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ABSTRACT

We report a study of the eclipse timing variations in contact binary systems, using long-cadence lightcurves from
the Kepler archive. As a first step, observed minus calculated (O − C) curves were produced for both the primary
and secondary eclipses of some 2000 Kepler binaries. We find ∼390 short-period binaries with O − C curves that
exhibit (1) random walk-like variations or quasi-periodicities, with typical amplitudes of ±200–300 s, and (2)
anticorrelations between the primary and secondary eclipse timing variations. We present a detailed analysis and
results for 32 of these binaries with orbital periods in the range of 0.35 ± 0.05 days. The anticorrelations observed
in their O − C curves cannot be explained by a model involving mass transfer, which, among other things, requires
implausibly high rates of ∼0.01 M� yr−1. We show that the anticorrelated behavior, the amplitude of the O − C
delays, and the overall random walk-like behavior can be explained by the presence of a starspot that is continuously
visible around the orbit and slowly changes its longitude on timescales of weeks to months. The quasi-periods of
∼50–200 days observed in the O − C curves suggest values for k, the coefficient of the latitude dependence of the
stellar differential rotation, of ∼0.003−0.013.
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1. INTRODUCTION

Contact binary stars occur relatively frequently among bina-
ries (Rucinski 1998). A contact binary system consists of two
dwarf stars, most often from the F, G, and K spectral classes, that
are surrounded by a common convective envelope. The orbital
period distribution peaks in the 8–12 hr range. Most systems,
though not all, have orbital periods between 0.2 and 1.0 days
(Maceroni & van’t Veer 1996; Paczyński et al. 2006). While the
masses of the two component stars of a contact binary are typ-
ically unequal, the two stars usually have approximately equal
surface temperatures due to the effects of mass and energy trans-
fer between the components via a common convective envelope
(Lucy 1968). The properties of the envelope, the energy transfer
between the components, and the overall internal structure of
the components have been investigated by many authors (see,
e.g., Kähler 2002, 2004; Webbink 2003; Csizmadia & Klagyivik
2004; Li et al. 2004; Yakut & Eggleton 2005; Stepień & Gazeas
2012). Eclipsing contact binaries are often referred to as W UMa
systems in honor of the prototype.

Some variable stars that were classified as contact binaries
in earlier studies are now considered otherwise; their light
curves are thought to merely mimic the light curves of true
contact binaries. For example, while AW UMa is actually a
semi-detached system with a material ring, it exhibits a light
curve much like that of a contact binary (Pribulla & Rucinski
2008). This example and others demonstrate that it may be
difficult to determine in practice whether a binary is a contact
or a semi-detached system based only on a photometric time
series.

Although contact binaries make up an important part of
the Galactic stellar population, their formation and final-stage
evolutionary states are still not clear (Paczyński et al. 2006;
Eggleton 2006). Possible formation processes and evolutionary
outcomes have recently been summarized by Eggleton (2012).
Many, if not all, contact binaries may be members of triple star
systems, which could drive the formation of these extremely
close binaries through a combination of the Kozai mechanism
and tidal friction (Robertson & Eggleton 1977; Kozai 1962;
Kiseleva et al. 1998; Fabrycky & Tremaine 2007). It is also
thought that rapidly rotating single stars may be formed from
the coalescence of the components of contact binaries (Li et al.
2008; Gazeas & Stepień 2008). These open questions about the
formation, evolution, and final state of contact binaries make
them one of the most intriguing classes of objects in stellar
astrophysics (Eggleton 2012).

Many contact binaries show signs of stellar activity, presum-
ably because the component stars are rapid rotators with deep
convective zones. Doppler imaging has revealed that some con-
tact binaries are almost fully covered by rather irregular spot-like
structures (AE Phe, Maceroni et al. 1994 and Barnes et al. 2004;
YY Eri, Maceroni et al. 1994; VW Cep, Hendry & Mochnacki
2000; SW Lac, Senavci et al. 2011). Signs of high levels of coro-
nal activity are often apparent, helping to explain why contact
binaries can be relatively strong X-ray emitters (Geske et al.
2006). The first flare event that was simultaneously observed
both in X-rays and at radio wavelengths from a star other than
our Sun was from the contact binary VW Cephei (Vilhu et al.
1988). Ground-based multicolor photometry demonstrated an
Hα excess in two contact binary systems that is thought to have
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a coronal origin and to be related to the presence of dark spots
on the photosphere (Csizmadia et al. 2006).

Several contact binaries exhibit night-to-night light curve
variations that may be explained by fast spot evolution on
orbital- (or even suborbital-) period timescales (Csizmadia et al.
2004). On the other hand, the eclipse timing variations of
several contact binaries show quasi-periodic oscillations on
a timescale of ∼10 yr; these oscillations were interpreted as
indirect evidence of solar-like magnetic cycles (see, e.g., Qian
2003; Awadalla et al. 2004; Borkovits et al. 2005; Pop &
Vamos 2012). These results are in agreement with the work
of Lanza & Rodonó (1999), who concluded that the timescales
for magnetic modulations are strongly and positively correlated
with the orbital periods of the systems. This relation makes
contact binaries excellent laboratories in which to investigate
the temporal variations and evolution of stellar spots, in part
because the timescales of the variations are shorter than in other
types of binary and single stars. However, the shortest among
these timescales can be problematic to study using ground-
based observatories because the timescales are comparable to
the length of an Earth night.

Kalimeris et al. (2002) noted that the migration of starspots
on the surface(s) of the constituent stars in short-period binaries,
especially contact binaries, could affect measurements of eclipse
times and thereby mimic changes in the orbital period. These
authors also showed that perturbations to the observed minus
calculated (O − C) eclipse-time curves would generally have
amplitudes smaller than ∼0.01 days, and could appear to be
quasi-periodic on timescales of a few hundred days or so if
the spot migration was related to the differential rotation of the
host star.

The planet-finding Kepler mission (Borucki et al. 2010;
Koch et al. 2010; Caldwell et al. 2010) has observed more
than 150,000 stars over the past four years. The monitoring of
each star is nearly continuous and the photometric precision is
exquisitely high (Jenkins et al. 2010a, 2010b). These capabilities
have led to the discovery of more than 2600 planet candidates
(Batalha et al. 2013) and also a comparable number of binary
stars (Slawson et al. 2011; Matijevič et al. 2012). Some 850 of
the Kepler binaries have been classified as contact, overcontact,9

or ellipsoidal light variable (ELV) systems (Slawson et al. 2011;
Matijevič et al. 2012).

