statistics, and the vertical dashed line marks
ingress/egress duration.

(A color version of this figure is available in the online journal.)

difference is up to only a few 10−5 in relative flux. The results we
got using this model are the same as when using the original one.
Another approach we tried, motivated by the sinusoidal shape
of the position-dependent flux modulations (see Figure 2), was
adding sinusoidal harmonics to the long-term time-dependent
process (T (t)) while removing the M(x, y) component from
the model (see Equation (7)). Combined with the trapezoid
model, this allows a linear least squares fitting of the entire light
curve model using a single matrix inversion operation, making
it efficient in computing time. However, this approach gave
poorer results than the original one (larger residuals scatter with
clear systematic features). A possible reason for this is that the
position-dependent flux modulations are not well approximated
by sinusoids.

The 4.5 μm occultation light curve is listed in Table 1 and
shown in Figure 4 after removing the positional (M(x, y)) and
long-term temporal (T (t)) components. In Figure 3, we plot the
scatter of the residuals for a range of bin sizes. Although the
scatter decreases with the inverse square root of the bin width as
expected for Poisson noise, there does seem to be a correlated
noise component at 1–10 minutes whose source is unknown.

2.2. Spitzer 3.6 μm Data

Our approach in analyzing these data was largely similar to
that of the 4.5 μm analysis. Basic calibrated data files were
produced by IRAC pipeline version S19.1.0, and data were
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Table 1
Spitzer 4.5 μm Light Curve

Time X Y Raw Rel. Fluxa Rel. Flux Error Detrended Rel. Fluxb

(BJD) (pixel) (pixel)

2455795.4900269 127.04045 128.57439 1.002220 0.003385 1.003386
2455795.4901103 127.03541 128.56319 1.002003 0.003384 1.002439
2455795.4901936 127.03748 128.56890 1.000259 0.003381 1.001002
2455795.4902723 127.03763 128.56315 0.999927 0.003381 1.000507
2455795.4903556 127.04253 128.56182 0.999790 0.003381 1.000691
2455795.4904389 127.03489 128.55481 0.997916 0.003378 0.998151
2455795.4905177 127.04364 128.55421 0.993622 0.003370 0.994462
2455795.4906010 127.04522 128.56129 0.999825 0.003381 1.000926
2455795.4906844 127.04823 128.56173 0.999433 0.003380 1.000797
2455795.4907676 127.05526 128.58094 0.997450 0.003377 1.000194

Notes. Columns include, from left to right: midexposure BJD, X coordinate, Y coordinate, raw relative flux, relative flux error, and
detrended light curve after removing all variabilities except the occultation.
a Raw relative flux, without correcting for the intrapixel sensitivity variations.
b Detrended relative flux, after removing the intrapixel sensitivity variations.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding
its form and content.)

obtained as part of Program ID 80219 (PI: H. Knutson). We
obtained 14,144 individual exposures spanning 7.94 hr, with an
exposure time of 1.92 s and a median cycle time of 2.00 s.

We ignored the first 95 minutes (1.58 hr) of data due to the
fast initial ramp, corresponding to 2,809 exposures or 19.9%
of all exposures. This ramp is longer than the one we removed
in the 4.5 μm data, consistent with other studies that found a
longer initial ramp in this band than in 4.5 μm (e.g., Knutson
et al. 2012; Lewis et al. 2013). We then rejected an additional
251 exposures, or 1.8%, with a bad pixel identified within the
photometric aperture. Therefore, the number of exposures used
in the analysis is 11,084, spanning 6.36 hr.

We used a two-dimensional Gaussian fit to determine the
central pixel position, with a resulting scatter of 0.03 pixel and
0.07 pixel in the X and Y coordinates, respectively. The sawtooth
pattern is seen in both coordinates time series, shown in Figure 2.

We determined the aperture used in each frame based on the
noise pixel parameter, β̃ (see Equation (5)), where the aperture
radius was taken to be 1.0 ×√

β̃, meaning c1 = 1.0 and c0 = 0
(see Equation (6)). The sky value was taken to be the median
of pixels within an annulus between radii of 10 and 20 pixels
while ignoring bad pixels.

Here our fitted model did not include a time component,
meaning T (t) was taken to be unity in Equation (7) because
when including a linear component as a function of time (T1
in Equation (9)) the fitted coefficient was consistent with zero,
and removing it did not affect any of the results, including
the residual’s scatter and occultation depth. Therefore, the total
number of fitted parameters was six: the occultation depth and
five polynomial coefficients.

The resulting occultation depth is listed in Table 9, along with
the residuals scatter and PNR. The scatter is 18.7% larger than
the expected Poisson noise. Although this is more than for the
4.5 μm data, it is comparable to the excess noise level above the
Poisson noise level found in other studies (e.g., Knutson et al.
2012; O’Rourke et al. 2014). The fitted occultation light curve
is listed in Table 2 and plotted in Figure 4, and the residuals
scatter vs. bin size is plotted in Figure 3.

2.3. Palomar 200 inch WIRC Ks Data

We observed an occultation of Kepler-13Ab in the Ks band
on UT 2012 August 28 with the wide field infrared camera
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Figure 4. Binned occultation light curves in (from top to bottom) 4.5 μm and
3.6 μm (Spitzer), Ks band (WIRC), and optical (Kepler). The solid red line is
the occultation model. Light curves are plotted in relative flux vs. time from
midoccultation and are shifted vertically for visibility purposes. The Kepler
occultation depth is too shallow to be seen on this scale, and the light curve is
presented here just for reference, whereas it is shown in detail in Figure 5.

(A color version of this figure is available in the online journal.)

(WIRC; Wilson et al. 2003), mounted on the P200. The WIRC
instrument has a 2,048 × 2,048 pixel detector, a pixel scale of
0.′′2,487 per pixel, and a field of view of 8.′7 × 8.′7. Observation of
the target field began at 03:38:04.8 UTC and ended 6.57 hr later

6



The Astrophysical Journal, 788:92 (19pp), 2014 June 10 Shporer et al.

Table 2
Spitzer 3.6 μm Light Curve

Time X Y Raw Rel. Fluxa Rel. Flux Error Detrended Rel. Fluxb

(BJD) (pixel) (pixel)

2455809.6600049 15.28237 15.81692 0.986185 0.004432 0.991893
2455809.6600281 15.26722 15.79148 0.994718 0.004451 0.997973
2455809.6600512 15.27482 15.78554 0.995372 0.004453 0.999090
2455809.6600744 15.28386 15.78273 0.996489 0.004455 1.000945
2455809.6600975 15.28723 15.78937 1.000421 0.004464 1.005526
2455809.6601207 15.27445 15.77484 0.993759 0.004449 0.996927
2455809.6601438 15.27659 15.76911 0.998592 0.004460 1.001693
2455809.6602072 15.26584 15.74978 0.992963 0.004447 0.993996
2455809.6602304 15.25616 15.76161 0.998753 0.004460 0.999500
2455809.6602535 15.26450 15.76773 0.993252 0.004448 0.995111

Notes. Columns include, from left to right: midexposure BJD, X coordinate, Y coordinate, raw relative flux, relative flux error, and
detrended light curve after removing all variabilities except the occultation.
a Raw relative flux, without correcting for the intrapixel sensitivity variations.
b Detrended relative flux, after removing the intrapixel sensitivity variations.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding
its form and content.)

while obtaining a total of 1,123 images. The first image was
rejected because the telescope guiding had not yet stabilized,
and so were the last three images due to increased background
level as the night ended. The air mass ranged from 1.03 to
2.15 during the observation. The seeing varied throughout the
night but remained �1′′. We began with an exposure time of
9 s but decreased the exposure time incrementally to 8 s, 7 s,
and finally 6 s throughout the night to keep pixel counts in
the detector’s linear regime, well below saturation. We also
defocused the telescope to a PSF FWHM of ∼2.′′5–3.′′0 to avoid
saturation and systematic errors resulting from variations in
intrapixel sensitivity. As a result, Kepler-13A and Kepler-13B
were completely blended in all images, and we treated the target
as a single source in our photometric analysis. To minimize
systematics related to imperfect flat-fielding and interpixel
variations in the detector, we did not dither the telescope.

