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Abstract

The interaction between a probe and a plasma has been studied since the 1920s and
the pioneering work of Mott-Smith and Langmuir [1], and is still today an active topic
of experimental and theoretical research. Indeed an understanding of the current
collection process by an electrode is relevant to diverse matters such as Langmuir and
Mach-probes calibrations, dusty plasma physics, or spacecraft charging.

Recent simulations relying on the ad hoc designed code SCEPTIC have fully
addressed the collisionless and unmagnetized problem for a drifting collector idealized
as a sphere. SCEPTIC is a 2d/3v hybrid Particle In Cell (PIC) code, in which the ion
motion is fully resolved, while the electrons are treated as a Boltzmann distributed
fluid [2, 3]. In the present work we tackle the transition between the unmagnetized and
the weakly magnetized regime of ion collection by a spherical probe (The mean ion
Larmor radius rL ≥ rp) in a collisionless plasma (The ion mean free path λmfp � rp).

When the sphere is at space potential, we demonstrate that the ion current depen-
dence on the background magnetic field B is linear for low B, and provide analytical
expressions for this dependence.

When the probe potential can not be neglected, the problem shows two distinct
scale lengths: A collisionless layer of a few rp close to the probe, followed by a
collisional presheath of a few λmfp. The chosen approach is to resolve the collisionless
scale-length with SCEPTIC, while using appropriate outer boundary conditions on
the potential and ion distribution function to connect with the unresolved collisional
presheath. We present results of our numerical simulations for a wide range of plasma
parameters of direct relevance to Langmuir and Mach-probes.
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Title: Professor

Thesis Reader: Brian Labombard
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Chapter I

Analytical basis

I.1 Position of the problem

Since the early days of laboratory plasmas scientists have been interested in studying

the behavior of bodies inserted in gas discharges. The pioneering work of Mott-Smith

and Langmuir on the matter [1] was mainly motivated by the prospect of diagnosing

the ions and electrons distribution functions in a plasma by measuring their current to

a conducting wire, or Langmuir probe. Because we have today a good understanding

of particle-flux sensing devices in several regimes of operation, such probes are still

widely used in modern plasma diagnostics [4].

The theory of current collection in a plasma would not have aroused much in-

terest outside the community of experimentalists if its applications were limited to

diagnostic purposes. Fortunately dust particles in natural or artificial plasmas, as

well as man-made satellites, obey the same physics of Langmuir probes. Unless oth-

erwise indicated, the term “probe” will be used regardless of the physical nature of

the collector.

An ideal probe absorbs every ion and electron striking it. In steady state, it will

release neutral atoms and/or molecules at a rate that balances the incoming flux of

ions, which has been neutralized by the incoming electrons or the electrons supplied

by an external bias circuit. The deviations from ideality come from different Solid

state physics reactions resulting in electron emission at the surface, whose relative

19



importance depends upon the experimental conditions. Usually the most relevant

effects are Photoemission, Secondary emission, and Thermionic emission. A quanti-

tative treatment showing how those phenomena can strongly influence the charging

of dust particles has been performed by Delzanno and Bruno [5]. In some cases ion-

induced secondary emission is present as well. Although the conditions for a probe

to behave as ideal are rarely met in practice, we will work under the assumption

that those conditions are fulfilled, and hence shall only be concerned by the current

drawn from the bulk plasma. We also assume that the charge-exchange mean-free-

path is much longer than the probe size, in order to neglect the interaction between

the neutrals released by the probe and the incoming ions.

The electrostatic potential of Langmuir probes is artificially biased with respect to

the surrounding plasma, usually negatively. Ideal floating probes (i.e. non connected

to an external circuit) tend to charge negatively as well due to the high electron

mobility [4]. In either case, relating the current to the plasma properties requires

an understanding of how the probe potential locally perturbs the plasma, and hence

the particle distributions. This interaction between the plasma and the collector is

governed by basic Plasma physics, that we will study under the assumption that the

probe can be idealized as a sphere. The geometry under consideration is illustrated

in Fig. (I-1).

Probe

r

z
Magnetic axis

�
ρφ

Figure I-1: Spherical and cylindrical coordinates of the problem. The magnetic axis
(External B-field) defines the z-direction.
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The unmagnetized problem (that is to say without background magnetic field)

has been solved by Hutchinson [2, 3] in the limit of zero collisionality by means of the

Particle in Cell (PIC) code SCEPTIC. The opposite limit of a strongly magnetized

plasma (β � 1, where β is the probe radius divided by the mean ion Larmor radius)

has been treated by Chung and Hutchinson [6, 7] through one-dimensional fluid and

kinetic calculations in a “quasi-collisionless” plasma. In each case the angular distri-

bution of ion current has been computed for a wide range of drift velocities and ion

to electron temperature ratios.

The intermediate magnetic field regime (β ∼ 1) has received non negligible at-

tention, be it from an experimental [8] or an analytical [9, 10, 11, 12] point of view.

Three dimensional PIC simulations of electron collection by a spherical satellite in a

magnetoplasma flowing perpendicular to the magnetic field have been performed as

well [14], however the results are rather crude and qualitative.

The main goal of the present thesis is to perform a comprehensive and quantita-

tive study of ion collection by a negatively charged spherical probe using the code

SCEPTIC under the condition of negligible collisionality, and in the presence of a

weak magnetic field parallel to the drift velocity. The present Chapter summarizes

existing theories necessary to an understanding of SCEPTIC operation and results,

and develops new analytical expansions at low β to the current collected by a sphere

at space potential. Chapter II gives an overview of the code operation, and of recent

modifications necessary to implement the magnetic field. Chapter III presents the

numerical results in the flow-free regime, while Chapter IV treats the drifting case.

I.2 Basic plasma properties

I.2.1 Infinite uniform plasmas

The simplest classical plasma is a uniform, infinite, isotropic, fully ionized neutral

gas consisting of a single species of ions with mass mi, charge Z and uniform density

ni = n∞/Z, and electrons with mass me and uniform density ne = n∞. Because the

21



proton-to-electron mass ratio is extremely large (mH

me
= 1836) and thermalization is

driven by Coulomb collisions, it is often the case that ions and electrons equilibrate

among themselves much faster than with each other. Therefore the two species can

be described by Maxwellian distributions with different temperatures Ti,e and drift

velocities vdi,e.

If we define the thermal speed of a species by:

vt =

√

2T

m
(I.1)

the shifted Maxwellian distribution function f∞(v), where f∞(v)d3v is the number

of particles in the velocity range d3v, is given by:

f∞(v) =
n

(vt
√
π)3

exp(−(v − vd)2

v2
t

) (I.2)

By construction we have:

n =

∫

f∞(v)d3v (I.3)

vd =

∫

vf∞(v)d3v (I.4)

T =
1

n

∫

(v − vd)2f∞(v)d3v (I.5)

(I.6)

vt appears as a measure of the random velocity of the particles, and is related to

their mean kinetic energy by < Ec >= 3
4
mv2

t . The random flux-density is defined as

the one-directional charge flux-density in a frame moving with velocity vd, where the

plasma is therefore at rest:

Γ0 = Z

∫

vx≥0

f∞
vd=0(v)vxd

3v = Zn
vt

2
√
π

(I.7)

If px is the diagonal value of the ion pressure tensor in the ex direction, the ratio
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of specific heats along this direction, γx, is given by:

γx =
1

T

dp

dn |dy=dz=0
(I.8)

We can now define the sound speed cs in the ex direction as the speed of ion acoustic

waves in the ion reference frame:

cs =

√

ZTe + γxTi
mi

>∼ vti (I.9)

In most plasma experiments the electron drift velocity is much smaller than the

electron thermal speed (|vde| � vte), it is therefore appropriate to consider the elec-

trons as stationary. This thesis is based on this assumption, and from now on the

term “drift velocity” refers to the ion species. The relevant values for the drift velocity

range from zero to a few sound speeds.

I.2.2 Analytical current calculations

The theories and computations developed in this thesis, intended to calculate the ion

current to a spherical probe, assume the ions and electrons far from the collector, or

“at infinity”, to be described by the preceding model. Because the probe induces a

local perturbation on the electrostatic fields and particle distribution functions, the

ion flux density to the probe surface is not simply given by Eq. (I.7) with n = n∞/Z.

Two main approaches can be followed when searching for analytic expressions for

the steady-state current effectively collected by the probe, when collisions can be

neglected.