In this work, we report a study of the eclipse timing variations
of binaries in archival Kepler data, with a particular focus on
contact and overcontact binaries. In Section 2, we describe
the data preparation, the estimation of the eclipse times, and
the production of O − C curves for each contact binary. In
Section 3, we present the O − C data for an illustrative selection
of 32 contact binaries (out of the several hundred we found)
that exhibit common interesting features including random
walk-like, or quasi-periodic excursions in O − C behavior with
amplitudes of ∼±300 s and a generally anticorrelated behavior
in the O − C curves for the primary and secondary eclipse
minima or ellipsoidal-light-variation minima. In Section 4, we
extend the work of Kalimeris et al. 2002 in order to explain some
of these characteristics with a very simple model involving a cool
(or hot) spot on one of the stars that drifts slowly around the star

9 In contact systems, the two stars just fill their respective Roche lobes while
in overcontact binaries, both components overfill their Roche lobes and are
surrounded by a low-density common envelope (see, e.g., Wilson 1994). In
this work, we use the terms “contact binary” and “overcontact binary”
interchangeably, but only because the real differences between the two types
are not material to the work we present in this paper.

on timescales of weeks to months. We discuss the significance
of our results in Section 5.

2. DATA ANALYSIS

2.1. Data Preparation

The present study is based on Kepler long-cadence (LC)
lightcurves. To start, we retrieved the LC lightcurve files for
Quarters 1 through Quarter 13 for all of the candidates in the
latest Kepler eclipsing binary catalog (Slawson et al. 2011) that
were available at the Multimission Archive at STScI (MAST).
We used the lightcurves made with the PDC-MAP algorithm
(Stumpe et al. 2012; Smith et al. 2012), which is intended
to remove instrumental signatures from the flux time series
while retaining the bulk of the astrophysical variations of each
target. For each quarter, the flux series was normalized to its
median value. Then, for each target, the results from all available
quarters were concatenated together in a single file. We also
checked our results using the SAP-MAP processed data set and
the results remained unchanged.

The next step in the data processing was to apply a high-pass
filter to each stitched light curve. A smoothed light curve was
obtained by convolving the unsmoothed light curve with a box-
car function of duration equal to the known binary period. The
smoothed light curve was then subtracted from the unsmoothed
light curve. This procedure largely removes intensity compo-
nents with frequencies below about half the binary frequency,
while leaving largely intact temporal structures that are shorter
than the binary period. Periodically-recurring features of the
light curve are essentially unaffected.

2.2. O − C Eclipse Times

Since LC data with relatively coarse time resolution were
used for the present study, an interpolation method was needed
to estimate eclipse times with an accuracy better than ∼1700 s.
The algorithm utilized for the determination of eclipse times
consists simply of identifying the flux values in the light curve
that represent local minima and then fitting a parabola to that
value and the immediately preceding and subsequent values.
The time of the minimum of the fitted parabola is used as the
time of eclipse minimum (see Rappaport et al. 2013 for details
of the algorithm). This algorithm provides excellent accuracy
for short-duration eclipses, but loses some accuracy when the
eclipse duration is longer than ∼10 LC samples. For contact
binaries with periods between ∼0.2 and 1 day, however, the
algorithm works well and typically yields eclipse times subject
to an rms scatter of ∼30 s.

Once the times of the primary eclipses were found for each
source, a linear function consisting of the eclipse cycle count
times the orbital period (taken from the Slawson et al. 2011
catalog) was used in order to form an O − C curve. If the binary
orbit is circular and is not perturbed by a third body in the
system, and if the shape of the eclipses remains constant, the
O − C curve should be a straight line. In addition to the primary
eclipses, O − C curves were also calculated for the secondary
eclipses of all the binary systems.

For each binary, the O − C curve for the primary eclipse was
fit with a linear function to determine the best average of the
orbital period over the ∼3 yr interval of the Kepler data set
(Quarters 1–13). This corrected period was used to produce
final O − C curves for both the primary and secondary eclipses.

Since most of the interesting variations in the O − C curves
occur on timescales of weeks to months, the O − C curves
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Figure 1. Illustrative O − C curve for one of the contact binaries considered
in this work, KIC 2159783 (“KIC” refers to the Kepler Input Catalog; Batalha
et al. 2010). Top panel: raw O − C curve. Bottom panel: O − C curve after
performing a 5 day boxcar smoothing operation. The smoothed versions of the
O − C curves are the ones displayed in the remainder of this work.

(A color version of this figure is available in the online journal.)

were smoothed to reduce the amplitudes of high-frequency
variations without substantially degrading longer-term features.
This procedure was accomplished by convolving each O − C
curve with a boxcar function with a five day duration, thereby
typically averaging over some 10–15 O − C values, i.e., orbital
cycles (see Figure 1 for an illustrative example). This operation,
of course, will remove any physical O − C variability on scales
shorter than five days, but there are some artifacts, e.g., beats
between the orbital period and the Kepler LC integration interval
of 29.4 minutes, that make a search for short periodicities in the
O − C curves difficult.

3. CONTACT BINARY O − C CURVES

In the process of examining the eclipse-timing-variation
O − C curves for all ∼2000 binaries while searching for evi-
dence for the presence of third bodies (Rappaport et al. 2013),
we discovered that a very large fraction of the shorter period
binaries had a set of common features in their O − C curves.
These features include (1) random-walk or quasi-periodic vari-
ations and (2) anticorrelated behavior between the O − C curves
of the primary and secondary eclipses. We found that some 390
of the short period binaries exhibited these features in their
O − C curves (see Table 1 for the numbers as a function of
orbital period).

We used the numerical morphological classification scheme
of Matijevič et al. (2012) to characterize the binaries that seem to
exhibit both properties listed above. The results are displayed in
Table 1. There are some 306, 49, 30, and 4 of these binaries in
the orbital period ranges 0.2–0.5, 0.5–1, 1–2, and > 2 days,
respectively. The mean, median, minimum, maximum, and
standard deviation of the Matijevič et al. (2012) morphology
parameter, c, are given for each orbital period category. It is clear
that the systems of interest are mostly in the orbital period range
0.2–0.5 days, where contact and overcontact binaries are found.
The numbers fall off sharply with increasing orbital period.