Data reduction and analysis was done using a pipeline
developed specifically for WIRC data, described in more detail
in O’Rourke et al. (2014), and we give only a short description
here. Images were dark-subtracted and flat-fielded using the
median of 18 normalized twilight flats as a single master flat
field. We selected nine reference stars with median fluxes
ranging from ∼0.09 to 1.80 times that of Kepler-13. Two bright
stars in the field were ignored because their fluxes consistently
saturated the detector or exceeded the linearity regime. We
performed aperture photometry on each star using circular
apertures with fixed radii and determined the sky background
level using an annulus centered on the star’s position. Aperture
radius and sky annulus inner and outer radii were optimized to
minimize the scatter in our final light curve model fit, yielding
an aperture of 20.0 pixels and sky annulus inner and outer radii
of 25.0 and 55.0 pixels, respectively. At this point we excluded
another 16 images from the analysis because either pixel counts
in the photometric apertures exceeded the detector’s linearity
regime or the total flux of the target or one of the reference stars
varied by more than 3σ from the median value in the adjacent
20 frames in the time series.

For each measurement we calculated the mean of the nine
reference stars and derived a single reference light curve (using
the median or flux-weighted mean produced inferior results in
the eventual fit). We divided the light curve for Kepler-13 by the
reference light curve. Then, we fitted this normalized light curve

Table 3
WIRC Ks Light Curve

Time Rel. Flux Rel. Flux Error Detrended Rel. Flux
(BJD)

2456167.646833 1.00189 0.00389 0.99970
2456167.647051 1.00075 0.00389 0.99856
2456167.647264 1.00443 0.00389 1.00224
2456167.647480 1.00513 0.00389 1.00294
2456167.647907 0.99883 0.00389 0.99667
2456167.648214 1.00299 0.00389 1.00083
2456167.648473 1.00050 0.00389 0.99835
2456167.648735 0.99815 0.00389 0.99601
2456167.648994 0.99983 0.00389 0.99770
2456167.649254 1.00573 0.00389 1.00359

Notes. Columns include, from left to right: midexposure BJD, relative flux
(without correcting for the long-term trend), relative flux error, and detrended
light curve after removing the long-term temporal trend.

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

simultaneously with a linear trend with time and a model for the
occultation. As done for the Spitzer data, we used an occultation
model based on Mandel & Agol (2002) while allowing only the
occultation depth to vary freely and keeping all other occultation
light curve parameters fixed. We used the ephemeris derived
here (see Section 2.4) and adopt the rest of the model parameter
values from the literature (Barnes et al. 2011). We fitted the
light curve model using the MCMC algorithm and also used
the prayer bead method where the estimated uncertainties were
found to be in good agreement.

We derived an occultation depth of 0.063 ± 0.026%. The
residuals scatter for the best-fit solution is 0.389%, a factor of
3.56 larger than the Poisson noise limit of 0.109%. Such noise
levels are similar to those obtained for other WIRC data sets
(Zhao et al. 2012a, 2012b; O’Rourke et al. 2014). The WIRC/Ks
occultation light curve is shown in Figure 4 and listed in Table 3.

2.4. Kepler Occultation Data

Kepler data allow a high-precision measurement of Kepler-
13Ab occultation in the optical. This is thanks to the high-
precision photometry, the many occultation events observed,
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Table 4
Occultation Fit Parameters

Parameter Value

Constrained parameters:
Rp/Rs 0.0845 ± 0.0012
a/Rs 4.44 ± 0.16
b 0.317 ± 0.033

Fitted parameters:
DKepler , ppm 90.81 ± 0.27
P, day 1.76358799 ± 0.00000037
Tocc, BJD 2,455,603.448101 ± 0.000079

and the availability of a large amount of short-cadence data,
which we used for ten quarters: Q2–Q3 and Q7–Q14.

We processed the Kepler short-cadence occultation data by
first going through each occultation event and normalizing it us-
ing a second-degree polynomial fitted to the out-of-occultation
data. Using a third-degree polynomial did not change the results.
For this normalization, we used data segments centered on the
occultation and spanning a total of three times the occultation
itself, including out-of-occultation data before ingress and after
egress spanning the same duration as the occultation. We con-
sidered only full events, meaning where the entire occultation
event was observed including both pre-ingress and post-egress
data. Polynomial fitting was done by iteratively removing 4σ
outliers until none were identified (there were approximately
600 data points in each individual occultation light curve seg-
ment). We also removed occultation events occurring at times
where the data showed strong trends, for example, near space-
craft safe modes.24 We were left with 453 viable occultation
events out of the 522 events that occurred during the above
10 quarters, which are 87% of the events. For the majority of
the other 13% events, no data were obtained at all because they
happened during breaks in data collection due to data down-
loads, quarterly spacecraft rotations, and safe modes.

Next, we fitted the data using an occultation light curve model
based on the Mandel & Agol (2002) transit model as done for the
Spitzer and WIRC data. Despite the high quality of the Kepler
short-cadence occultation data, it cannot resolve the degeneracy
between some of the model parameters, specifically the planet-
to-star radii ratio, Rp/Rs , the orbital semimajor axis normalized
by the stellar radius, a/Rs , the occultation impact parameter, b,
and the occultation depth, DKepler. Therefore, we used Gaussian
priors on three of the parameters: Rp/Rs , a/Rs , and b, and fitted
as free parameters the other three model parameters, including
the orbital period, P, a specific midoccultation time, Tocc, and
the occultation depth. Gaussian priors were taken from Barnes
et al. (2011), where fitting the transit light curve resolved the
three parameters Rp/Rs , a/Rs , and b.

After obtaining a preliminary fitted model in the manner
described below, we repeated the fit while iteratively removing
outliers beyond 5.5σ , rejecting 0.27% of the 278,901 data
points. Visual inspection showed that increasing the outlier
threshold did not remove some clear outliers, while decreasing
it removed data points that did not seem to be outliers.

We carried out model fitting using the MCMC algorithm. We
ran a total of five chains, consisting of 106 steps each, resulting
in Gaussian distributions for the fitted parameters, after ignoring
the initial 20% of each chain. We took the distributions median to
be the best-fit value and the values at 84.13 and 15.87 percentiles
to be the +1σ and −1σ confidence limits, respectively. The

24 http://archive.stsci.edu/kepler/manuals/Data_Characteristics.pdf
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Figure 5. Kepler occultation light curve. Top: binned short-cadence data (black
filled circles with error bars) and best-fit model (red solid line). Bottom: binned
residuals (black circles) with error bars. A dashed black line is plotted at zero
residuals for reference.

(A color version of this figure is available in the online journal.)

assumed priors and fitted parameters are listed in Table 4. We
also applied a prayer bead analysis to the Kepler occultation
data that resulted in the same fitted parameter uncertainties as
the MCMC approach.

The Kepler phase-folded and binned light curve is presented
in Figure 5 along with the fitted model and residuals. The
residuals scatter is 109 ppm, and because the data is 1 minute
cadence, this scatter is also the PNR of the unfolded and
unbinned data (see Table 9). The PNR of the phase-folded and
binned data, equivalent to the scatter of a binned light curve
using 1 minute wide bins, is 5.0 ppm. We used the orbital
ephemeris (P and Tocc) obtained here in modeling all other data
sets analyzed in this work because it is of superior precision to
any ephemeris currently available in the literature.

2.4.1. Comparing Occultation to Transit Times

Model fitting the transit light curve is beyond the scope of this
work because it requires carefully accounting for the gravity
darkening that dominates the star’s surface brightness. This
results from the star’s rapid rotation, which is typical of main-
sequence stars of this spectral type. The rapid rotation leads to
increased gravity near the stellar poles compared to the stellar
equator, which results in increased surface temperature and
hence increased brightness (Monnier et al. 2007). This makes
the light curve deviate from the Mandel & Agol (2002) model
that includes only limb darkening, as studied in detail by Barnes
(2009) and identified for Kepler-13Ab by Szabó et al. (2011).
In addition, due to the host star’s rapid rotation, the transit
light curve is expected to be distorted also by the photometric
Rossiter–McLaughlin (RM) effect (Shporer et al. 2012; Groot
2012). Fortunately, a detailed model fitting of Kepler-13Ab
transit was already done by Barnes et al. (2011).