Approach 1

The first approach is to use Vlasov’s equation, governing the temporal and spatial

evolution of the distribution function:

df

dt |orbit
=
∂f

∂t
+ v · ∇xf +

Ze

m
(E + v ∧ B) · ∇vf = 0 (I.10)
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Along an orbit, because phase-space density is conserved, df
dt

= 0. If each orbit

striking the probe can be traced back to infinity, the distribution function at the

probe surface is straightforwardly given by:

fprobe(v,x) = f∞(v∞) (I.11)

where v∞ is the velocity that a particle striking the probe with position (v,x) had

at infinity. If vn is the component of the velocity normal to the probe surface and

directed inwards, the total current collected is:

I = Z

∫

probe

∫

vnf
probe(v,x)d3vd3x (I.12)

Unfortunately there are two situations where this approach can not be followed:

When some orbits intersect the probe more than once, and when it is not possible to

find an analytic relationship between (v,x) and v∞.

Approach 2

When the preceding path fails, one can consider a control volume Ω containing the

probe, but whose surface is at an arbitrary location where the distribution function

is known, such as infinity. The collected current is:

I = Z

∫

∂Ω

∫

vn≥0

vnf
∞(v)H(v,x)d3vd3x (I.13)

where ∂Ω is the surface of the control volume over which the integration is performed,

vn the velocity component normal to the control surface and directed inwards, and

H(v,x) an impact parameter equal to 1 if a particle whose initial position in phase-

space is (v,x) is collected, and 0 otherwise.
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I.3 Free flight ion current to a spherical probe

I.3.1 Unmagnetized plasma

The free flight model of current collection is a collisionless model where any electric

field is neglected. Therefore although we immediately specialize to the ions, this

model can equivalently be applied to the electrons. Unmagnetized orbits emerging

from a convex probe are therefore straight lines and connect to infinity, hence we can

use the first approach described in Section I.2.2:

Γffi = Z

∫

vn≥0

f∞
i (v)vnd

3v (I.14)

The integration has been performed analytically in Ref. [2] in the case of a spherical

probe with f∞
i given by Eq. (I.2) (See Fig. (I-1) for a description of the coordinate

system).

Γffi (vd, cos θ) = Γ0
i

[

exp(−(
vd
vti

)2 cos2 θ) −
√
πerfc(

vd
vti

cos θ)
vd
vti

cos θ

]

(I.15)

By integrating Eq. (I.15) over the sphere we find the total current:

Iffi = I0
i

[

1

2
exp(− v2

d

v2
ti

) +

√
π

2
(
vd
vti

+
vti
2vd

)erf(
vd
vti

)

]

(I.16)

Here and in the rest of the Thesis, Γ0
i = n∞

vti

2
√
π

is the ion random charge flux

density (we recall that the ion density at infinity is n∞/Z), and I0
i = 4πr2

pΓ
0
i is

the ion random thermal current collected by the sphere. Similar calculations for an

infinite planar probe perpendicular to the plasma drift and collecting particles from

both sides (total area of the two faces: A) yield:

Iffi = Γ0
iA

[

exp(− v2
d

v2
ti

) +
√
π
vd
vti

erf(
vd
vti

)

]

(I.17)
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I.3.2 Magnetized plasma with vd ‖ B

The picture is more complicated in the presence of a background magnetic field,

because as shown in Fig. (I-2) not all the orbits originating from the probe, be it

convex, connect to infinity. We must therefore resort to the second approach described

in Section I.2.2.

Orbit connected to infinity

Orbit closed on the sphere

Magnetic axis

Figure I-2: Schematic representation of the two kind of orbits intersecting the probe.
In a collisionless plasma, orbits that close on the sphere are empty.

The current to the probe depends on vti, vd, and on the non-dimensional factor

β = rp/rL, which is a measure of the magnetic field defined as the ratio of the probe

radius over a mean ion gyroradius.

β =
rp

√

πTimi

2Z2e2B2

(I.18)

At β = 0, the current is given by Eq. (I.16):

Iβ=0
i = I0

i

[

1

2
exp(− v2

d

v2
ti

) +

√
π

2
(
vd
vti

+
vti
2vd

)erf(
vd
vti

)

]

(I.19)

In the limit β � 1, the particles are tight to the magnetic field lines and the

total current is therefore given by Eq. (I.17) with A = 2πr2
p (double of the probe
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cross-section):

Iβ=∞
i = I0

i

1

2

[

exp(− v2
d

v2
ti

) +
√
π
vd
vti

erf(
vd
vti

)

]

(I.20)

In the intermediate magnetic field regime (0 < β < ∞), the current to a spher-

ical electrode of radius unity at space potential can be evaluated by summing the

contribution of helices of radius s, wave length 2πt, guiding center distance to the

magnetic axis of the probe u, and phase ψ ∈ [0 : 2π] distributed according to a drift-

ing Maxwellian (Only four variables are necessary to describe the helices because we

have poloidal symmetry about the magnetic axis). Fig. (I-3) is a schematic of the

problem:

u

s

2�t

Magnetic and drift axis

1

2

3

Figure I-3: Schematic of three different kind of orbits. Solid portions of orbits are
visible, dashed portions are behind the sphere, and dotted portions are inside the
probe. Orbit no1 has s1 + u1 > 1 and |s1 − u1| < 1. The phase ψ1 is such that the
orbit crosses the sphere, but because the wavelength is “long” (t1 > t∗1(s1, t1, u1), see
Appendix A), there are phases ψ̃ such that H(u1, s1, t1, ψ̃) = 0. Orbit no2, for which
the geometrical meaning of s, t and u is shown, has s2 + u1 > 1 and |s2 − u2| < 1.
It is a critical orbit because H(u2, s2, t2, ψ2) = 1 regardless of ψ2 (t2 = t∗2(s2, t2, u2)).
Orbit no3 has u3 + s3 < 1, hence H(u3, s3, t3, ψ3) = 1 regardless of ψ3.
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Stationary plasma

The calculation was first done in the stationary case (vd = 0) by Whipple [9], whose

expression can be recovered by setting D = 0 in Eq. (9) from Ref. [11].

Ii
I0
i

=
1

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

f̃(β, s, t)

[

1

2
θ(1 − s)(1 − s)2 +

∫ s+1

u=|s−1|

1

2π

∫ 2π

ψ=0

H(u, s, t, ψ)udu

]

stdsdt (I.21)

with:

f̃(β, s, t) = exp(−π
4
β2(s2 + t2)) (I.22)

Ii/I
0
i (Eqs (I.21,I.22)) can be seen as the current reduction factor from the value in

an unmagnetized plasma. f̃ is a form of the Boltzmann exponential appearing in the

Maxwellian distribution function. The term 1
2
θ(1 − s)(1 − s)2 counts the orbits with

s+u < 1, that we know for sure are collection orbits (θ is the Heaviside step function).

The term
∫ s+1

u=|s−1|
1
2π

∫ 2π

ψ=0
H(u, s, t, ψ)udu counts the current collected from the orbits

with s + u ≥ 1 and |u− s| ≤ 1. That is to say helixes part in the magnetic shadow

and part outside. The impact factor H(u, s, t, ψ) (equal to 1 if the orbit characterized

by (u, s, t, ψ) intersects the sphere at least once and 0 otherwise) has been calculated

by Rubinstein and Laframboise in Ref. [11]. Orbits characterized by u > s+1 do not

intersect the sphere.

This integral is expensive to evaluate as β → 0 and was performed using a second

order trapezoidal rule with adaptative step-size down to β = 0.002. The result is

shown in Fig. (I-4).

Ii/I
0
i can be approximated to within 0.3% by:

Ii
I0
i

= 1.000−0.0946z−0.305z2+0.950z3−2.200z4+1.150z5 with z =
β

1 + β
. (I.23)

We have shown (See Appendix A) by expansion starting from the integral expres-

sion of Eq. (I.21) that the slope of the current reduction at β = 0 is C = 1/3π, in
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Figure I-4: Ion current collected by a stationary spherical probe at space potential
(normalized to I0

i = 4πr2
pn∞

vti

2
√
π
) as a function of the magnetic field. Fig. a shows

that the dependence at small β is given by Eq. (I.24). Fig. b shows the same function
for the range β ∈ [0 : ∞]. If β = 0, the particle current is simply the sphere area
times the random current: Ii/I

0
i = 1. If β = ∞, the particle current is reduced by a

factor of 2: Ii/I
0
i = 1/2.

agreement with our numerical integration. The linear term in Eq. (I.23) is slightly

different from −1/3π because this equation is not a Taylor expansion at z = 0 but a

polynomial fitting over the range z ∈ [0 : 1]:

Ii(β)

I0
i

= 1 − 1

3π
β +O(β2) (I.24)

Eq. (I.24) is in contradiction to the statement of Rubinstein and Laframboise

(“Results and discussions” [11]) that the dependence on β is quadratic (i.e. ι(β) ∼
1−Cβ2). The physical origin of this linear dependence can be understood as follows.

We can choose a given point on the sphere surface, and consider the orbits there.