Table 1
Binary Morphology Statistics

Parameter Porb (days) This

0.2–0.5 0.5–1 1–2 >2 Work

No. of systems 306 49 30 4 32
〈c〉 0.86 0.73 0.75 0.82 0.93
Median c 0.87 0.69 0.78 0.83 0.91
δc 0.09 0.14 0.20 0.11 0.05
cmin 0.65 0.53 0.47 0.68 0.81
cmax 1.0 0.98 1.0 0.92 1.0

Notes. Binary morphology statistics for the short period Kepler binaries
with anticorrelated O − C curves for the primary and secondary minima
(http://keplerebs.villanova.edu/; Matijevič et al. 2012). The morphology index,
c, is defined such that detached systems have values �0.5; semi-detached
systems are in the range 0.5–0.7; and overcontact binaries lie in the range
0.7–0.8. Systems with a morphology index above ∼0.8 are ellipsoidal variables
and or uncertain categories.

The Matijevič et al. (2012) numerical morphological descrip-
tor c, between 0 and 1, is given for each binary. The sense of
this classification scheme is that morphological values of c �
0.5 correspond to detached binaries, while values in the ranges
0.5–0.7 and 0.7–0.8 correspond to semidetached and overcon-
tact binaries, respectively. Values higher than 0.8 are ellipsoidal
light variables and “uncertain” classifications, and a number of
these may not be eclipsing. As can be seen from Table 1, as well
as by looking at the actual distribution of values, some 2/3 of the
binaries of interest have c � 0.8 and ∼1/3 have 0.7 < c < 0.8.
This result implies that the vast majority of these objects are
contact binaries, with a substantial fraction exhibiting largely
ELV rather than pronounced eclipses.

For contact systems, the transition between purely ELV
behavior, partial eclipses, and full eclipses is smooth. Thus,
we do not make a sharp distinction between eclipsing contact
binaries of the W UMa class versus contact binaries that exhibit
a pure ELV nature. We therefore use the terms “eclipse times”
and “times of minima,” or “eclipses” and “minima,” somewhat
interchangeably.

3.1. Illustrative O − C Curves for Contact Binaries

From the set of 390 systems whose O − C curves exhibit (1)
random-walk or quasi-periodic variations and (2) anticorrelated
behavior between the primary and secondary eclipses, we
selected 32 systems to display and discuss in some detail.
These systems all fall into the period range of 0.2–0.5 days,
where the vast majority of these systems lie, but are otherwise
indistinguishable from the other ∼274 systems that we identified
in this period range. We focus on this set of objects for the
remainder of the paper. The morphology statistics of this group
of 32 systems are summarized in Table 1.

The O − C curves for these 32 illustrative systems are shown
in Figures 2–5 and some of the system parameters are listed
in Table 2. There are several potentially important features
to note about the selected sets of O − C curves presented in
this paper. The peak-to-peak amplitudes of the short-timescale
random walk-like behavior are typically about 500 s, although
a few systems exhibit somewhat higher amplitude variations.
KIC 5022573 (top left panel of Figure 3) is an example of an
object showing higher amplitude variations. The characteristic
timescales of the quasi-periodicities vary greatly, but are often
in the range of ∼50–200 days.

The selected O − C curves also exhibit clear anticorre-
lated behavior on at least some timescales and for some time
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Figure 2. Sample of O − C curves for an illustrative set of eight Kepler contact binary systems with KIC numbers in the range of 1873918–5008287. The O − C curves
for the primary and secondary eclipses are shown as red and blue curves, respectively. The curves have been smoothed over a 5 day interval, comprising typically
10–15 eclipses. These O − C curves typically exhibit random walk-like or quasi-periodic behavior. The O − C curves for the primary and secondary eclipses are often
anticorrelated.

(A color version of this figure is available in the online journal.)

intervals, even when positive correlations between the primary
and secondary curves are evident on relatively long timescales.
For example, the O − C curves for KIC 1873918 (Figure 2)
are anticorrelated over the 100 day timescales of their quasi-
periodic variations, but show an overall positive correlation on
timescales over ∼800 days.

For this sample of contact binaries, O − C curves were also
calculated for the times of the two maxima of each orbital cycle.
The O − C curves for the two maxima, as well as the two eclipse
minima of one of the contact binaries, KIC 9451598, are shown
in Figure 6. The two O − C curves for the eclipse maxima are
clearly anticorrelated with respect to each other in the same
way as are the O − C curves for the minima. In addition, the
plot suggests that the O − C curves of the maxima are offset in
phase from the curves of the minima by about 90◦, i.e., that the
rate of change in one curve is maximal at the amplitude extrema
in the other curve. We attempt to explain both the 180◦ and 90◦
phase shifts with a simple starspot model in Section 4.

To demonstrate more quantitatively the anticorrelated behav-
ior between the O − C curves of the primary and secondary
minima, we show a point by point correlation plot for one sys-
tem: KIC 7691553 (O − C curves shown in the bottom right
panel in Figure 3) in Figure 7. To create this particular plot,
the O − C values were averaged in one-day time bins. The plot
shows a clear negative correlation and confirms what is seen
in a visual inspection of the O − C curves. The formal corre-
lation coefficient is −0.5 for the particular example shown in
Figure 7. For systems that are dominated by anticorrelated O − C
curves, the correlation coefficients extend down to −0.77, with
a median value of −0.42.

In addition to computing and displaying correlation plots
for the contact binaries in our sample, we also computed
formal cross correlation functions for all the pairs of (one-day
rebinned) eclipse O − C curves. The plots mostly confirm the
characteristic timescales observed in the O − C curve variations,
as well as the anticorrelated behavior at zero time lag.
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Figure 3. Sample of O − C curves for an illustrative set of eight contact binary systems with KIC numbers in the range of 5022573–7691553. The specifications are
otherwise the same as for Figure 2.

(A color version of this figure is available in the online journal.)

Fourier transforms of the O − C curves for our sample of
contact binaries do not show, in general, any strong peaks, except
for the known beat frequencies between the orbital period and
the LC sampling time (see Rappaport et al. 2013 for details).
Plots of log Aν versus log ν, where Aν is the Fourier amplitude
and ν is the frequency, generally show more or less linear
relations with logarithmic slopes of approximately −1.0 to −1.3
that are similar to Fourier spectra associated with random-walk
behavior.