Comparing the midoccultation time derived here to the
midtransit time of Barnes et al. (2011) shows that the difference
is consistent with half an orbital period:

Δt = Tocc − Ttr − P/2 = −2.6 ± 7.5 s, (10)

where Ttr is the midtransit time from Barnes et al. (2011)
corrected for the Kepler timing error.25 We have subtracted from

25 http://archive.stsci.edu/kepler/timing_error.html
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Figure 6. Top: zoomed-in view of Kepler phase-folded and binned light curve,
as relative flux vs. phase, around ingress (left) and egress (right). Red solid line
marks the fitted model. Middle: residuals, data subtracted by fitted model, of
the light curves shown at the top panels. Horizontal dashed black line marks the
zero residuals level, for reference. Bottom: residuals from a model shifted to
the expected midoccultation time assuming a circular orbit (see Section 2.4.1).
In all panels, vertical dashed black lines mark the start and end of ingress and
egress (four points of contact).

(A color version of this figure is available in the online journal.)

the above result an integer number of orbital periods. Using Ttr
from Batalha et al. (2013) gives only a slightly different value,
of Δt = +3.0 ± 6.9 s, within 1σ from the above, although
the latter value is affected by fitting a symmetric transit light
curve model to an asymmetric one, so it does not account for
the effects mentioned above, which could bias the midtransit
time measurement. We verified that the period derived here is
consistent with the period reported in the literature based on
analysis of the transit light curve (Borucki et al. 2011; Barnes
et al. 2011; Batalha et al. 2013), although the period reported
here is more precise.

The result presented in Equation (10) is surprising because
we would expect a time difference of +34.0 ± 0.7 s due
to a light-travel time delay (e.g., Loeb 2005; Kaplan 2010).
This expectation is based on the system parameters measured
here. The difference between the expected and measured Δt
equals (+2.4 ± 0.5) × 10−4 of the orbital phase, close to a 5σ
significance.

To investigate this further, Figure 6 shows a zoom-in view
of the Kepler occultation light curve ingress and egress (top
panels). Compared to other phases, the light curve does not show
an increased scatter or correlated noise features during ingress or
egress (middle panels). We also plot, in Figure 6 bottom panels,
the residuals from a model with Tocc shifted to the expected time
and assuming a circular orbit. Those residuals do show slightly
increased correlated noise features during ingress and egress,
although their significance is low. This shows visually how the
midoccultation time fitted here better describes the data than the
predicted midoccultation time based on the midtransit time of
Barnes et al. (2011) and the light-travel time delay.

One possible explanation for the measured time shift is that
the light curve ingress and egress are distorted in a way that given
the quality of our data is consistent with our light curve model
with a shifted midoccultation time. Such a distortion can be
induced by an asymmetric planetary optical surface brightness,
where the brightest region is shifted away from the substellar
point. In such cases, the largest slope during ingress and egress
will occur slightly earlier or later compared to cases where
the planetary surface brightness is symmetric. This in turn will
cause a shift in the measured midoccultation time when using
a model that assumes symmetric surface brightness. Williams
et al. (2006; see also de Wit et al. 2012) discuss the impact of a
nonuniform surface brightness on the shape of the ingress and
egress and the measured midoccultation time when fitted with
a model assuming a uniform distribution. A time shift induced
by a so-called hot spot or by an offset of the hottest region on
the planetary surface from the substellar point was measured by
Agol et al. (2010) at 8 μm for HD 189733b. In that case, the
hot spot is attributed to superrotating winds near the planetary
equator that shift the hot spot eastward of the substellar point
(e.g., Showman & Guillot 2002; Knutson et al. 2007; Showman
et al. 2009). This causes a delay in the measured Tocc whereas
we find that Kepler-13Ab’s occultation occurs early. The latter
would be consistent with a bright region located westward of the
substellar point. Demory et al. (2013) identified a nonuniform
reflectivity in the optical for Kepler-7b, where the planet’s most
reflective region is located westward of the substellar point. This
should cause the measured occultation time for that planet to
occur early, although this effect is not currently detectable in the
Kepler-7 system.

A different possible explanation for the time shift is a small
orbital eccentricity, e. A small eccentricity adds approximately
2Pe cos ω/π to the time between occultation and transit (Winn
2011, Equation 33), where ω is the argument of periastron.
Therefore a small eccentricity of about only 5 × 10−4 is enough
to shift Δt by about half a minute while inducing a very small
difference between the transit and occultation duration (Winn
2011, Equation 34) of less than 10 s. The impact of such a
small eccentricity on the phased light curve shape (Section 2.5)
is undetectable with our current data, so we cannot reject this
possibility out of hand.

Yet another process that may affect the measured Tocc is the
propagation-delay effect described by Loeb (2005), in which
the planet is moving away from the observer during occultation
ingress and toward the observer during egress, causing the latter
to appear slightly shorter than the former. However, that effect
is below the sensitivity of our data.

2.5. Kepler Phase Curve Data

Kepler ’s high-quality data allow us to study optical photomet-
ric modulations induced by orbital motion in star–planet systems
(Loeb & Gaudi 2003; Zucker et al. 2007). For the Kepler-13A
system, that was already done by several authors (Shporer et al.
2011; Mazeh et al. 2012; Mislis & Hodgkin 2012; Esteves et al.
2013; Placek et al. 2013). We carry out here an analysis of
the optical phase curve using 13 quarters of long-cadence data,
Q2 through Q14, comprising over four times the Kepler data
used in previous studies. We do not use Kepler short-cadence
data here because the higher time resolution has no additional
value for the study of the sinusoidal variability along the orbital
motion; using it will make the analysis unnecessarily more CPU-
intensebecause of the increased amount of data points, and short-
cadence data is available only for 10 quarters leading to Q14.
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Table 5
Fitted Amplitudes

Component Measured Amplitude Corrected Amplitude
(ppm) (ppm)

Two-harmonics model:
a1c – Reflection 40.00 ± 0.37 76.52 ± 1.04
a1s – Beaming 4.97 ± 0.30 9.51 ± 0.58
a2c – Ellipsoidal 31.40 ± 0.48 60.07 ± 1.10
a2s 0.34 ± 0.36 0.65 ± 0.69

Three-harmonics model:
a1c – Reflection 40.87 ± 0.36 78.18 ± 1.04
a1s – Beaming 4.94 ± 0.25 9.45 ± 0.49
a2c – Ellipsoidal 31.41 ± 0.44 60.09 ± 1.03
a2s 0.42 ± 0.32 0.80 ± 0.61
a3c 1.66 ± 0.29 3.18 ± 0.56
a3s 4.12 ± 0.20 7.88 ± 0.39

We first remove instrumental signals or trends by fitting the
first four cotrending basis vectors to the data of each quarter
using the Pyke Python package (Still & Barclay 2012). We then
continue in a similar way to Shporer et al. (2011), where each
continuous segment of data was detrended by fitting a fifth-
degree polynomial while ignoring in-eclipse (in-transit and in-
occultation) data and then divided by that polynomial. This did
not affect the sinusoidal modulations along the orbit because
the duration of each continuous segment is at least an order of
magnitude longer than the orbital period. Fitting was done while
iteratively rejecting 5σ outliers until none are identified. Using
polynomial degrees of four and six did not change the results.
We used the ephemeris obtained in the Kepler occultation light
curve fit (see Section 2.4 and Table 4) and an eclipse duration
an hour longer than the known 3.2 hr duration, to remove any
long-cadence measurements partially in eclipse.

Next we analyze the variability in the phase-folded light
curve. There are three well-known mechanisms through which
the orbital motion of the star–planet system induces photometric
modulations (e.g., Loeb & Gaudi 2003; Zucker et al. 2007;
Faigler & Mazeh 2011). Those include (1) the reflection effect,
due to both planetary thermal emission and reflected stellar light
from the planetary surface. (2) the beaming effect, due to the
varying RV of the stellar host; and (3) the ellipsoidal effect, due
to tidal forces induced by the planet on the host.