Under the hypothesis of small β, the majority of those orbits can be traced back

to infinity, while a small fraction re-intersect the probe at least once. Orbits that

reintersect the sphere are unpopulated. It is this effect that entirely accounts for flux

reduction. In order of magnitude, the reintersecting orbits require |vz|<∼ rpΩ/π, which

delimits a solid angle proportional to |vz| (not v2
z as erroneously argued by Rubinstein

and Laframboise). Since at small velocity the Maxwellian distribution is independent

of v, doubling β will simply double the fraction of such orbits, therefore doubling the
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depletion due to the magnetic field.

Drifting plasma

By setting:

f̃(β, s, t,
vd
vti

) =
1

2

[

exp(−π
4
β2(s2 + (t− vd

vti

2

β
√
π

)2)) + exp(−π
4
β2(s2 + (t +

vd
vti

2

β
√
π

)2))

]

(I.25)

in Eq. (I.21) we extended the previous theory to a plasma drifting parallel to the

magnetic field.

The results of our numerical integration are shown in Fig. (I-5).
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Figure I-5: Ion current collection by a spherical probe at space potential from a
plasma drifting parallel to the magnetic field (normalized to I0

i = 4πr2
pn∞

vti

2
√
π
) as a

function of the magnetic field β. Fig. a shows that the dependence at small β is given
by Eq. (I.26). Fig. b shows the same functions for the range β ∈ [0 : ∞]. If β = 0,
the particle current is given by Eq. (I.16). If β = ∞, the particle current is given by
Eq. (I.17).

We show in Appendix A that the current dependence on β at small β is still linear,

and given by:

Ii(β)

I0
i

=

[

1

2
exp(− v2

d

v2
ti

) +

√
π

2
(
vd
vti

+
vti
2vd

)erf(
vd
vti

)

]

− exp(− v2
d

v2
ti

)
β

3π
+O(β2) (I.26)

As can be seen in Eq. (I.26), the current slope at β = 0 is proportional to exp(− v2
d

v2ti
)
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and therefore quickly decreases to zero as the drift rises. This is an intuitive result

since for high drift velocities thermal motion perpendicular to the magnetic field can

be neglected, and the particles move along the field lines regardless of the magnitude

of B.

I.4 Basic charging mechanisms with non negligible

electric fields

I.4.1 Electron density

In most situations where the electric fields can not be neglected, the ion current to

the probe departs from the value given by Eqs (I.21,I.25). Because in this thesis we

only consider negatively charged probes, we refer to the electrons as the “repelled

species” and to the ions as the “attracted species”.

If nowhere in the plasma surrounding the probe the electrostatic potential is lower

than the probe potential Vp, and if we can neglect the electron density depletion due

to their collection, each point in the electron phase-space is connected to infinity.

Those two conditions are always satisfied provided the probe potential is negative

enough, typically φp<∼ − 1 where we define the dimensionless potential as φ = eV
Te

) ;

and we are a fraction of rp away from the probe surface. Recalling that the electron

distribution is stationary and isotropic at infinity we have :

fe(x,v) = f∞
e (v2 − v2

teφ) (I.27)

, hence

ne = n∞ exp(φ) (I.28)

Obviously at the probe edge the density is lower than the value given by Eq. (I.28)

since the orbits whose velocity is directed outwards are not populated.
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I.4.2 Orbital Motion Limited ion current in an unmagnetized

plasma

Bernstein and Rabinowitz [15] have shown that for the attracted species, each phase-

space point with positive energy and velocity directed inwards at the surface of a

spherical probe surrounded by a spherically symmetric potential distribution is pop-

ulated only if the following inequality is satisfied:

∀r, d
dr

[

r3dφ

dr

]

≥ 0 (I.29)

That is to say the potential must decrease everywhere slower than 1/r2. This

condition is satisfied in the limit λs � rp, where λs ∝ 1
√
n∞ is the plasma shielding

length (See Section I.5.1). Indeed in the limit λs → ∞ the density of the plasma

at infinity goes to zero and the potential distribution approaches a Coulomb form

(φ ∝ 1/r). The current drawn by the probe in the limit of zero shielding is usually

called “Orbital Motion Limited” (OML) current.

Conservation of energy (E0) and angular momentum (J0) for a given ion reads,

provided the potential distribution is spherically symmetric:

E0 =
1

2
mṙ2 + Eeff(r) (I.30)

where:

Eeff (r) =
1

2

J2
0

mr2
+ ZeV (r) (I.31)

is the effective potential of the radial motion. If the OML conditions are satisfied (i.e.

the shielding is negligible), the potential distribution is indeed spherically symmetric,

and Eqs (I.29,I.31) show that there is no intermediate barrier in the effective potential,

hence Bernstein and Rabinowitz result holds.

Unfortunately we can not follow the first approach from Section I.2.2 to calculate

the ion current to the probe because when the drift velocity is non zero, it does not

appear possible to find an analytical relationship between (x,v) at the probe edge

and v∞, the corresponding velocity at infinity. We must therefore resort to the second
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approach. Energy and angular momentum conservation imply that each particle with

impact parameter p and energy E0 such as:

p ≤ rp

√

1 − ZeVp
E0

(I.32)

is collected.

For a a drifting maxwellian distribution at infinity, the total current to the probe

can be written as (See Appendix B):

Ii =
n∞

(vti
√
π)3

∫ 2π

θ=0

∫ ∞

vz=−∞

∫ ∞

vρ=0

exp(−(v − vd)2

v2
ti

)|v|πr2
p(1−

ZeVp
E0

)dvzvρdvρdθ (I.33)

Integration of Eq. (I.33) for ZeVp < 0 gives:

Ii
I0
i

=
1

2
exp(− v2

d

v2
ti

) +

√
π

2

[

vd
vti

+
vti
2vd

+ χp
vti
vd

]

erf(
vd
vti

) (I.34)

Where χ is the ion-energy normalized potential (χ = −ZeV
Ti

), and χp the probe po-

tential. Eq. (I.34) has first been derived by Whipple [13], and independently by

Hutchinson [3].

By setting vd = 0 we recover the formula first derived by Langmuir [1]:

Ii = I0
i (1 + χp) (I.35)

Similar calculations, to the author’s knowledge never published for a drifting

plasma, can be performed for an infinite cylindrical probe, and are presented in Ap-

pendix B.

I.4.3 Canonical upper-bound in a stationary, magnetized plasma

When the OML conditions are satisfied, the total energy and the three components of

the angular momentum about the probe center are conserved, that is to say four quan-

tities. When the plasma is magnetized, we are left with only 2 conserved quantities.
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In cylindrical coordinates (See Fig. I-1) those are the Energy

E0 =
mi

2
(v2
ρ + v2

z + v2
ϕ) + ZeV (I.36)

and the canonical angular momentum about the magnetic axis

Jϕ = miρ
2dϕ

dt
+

1

2
ZeBρ2 (I.37)

Combination of Eq. (I.36) and Eq. (I.37) gives:

E0 =
mi

2
(ρ̇2 + ż2) + ZeV +

mi

2
ρ2

[

Jϕ
miρ2

− ZeB

2mi

]2

(I.38)

Because ρ̇2 + ż2 ≥ 0, a particle is confined in a “magnetic bottle”, defined by the

following implicit equation:

E0 − ZeV (z, ρ) − mi

2
ρ2

[

Jϕ
miρ2

− ZeB

2mi

]2

≤ 0 (I.39)

One can easily solve Eq. (I.39) for ρ∞ in the case of a cold plasma with drift

velocity vd ‖ B. The conserved quantities are E0 = mi

2
v2
d and Jϕ = mi

2
ZeBρ2

∞,

therefore:

ρ∞ ≤ ρ

√

1 +
2mi

ZeB

√

2

miρ2
(
1

2
miv2

d − ZeV (ρ, z)) (I.40)

The maximum impact parameter for a particle to be collected is hence given by

Eq. (I.41) by setting V = Vp and ρ = rp. This has first been done by Parker and

Murphy [10] for a cold stationary plasma:

ρPM = rp

√

√

√

√1 +
2mi

ZeB

√

−2ZeVp
mir2

p

(I.41)

They then calculated an upper bound to the collected current (Usually called canoni-

cal current) by assuming that at infinity the plasma still has a small thermal motion,
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thus obtaining:

Ii ≤ IPMi = 2

[

vt
2
√
π

(πρ2
PM)

]

= I0
i

[

1

2
+

2√
π

√
χp

β

]

(I.42)

Later, Rubinstein and Laframboise [11] extended Parker’s result to a stationary

Maxwellian plasma with arbitrary temperature. Their expression, given in Eqs (30,33,35)

from the previous reference, has a simple asymptotic form when χp = −ZeVp

Ti
� 1:

lim
χp�1

ICanonical
i = I0

i

[

1

2
+

2√
π

√
χp

β
+

2

πβ2

]

(I.43)

ICanonical
i goes to IPMi when β → ∞ as expected. No further investigation in the

flowing case has been performed because as can be seen in Eq. (I.41), the maximum

impact parameter grows with vd, while in the limit of large vd the particles only see the

cross section of the probe perpendicular to the drift (and magnetic) axis. Therefore

the optimal usefulness of this theory is at vd = 0.