4. MODELS

4.1. Period Changes

Most of the structure seen in the O − C curves for the contact
binaries cannot represent actual changes in the orbital periods
(see Kalimeris et al. 2002 for a related discussion). The argument
is simple. For circular orbits like those expected for contact
binaries, period changes would produce similar, i.e., positively
correlated, effects in both the primary and secondary O − C

curves. Therefore, the variations associated with anticorrelated
behavior cannot be the result of orbital period changes.

In addition, mass transfer could not drive such rapid changes
in the O − C curves even if the primary and secondary eclipses
were not anticorrelated. This result may be understood quanti-
tatively by representing a small portion of the O − C curve as:

O − C � τ sin(2πt/T ), (1)

where τ and T are rough measures of the amplitude and cycle
time of the undulations in the O − C curve and t is time. If the
variations were caused by orbital period changes, the second
derivative of the O − C curve would be related to the first
derivative of the orbital period as

Ṗorb

Porb
= d2

dt2
(O − C) = −4π2

T 2
τ sin(2πt/T ). (2)

It is straightforward to show that mass transfer in a binary
results in Ṗorb/Porb ≈ Ṁ/M . Therefore, the implied mass
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Figure 4. Sample of O − C curves for an illustrative set of eight contact binary systems with KIC numbers in the range of 7773380–9519590. The specifications are
otherwise the same as for Figure 2.

(A color version of this figure is available in the online journal.)

transfer rate would be of the order of:

Ṁ

M
≈ 4π2 τ

T 2
. (3)

For characteristic O − C amplitudes of ∼±200 s and cycle
times of ∼50–200 days (see Figures 2–5), we find implied mass
transfer rates of Ṁ/M � 0.001–0.01 yr−1. These rates are
implausibly large, even for a contact binary. More physically
reasonable mass transfer rates have been inferred for contact
binaries in the range of ∼10−7 M� yr−1, as was found for VW
Boo, a typical overcontact binary (Liu et al. 2011) and several
W UMa systems (Borkovits et al. 2005).

4.2. Slightly Eccentric Orbits

The orbits of contact binaries must generally be circular or
nearly circular. However, it is perhaps conceivable that perturba-
tions from a third body, or even some stochastic mass exchange,
magnetic event, or other physical process, could induce a very

minor eccentricity from time to time. The apsidal motion that
would then ensue would result in O − C variations, to first or-
der in eccentricity, with amplitudes of ±(Porb/2π )2e cos ω for
the primary and secondary minima, respectively (Gimenez &
Garcia-Pelayo 1983); ω is the longitude of periastron. Conse-
quently, an O − C amplitude of ±300 s in a binary with an
orbital period of 0.3 days requires a minimum eccentricity of
∼0.04. Since this value is implausibly high for a contact binary,
slightly eccentric orbits are unlikely to be the cause of most
of the anticorrelated behavior that is apparent in the observed
amplitudes.

4.3. A Simple Starspot Model

4.3.1. Spot Visibility

Here, we consider a simple geometric model wherein a
single spot on one of the stars might produce the anticorrelated
behavior seen in the timing of the primary and secondary
minima. In this simplistic picture, the stars are taken to be

6
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Figure 5. Sample of O − C curves for an illustrative set of eight contact binary systems with KIC numbers in the range of 9821923–12598713. The specifications are
otherwise the same as for Figure 2.

(A color version of this figure is available in the online journal.)

spherical and to be rotating synchronously with the orbit. The
ẑ direction is defined to be parallel to the orbital angular
momentum vector; the stars revolve in the x–y plane. The
observer is located in the y–z plane and views the system
with conventional orbital inclination angle i. The unit vector
in the direction from the system toward the observer is then
V = cos i ẑ + sin i ŷ. For a spot located at colatitude α (the
angle from the stellar pole) and stellar longitude, �, the unit
vector pointing from the center of the star through the spot is
S = sin α sin(ωt + �) x̂ + sin α cos(ωt + �) ŷ + cos α ẑ, where ω
is the orbital angular velocity. A starspot located at � = 0◦ and
α = 90◦ is defined to lie along the line segment connecting the
two stellar centers.

The spot is assumed to occupy a small portion of the surface
of the star and is taken to radiate in a Lambertian manner.
The projected area of the spot normal to the line of sight is
proportional to the cosine of the angle between the normal to
the spot area and the direction toward the observer, V · S. If this
dot product is negative, the spot is on the hemisphere of the star

facing away from the observer and is not visible. When the dot
product is positive, the spot is not occulted, and if limb darkening
may be neglected, the apparent brightness of the star is changed
by the presence of the spot according to the expression:

ΔF = ε [cos α cos i + sin α sin i cos(ωt + �)] , (4)

where ε is a constant with dimensions of flux assumed to be
much less than the overall flux from the binary. In order for
the spot to remain continuously visible, ΔF must always be
positive. Such a condition requires that cos α cos i > sin α sin i,
or, equivalently, α + i < 90◦.

4.3.2. Analytic Estimate of the O − C Amplitudes

When no spots are present, the light curve of a contact binary
may be represented with sufficient accuracy by:

B = −B cos 2ωt, (5)

7
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Table 2
Kepler Contact Binaries with Anticorrelated O − C Curves

Source Binary Period Morphologya Magnitude Teff Correlation Minimum 1 Minimum 2
KIC No. (days) (0 − 1) (Kp) (K) Coefficientb Depthc Depthc