We modeled the photometric modulations along the orbit
using a simple model consisting of a sinusoidal component at
the orbital period and two additional sinusoidal components at
the first and second harmonics:

f (t) = a0 + a1c cos

(
2π

P
t

)
+ a1s sin

(
2π

P
t

)

+ a2c cos

(
2π

P/2
t

)
+ a2s sin

(
2π

P/2
t

)

+ a3c cos

(
2π

P/3
t

)
+ a3s sin

(
2π

P/3
t

)
, (11)

where f is relative flux, P the orbital period, and t is time
subtracted by midtransit time, so the transit is taken to be
at orbital phase zero. This model is similar to the beaming,
ellipsoidal, and reflection (BEER) model (Faigler & Mazeh
2011) that we used in Shporer et al. (2011), only with an
additional component at the second harmonic. In this formalism,
the reflection, beaming, and ellipsoidal effects have amplitudes
a1c, a1s , and a2c, respectively. The coefficient of the sine
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Figure 7. Top: phase-folded long-cadence Kepler light curve. Long cadence
is marked by gray dots in the background; the binned light curve is in black
filled circles (error bars comparable to marker size). The blue and red solid lines
are the two-harmonics and three-harmonics model fits, respectively. Bottom:
residuals (data subtracted by the model) from the two-harmonics model in blue
and the three-harmonics model in red. The two-harmonics model residuals show
strong correlated noise features that are not seen in the three-harmonics model
residuals, indicating the latter is a better description of the data.

(A color version of this figure is available in the online journal.)

component of the first harmonic, a2s , and the coefficients of
the second harmonic, a3c and a3s , are not associated with any of
the well-known physical effects and therefore are expected to
be small if not negligible, and they are included in the model for
completeness. We refer to this model as the three-harmonics
model. We also carried out a separate analysis without the
second harmonic, meaning where a3c and a3s are fixed to zero,
and refer to that model as the two-harmonics model.

We phase folded the data using the occultation ephemeris
derived here and iteratively fitted the model above while
rejecting outliers until no 4.5σ outliers were left. The outlier
threshold was chosen by visually examining the phased data,
consisting of approximately 44,000 individual long-cadence
data points, to verify that all rejected points are clear outliers
and no additional outliers are left.

Our fitted three-harmonics model is shown in red in Figure 7,
including residuals in the bottom panel, and the fitted amplitudes
listed in Table 5 bottom part. The fitted two-harmonics model
is shown in blue in Figure 7 and the fitted coefficients listed in
Table 5 upper part. The fitted values were derived using a linear
least squares method, while the error bars were determined using
the prayer bead approach. The median of those distributions was
identical to the originally fitted values. To test our results, we
repeated the analysis for each quarter separately and then took
the average between all quarters. The results of this “quarter
averaging” approach were indistinguishable from our original
results.

Table 5 lists the measured amplitudes in the middle column
and also the corrected amplitudes, after multiplying by the
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Kepler dilution factor (see Section 2.6 and Table 9), in the
right-most column. The errors on the latter account for the
errors in both the measured amplitudes and the dilution factor.
Comparing the fitted amplitudes between the two models shows
that adding an additional harmonic component in the three-
harmonics model does not change the amplitudes significantly,
albeit perhaps the reflection amplitude where the corrected
amplitude increased by 1.6σ , which is equivalent to an increase
of 2.2%.

The Figure 7 bottom panel shows that the two-harmonics
model residuals have significant systematic features that do not
appear in the three-harmonics model residuals, indicating that
the latter is a more complete model than the former. Adding
additional higher harmonics to the model does not result in
statistically significant fitted amplitudes. Although a3c and a3s

are small, at the level of several parts per million, they are
statistically significant. This signal, at one-third the orbital
period, was already identified by Esteves et al. (2013) with a
consistent amplitude.26 It is at least partially due to a higher
order component of the tidal ellipsoidal distortion (Morris
1985; Morris & Naftilan 1993), although the theoretically
predicted amplitude is about half the overall amplitude of the
measured signal at one-third the orbital period and has a different
phase, so there is an additional process or processes in play
here. This could be related to an incomplete understanding
of tidal ellipsoidal modulations of massive stars with radiative
envelopes, especially when the stellar spin axis is not aligned
with the orbital angular momentum axis and the stellar rotation
rate is not synchronized with the orbit (Pfahl et al. 2008; van
Kerkwijk et al. 2010; Jackson et al. 2012), as is the case for
Kepler-13A. Another possibility is that this signal originates
from a more complicated planetary surface distribution pattern
than assumed here (Cowan et al. 2013). A detailed investigation
of the combination of these effects is beyond the scope of this
study.

The parameters we fitted in Shporer et al. (2011) are �2σ
of the values derived here. Differences could arise from the
changes in our analysis method. Here we used the highly precise
occultation ephemeris, whereas in Shporer et al. (2011), we used
an ephemeris derived from analysis of the photometric orbital
modulations themselves. In Shporer et al. (2011), we also did not
remove instrumental trends by fitting cotrending basis vectors.

2.5.1. Planetary Mass Estimate

The beaming and ellipsoidal phase modulation amplitudes
depend linearly on the planetary mass, so the latter can be
estimated using the corrected amplitudes (Table 5 rightmost
column), Abeam and Aellip, along with other parameters of the
system and the host star:

Mp, beam sin i = 0.37

αbeam

(
Ms

M�

)2/3 (
Porb

day

)1/3 (
Abeam

ppm

)
MJ,

(12)

Mp, ellip sin i = 0.077

αellip sin i

(
Rs

R�

)−3 (
Ms

M�

)2

×
(

Porb

day

)2 (
Aellip

ppm

)
MJ, (13)

26 We corrected the amplitude reported by Esteves et al. (2013) to account for
the weaker dilution assumed by those authors.

Table 6
Companion Mass Estimates

Method Value

Mp,beam sin i, MJ 7.57 ± 0.52
Mp,ellip sin i, MJ 5.94 ± 1.00

where Ms and Rs are the host mass and radius, P and i are the
orbital period and orbital inclination angle, and αbeam and αellip
are order of unity coefficients. We note that sin i can be ignored
because as measured by Barnes et al. (2011) it is close to unity,
as expected for this transiting system.

The beaming coefficient, which accounts for the photons
being Doppler shifted in and out of the observed bandwidth
along the orbital motion of the star, is calculated as

αbeam = xex

ex − 1
= 0.80 ± 0.02,

(
x ≡ hν

kBTeff

)
, (14)

where h is Planck’s constant, ν the observed frequency, kB the
Boltzman constant, and Teff the host star’s effective temperature.
For the latter we used the value derived here while integrating
over the Kepler transmission curve.27 The error reported above
accounts for the error in Teff .

The ellipsoidal coefficient is approximated as (Morris &
Naftilan 1993)

αellip = 0.15
(15 + u)(1 + g)

3 − u
= 1.43 ± 0.14, (15)

where u is the stellar limb-darkening coefficient assuming
a linear limb-darkening law, and g is the gravity-darkening
coefficient. We estimated those coefficients using the grids of
Claret & Bloemen (2011) and stellar parameters derived here.

Equations (12) and (13) assume that the companion is a
nonluminous object, so the observed beaming and ellipsoidal
modulations are entirely due to the host star’s motion, not the
planetary companion. This assumption is not entirely correct
because the planet does have a measurable contribution to the
total flux in the optical. This contribution is at the 10−4 level
(Section 2.4), and less during the transit phase (Section 3.1),
so its contribution to the measured amplitudes is less than
the amplitude errors even when accounting for the planetary
companion’s larger RV amplitude (Zucker et al. 2007; Shporer
et al. 2010).

Our derived planetary masses using the beaming and ellip-
soidal modulations amplitude are listed in Table 6, where the
errors account for the errors on all parameters in the right-hand
side of Equations (12) and (13), leading to significantly larger
fractional errors for the mass estimates than for the beaming and
ellipsoidal corrected amplitudes (see Table 5). The two estimates
are 1.8σ from each other28 and differ by a factor of 1.27±0.23.
Similar discrepancies were reported by other authors for other
systems (e.g., van Kerkwijk et al. 2010; Carter et al. 2011;
Bloemen et al. 2012; Barclay et al. 2012; Faigler et al. 2013;
Esteves et al. 2013) and for this system by Mazeh et al. (2012)
using only two quarters of Kepler long-cadence data. The rea-
son for this discrepancy is currently not clear. One possibility is
inaccurate stellar parameters, meaning a poor understanding of

27 http://keplergo.arc.nasa.gov/CalibrationResponse.shtml
28 The statistical significance of the difference between the two mass estimates
was calculated while accounting for the fact that they are not independent. For
example, they are both derived using the same stellar mass and dilution factor.
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the nature of the host star, which is more probable for early-type
stars where accurate stellar parameters (e.g., mass, gravity, tem-
perature) are difficult to obtain compared to Sun-like stars. The
refined stellar parameters and dilution factor obtained here re-
sult in a smaller beaming-based planet mass estimate compared
to our results in Shporer et al. (2011).