I.5 Coupling of Vlasov and Poisson equation

I.5.1 Debye shielding in a spherical well

Because we are in this thesis only concerned about the system “plasma+probe” in

steady state (i.e. we shall not consider plasma waves), the electromagnetic fields are

governed by Gauss and Ampere laws:

∇ · E = e
Zni − ne

ε0
(I.44)

∇∧ B = eµ0(Γi − Γe)

where Γi,e are the ion and electron charge-flux densities. This set of equations gives

E/B ∼ c2/vte (c2ε0µ0 = 1). Because typical thermal velocities are much smaller than

c, it is usually possible to ignore the magnetic field generated by the local currents.

Therefore modifying Eq. (I.7) in order to account for the electric field generated
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by the probe itself (but not for any eventual background fields) requires the self-

consistent solution of Eq. (I.10) and Gauss equation that we rewrite under the form

of Poisson’s equation:

∇2φ =
1

λ2
De

(Zni − ne)/n∞ (I.45)

where λDe =
√

Teε0
e2n∞

is the electron Debye length.

For a spherical probe in a stationary plasma, a perturbative analysis of the cou-

pled Vlasov-Poisson equation can be performed in a region far from the probe where

V = V 1 � Te/e (−∇V 1 = E1) by assuming the ion distribution function to be the

unperturbed Maxwellian f 0
i given by Eq. (I.2) plus a perturbation f 1

i . Because the

problem is spherically symmetric, Eq. (I.10) for the ions becomes, to first order:

vr
∂f 1

i

∂r
+
Ze

mi

E1
r

∂f 0
i

∂vr
= 0 (I.46)

f 1
i = −

∫ r

r̃=∞

Ze

mi

E1
r

vr

∂f 0
i

∂vr
dr̃ (I.47)

=

∫ V 1

Ṽ=0

Ze

mi

1

vr

∂f 0
i

∂vr
dṼ (I.48)

The integrand is readily evaluated from Eq. (I.2):

1

vr

∂f 0
i

∂vr
= −2f 0

i

v2
ti

(I.49)

Because
∫

f 0
i (v)d3v = n∞/Z, the ion density perturbation n1

i =
∫

f 1
i (v)d3v is

simply:

n1
i = −n∞

2e

miv2
ti

V 1 = −n∞
e

Ti
V 1 (I.50)

By analogy n1
e = n∞

e
Te
V 1, which is the first order expansion of the exact electron

density given by Eq. (I.28).
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Therefore Poisson’s equation becomes:

∇2φ =
1

λ2
De

[

(1 − ZeV

Ti
) − (1 +

eV

Te
)

]

(I.51)

which can be rewritten as:

∇2φ =
φ

λ2
De

(1 + ZTe/Ti) (I.52)

The solution of Eq. (I.52) is the well known Debye-Hückel potential:

φ(r) = φp exp(−r − rp
λs

) (I.53)

where φp is the probe potential and λs is the linearized shielding length:

λs =
λDe

√

1 + ZTe/Ti
(I.54)

Because the Debye-Hückel potential (Eq. (I.53)) has been calculated by assuming

φ = φ1 � 1 and by neglecting ion collection, it only gives an indication of the

characteristic scale length over which the potential decays: λs.

I.5.2 Anti-shielding in a one-dimensional well

In the preceding section we derived a first order correction to the stationary Maxwellian

distribution of ions to account for the presence of a small electrostatic potential χ1:

fi(v, χ(x)) = f 0
i (v)+f 1

i (v, χ(x)). In order to do so we assumed that ∀v, f 1
i (v, χ(x)) �

f 0
i (v), which is incorrect for some v. For convenience we work in this section with

the ion-energy normalized potential χ

In the absence of background magnetic field and far from any boundary, if the

ions are accelerated in a spherical potential well, conservation of energy along the

orbits implies that

∀v | v2 < v2
tiχ : fi(v) = 0 (I.55)
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Therefore for a small potential perturbation χ1:

f 3D
i (v) =







f 0(v) + f 1(v, χ(x)) If v2/v2
ti − χ ≥ 0

0 If v2/v2
ti − χ < 0

(I.56)

The volume in velocity space where f 3D
i = 0 is proportional to (χ1)3/2, and to first

order in χ1 the ion density is still given by ni = (n∞/Z)(1 + χ1) (Eq. (I.50)).

However if the ions are accelerated in a one-dimensional well (such as an infinite

planar transparent grid placed at z=0) energy conservation reads:

∀v | v2
z < v2

tiχ : f(v) = 0 (I.57)

Therefore for a small potential perturbation χ1:

f 1D
i (v) =







f 0
i (v) + f 1

i (v, φ(x)) If v2
z/v

2
ti − χ ≥ 0

0 If v2
z/v

2
ti − χ < 0

(I.58)

The volume in velocity space where f 1D
i = 0 is proportional to (φ1)1/2, therefore the

ion density is not given by Eq. (I.50) but goes as ni ∝ (1 − C
√

χ1). This expression

is problematic when inserted in Poisson’s equation. Indeed Eq. (I.52) becomes:

∇2φ ∝ −
√

φ (I.59)

There is no solution to Eq. (I.59) with value at z = 0 of χp and limit at infinity of

0, while physically those are the limits the potential must have: For a one-dimensional

problem, our collisionless model is inconsistent.

In a stationary plasma, it is actually possible to derive the distribution functions

f 1D
i and f 3D

i without assuming |φ| ≤ 1 by taking advantage of phase-space density

and energy conservation along an orbit:

f 3D
i (v) =







n∞/Z
(vti

√
π)3
e−v

2/v2ti+χ If v2/v2
ti − χ ≥ 0

0 If v2/v2
ti − χ < 0

(I.60)

38



and

f 1D
i (v) =







n∞/Z
(vti

√
π)3
e−v

2/v2ti+χ If v2
z/v

2
ti − χ ≥ 0

0 If v2
z/v

2
ti − χ < 0

(I.61)

Integration over the entire velocity space gives:

Zn3D
i /n∞ =

2√
π

√
χ + exp(χ)erfc(

√
χ) ≥ 1 (I.62)

Zn1D
i /n∞ = exp(χ)erfc(

√
χ) ≤ 1 (I.63)

Fig. (I-6) shows the densities as a function of χ in the one-dimensional case, when

Z = 1 and Ti = ZTe (i.e. χ = −φ). The potential is assumed to decay monotonically

from the probe to infinity, in order for a one-to-one relationship between z and χ to

exist.
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Figure I-6: Ion and electron charge densities as a function of the ion-energy normalized
potential χ in the sheath and presheath of an infinite planar transparent grid.

In Fig. (I-6), the black dotted line is the electron density, given by ne = n∞ exp(φ),

upon which nothing can be done. The red dash-dotted line is the ion density given by

Eq. (I.63). We see that for χ ≤ 0.77, n1D
i is smaller than ne, therefore the shielding

is negative and the potential can not go from χ = 0.77 to χ = 0. If however the

presheath is collisional or turbulent, energy conservation can be relaxed and the ion
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density is not given by Eq. (I.63) anymore. Qualitatively, momentum loss in the

presheath implies that at a point of potential χ, the ion distribution has only been

accelerated by an amount χ̃ ≤ χ. The ion density curve in the collisionless sheath is

then n1D
i shifted by the amount χc necessary for this curve and the electron density

curve to be tangent (Blue dashed curve). The point of tangency, situated at χs, is the

sheath entrance. For χ > χs we have ni > ne, while for χ < χs: ni ∼ ne (Collisional

Presheath). The full blue curve is therefore a schematic curve of the “real” ion density.

Obviously the quantitative value of ni depends on the collisional processes.

I.5.3 The Bohm Criterion

A noticeable property of the sheath entrance (In a one-dimensional well) is that at

this point, the ion average velocity equals the sound speed. While this can easily

be shown for negligible ion temperature [4], the demonstration in the general case is

more involved [16]. We here content ourselves to verify the property on a particular

case.