1873918d 0.332433 0.86 13.72 5715 0.42e 0.104 0.099
2017803d 0.305742 0.97 14.61 5056 −0.50 0.046 0.036
2159783 0.373886 0.87 14.96 5643 −0.16 0.217 0.194
2715007 0.297107 0.87 14.73 5598 0.10 0.025 0.018
3837677 0.461984 0.94 15.55 5466 −0.46 0.104 0.096
3853259 0.276648 1.00 13.92 4467 −0.42 0.076 0.073
4937350d 0.393664 −1.00 14.27 5862 −0.60 0.072 0.068
5008287 0.291878 0.93 15.31 5881 −0.34 0.050 0.048
5022573 0.441724 0.98 11.47 5648 −0.13 0.056 0.056
5033682 0.379916 0.95 13.26 5611 −0.63 0.056 0.034
5283839 0.315231 0.92 15.16 5906 0.09 0.160 0.146
6964796 0.399966 0.97 12.61 5657 −0.52 0.050 0.044
7118656 0.321355 0.94 15.03 5271 −0.24 0.052 0.040
7217866 0.407157 0.90 13.86 5600 −0.15 0.106 0.093
7542091 0.390499 0.81 12.34 5673 −0.31 0.154 0.143
7691553 0.348309 0.93 14.62 5786 −0.48 0.092 0.088
7773380 0.307577 0.94 14.47 5357 −0.40 0.084 0.066
8190613 0.332584 0.90 15.13 5384 −0.28 0.117 0.113
8956957 0.324382 0.96 13.98 6307 −0.72 0.056 0.054
9020289 0.384027 0.94 14.74 5997 −0.60 0.061 0.059
9071104 0.385213 0.81 13.65 5959 −0.52 0.158 0.130
9097798 0.334068 1.00 14.58 5592 −0.41 0.027 0.026
9451598 0.362349 0.93 13.63 6060 −0.77 0.041 0.030
9519590 0.330895 0.88 13.92 5961 −0.24 0.039 0.036
9821923 0.349532 0.95 14.21 5730 −0.53 0.087 0.083
9832227 0.457950 0.94 12.26 5854 −0.19 0.094 0.086
10148799 0.346605 0.91 15.41 5340 −0.66 0.068 0.037
10155563 0.360268 0.94 11.99 5982 − 0.03 0.017 0.013
11013608d 0.318287 −1.00 12.57 6223 −0.33 0.048 0.044
12055421 0.385607 0.96 12.52 6118 −0.47 0.041 0.038
12418274 0.352723 0.93 14.35 5215 0.22 0.050 0.038
12598713 0.257179 0.94 12.76 5189 −0.14 0.013 0.008

Notes. All parameters, unless otherwise specified, are from http://keplerebs.villanova.edu/ (Matijevič et al. 2012).
a The binary light curve morphology index is defined such that detached systems have values �0.5; semi-detached
systems are in the range 0.5–0.7; and overcontact binaries lie in the range 0.7–0.8. Systems with morphology
index above ∼0.8 are ellipsoidal variables and or uncertain categories. Systems with −1 are unclassified.
b A description of how the correlation coefficients were computed is given in Section 3.1.
c Depths of the primary and secondary minima in our folded light curves.
d These systems are labeled as “binary false positives” by the Kepler team. We believe that the anticorrelated light
curves provide evidence that they are, in fact, binaries.
e The significant positive correlation for this system arises from the likely Roemer delay in the O − C curve due
to the possible presence of a third body.

where time t = 0 corresponds to the time of primary minimum
(here indistinguishable from the secondary minimum) and
where the constant term has been dropped. In this crude model,
B is the modulation amplitude due to both ellipsoidal light
variations and eclipses.

When one spot is present, the observed flux as a function of
time, again aside from constant terms, will then be:

F = −B cos 2ωt + ε sin α sin i cos(ωt + �). (6)

We can now examine analytically how the two minima and the
two maxima are shifted in phase relative to the case of no spot.
The analysis is straightforward since it is assumed that ε 
 B,
as mentioned above. After expanding the relevant trigonometric
functions for small excursions about their nominal extrema, and
neglecting high order terms, the four phase shifts, in radians,
are found to be:

Δφmin,n = − (−1)n
ε sin α sin i

4B
sin � (7)

Δφmax,n = (−1)n
ε sin α sin i

4B
cos �, (8)

where n = 1 or 2 for the first or second minimum or maximum,
respectively.

It is immediately clear that (1) the shifts of the times of the
two minima are anticorrelated; (2) the shifts in the two times of
the maxima are anticorrelated; and (3) the changes in the times
of the two maxima are 90◦ out of phase with respect to the times
of the two minima. It is also clear from these expressions that
the phase shifts depend on the spot longitude; a near uniform
migration in longitude with time leads to a quasi-periodic O − C
curve.

In some timing analyses, the eclipse center is defined as the
midpoint between the ingress and egress times, i.e., at their
half intensity points. Perturbations to such eclipse centers can
also be worked out analytically using the same formalism and
approximations as discussed above. The corresponding shifts in

8
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Figure 6. O − C curves for KIC 9451598 showing anticorrelated behavior
between the minima (top panel) as well as the maxima (bottom panel). Note
that the curves in the bottom panel are ∼90◦ out of phase with respect to those
in the top panel.

(A color version of this figure is available in the online journal.)

the eclipse times are the same as given by Equation (7), except
that they are larger by a factor of

√
2.

The (half peak-to-peak) amplitude of the O − C variations
seen as the spot migrates around the star at constant α can be
computed from Equation (7) and is given in units of time by:

τ = ε sin α sin i

4B

Porb

2π
. (9)

The coefficient quantifying the photometric strength of the
spot may be estimated by

ε � 4ΔT

T

πr2
spot

πR2
1

B0

2
, (10)

where rspot is the radius of the spot, R1 is the radius of the star
with the spot, ΔT is the decrement (increment) in temperature of
the cool (hot) spot, and B0 is the mean brightness of the binary.
Finally, if we define an eclipse depth in terms of the fractional
decrease in intensity at the minimum, ξ ≡ B/B0, the expression
for the amplitude of the O − C shifts becomes:

τ = 1

4πξ
sin α sin i

ΔT

T

r2
spot

R2
1

Porb. (11)

For the illustrative parameter values of ξ = 0.04, α = 45◦,
i = 40◦, rspot/R1 = 0.2 (equivalent to a spot radius of 11.◦5 of
arc on the stellar surface), ΔT/T = 0.15, and Porb = 8.7 hr,
we find τ ∼170 s, a value similar to those seen in the O − C
observations.

4.3.3. Eclipses and Spot Occultations

An eclipse in a binary system consisting of two spherical stars
of radii R1 and R2 will only occur if the inclination satisfies

i � cos−1

[
R1 + R2

a

]
. (12)

Figure 7. Point-by-point correlation plot of the binned O − C curves for the
primary and secondary eclipses of KIC 7691553. The negative slope of the plot
clearly demonstrates the anticorrelation of the O − C curves, with a correlation
coefficient of −0.5.

(A color version of this figure is available in the online journal.)