Another possibility for the origin of the discrepancy is a
poor understanding of the ellipsoidal effect for hot stars such
as Kepler-13A (Pfahl et al. 2008; van Kerkwijk et al. 2010).
Further reason to doubt the ellipsoidal mass estimate comes
from Ehrenreich et al. (2011) and Bloemen et al. (2012), who
measured the RV amplitude of the A-type primary in KOI-74 and
showed that it agreed with the beaming amplitude and did not
agree with the ellipsoidal amplitude (van Kerkwijk et al. 2010;
Bloemen et al. 2012). However, one should be careful when
comparing Kepler-13 and KOI-74. The A-type primary in KOI-
74 is almost 2,000 K hotter than Kepler-13A and the secondary
is not a planet but a white dwarf (van Kerkwijk et al. 2010;
Ehrenreich et al. 2011; Bloemen et al. 2012), leading to observed
photometric amplitudes a few orders of magnitude larger. On the
other hand, some authors have reported cases where the known
RV amplitudes were consistent with the ellipsoidal-based mass
estimate and inconsistent with the beaming-based mass estimate
(e.g., Faigler et al. 2013; Esteves et al. 2013). However, all of
the latter cases involve convective Sun-like stars.

We therefore take a conservative approach and conclude that
our planet mass estimate lies within the range of 4.94–8.09 MJ
with a 1σ confidence. This estimate, derived using the refined
stellar parameters and dilution factor obtained here, is consistent
with previous estimates (Shporer et al. 2011; Mazeh et al. 2012;
Mislis & Hodgkin 2012; Esteves et al. 2013; Placek et al. 2013),
confirming that this planet belongs to the rare class of massive
hot Jupiters. The A-type nature of the host star might represent
an extension of the tendency of hot Jupiters at this mass range
and above, into the brown dwarf mass range, to orbit F-type
stars as opposed to G-type Sun-like convective stars (Bouchy
et al. 2011a, 2011b).

2.6. Spectroscopic Analysis

As we have already noted, because the two A-type stars are
at a separation of 1.′′15 ± 0.′′05 (see Figure 1 and Section 1.1),
they are fully blended in all of our photometric data sets. A cor-
rect astrophysical interpretation of any measured photometric
variability requires an estimate of the “real” variability ampli-
tude that would have been measured if the star was resolved.
Obtaining those amplitudes from the directly measured ones
requires knowledge of the flux ratio between the two stars in
the observed bands. We estimate the magnitude of this dilution
using two high-resolution spectra of the two stars, taken with the
Keck/HIRES spectrograph (Vogt et al. 1994) on UT 2010 June
3. The spectra were taken while placing the slit perpendicular
to the position angle between the two stars. Given the slit width
of 0.′′86 and the typical 0.′′5 astronomical seeing at the Keck Ob-
servatory, we estimate that the contamination between the two
spectra is no more than 10%, and we did not see any signs of
contamination in our visual examination of the raw spectra.

According to Santerne et al. (2012), the third star in the
system, Kepler-13BB, contributes very little to the overall
system luminosity, from approximately 1% in the optical to
2% in the IR. We therefore ignore its existence in the following
analysis and treat the system as consisting of two A-type stars.

The spectra of components A and B were fitted individually
to derive precise stellar parameters and to predict the flux

Figure 8. Position of Kepler-13A (black circle and 3σ error bars) in the density
(in kg m−3) vs. effective temperature diagram. Red lines are Padova isochrones
in steps of 100 Myr, from 300 Myr at the top to 700 Myr at the bottom, and blue
lines are equal stellar mass lines (see labels).

(A color version of this figure is available in the online journal.)

ratio between the two components throughout a wide range of
wavelengths, from the optical to the IR. In this step, we made use
of the Phoenix spectral models (Hauschildt et al. 1999; Husser
et al. 2013) and followed the fitting recipe described in Szabó
et al. (2011). Unfortunately, the rapid rotation of both stars meant
that the metal lines were blended, resulting in degeneracies in
our retrieved stellar parameters. The temperatures of the two
components were determined to be 7,650 K and 7,530 K, with
250 K errors for both values. Although the χ2 surface of the
fit in the Teff – log g grid was wide with a shallow bottom,
the error surfaces could have been shifted to each other with a
temperature shift of 120 ± 50 K. This means that the spectra
better constrained the temperature difference than the individual
temperatures. A temperature difference of 120 ± 50 K is also
consistent with the results of Szabó et al. (2011) from optical
photometric colors.

To improve the fits, we assumed that the two stars have
identical ages and metallicities and used the average density
of Kepler-13A determined from the transit light curve (e.g.,
Winn 2011). Because the geometry of the Kepler-13Ab orbit
is known and the transit chord is precisely determined (Barnes
et al. 2011), the transit duration constrains the density of the host
star. Following the recipe of Winn (2011), the derived density of
Kepler-13A is 0.53 ± 0.01 g cm−3, 0.37 times the solar value.
The 2% error is mostly due to the uncertainty in the impact
parameter.

Knowing the temperature and density of Kepler-13A, we
can plot its position on the appropriate density–temperature
isochrones. Stellar models were taken from the Padova
isochrone family with [Fe/H] = 0.2 metallicity (Bertelli et al.
2008, 2009). We find a good fit to the 0.5 Gyr old isochrones,
whereas the 0.4 and 0.6 Gyr models were beyond the 1σ error,
as shown in Figure 8 where we plot the 3σ errorbars. Our results
therefore point to a 0.5 ± 0.1 Gyr age for the Kepler-13 system,
consistent with Szabó et al. (2011). Stellar parameters are listed
in Table 7.

The final step was to simulate the spectra of stars with
masses, radii, and temperatures as indicated in Table 7, assuming
v sin i = 65 km s−1 (Szabó et al. 2011). For this we used
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Figure 9. Top: flux ratio between the planet-hosting star Kepler-13A to its binary
companion Kepler-13B, as a function of wavelength. Bottom: the multiplicative
factor that corrects the measured variability amplitude (occultation depths
and sinusoidal variability) to account for the dilution of the two stars, as a
function of wavelength. In both panels, curves were smoothed using iterative
Savitzky–Golay smoothing for presentation purposes. Dashed lines represent
the 1σ uncertainties, and filled circles with error bars are the values integrated
over the bandpasses of our observations. These bandpasses are shown at the
bottom of the figure, with an arbitrary Y-axis scale for presentation purposes.

Table 7
Stellar Parameters

Parameter Kepler-13A Kepler-13B

Teff , K 7,650 ± 250 7,530 ± 250
log(g [g cm−2]) 4.2 ± 0.5 4.2 ± 0.5
[Fe/H] 0.2 ± 0.2 0.2 ± 0.2
Vrot, km s−1 78 ± 15 69 ± 13
Age, Gyr 0.5 ± 0.1 0.5 ± 0.1
Mass, M� 1.72 ± 0.10 1.68 ± 0.10
Radius, R� 1.71 ± 0.04 1.68 ± 0.04

Phoenix models scaled by the areas of the stellar disks and
interpolated to temperatures of 7,650 K and 7,530 K. This way
the flux ratios were determined for a wide wavelength range
with high resolution, plotted in Figure 9 and listed in Table 8. We
calculated the flux ratio for each band as the weighted average
of the flux ratio across the relevant wavelength range using the
known transmission curves as weights. Table 9 lists the dilution
factorthe factor by which each occultation depth needs to be
multiplied to correct for the dilutionfor each of the four bands
used here.

We note that using the revised planet host star’s radius derived
here and the planet-to-star radii ratio from Barnes et al. (2011)
we obtain a revised planet radius of Rp = 1.406 ± 0.038 RJ. We
also use the revised planet host star parameters in deriving the
planet’s mass in Section 2.5.1.

Table 8
Kepler-13A / Kepler-13B Flux Ratio

Wavelength Flux Ratio Upper Limit Lower Limit
(Å)

3500.087 1.148113 1.194621 1.102890
3500.239 1.149844 1.197161 1.103864
3500.391 1.150445 1.198042 1.104202
3500.543 1.150080 1.197507 1.103997
3500.695 1.149214 1.196236 1.103509
3500.848 1.148232 1.194795 1.102956
3501.000 1.147166 1.193231 1.102356
3501.152 1.145494 1.190779 1.101415
3501.304 1.143709 1.188160 1.100410
3501.457 1.142740 1.186738 1.099864

Notes. Columns include, from left to right: wavelength, flux ratio, flux ratio 1σ

upper boundary, and flux ratio 1σ lower boundary.