We consider a spherical probe immersed in a strong magnetic field in order for

the ions to be tight to the field lines. Because the probe is not transparent, the ion

distribution function in the magnetic shadow at a point of potential χ is given by one

half of f 1D
i (χ̃), where χ̃ = χ− χc.

fi(χ, vz) =







n∞/Z
(vti

√
π)3

· e−v2/v2ti+χ̃ If vz/vti −
√
χ̃ ≥ 0

0 If vz/vti −
√
χ̃ < 0

(I.64)

One can take the first moments of this distribution function as follows:
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ni(χ) =
n∞/Z

vti
√
π

∫ ∞

vti

√
χ̃

exp(−v
2
z − v2

tiχ̃

v2
ti

)dvz =
n∞
2Z

exp(χ̃)erfc(
√

χ̃) (I.65)

< vz > (χ) =
n∞/Z

ni(χ̃)

1

vti
√
π

∫ ∞

vti

√
χ̃

vz exp(−v
2
z − v2

tiχ̃

v2
ti

)dvz =
vti

2
√
π

n∞/Z

ni(χ)
(I.66)

T effi (χ) =
n∞/Z

ni(χ̃)

1

vti
√
π

∫ ∞

vti

√
χ̃

[vz− < vz > (χ̃)]2 exp(−v
2
z − v2

tiχ̃

v2
ti

)dvz

=
n∞v

2
ti/Z

2πerfc(
√
χ̃)2

{

2
√

χ̃
√
π exp(−χ̃)erfc(

√

χ̃)

+π
[

1 + erf(
√

χ̃)2 − 2erf(
√

χ̃)
]

− 2 exp(−2χ̃)
}

(I.67)

where ni is the ion density, < vz > the average velocity, and T effi the effective

temperature. T effi is different from Ti because the distribution function evolves with

the potential and starts from a truncated Maxwellian. In order to calculate the sound

speed, we need the ratio of specific heats in the z-direction as defined in Eq. (I.8):

cs(χ) =

√

T effi (χ)γ(χ) + ZTe with γ(χ) =
1

T effi (χ)

dPi
dχ

/
dni
dχ

(I.68)

where the pressure Pi is simply:

Pi(χ) = ni(χ)T effi (χ) (I.69)

Derivation of the moments with respect to χ (or χ̃) yields:

dni
dχ

=
n∞/Z

2
exp(χ̃)erfc(

√

χ̃) − n∞/Z

2
√
π
√
χ̃

(I.70)

dP

dχ
=

n∞v
2
ti/Z

4π2erfc(
√
χ̃)2

{

−2

√

π

χ̃
exp(−2χ̃) + π2 exp(χ̃)

[

1 + 3erf(
√

χ̃)2 − 3erf(
√

χ̃) − erf(
√

χ̃)3
]

+2πerfc(
√

χ̃) exp(−χ̃)
}

(I.71)
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The sheath entrance is the point where the electron and ion charge-density curves

are tangent, that is to say:







Z dni

dχ
= dne

dχ

Zni = ne
(I.72)

Because ne = n∞ exp(φ) = n∞ exp(−χTi/ZTe), the sheath entrance potential χs

is such that:

dni
dχ

(χs) +
Ti
ZTe

ni(χs) = 0 (I.73)

At χ = χs one can then explicitly verify that < vz > (χ) = cs(χ). Fig. (I-7) is a

graphical illustration of this property for the special case Ti = ZTe.

The quasineutrality break-down in a one-dimensional potential well at the point

where < vi >= cs is called Bohm criterion. We will take advantage of it in Chapter III,

when the regime λDe � rp will be studied in more detail.

I.5.4 Helical upper bound and adiabatic limit currents

The ion current to a stationary spherical probe in a collisionless magnetoplasma when

the magnetic field is finite is framed by its value at β = 0 and its value at β = ∞.

The first bound is simply Eq. (I.35), while the second is independent of the probe

potential by virtue of flux conservation, and is given by Eq. (I.20) after setting vd = 0.

Iβ=∞
i =

1

2
I0
i (I.74)

In order to improve this framing, the idea developed by Rubinstein and Lafram-

boise [11] is to assume that the effects of orbit depletion due to multiple intersections

with the probe occur in a neighborhood of the probe where the ions have already

been accelerated by χp.

A lower bound is obtained by assuming that the portion of the ion distribution

function whose velocity is directed towards the probe at the entrance of the neigh-

borhood is given by f 1D
i (Eq. (I.61)). An upper bound, called “Helical” in order to
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Figure I-7: Evolution of different physical quantities with χ̃ = χ − χc for the ion
distribution function given in Eq. (I.64), traced using the analytical formulas derived
in this section. For this example we take Ti = ZTe. ne and Zni are in units of n∞,
T effi in units of ZTe, < vi > and cs in units of

√

ZTe/mi. One sees that the point
where cs =< vi > coincides with the point where dni

dχ
= −T (χ)ni(χ). At this point

the ion and electron charge-density curves are tangent: this is the Bohm criterion.
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avoid a confusion with the “Canonical” bound (Eq. (I.43)), is obtained taking this

portion of distribution function to be given by f 3D
i .

The normalized current can therefore be written as:

Ii
I0
i

=
exp(χp)

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

θ̃(β, χ, s, t)f̃(β, s, t)

[

1

2
θ(1 − s)(1 − s)2 +

∫ s+1

u=|s−1|

1

2π

∫ 2π

ψ=0

H(u, s, t, ψ)udu

]

stdsdt (I.75)

with f̃ given by Eq. (I.22), θ̃ given by

θ̃(β, χ, s, t) =







θ(t−D) For the lower bound

θ(s2 + t2 −D2) For the upper bound
(I.76)

and D defined by :

D =
2

β

√

χp
π

(I.77)

We demonstrate in Appendix A that:

IUpi
I0
i

= (1 + χ) −
[

1

3π
erfc(

√
χp) exp(χp) +

2

3

√
χp

π3/2

]

β +O(β2) (I.78)

ILowi

I0
i

= 1 −
√
π

2

√
χperfc(

√
χp) exp(χp) +O(β2) (I.79)

The Lower bound is approached in the limit rL � Lφ, where Lφ is the charac-

teristic length scale of the potential variation. That is to say when β and λDe/rp

are large. The Helical upper bound is approached in the opposite limit, when β and

λDe/rp are small.

For high enough potentials, IUpi is higher than ICanonical
i (Section I.4.3). The

optimum upper bound is therefore min(IUpi , ICanonical
i ). For all practical purposes, we

can use the respective expansions given by Eqs (I.43,I.78).

Extending this theory to flowing plasmas does not appear feasible, because it is

not possible to find an analytic expression for f 3D
i in this case.
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Figure I-8: Upper bound ion current collected by a stationary spherical probe (nor-
malized to I0

i = 4πr2
pn∞

vti

2
√
π
) as a function of the magnetic field for different ion-

energy normalized probe potentials. We verify that the current at β � 1 follows the
analytical expression given by Eq. (I.78).

I.5.5 Quasicollisionless collection in a strongly magnetized

plasma

The model distribution function that we used to verify the Bohm criterion is only

qualitatively reasonable in the collisionless presheath. Indeed it assumes that the ions

only have a velocity directed towards the probe, while their distribution should tend

to a full Maxwellian at infinity. What is more the presheath has been assumed to be

one-dimensional, which is usually not the case.

In the presence of a strong magnetic field however, the presheath will indeed be

one-dimensional, and it is then possible to find the ion distribution function within it

more accurately. A model derived by Chung and Hutchinson [7] assumes that the non

conservation of ion momentum in the “quasi-collisionless” presheath is due to cross

field transport of ions between the magnetic shadow of the probe and the external

plasma. If we define by l the ion mean free path along the field lines and L the

length of the magnetic presheath, this model assumes l � L (which is the meaning

of “quasi-collisionless” [4]), valid when anomalous transport dominates.

In steady state, the one-dimensional Vlasov equation in the presheath can then
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be written:

vz
∂fi
∂z

− Ze

mi

∂V

∂z

∂fi
∂vz

= W [f∞
i (vz) − fi(z, vz)] (I.80)

where W ∼ D⊥/r
2
p, D⊥ being the anomalous cross-field diffusion coefficient.

This equation can be solved numerically along with Poisson’s equation with a

very small Debye length or directly by assuming quasineutrality. In both cases the

boundary conditions are fi(z = ∞) = f∞
i and fi(z = 0, vz > 0) = 0. The length of

the magnetic presheath in this model is then given by [4]:

L '
r2
p

D⊥

√

Te
mi

(I.81)

Fig. (4) from Ref. [7] gives an example of the ion distribution evolution in the

presheath as a function of φ taken as an abscissa parameterization. Fig. (II-7) shows

this distribution at φ = −0.57 for Ti = ZTe

If the opposite limit is taken (l � L, valid in the absence of anomalous trans-

port when rL � rp) and we are mainly concerned with charge-exchange collisions,

the distribution function is simply a stationary Maxwellian (the background atom

distribution) with density ni = n∞/Z exp(φ) (quasineutrality condition).

Fig. (I-9) shows those distributions, as well as f∞
i , f 1D

i and f 3D
i for Ti = ZTe,

vd = 0 and φ = −0.57.