If we use the Eggleton (1983) analytic approximation for
the size of the Roche lobe for a range of mass ratios of
0.3 � M2/M1 � 3, we find that (R1 + R2)/a is very close to
∼0.76, corresponding to a minimum inclination angle of ∼41◦
(see Figure 8).10

Finally, this model only produces strictly anticorrelated pri-
mary and secondary O − C curves if the spot is not occulted by
the companion star. If the spot is not occulted when it is located
at longitude � = 0, then it will not be occulted when it is at any
other longitude.11 A condition on the inclination angle to avoid
occultation of the spot at � = 0 is relatively straightforward to
derive. If the radii of the star with the spot and the second star
are R1 and R2, respectively, then the constraint can be written as
one on the angle α as a function of inclination:

α < sin−1

[
a

R1
cos i − R2

R1

]
+ i. (13)

The constraints on the inclination angle and the spot colatitude
are summarized in Figure 8. The spot colatitude is plotted on
the y axis and the inclination angle on the x axis. Viable regions
in this parameter space lie to the right of the vertical line at
41◦, below the spot visibility line given by the requirement that
α + i < 90◦, and below the curves given by Equation (13).

5. LIGHT CURVE SIMULATIONS WITH Phoebe

In order to verify the validity of some of the approximations
used for our simple model, we utilized the Phoebe binary light
curve emulator (Prša & Zwitter 2005) to model a contact binary

10 For strictly contact binaries, the minimum inclination angle for eclipses to
occur is formally given as 34◦ (see, e.g., Morris 1999).
11 The proof of this statement is simple to visualize. Project the kinematic
trajectory of the spot over the course of a binary orbit onto a plane
perpendicular to the line of sight and compare it to the trajectory of the highest
projected point on the companion star.

9
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Figure 8. Geometric requirements for the observer to be able to see a starspot
around an entire orbit of an eclipsing binary. The allowed region lies below all
the curves—which is essentially dictated by the diagonal spot visibility line.
Eclipses will be seen for system parameters to the right of the vertical line, or
even possibly above inclination angles as small as 34◦. All angles are in degrees.
The quantity q ≡ M2/M1. The relative stellar radii are computed from q, which
dictates the relative sizes of the two Roche lobes.

(A color version of this figure is available in the online journal.)

system where either one cool or one hot spot may be present on
one star. As a strictly illustrative model, we utilized the Phoebe
fit to the folded light curve of KIC 3437800, a Kepler contact
binary whose O − C curves are also anticorrelated, though it is
not included in the present sample of 32 systems. That fit yielded
the parameters Porb = 8.7 hr; i = 40◦, Teff = 6185 K, and
q = M2/M1 = 0.62 that specify the baseline no-spot model. A
hot or cold spot was then placed at one of a variety of locations
on the surface of the primary star, and orbital light curves were
simulated. The times of the four extrema (two minima and two
maxima) were found using the same parabolic interpolation
method used for the actual Kepler data. We emphasize that the
system parameters adopted for KIC 3437800 are illustrative
only.

For this particular example, the spot was positioned at
α = 45◦, � = 90◦, and was given a radius of 10◦ on the surface
of the primary and a temperature that was elevated by 15%
over the local Teff of the star. Figure 9 shows the difference
between the light curves of the models with and without the
spot. The difference curve is not exactly a pure sine function.
This result can readily be understood in terms of limb-darkening,
by modifying Equation (4) with a simple linear limb darkening
law such that:

ΔFspot ∝ cos θ [1 − u(1 − cos θ )] , (14)

where cos θ represents the dot product between the direction
to the observer and the spot vector with respect to the center
of its host star and u is the linear limb-darkening coefficient.
Substituting in the expression for the dot product, we can write
the above expression as:

ΔFspot = A + b(1 − u + 2au) cos(ωt + �) + ub2 cos2(ωt + �)

a ≡ cos α cos i and b ≡ sin α sin i, (15)

Figure 9. The “Light curve” of a single hot spot, generated by the Phoebe
emulator. The red points are the relative flux coming from a hot spot as a
function of the orbital phase. To generate these points, we adopted the following
spot parameters: colatitude α = 45◦, longitude � = 90◦, radius = 10◦, and
Tspot/Tstar = 1.15. The orbital inclination is 40◦. The blue curve is a model fit
to Equation (15) in the text with � set to 90◦.

(A color version of this figure is available in the online journal.)

where A is a DC offset. Basically, this result is equivalent to
Equation (4) except for the addition of a cos2 term that accounts
for the limb darkening. A best-fit curve of the form given by
Equation (15) is superposed on the data obtained from the
Phoebe simulations in Figure 9. The fit is excellent.

Phoebe model light curves were then computed for cases
with the spot centered at each of a set of longitudes covering the
range 0◦ � � � 360◦, still at a colatitude of α = 45◦. The O − C
results are shown in Figure 10 for the two minima as well as
the two maxima. It is immediately evident that the O − C curves
for the two minima are indeed anticorrelated, as are the curves
for the two maxima; however, they are not pure sine curves.
The nonsinusoidal behavior of the O − C curves must differ
from that in the simple model because limb darkening produces
a lightcurve for the spot that is not exactly sinusoidal (see
Figure 9). When the analytic expressions for the phase shifts, as
given in Equations (7) and (8), are rederived while accounting
for limb-darkening per Equation (15), highly analogous results
are found except that the sin � term in Equation (7) is multiplied
by a factor of (1 ± χ cos �) while the cos � term in Equation (8)
is multiplied by a factor (1 ± χ sin �), where χ is a geometry-
dependent number of the order of 1/3 − 1/2. Therefore, even
after including limb darkening, the O − C curves for the primary
and secondary minima (as well as for the two maxima) are still
anticorrelated in the sense that their values always have opposite
signs. However, their magnitudes are not quite equal.

In Figure 10 we show fits to the Phoebe-generated O − C
curves (filled circles) using the functions of � given in
Equations (7) and (8), but with each function multiplied by the
extra factor discussed above. The free parameter χ was found
to be consistent with 0.45 ± 0.04 for all four curves. Since the
fits are quite good, it appears that the simple model formalism
captures the important aspects of the effects of starspots.
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Figure 10. O − C curves generated by Phoebe for the binary system described
in Figure 9 and modeled after KIC 3437800. The red and blue points are for the
primary and secondary eclipses, respectively, while the green and cyan points
are for the out-of-eclipse maxima. The smooth curves are fits to a simple spot
model, modified by limb darkening, as discussed in Section 5.

(A color version of this figure is available in the online journal.)

6. DISCUSSION

The simple starspot model presented here to explain both
the general appearance and amplitude of the O − C curves for
contact binaries, as well as the anticorrelations between the
O − C curves for the primary and secondary eclipses, seems
to work remarkably well. At this point, it is natural to wonder
to what degree similar effects, especially the anticorrelations
between the O − C curves for the primary and secondary
eclipses, would be observable in longer period binaries.