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

3. ATMOSPHERIC CHARACTERIZATION

We studied the atmosphere using two different approaches.
In the first (Section 3.1), we used a highly simplistic model
where the small number of parameters allowed us to fit
them despite the small number of data points. In the second
(Section 3.2), we used models with many parameters, so we
could not fit the models to our data but only do a qualitative
comparison.

3.1. Energy Budget

The day-side luminosity is a combination of thermal emission
and reflected stellar light. Therefore it depends on the day-side
brightness temperature, TD, and geometric albedo, Ag, in the
corresponding wavelength. The expected occultation depth,
D, in relative flux, is the ratio between the planet’s day-side
luminosity and the star’s flux and is a function of three variables:

D(λ, TD, Ag) =
(

Rp

Rs

)2
Bp(λ, TD)

Is(λ)
+ Ag

(
Rp

a

)2

, (16)

where we take the planet’s day-side emission spectrum, Bp, to
be a blackbody spectrum so it depends only on wavelength,
λ, and TD. We use a Phoenix stellar atmosphere model for the
star’s spectrum (Is) interpolated to match the Teff and log g
from Table 7. Because the geometric parameters of the system
(Rp/Rs , a/Rs) are known, the expected occultation depth at
a given wavelength depends on two variables, TD and Ag. In
Figure 10, we plot the relation between these two variables
for each of the observed bands, including the 1σ region while
marginalizing over all of the parameters in Equation (16). We
exclude the WIRC/Ks occultation measurement in Figure 10
because in that measurement’s low S/N, the corresponding 1σ
region encompasses both those of the IRAC/3.6 μm and IRAC/
4.5 μm regions, so it does not add any information. The Ag–TD
relation for the Kepler band goes from two extreme scenarios:
a cold atmosphere with a high geometric albedo where the day-
side luminosity is dominated by reflected stellar light on one
end, and a hot atmosphere with a negligible albedo where the
day-side luminosity is dominated by thermal emission on the
other end. The almost vertical shape of the Ag–TD curves for the
two Spitzer bands means that in the IR the day-side luminosity
is dominated by thermal emission and depends only weakly on
the geometric albedo.
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Figure 10. Geometric albedo vs. day-side brightness temperature for three of the
observed bands, Kepler in black, IRAC/3.6 μm in blue, and IRAC/4.5 μm in
red. The solid lines are calculated according to Equation (16) and the measured
occultation depths, and the filled regions are the corresponding 1σ uncertainty
while marginalizing over the parameters in Equation (16). The area where the
IRAC/3.6 μm and IRAC/4.5 μm 1σ regions overlap is marked in purple. The
WIRC/Ks band occultation measurement is ignored here because its low S/N
results in a wide 1σ region that encompasses both those of the IRAC/3.6 μm
and IRAC/4.5 μm so it does not add information.

(A color version of this figure is available in the online journal.)

None of the four bands in which we observed the occulta-
tion is at the peak of the blackbody spectrum for a body with
an effective temperature similar to that of Kepler-13Ab atmo-
sphere.29 However, the four bands sample both sides of the peak:
Wien’s tail in the optical and the Rayleigh–Jeans tail in the IR.

29 According to Wien’s displacement law, for effective temperatures in the
range of 2500 K to 3000 K, the blackbody spectrum peaks at 1.16 μm to
0.97 μm.

Therefore it is interesting to check if the same day-side bright-
ness temperature can reproduce all four measured occultation
depths because that will give an estimate of the equivalent of
the day-side effective temperature, TD,eff . We do not need to
assume here that the day-side atmosphere behaves as a black
body. By definition TD,eff is the effective temperature of a black
body that shows the same occultation depths in the four wide
bands we measured. We do need to assume, however, that Ag
remains the same across the observed bands because this re-
quires simultaneously fitting TD,eff and Ag to all four occultation
depths, using Equation (16). Visually, the allowed values corre-
spond to the overlap region in Figure 10. Fitting using a dense
two-dimensional grid results in TD,eff = 2750 ± 160 K and
Ag = 0.33+0.04

−0.06, where the two variables are highly correlated.
Although formally we assumed here that Ag is the same across
the wavelength range we observed in, in practice because in the
IR TD depends weakly on Ag the above result for TD,eff will
change only in case of a large variation in Ag from the optical to
the IR. Assuming a brightness temperature equal to the derived
TD,eff , varying Ag from 0.0 to 0.5 will change the IRAC/3.6 μm
occultation depth by no more than 1σ , while the corresponding
Ag range for the IRAC/4.5 μm band is from 0.0 to 1.0. Mean-
ing, Ag is constrained primarily by the occultation depth in the
optical.

3.2. Detailed Atmospheric Modeling

In Figure 11 we compare the occultation depths measured
here to the expected occultation depth as a function of wave-
length from detailed atmospheric models. The left panel in
Figure 11 shows two models based on Fortney et al. (2008) using
a one-dimensional, plane-parallel atmosphere code and assum-
ing local thermodynamic equilibrium (LTE) and solar composi-
tion. The two models shown both assume even heat distribution
across the day side and no recirculation to the night side, param-
eterized by Fortney et al. (2008) as f = 0.5. In one model, TiO
is added in equilibrium abundances to the upper atmosphere,
where it acts as an absorber that induces a high-altitude temper-
ature inversion. In the second model, TiO is excluded because
this species may be depleted because of cold traps on the night

Figure 11. Occultation depth vs. wavelength for Kepler-13Ab, showing atmospheric models (solid lines, color coded) for different parameterizations (see legend).
Occultation depths measured here are marked in black. Transmission curve of each band is plotted in gray at the bottom. The inset shows a zoom-in on the Kepler
wavelength region, while the error bar on Kepler occultation depth is too small to be seen in this scale. Left panel shows models based on Fortney et al. (2008), and
the right panel is based on models of Burrows et al. (2008).

(A color version of this figure is available in the online journal.)
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Table 9
Occultation Depths and Light Curve Scatter

Band Scatter PNR Measured Depth Dilution Factor Corrected Depth
(%) (% min) (%) (%)

IRAC/4.5 μm 0.339 0.141 0.114 ± 0.012 1.9442 ± 0.0064 0.222 ± 0.023
IRAC/3.6 μm 0.442 0.105 0.080 ± 0.016 1.9440 ± 0.0065 0.156 ± 0.031
WIRC/Ks 0.360 0.206 0.063 ± 0.026 1.9429 ± 0.0070 0.122 ± 0.051
Kepler 0.0109a 0.00050b 0.009081 ± 0.000027 1.913 ± 0.019 0.01737 ± 0.00018

Notes.
a Scatter (MAD) in the unbinned short-cadence light curve.
b PNR (photometric noise rate) of the phase-folded and binned light curve, using 1 minute bins.

side and in the deep interior. We also consider models from
Burrows et al. (2008), who similarly assume a plane-parallel
atmosphere, LTE, and solar composition and use the opacity
calculations of Sharp & Burrows (2007). Those are shown in
the right panel of Figure 11 and are parameterized by κe, an ab-
sorption coefficient of a gray absorber in the stratosphere, and
Pn, an energy redistribution coefficient, ranging from 0.0 for
redistribution across the day side only to 0.5 for redistribution
across the day and night hemispheres.

Comparing the two sets of models with our measured occul-
tation depths shows that the inverted models are more consistent
with the data than the noninverted models, although that is based
only on the 4.5 μm point. An inverted atmosphere for Kepler-
13Ab is consistent with the trend identified by Knutson et al.
(2010), that planets orbiting chromospherically quiet stars tend
to have inverted atmospheres. Although it is a different proxy
for stellar activity, the Kepler light curve shows an especially
quiet star, and apart from variability induced by the orbiting
planetary companion (Section 2.5), the light curve shows only a
∼10 ppm sinusoidal variability at a period of 1.06 days (Shporer
et al. 2011; Szabó et al. 2011; Mazeh et al. 2012). That low-level
variability could be due to stellar activity but may also be due
to stellar pulsations. It is also possible that it originates from the
Kepler-13B system as the light from all stars in the system is
fully blended in the Kepler light curve.