If the ion distribution at infinity is taken to be a drifting Maxwellian, it is possible

to relate the flux density upstream ΓUi to the flux downstream ΓDi under the form

R =
ΓUi
ΓDi

= exp(Kvd) (I.82)

The coefficient K is called the mach-probe calibration factor, and is to a good

approximation independent of vd. For Ti = ZTe, K ' 1.7 [7].
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Figure I-9: Different models of ion distribution function in the presheath with Ti =
ZTe and vd = 0, at φ = −0.57. f∞

i is the distribution function at infinity, f 3D
i and f 1D

i

assume the ion acceleration in the presheath is purely three-dimensional or adiabatic
(Eqs (I.60,I.61)). f l�L

i and f l�L
i take collisions into account, in the regime where

anomalous transport dominates or is negligible. f l�L
i is from Fig. (4) from Ref. [7].
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Chapter II

Solving the problem with the PIC

code SCEPTIC

II.1 SCEPTIC Overview

II.1.1 The unit system

For convenience, the equations have been non-dimensionalized as follows. Each phys-

ical quantity can be expressed by its non-dimensional value (A real number Q̄) mul-

tiplied by an appropriate product of powers of fundamental units.

Physical quantity Unit Value
Mass M = mi

Z
Ion mass to charge ratio

Charge e Elementary charge
Distance rp Probe radius
Energy Te Electron temperature

Table II.1: Set of fundamental units used with SCEPTIC.

For example the electron mass me can be written as me = 9.11 · 10−31kg = m̄eM .

If the ion species is O2+, then mi

Z
= 1.34 · 10−26kg and m̄e = 6.80 · 10−5.

For the dependent units several possibilities exist, and our choice is given in Ta-

ble (II.2). For example the Ion thermal velocity is vti =
√

2Ti

mi
= v̄ti

√

Te

M
, with
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v̄ti =
√

2T̄i. Densities are in units of n∞ (The electron density at infinity).

Physical quantity Symbol Unit

Time t̄ rp
√

M/Te
Magnetic field B̄z

√
MTe/erp

Ion temperature T̄i ZTe
Ion density n̄i n∞/Z
Potential φ Te/e
Potential χ −Ti/Ze
Drift velocity v̄d

√

Te/M
Ion charge flux-density Γ̄i n∞vti/2

√
π

Table II.2: Dependent units in SCEPTIC.

The unit for the particle flux given in Table (II.2) is lower by a factor
√

T̄i

2π
from

the corresponding unit used in Refs [2, 3].

II.1.2 The equations

Newton’s equation for the ions

We solve the equation of motion for each ion:

mi

Z

dv

dt
= e [−∇V + v ∧ B] (II.1)

M
dv̄

dt̄

√

Te

M

rp

√

M
Te

= e

[

−∇̄φ
Te

e

rp
+ v̄ ∧ B̄

√

Te
M

√
MTe
erp

]

(II.2)

dv̄

dt̄
=

[

−∇̄φ+ v̄ ∧ B̄
]

(II.3)
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Poisson’s equation

We solve Poisson’s equation for the potential distribution, by assuming that the

electrons are Boltzmann distributed (See Section I.4.1).

∇2V =
e

ε0
[ne − Zni] (II.4)

∇̄2φ
Te

e

r2
p

=
e

ε0
[n̄e − n̄i]n∞ (II.5)

∇̄2φ =
1

λ̄De
[n̄e − n̄i] (II.6)

with

n̄e = exp(φ) (II.7)

Quasineutrality equation

In the quasineutral case, Poisson’s equation becomes:

φ = ln(n̄i) (II.8)

II.1.3 The Geometry

While the ions are three-dimensionally advanced in cartesian coordinates, the poten-

tial is defined on a two-dimensional spherical mesh centered on the probe. The cell

centers are equally spaced in r (∆r) and cos θ (∆ cos θ), with the exception of the

first and last angular slice where the angular separation is 1
2
∆ cos θ. This is shown in

Fig. (II-1).

Each physical quantity, defined at the cell centers, must be understood as a cell-

averaged value.
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Figure II-1: Spherical mesh used in SCEPTIC. Black lines define the cell boundaries,
while red squares are the cell centers.

II.2 Development of a parallelized Poisson solver

II.2.1 Successive Over Relaxation

Each cell center is labeled by (i, j), respectively the radial and angular position.

Poisson’s equation can then discretized as follows:

λ2
De∇2φi,j = ai,jφi+1,j + bi,jφi−1,j + ci,jφi,j+1 + di,jφi,j−1 − fi,jφi,j

= Source = −n̄ii,j + eφi,j (II.9)

where the coefficients a,b, ... are chosen in order to make the discretization consistent

with the original differential equation.

The standard Successive Over Relaxation (SOR) principle is to update the poten-

tial at each cell center using the following formula (φ is the old value):

φnew = ωφ∗ + (1 − ω)φ = φ+ ω(φ∗ − φ) (II.10)

where φ∗
i,j is defined by:

ai,jφi+1,j + bi,jφi−1,j + ci,jφi,j+1 + di,jφi,j−1 − fi,jφ
∗
i,j = Source (II.11)

We have the choice between an explicit scheme: Source = −n̄ii,j + eφi,j and a
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semi-implicit scheme: Source = −n̄ii,j + eφ
∗

i,j . In the first case we get:

φ∗
i,j − φi,j =

ai,jφi+1,j + bi,jφi−1,j + ci,jφi,j+1 + di,jφi,j−1 − fi,jφi,j + n̄ii,j − eφi,j

fi,j
(II.12)

and in the second, if we assume eφ
∗

i,j ∼ eφi,j
[

1 + (φ∗
i,j − φi,j)

]

:

φ∗
i,j − φi,j =

ai,jφi+1,j + bi,jφi−1,j + ci,jφi,j+1 + di,jφi,j−1 − fi,jφi,j + n̄ii,j − eφi,j

fi,j + eφi,j

(II.13)

While both discretizations of the source lead to the same result, it is experimentally

found that the semi-implicit version (Eq. (II.13)) converges faster.

The serial code is straightforward. We alternatively upgrade the odd points (This

step only requires the potential on the even cells), and the even points (This step

only requires the potential on the odd cells), and iterate until the residual R =

maxi,j(φ
∗
i,j − φi,j) is smaller than a given limit.

II.2.2 Parallel code structure

Because in the magnetized case strong potential gradients are expected in the mag-

netic shadow, a high angular resolution is required, typically between 150 and 250

angular cells. In addition, the radial extension of the computational domain must

exceed two average Larmor radii, therefore at low β the required number of radial

cells is high and can reach values of 200 or more. Under those conditions solving

Poisson’s equation with the serial code takes approximately half of the total compu-

tational time, which is not acceptable. I therefore parallelized the solver using the

MPI protocol, starting from a general cartesian n-dimensional block-solver written

by Hutchinson.

The principle of a Parallel SOR solver is to subdivide the original grid in several

sub-grids on a cartesian topology, and separate the jobs among the processors as

shown in Fig. (II.2.2).
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If not converged

a) Odd (Pink) cells are the

most up to date.

b) Each block updates its

even cells.  This step only

requires the potential on

the odd cells.

c) Each block sends the

potential at its even

boundary cells to its

neighbors. Now the most

up to date cells are the

even (red) ones

d) Each block updates its

odd cells.  This step only

requires the potential on

the even cells.

e) Each block sends the

potential at its odd

boundary cells to its

neighbors. 

f) We test if the iteration

converged for all the 

processors

Figure II-2: Principle of the block-solver, where we can see two processors working.
The black squares delimitate the cells whose potential is calculated by the corre-
sponding processor, while the one-cell wide crown is made of values computed by the
neighboring processors.
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II.2.3 Performance expectation

We define nr and nθ to be the number of radial and angular cells, and Pr and Pθ the

radial and angular size of the processor grid. Therefore n = nrnθ is the total number

of cells, and P = PrPθ the total number of processors. An estimation of the iteration

time required to reach convergence is:

τ =
K1

PrPθ
+ εr(K2 +K3

nθ
Pθ

) + εθ(K2 +K3
nr
Pr

) +K4PrPθ (II.14)

The term K1

PrPθ
shows that the calculation speed is inversely proportional to the

number of processors. εr,θ is 0 or 1 depending on whether the corresponding dimension

has 1 or several processors. nr

Pr
and nθ

Pθ
is proportional to the amount of data that

two neighboring processors must send to each other at each iteration. (K2 + K3
nθ

Pθ
)

and (K2 +K3
nr

Pr
) are therefore simple estimates of the communication cost. The term

K4PrPθ arises from the need, at the end of each iteration step, for each slave processor

to communicate to the master node for the convergence test.

By inverting τ , we get the following speed-up scale:

1

τ
∝ P

1 + α1

√
P + α2P 2

(II.15)

We therefore expect the performance to rise linearly with the number of processors,

reach a plateau, and then decrease as the inverse of this number.