First, and perhaps most importantly, in order for the present
starspot model to be effective in producing visibly detectable
anticorrelated O − C curves, the stars in the binary would be
required to rotate nearly synchronously with the orbit. With
increasing orbital periods this behavior becomes less and less
likely. Second, for longer orbital periods, eclipses will only
be seen in general for inclinations nearer to 90◦.12 For larger
inclination angles, starspots must be located nearer to the poles
of the stars (see Figure 8) to avoid being occulted during the
eclipses. Not only will the unocculted region be smaller, but
also spots may be less likely to occur near a stellar pole. Third,
it is plausible that contact binaries are more likely to have large
spots and that any spots on them tend to be larger than the spots
on the stars in longer period binaries.

Finally, there will be a decrease in any O − C amplitude
essentially due to the smaller duty cycle of the eclipse in longer
period binaries. For longer orbital periods, the eclipse duration
is given in terms of orbital cycles by:

Δθecl

2π
= 1

π
sin−1

[
(R1 + R2)

a

]
� (R1 + R2)

πa
, (16)

12 Strictly speaking, eclipses are not required for the spot model of
anticorrelated O − C curves to work; however, wider, non-eclipsing binaries
are more difficult to discover.

where the approximation has been made that R1 ∼ R2 
 a. The
eclipse profiles may be crudely approximated as in Equation (5)
by taking B = −B cos Nωt for times t near those for which
ωt = 0 and ωt = π . Here, N would be given by:

N � π

Δθecl
� πa

2(R1 + R2)
. (17)

In the discussion presented above, e.g., in Equation (5), we
had taken N = 2 to represent a contact binary. For stars
of a fixed, typical, unevolved size, Equation (17) states that
N ∝ a ∝ P

2/3
orb . When the calculation that led to Equations (7)

through (11) is recast in terms of N with all other parameters
held fixed, the leading factor of 1/4 becomes 1/N2. In turn, this
result implies that:

τ ∝ Porb

N2
∝ P

−1/3
orb . (18)

This result may be applied, in an extreme example, to a binary
with a ∼30 day period, i.e., a period approximately two orders
of magnitude longer than that of a typical contact binary. In a
binary with this longer period, the spot-induced O − C variations
would be reduced in amplitude by a factor of ∼5 over those of a
contact binary comprising similar stars and having similar spots.

We note that in keeping with these conclusions, based on
the spot model, close binaries are strongly favored to exhibit
anticorrelated O − C curves. Table 1 shows just how rapidly the
anticorrelation phenomenon decreases with increasing orbital
period.

Another question that arises in connection with the proposed
starspot model is what happens to the basic equation for timing
shifts, as in Equation (7), when there is more than one starspot
present at the same time? The result is simply a sum of terms as
given in Equation (7) but with a distribution of spot parameters,
including different stellar longitudes—the latter being by far the
most important. For the case where a single spot of a given area
and temperature decrement is divided into n smaller spots of the
same total area, and assigned a random distribution of � values,
the net result will be a simple decrease in the amplitude of the
resultant O − C curve by roughly

√
n. Thus, even if there are,

e.g., 10 smaller spots present on one star, the amplitude of the
shifts in timing are likely to be reduced by only a factor of a
few. If, by contrast, the number of spots increases to n, but their
sizes and temperature decrements remain unchanged, then the
amplitude of the O − C curve increases by

√
n. In either case,

these collections of spots still have to migrate in a semi-coherent
way, if quasi-periodic behaviors in the O − C curves are to be
observed.

The quasi-periodic O − C variations with characteristic
timescales ∼50–200 days should carry information about the
surface differential rotation of the stellar components in our
sample of contact binaries. Following Kalimeris et al. (2002)
and Hall & Busby (1990), we use a differential rotation law of
the form:

Pα = Porb

(1 − k cos2 α)
, (19)

where, again, α is the colatitude of the spot and Pα is the rotation
period at colatitude α. The migration period, Pmig, is then:

Pmig = P 2
orb

(Pα − Porb)
� Porb

k cos2 α
, (20)
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Figure 11. Sum (top) and difference (bottom) of the O − C curves (divided by
2) for the primary and secondary eclipses of KIC 8956957, respectively.

(A color version of this figure is available in the online journal.)

where the right hand approximation is based on the assumption
that k 
 1. If the 50–200 day timescales are interpreted
as migration periods, the values of k must be in the range
0.003–0.013, in good agreement with, but covering a smaller
range than, the values cited by Kalimeris et al. (2002) and Hall
& Busby (1990).

Finally, we noted above that the O − C curves for some sys-
tems show evidence of positive correlations between the primary
and secondary curves on relatively long timescales. For contact
binary systems with a high degree of anticorrelated behavior
between the O − C curves for the primary and secondary min-
ima, there is a simple way to separate out most of the starspot-
induced eclipse timing changes from most of the changes that
represent other effects such as perturbations due to third bodies.
This method involves forming the sum of the two O − C curves,
divided by 2, as well as the difference, divided by 2 (see also
Conroy et al. 2013, who apply the same technique). The lat-
ter tends to emphasize the effects of starspot activity, while
the former tends to remove them, and thereby possibly show
more clearly any effects due to, e.g., a third body. These sum
and difference curves are particularly illuminating for systems
that show long-timescale, positively correlated O − C curves,
but with short-timescale anticorrelated behavior. This result is
demonstrated in Figure 11 for KIC 8956957. The top panel
shows the average of the two O − C curves and indicates very
little residual structure of interest. By contrast, the bottom
panel, which shows the differences between the O − C curves
clearly exhibits the quasi-periodic behavior that we attribute to
a starspot (or spotted region).

Figure 12 shows sum and difference O − C curves for
KIC 1873918. In this case, the summed curve (top panel) shows
long-term behavior that could be indicative of orbital motion
induced by a third star. The superposed smoothed curve shows
the results of fitting for both the Roemer delay and the physical
delay (see, e.g., Rappaport et al. 2013 and references therein;
Conroy et al. 2013), both due to the presence of a third star. The
inferred physical delay for this system is very small, as expected

Figure 12. Sum (top) and difference (bottom) of the O − C curves (divided by
2) for the primary and secondary eclipses of KIC 1873918, respectively. The
solid green curve in the top panel represents an orbital fit to the O − C (see the
text for details).