The correlation identified by Hartman (2010), between in-
creased planetary surface gravity and increased host-star chro-
mospheric activity, is not supported by the Kepler-13A system
because the planet has a high surface gravity and the host star
shows low-level variability in the light curve. Although, we note
that both the Knutson et al. (2010) and Hartman (2010) correla-
tions were identified only for Sun-like convective stars, not for
early-type stars like Kepler-13A.

3.3. Night-Side Optical Luminosity

The Kepler measurements of both the occultation depth
and reflection modulation amplitude allow us to measure the
planet’s night-side optical luminosity. The occultation depth
measures the luminosity of the day-side hemisphere, while the
reflection amplitude measures the difference between the day
and night hemisphere luminosities. The difference between the
occultation depth and reflection (full) amplitude gives the night-
side luminosity:

ΔNS = ΔDS − 2 × Aref = 17.36 ± 1.48 ppm, (17)

where ΔNS is the night-side luminosity and ΔDS the day-side
luminosity. The result presented in Equation (17) is corrected
for the dilution in the Kepler band (see Table 9). This detection of
the night-side optical luminosity is beyond 11σ and is consistent
with previous estimates (Mazeh et al. 2012; Esteves et al. 2013).

Next we derive the planet’s night-side brightness temperature,
TN, using the above night-side optical luminosity, the host
star’s parameters (see Table 7), the planet-to-star radii ratio (see
Table 4), and Kepler ’s transmission curve. We assumed a black-
body spectrum for the planet and used Phoenix stellar synthetic
spectra (Husser et al. 2013) for the star, while marginalizing
across the grid points close to the star’s Teff and log g, resulting
in TN = 2537 ± 45 K. Using a blackbody spectrum for the star
gives the same TN.

While TN is smaller than TD,eff derived above, the difference
is not large. Assuming that the night-side effective temperature
equals the night-side brightness temperature as measured in the
Kepler band, we can use the formalism of Cowan & Agol (2011,
see their Equations (4) and (5)) to constrain the day-side to night-
side heat redistribution coefficient ε together with the bond
albedo AB. Using that formalism, we get a heat redistribution
coefficient of ε = 0.88 ± 0.10 and bond albedo AB � 0.14 at
1σ . The high ε indicates an efficient heat redistribution process,
although the low AB is inconsistent with the high Ag derived
above assuming AB = (3/2)Ag (Lamert’s Law), which results
in AB = 0.50+0.06

−0.09. On the other hand, assuming the latter value
for AB requires ε > 1 in order to reach the derived TN. This
shows that the night-side brightness temperature, measured only
in the optical, is not a good proxy for the night-side effective
temperature, meaning that the night side does not behave like a
black body in the optical. Yet, a high ε cannot be ruled out here.

3.4. Comparison with WASP-33b

It is interesting to compare Kepler-13Ab to WASP-33b
(Collier Cameron et al. 2010; Kovács et al. 2013) because
these are currently the only two known transiting hot Jupiters
orbiting bright A-type stars. The planets in both systems orbit
similar stars, have orbital periods in the one to two days range,
have consistent (at the 1σ level) equilibrium temperatures, and
experience consistent incident flux at the planet surface. Both
systems also have orbits that are misaligned with the host stars’
spin axes (Collier Cameron et al. 2010; Barnes et al. 2011),
suggesting a similar orbital evolution scenario. WASP-33 may
also be part of a binary star system (Moya et al. 2011), although
its smaller and cooler candidate companion has not been
confirmed with common proper motion measurements. WASP-
33b has a mass of 3.266 ± 0.726 MJ and a radius of 1.679+0.019

−0.030
RJ (Kovács et al. 2013). Its smaller mass and slightly larger
radius than Kepler-13Ab leads to a mean density 3–4 times
smaller, and a surface gravity (log10 g) 0.3–0.5 smaller.

Occultations of WASP-33b have been observed in the Spitzer
IRAC/3.6 μm and IRAC/4.5 μm bands (Deming et al. 2012),
the Ks band (Deming et al. 2012; de Mooij et al. 2013), and a
narrow-band S[iii] filter at 0.91 μm (Smith et al. 2011). In this
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Figure 12. Occultation depth vs. wavelength for WASP-33b, showing atmospheric models (solid lines, color coded) for different parameterizations (see legend).
Occultation depths from the literature are marked in black. Transmission curve of each band is plotted in gray at the bottom. Left panel shows models based on Fortney
et al. (2008), and the right panel is based on models of Burrows et al. (2008).

(A color version of this figure is available in the online journal.)

case measurements of the occultation depth are hampered by the
host star’s δ-Scuti pulsations, measured in the R band by Herrero
et al. (2011) to have a primary modulation component at 1.1 hr
with an amplitude of 0.1% (see also von Essen et al. 2014),
seen also in the IR (Deming et al. 2012). These pulsations can
bias estimates of the WASP-33b occultation light curve shape,
especially when based on a single occultation event that is 2.8 hr
long and its depth ranges from 0.4% at 4.5 μm down to 0.1% at
0.91 μm.

To compare the atmospheres of the two planets, we have
calculated the WASP-33b atmospheric models corresponding
to those plotted in Figure 11 for Kepler-13Ab and plotted
them in Figure 12 along with additional models with different
parameters. The figure shows that none of the models are
consistent with all four measured occultation depths, although
the data appear to be closest to models with moderate to weak
day–night recirculation and a modest temperature inversion.
In this case it is possible that the discrepancies between the
models and the measured occultation depths are the result of
biases introduced by the δ-Scuti pulsations of the host star; our
group will test this in the near future with full-orbit Spitzer phase
curve observations including two occultations in both the IRAC/
3.6 μm and IRAC/4.5 μm bands. Deming et al. (2012) explored
fitting the WASP-33b occultation depths with the models of
Madhusudhan & Seager (2009, 2010), which allow the relative
abundances of water, methane, CO, and CO2 as well as the
vertical pressure–temperature profile to vary as free parameters
in the fit. They find that their models generally prefer inefficient
day–night recirculation, and in the case of solar metallicity
composition they prefer a day-side temperature inversion. They
also identify a family of models that match the data without a
temperature inversion and with a supersolar C-to-O ratio, shown
by Madhusudhan (2012) to fit the data marginally better.

4. DISCUSSION AND CONCLUSIONS

We present here a multiband study of the atmosphere
of Kepler-13Ab. We measured the occultation depth of
Kepler-13Ab in four wide bands, from the IR (Spitzer/IRAC
4.5 μm and 3.6 μm) through the NIR (P200/WIRC/Ks) to the

optical (Kepler). We also used Kepler data along the entire or-
bit to measure the planetary reflected and thermally emitted
light and measure the planetary mass from the beaming and el-
lipsoidal effects. Finally, we used Keck/HIRES spectroscopic
data to characterize the planet host star and calculate the dilution
of the observed occultations due to the presence of a blended
A-type companion star. The measured occultation depths are
listed in Table 9 including both the directly measured depths,
not accounting for the dilution, and the corrected depths while
accounting for the dilution. The corrected depths are simply
the measured depths multiplied by the dilution factor at the re-
spective wavelength, also listed in Table 9. The corrected depth
uncertainties account for both the measured depth uncertainties
and dilution factor uncertainties.

Comparing the Kepler midoccultation time derived here (see
Table 4 and Section 2.4) to the midtransit time from the literature
shows that the midoccultation time occurs about half a minute
earlier, with a significance of almost 5σ (Section 2.4.1). This
can be attributed to either a nonzero orbital eccentricity or an
asymmetric distortion in the light curve ingress and egress shape
due to asymmetric planetary surface brightness distribution,
meaning the brightest region on the planet’s surface is shifted
away from the substellar point. An early midoccultation time can
be the result of superrotating winds causing the planet’s most
reflective region to be shifted westward, as already identified for
Kepler-7b by Demory et al. (2013). Interestingly, Kepler-7b’s
high geometric albedo and day-side brightness temperature in
the optical (Demory et al. 2011; Kipping & Bakos 2011), as
well as the planet and host star radii (Latham et al. 2010), are
all comparable to those of Kepler-13Ab. However, Kepler-7b’s
mass is only 0.433 ± 0.040 MJ, more than ten time less massive
than the Kepler-13Ab mass, and its host star has a mass of about
1.35 M� and effective temperature of about 6000 K (Latham
et al. 2010).