II.2.4 Optimization

To get better performance, it is possible to lower τ by means of some trade-off on theK

factors. We can reduce K4 by calling the converging test (step (f) on Fig. (II.2.2)) only

every 30 iterations. By doing so K1 increases slightly because we can superfluously

iterate up to 29 times. It is also possible to reduce K2 and K3 by subcycling the

iteration in each processor. For example we only do alternatively (c) and (e). We

therefore save 3 times the cost of boundary values communications. By doing so K1

slightly increases as well because we need more steps to reach the desired convergence.
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The optimum parameters (30 and 3) have been found by experimental investigation.

II.2.5 Test

For the purpose of the test we implemented the two optimizations described in the

preceding paragraph, although in practice only the first one is used (Calling the

convergence test once every 30 iterations).

We performed a test on a (nr = 200) × (nθ = 200) grid with φp = −4 and

φ(rb) = 20 (rb is the radius of the outer boundary). The ion density is assumed to

be uniform and equal to 1, and we start with an initial Coulomb guess, i.e. φ ∝ 1/r.

Fig. (II-3) shows the performance measured as the inverse of the iteration time,

normalized to the single-processor performance.
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Figure II-3: Bloc solver performance as a function of the processor-grid topology.

The qualitative behavior of the solver follows our expectations: the speed-up is

ideal for a low number of processors, and deteriorates as P rises. Because we use the

MPI protocol as a black box, we can not quantitatively explain the complicated be-

havior of the Pr = 1 and Pθ = 1 curves. However it is clear that the best performance

is obtained for square grids (i.e. Pr ∼ Pθ) since those minimize the ratio of surface

over volume of the solver blocks. When using SCEPTIC with a non square mesh and

have access to P nodes, we therefore set Pr and Pθ such as to minimize this ratio:
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Pr = int(

√

P
nr
nθ

)

Pθ = int(
P

Pr
) (II.16)

II.3 Development of a symplectic magnetized par-

ticle mover

II.3.1 Motivation

The Boris integration scheme [17, 19], designed to integrate a single particle orbit

in an electromagnetic field, is widely used in explicit Particle in Cell simulations of

plasmas. The reasons for this popularity are twofold. One of them is that it is

extremely simple to implement, and offers second order accuracy while requiring only

one field evaluation per step. The second reason, maybe even more important, is that

it is found that the error on conserved quantities such as the energy, or the canonical

angular momentum when the system is axisymmetric, is bounded for an infinite time

(The error on those quantities being second order as the scheme).

Those conservation properties are characteristic of symplectic schemes, which are

a class of geometric integrators. If the vector (q,p)(t) is the solution of a symplectic

integrator’s difference equation, then there exists a Hamiltonian H̃ such as:

dp

dt
= −∇qH̃

dq

dt
= ∇pH̃ (II.17)

This means the symplectic two-form dp ∧ dq is conserved, hence the terminology.

Because of such properties it has been speculated [20] that the Boris scheme is sym-

plectic. To our knowledge however, this has not previously been proved.

We present here a new second order integrator for the specific case where the mag-

netic field is time-independent and uniform, symplectic by construction, and based

on an extension of the Kick and Drift concepts of the standard Leap-frog algorithm
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in absence of a magnetic field. For the purpose of this thesis, integrating the ion

orbits with a symplectic scheme is not essential since an ion operates at most a few

revolutions around the probe before being collected or leaving the domain. We nev-

ertheless use this new integrator because it is shown (See Section II.3.4) to perform

better than Boris scheme.

This integrator, called “cyclotronic”, has been developed during my stay at Los

Alamos National Laboratory during the summer 2006, and has first been implemented

in the Particle in Cell code Democritus [22].

II.3.2 Single particle Hamiltonian

The single particle motion Hamiltonian in the presence of a magnetic field B = ∇×A

can be written as:

H =
(pz − ZeAz)

2

2m
+

(px − ZeAx)
2

2m
+

(py − ZeAy)
2

2m
+ ZeV (qx, qy, qz) (II.18)

The equation of motion (Eq. (II.1)) becomes:







dp
dt

= −∇qH

dq
dt

= ∇pH

with q = x and p = mv + ZeA.

A property of Hamiltonian flows is that there exists a Liouville operator DH such

that:

dz

dt
= {z,H(z)} = DHz i.e. ∀τ ∈ R z(τ) = eτDHz(0) (II.19)

where {., .} stands for the Poisson bracket and z = (p,q). For an introduction to

symplectic integrators avoiding unnecessary mathematical formalism, see Ref. [24].

A more complete treatment of Hamiltonian flows can be found in Ref. [25].

In the case of a static uniform magnetic field [B = Bz and A2
x+A

2
y = 1

4
B2(q2

x+q
2
y)],

the Hamiltonian can be separated in two exactly integrable parts as follows:
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T (p, q) =
p2
z

2m
+

(px − eAx)
2

2m
+

(py − eAy)
2

2m

V (q) = ZeV (q) (II.20)

Indeed the operators DT (∆t) and DV (∆t) associated with the Hamiltonians T and

V can be written explicitly:

DT (∆t) :=































pz(t) 7→ p′z = pz(t)

p⊥(t) 7→ p′⊥ = R0,Ω∆t(p⊥(t))

qz(t) 7→ q′z = qz(t) + pz(t)
m

∆t

q⊥(t) 7→ q′⊥ = RC(t),Ω∆t(q⊥(t) − C(t))

(II.21)

DV (∆t) := p(t) 7→ p′ = p(t) − ∆t
∂V

∂q
(II.22)

Where C is the center of the Larmor circle, and RC,α is a rotation of center C and

characteristic vector α.

DT can be seen as a Drift operator, describing an homogeneous helicoidal trajec-

tory, while DV is the standard Kick, describing the acceleration due to the electric

field.

It can be shown, using the Baker-Campbell-Hausdorff (BCH) formula, that

e∆tDH = e(∆t/2)DV · e∆tDT · e(∆t/2)DV +O(∆t3) (II.23)

A second order symplectic integrator for H, first derived by Verlet [21] but usually

called Leap-frog algorithm is therefore:

DH̃(∆t) = DV (∆t/2)DT (∆t)DV (∆t/2) (II.24)

For the purpose of PIC codes, it is possible to group the DV together and define

the velocity and position with half a time step of offset. Since the Drift corresponds
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to a cyclotronic motion in absence of electric field, we will refer to this new integrator

as cyclotronic.

II.3.3 Practical implementation

A practical implementation in cartesian coordinates of the cyclotronic integrator is:

1. Kick :

v′ − v = −Ze∇V (x)∆t (II.25)

2. Drift










































z′ − z = v′z∆t

x′ − x =
v′y−v′y cos(Ω∆t)+v′x sin(Ω∆t)

Ω

y′ − y =
−v′x+v′x cos(Ω∆t)+v′y sin(Ω∆t)

Ω

v′′x = v′x cos(Ω∆t) + v′y sin(Ω∆t)

v′′y = v′y cos(Ω∆t) − v′x sin(Ω∆t)

(II.26)

where v and x are offset by half a time-step.

In the absence of electric field, the present integrator is exact regardless of the

time-step. Because the potential gradient is expected to be higher at the probe edge

than in the rest of the computational domain, we implemented a subcycling scheme,

according to which each particle is advanced with a time-step inversely proportional

to its distance to the probe. This procedure is illustrated in Fig. (II-4).

xv
n n+1/2 n+1

xv
n-1/2

θt 1 θt 2

θt 1 θt 2+

2

Figure II-4: For each ion, position and velocity are offset by half a time-step. When
subcycling is enabled, the change in time-step occurs in the velocity advance portion.
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It must be acknowledged that in the general case, a symplectic integrator looses

its conservation properties when used with a variable time step [23].

II.3.4 Benchmarking against direct orbit integration

Fig. (II-5) compares the total ion current to the probe as a function of the time-step,

for different orbit integrators. For this test case, the electron Debye length is assumed

to be infinite in order for the potential to be Coulomb.
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log10(∆ t)

I i/I i0

 

 

Cyclo+Sub
Cyclo
Boris+Sub
Boris
Sonmor

Figure II-5: Total ion current to a spherical probe as a function of the particle mover
time-step for different movers. The probe bias is χp = 4, the potential distribution
is assumed to be Coulomb, and the background magnetic field has magnitude β = 7.
The computational domain has an extention rb = 16rp. The dashed line corresponds
to the result of Sonmor and Laframboise [12].

It can easily be seen that the Cyclotronic mover, when coupled with subcycling,

allows to calculate a current essentially independent on the time-step for ∆t̄<∼ 0.2.

Because the extension of the computational domain is rb = 16rp, an ion in the imme-

diate vicinity of the probe is advanced with a time-step ∆t̄/16. The computed value

of the current is Ii = 0.604I0
i , in agreement with the value computed by Sonmor and

Laframboise (Ii = 0.607I0
i ) within the 1% accuracy claimed in their publication [12].
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II.4 The boundary conditions

II.4.1 Conditions on the potential

Inner boundary

If the electron Debye length λDe is finite, we impose the potential at r = rp to be the

probe potential φp.