(A color version of this figure is available in the online journal.)

from the short binary period and the much longer inferred
orbital period of the third star. Aside from some residual small-
amplitude modulations in the O − C curve, presumably due to
starspots, the fit is quite respectable. The fitted parameters are:
Porb � 854 days, eccentricity �0.63, longitude of periastron
ω � 251◦, Roemer amplitude �280 s, and mass function
�0.032 M�. This object was missed as a candidate triple-star
system in the initial search by Rappaport et al. (2013) likely
because of the effects of starspot activity.

Summed O − C curves for all 32 of our illustrative sample
of contact and ELV binaries were computed and examined for
possible evidence of a third body. The results for six of the
systems13 show clear long-term quadratic trends that correspond
to constant rates of change in the orbital periods. Typical
values of the quadratic terms are Ṗorb � 10−8 days/day or
Porb/Ṗorb � 0.1 Myr. The presence of long term quadratic trends
in the O − C curves of overcontact binaries is not unusual. For
example, Qian (2001a, 2001b) lists 42 systems that evidently
exhibit such features. The mean value of Porb/Ṗorb found by
Qian (2001a) for 12 contact binaries is 2.7 Myr; the mean value
of Porb/Ṗorb for an additional 10 objects classified as “hot contact
binaries” is 4.4 Myr. All but one of these Porb/Ṗorb values has
a positive sign, indicating an increasing period. Several other
systems are also listed elsewhere in the literature. The Qian
(2001a) values for Ṗorb thus represent a factor of ∼30 more
slowly evolving periods than the handful that we are able to
detect in the Kepler collection. The greater sensitivity of the
Qian (2001a) results is due to the long historical baseline of the
plates that author utilized (∼80 yr versus 4 yr for the Kepler data
base), in spite of the lower precision in eclipse timing. We note,
however, that larger detected values of Ṗorb in contact binaries
are not unprecedented, e.g., LP UMa has Porb/Ṗorb � 0.2 Myr
(Csizmadia et al. 2003).

13 These systems include: KIC 2715007, 4937350, 7691553, 9020289,
9097798, and 9821923.
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In any case, such quadratic trends observed for the Kepler
binaries might indicate the presence of a third body in an
orbit with a period much longer than ∼1200 days, i.e., the
length of the Kepler data train utilized in this work. Or, such
quadratic trends could possibly be explained by evolutionary
effects, which manifest themselves via different forms of mass
exchange between the stellar components. These effects could
include mass transfer in the context of thermal relaxation
oscillation theory (Lucy 1976; Webbink 1976, 2003) or via
angular momentum loss driven by stellar winds and/or magnetic
braking (see, e.g., van’t Veer 1979; Mochnacki 1981; van’t Veer
& Maceroni 1989).

7. SUMMARY AND CONCLUSIONS

Kalimeris et al. (2002) and earlier works showed that pho-
tometric perturbations and, in particular, starspots, may affect
measured O − C curves and that those perturbations are not
properly interpreted in terms of orbital period changes. These
authors noted that spot migration could produce (quasi)periodic
effects in the O − C curves.

In this work, we have substantially extended these earlier
results. We have used the Kepler data base for binary stars
and an analytic model to provide good insight into the timing
effects of starspots seen in the O − C curves. In particular, we
identified a large sample of Kepler target short-period binaries
(i.e., Porb � 1/2 day) that appear to manifest the effects of a
single spot or a small number of spots on their O − C curves;
these O − C curves quite often have the form of a random-walk
or quasi-periodic behavior, with typical amplitudes of ∼±300 s.
Most of these O − C curves also exhibit a very pronounced
anticorrelation between the primary and secondary minima.

We developed a simple idealized model that illustrates the
major effects that starspots have on measured eclipse times.
In particular, we showed that a spot will, in general, affect the
times of primary minimum and secondary minimum differently,
with the predominant effect being an anticorrelated behavior
between the two, provided that the spot is visible around much
of the binary orbit. We also showed that a spot can equally well
affect the times of the two maxima in each orbital cycle and
that the effects on the two maxima should be different, typically
including anticorrelated behavior between them and a 90◦ phase
shift with respect to the eclipse minima.

All of the same types of timing behavior are expected for close
binaries that do not eclipse at all, i.e., so-called “ELV” binaries,
and in fact, a significant fraction of the ∼390 binary systems
exhibiting these properties may be in this category. There is
probably even a selection effect whereby the anticorrelation
properties of the O − C curves are enhanced in binaries that
either do not eclipse or that have only partial eclipses. The reason
is that if an eclipse also occults a starspot over a substantial range
of longitudes �, on the surface, then the anticorrelation effect
will be diminished. We can even turn this argument around and
suggest that the detection of anticorrelated O − C curves tends
to indicate that the system being observed is a binary, as opposed
to a false positive, such as a pulsator. This statement gives us
some confidence that the four systems listed in Table 2 marked
as false positives by Matijevič et al. (2012) are, in fact, actual
binaries.

We have found that a few of the selected contact binaries
showed positively correlated variations in the O − C curves for
their primary and secondary minima on long timescales as well
as the anticorrelated variations that are most evident on shorter
timescales. We then demonstrated that sum and difference O − C

curves between the primary and secondary eclipses are useful
in distinguishing between the two types of variations. We used
this latter technique (i.e., summing the two O − C curves of the
primary and secondary eclipses) to better isolate the effects of
a possible third body in the system. In the process, we found
a likely Roemer delay curve for one of the systems, as well as
convincing evidence for a long-term quadratic trend in six other
systems.

Finally, we found that the O − C difference curves often
appear to be dominated by 50–200 day quasi-periodicities that
we interpret in terms of the migration of spots, due to differential
rotation, relative to the frame rotating with the orbital motion.
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Prša, A., & Zwitter, T. 2005, ApJ, 628, 426
Qian, S. 2001a, MNRAS, 328, 635
Qian, S. 2001b, MNRAS, 328, 914
Qian, S. 2003, MNRAS, 342, 1260
Rappaport, S., Deck, K., Levine, A., et al. 2013, ApJ, 768, 33
Robertson, J. A., & Eggleton, P. P. 1977, MNRAS, 179, 359
Rucinski, S. M. 1998, AJ, 116, 2998
Senavci, T., Hussain, G. A. J., O’Neal, D., & Barnes, J. R. 2011, A&A, 529, 11
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