By analyzing the Kepler phase curve we have identified a
discrepancy between the beaming-based and ellipsoidal-based
planet’s mass estimates (see Table 6 and Section 2.5.1), which
was already noticed before (Shporer et al. 2011; Mazeh et al.
2012). We chose to take a conservative approach and give a wide
range for the planet’s mass that includes both estimates.
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If the early mid-occultation time is indeed due to the brightest
region of the planetary atmosphere being shifted away from the
substellar point, then that may also affect the observed phase
curve. Specifically, that will insert a phase shift to the reflection
component in Equation (11), which includes both thermal
emission and reflected stellar light from the planet’s atmosphere.
In that case the measured coefficients a1c and a1s would not
correspond separately to the reflection and beaming amplitudes
but to a linear combination of them, meaning the model
will include a degeneracy. This was already noted by Faigler
et al. (2013), who analyzed the phase curve of Kepler-76b.
Although the host star in that system is an F-star, so it is different
than the host star in the Kepler-13A system, they have shown
that adding a phase shift to the reflection component results in
a decreased beaming-based mass estimate for Kepler-76b and
makes it consistent with the ellipsoidal-based mass estimate.
Following a similar scheme (see Faigler et al. 2013, Equation
(1)), the required phase shift of the reflection component that
will resolve the corresponding discrepancy for Kepler-13Ab
(see Table 6) is 1.49 ± 0.48 deg. However, such a phase shift
will put the planet’s brightest region eastward of the substellar
point, so the resulting asymmetry in the occultation light curve
ingress and egress will make the midoccultation time later than
expected, not earlier as we measure here. We conclude that if
the measured early midoccultation time is due to a planetary
asymmetric surface brightness distribution we cannot detect
direct evidence for it in the phase curve.

Our revised host star parameters show it is smaller than
previous estimates (Szabó et al. 2011), leading to a smaller
planetary radius of Rp = 1.406 ± 0.038 RJ where we assume
the planet-to-star radii ratio reported by Barnes et al. (2011).
This revised planet radius is comparable with the radii of other
hot Jupiters, although given the planet’s relatively high mass
it is positioned in a sparse region in the planetary radius-mass
diagram for the currently known planets.

We have followed two approaches for interpreting our mea-
surements and characterizing Kepler-13Ab’s atmosphere. In
Section 3.1, we study the atmospheric energy budget, and in
Section 3.2, we compare our wide-band measurements to var-
ious spectral atmospheric models. We must caution here that
our conclusions about Kepler-13Ab’s atmosphere are based on
sparse data. Although covering a wide wavelength range, from
the IR to the optical, we have at hand the occultation depth mea-
sured in only four wide bands and the phase curve measured in
only one wide band. Such sparse data could, in principle, lead
to systematically biased results when fitted with over-simplified
atmospheric models (see Burrows 2013 for a more detailed dis-
cussion). Despite the limited data, our analysis here, including
the two different approaches (Sections 3.1 and 3.2), is an attempt
to extract as much science as possible from the data while not
over-interpreting it. In the future, more detailed data, including
panchromatic spectra and phase curves at various wavelengths,
will allow a more comprehensive characterization of the planet’s
atmosphere.

The four occultation measurements enable us to identify the
relation between the day-side brightness temperature and geo-
metric albedo in each band (see Equation (16) and Figure 10).
Assuming the geometric albedo does not change significantly
between the four bands, these relations allow us to derive the
effective temperature of a black body that will show the same
occultation depths, TD,eff = 2750 ± 160 K. This also results in
a high geometric albedo, of Ag = 0.33+0.04

−0.06, which assuming
AB= (3/2)Ag (Lambert’s Law) leads to AB= 0.50+0.06

−0.09. Such

an albedo is at the high end of the range spanned by other hot
Jupiters (e.g., Rowe et al. 2008; Cowan & Agol 2011; Coughlin
& López-Morales 2012; Evans et al. 2013; Demory et al. 2013;
Heng & Demory 2013).

The night-side brightness temperature in the optical is TN =
2537 ± 45 K, measured from the difference between the Kepler
occultation depth and the reflection component amplitude (see
Equation (17)). TN is smaller than TD,eff but not by much. Com-
paring TN, TD,eff , and AB results in inconsistencies, indicating
that the night side does not behave as a black body in the optical.

A possible explanation for the small difference between TN
and TD,eff is the planet’s high mass, from at least five to nearly
ten times larger than that of typical hot Jupiters, which gives
a correspondingly large surface gravity with log10(g [g cm−2])
in the range of 3.79–4.01. Increased gravity leads to increased
photospheric pressure, which in turn increases the radiative time
constant in the atmospheric layers probed by our measurements
(Iro et al. 2005; Showman et al. 2008). As shown in idealized
dynamical models by Perez-Becker & Showman (2013), atmo-
spheres with greater radiative time constants exhibit smaller
day–night thermal contrasts.

Comparing the wide-band occultation depths measured here
to the spectral atmospheric models of Fortney et al. (2008) and
Burrows et al. (2008) shows that our measurements are better
described by models that include an atmospheric inversion and a
weak day–night energy circulation. As can be seen in Figure 11,
the current atmospheric spectral models underestimate the
occultation depth in the optical. Because the Kepler occultation
depth measurement is of much higher precision than occultation
depths measured here in other bands and than other occultations
in the optical in other studies involving Kepler data (e.g., Désert
et al. 2011a, 2011b; Fortney et al. 2011), this discrepancy
could be attributed to the limits of the one-dimensional spectral
models. If the Kepler band measurement uncertainty was similar
to that in the other bands, then it would have been consistent
with the models. Still, the fact that all models underestimate the
Kepler occultation depth suggests a higher geometric albedo in
the optical than the typical 0.050.10 predicted by the models.
This supports the high geometric albedo of Ag = 0.33+0.04

−0.06
derived in Section 3.1 for the equivalent blackbody object
showing the same occultation depths. If indeed the Kepler-13Ab
day-side atmosphere has a high Ag then this could be used as a
clue to identify the material dominating the day-side reflectivity,
along with the day-side temperature and the possible existence
of atmospheric inversion.

Short-period planets are expected to reach full orbital circu-
larization and spin-orbit synchronization due to tidal interac-
tion with the host star, an interaction that grows stronger with
decreasing period (e.g., Mazeh 2008). However, our measure-
ment of the midoccultation time suggests a possible small but
finite orbital eccentricity (see Section 2.4.1). If confirmed, it
can lead to a nonsynchronized planetary rotation (e.g., Correia
& Laskar 2011), meaning the day and night sides are not per-
manent, which could explain the small brightness temperature
difference detected between them in the optical.

Our comparison between the atmospheres of Kepler-13Ab
and WASP-33b shows that despite the similarity between the
host stars and other similarities between the two star–planet
systems, the planetary atmospheres seem to be different. If con-
firmed, it is yet another example of the diversity of exoplanets
and exoplanet atmospheres, emphasizing the need to discover
more exoplanets that allow the study of their atmosphere, in par-
ticular those orbiting early-type stars like the one investigated
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here. Although spectra of such stars (currently) do not allow
for high-precision RV measurements, preventing precise planet
mass measurement (but see Galland et al. 2005; Lagrange et al.
2009), the planetary nature of massive close-in planets can be
confirmed with high-quality space-based photometry of bright
stars. This was done using Kepler data for Kepler-13Ab and can
potentially be done in the future with data from the NASA K2
mission (Howell et al. 2014), the NASA transiting exoplanet sur-
vey satellite (TESS) mission,30 and the European space agency
(ESA) planetary transits and oscillations of stars (PLATO) mis-
sion (Rauer et al. 2013). In addition, detailed follow-up stud-
ies are also possible, like the measurement of stellar obliquity
(Collier Cameron et al. 2010) and investigation of the planet at-
mosphere. The host star’s increased mass, radius, temperature,
and younger age, compared to Sun-like stars, will allow testing
of planet formation and evolution theory.

A.S. thanks Ehud Nakar and Jason Eastman for enlighten-
ing discussions. This work was performed in part at the Jet
Propulsion Laboratory, under contract with the California In-
stitute of Technology (Caltech) funded by NASA through the
Sagan Fellowship Program executed by the NASA Exoplanet
Science Institute. J.G.O. receives support from the National
Science Foundation’s Graduate Research Fellowship Program.
Gy.M.Sz. was supported by the Hungarian OTKA grants 104607
and 83790, the HUMAN MB08C 81013 grant of the MAG Zrt,
and the János Bolyai Research Fellowship and a Lendület-2009
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