If λDe = 0 however, φp (provided it is negative enough) is irrelevant because an

infinitesimally thin Debye sheath forms at the probe surface, at the entrance of which

the Bohm criterion must be satisfied. At each iteration we self-consistently compute

the ratio of specific heats in the radial direction for each angular cell at the probe

edge (Eq. (I.8)), and deduce the radial sound speed distribution there. An effective

probe potential is then calculated for each angular cell in order for the ions to be

accelerated to the sound speed.

Outer boundary

As emphasized in the first chapter, the problem shows two scale lengths. A collision-

less sheath and presheath, extending a few rp from the probe, followed by an elongated

collisional or “quasi-collisionless” presheath extending a few mean free paths along

the magnetic axis. This situation is illustrated in Fig. (II-6)

Our purpose is, using SCEPTIC, to simulate the collisionless presheath. If the

electron Debye length is negligible, the potential is straightforwardly given by apply-

ing the quasineutrality equation (Eq. (II.8)). When λDe is finite however, conditions

on the potential are needed at the outer boundary of the computational domain in

order to solve Poisson’s equation, and it would be incorrect to impose φ = 0 there.

Indeed however large rb is, cross field transport is required for the magnetic shadow

of the probe to merge in the unperturbed plasma. Because far from the probe the

potential gradient in the radial direction is negligible, the problem adopts the symme-

try of the magnetic field: cylindrical. With the scale length of the quasi-collisionless
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Magnetic

and drift axis
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presheath
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Cross field transport

Ф(ρ,z)

Ф(ρ)
∂/∂z<<1/r
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∂/∂ρ≈1/λ  s

Non-collisionless

presheath

Ion injection

from a shifted

Maxwellian

Figure II-6: Schematic view of the problem. SCEPTIC simulates the collisionless
presheath, assumed to have an extension rb. The quasi-collisionless presheath has an
extension L, controlled by cross-field transport or collisions, and is not simulated in
the present work. On the collisionless scale length, ∂/∂z = 0 at the outer boundary
of the computational domain. Indeed a few probe radii away from the probe surface,
the problem adopts the cylindrical symmetry of the magnetic field.

presheath being much longer than the collisionless presheath, we can write:

∂

∂z
= 0 at r = rb (II.27)

On axis this can readily be translated in a boundary condition on the potential:

∂φ

∂r |Axis
=

tan θ

r

∂φ

∂θ
(II.28)

Because Eq. (II.28) is ill conditioned at cos θ ∼ 0 (∞·0), ∂φ
∂ρ

is needed as well in this

region. Let us assume that Zni = 1 there. This choice can be motivated as follows.

The ion density outside the computational domain is dictated by unknown collisional

dynamics, but can not exceed the Boltzmann factor: Zni ≤ exp(−ZφTe/Ti) ∼ 1 −
ZφTe/Ti. What is more, in order for the potential to monotonically decay to 0,

collisions act such as to impose Zni ≥ ne. Therefore 1−ZφTe/Ti ≥ Zni ≥ ne ∼ 1+φ.

Choosing Zni = 1 appears as an appropriate average of the two limits. The potential
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therefore obeys the following equation far from the magnetic shadow:

1

ρ

∂

∂ρ
(ρ
∂φ

∂ρ
) − φ

λ2
De

= 0 (II.29)

The decaying solution to this equation is φ(ρ) ∝ K0(
ρ
λDe

) ∼ 1√
ρ
exp(− ρ

λDe
). The

appropriate boundary condition far from the magnetic axis is therefore ∂φ
∂ρ

= −φ( 1
λDe

+

1
2ρ

), or in spherical coordinates:

∂φ

∂r |Top
= −φ(

1

2r
+

sin θ

λDe
) (II.30)

The two boundary conditions given by Eq. (II.28,II.30), both implying that ∂φ
∂z

=

0, can be associated by linear combination in a single equation valid for cos θ ∈ [−1; 1]:

∂φ

∂r
= cos2 θ

∂φ

∂r |Axis
+ sin2 θ

∂φ

∂r |Top
=

sin θ cos θ

r

∂φ

∂θ
− φ(

sin2 θ

2r
+

sin3 θ

λDe
) (II.31)

Eq. (II.31) is the outer boundary condition on the potential that we use when

λDe 6= 0.

II.4.2 Particle reinjection

Neither Eq. (I.60) or Eq. (I.61) are immediately appropriate expressions for the inward

(vr < 0) ion distribution at r = rb because they do not account for momentum

exchange that the ions experienced in the non-collisionless presheath. Fig. (II-7)

shows the one-dimensional flux-density distributions corresponding to the distribution

functions shown in Fig. (I-9) at φ = −0.57 for T̄i = 1.0. If we simulate a configuration

in which the transition between the collisionless and collisional presheaths is at a

potential φt ' −0.6, the type of collisionality has a strong influence on the appropriate

reinjection.

|φt| is an increasing function of β. Indeed if β = 0 a fully collisionless treatment

is possible and φt = 0. We therefore expect fl�L and fl�L to approach f∞
i when

β → 0. In the opposite limit of β � 1, the quasi-collisionless presheath extends up
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Figure II-7: Differential flux (dΓ∞
i /dvz = −vzfi(vz)) of incoming ions at the transition

between the collisional and collisionless presheaths for φt = −0.57 and T̄i = 1 for the
models already discussed in Fig. (I-9).

to the sheath edge and φt = φs.

If we were to reinject the ions with one of the distribution functions shown in

Fig. (I-9), the differential flux distributions shown in Fig. (II-7) would govern the

number of ions having a given vz that would be reinjected at each time step, dΓ∞
i /dvz

is to a good approximation the average of dΓl�L
i /dvz and dΓl�L

i /dvz. f∞ appears

therefore to be a reasonable reinjection distribution for a situation where l ' L, which

for weakly magnetized plasma is precisely the case of classical transport [4].

Physically plausible results when collisionality is low can therefore be obtained

by using a computational domain large enough to resolve the whole collisionless

presheath, and by reinjecting the ions at the boundary with their distribution func-

tion at infinity regardless of the potential distribution at the boundary. This is the

approximation we use.
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Chapter III

Solutions for a stationary plasma

III.1 Weakly-focusing and Strongly-focusing regimes

The Canonical upper bound (Eq. (I.43)), Helical upper bound (Eq.(I.78)), and Adi-

abatic lower bound (Eq.(I.79)) depend on β and on the ion-energy normalized probe

potential χp. In the limit of infinite Debye length, the exact ion current only depends

on those two quantities as well [12]. T̄i does not enter into these preceding expressions

because none of them depends on the electron dynamics (Recall that T̄i = Ti/ZTe).

This is obviously not the case when λ̄De <∞, since n̄e = exp(φ) is required to solve

Poisson’s equation (Eq. (I.45)) or to use the quasineutrality relationship (Eq. (II.8)).

In the limit λDe = 0, the current becomes independent of the probe potential.

We see that in no regime does the ion current explicitly depend on the electron

energy-normalized probe potential φp. If λ̄De<∼ 0.1, the ions see a “virtual” probe

potential equal to the sheath-entrance potential: φs ∼ −1 or χs ∼ ZTe/Ti. At higher

Debye lengths, the ions see the real probe potential χp. We can distinguish between

weakly-focusing and strongly-focusing regimes on the basis of the magnitude of the

ion energy-normalized potential effectively seen by the ions.

Fig. (III-1) shows some characteristic ion orbits for λ̄De = 1, φp = −4, and β = 1

at two different temperatures. At T̄i = 1 (Fig. (III-1a)) are plotted orbits of ions with

initial velocity vz = vti and vρ =
√

π
2

√

Ti

mi
, starting with z = −8rp and various ρ. The

choice of transverse velocity corresponds to a gyroradius equal to rL (Average Larmor
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radius). This would be an example of weakly-focusing regime since the ion-energy

normalized potential is relatively small (χp = 4), and because of the small electron

Debye length this potential is strongly shielded. At T̄i = 0.1 (Fig. (III-1b)) are plotted

orbits of ions with zero initial velocity, in order to accentuate the difference with the

case T̄i = 1. This is an example of strongly focusing regime.

a) T̄i = 1.0 and χp = 4
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Figure III-1: Characteristic ion orbits for λ̄De = 1 and β = 1 in a weakly-focusing
and strongly-focusing regime. In order for the orbits to be more visible, SCEPTIC
runs have been made with a θ-averaged potential; this does not change the qualitative
picture. Obviously because v̄d = 0, the physics is symmetric with respect to cos θ = 0.
On Fig. b, θlim indicates the depletion cone boundary as given by Eq. (IV.10).

It can be seen that in a weakly-focusing regime the ion collection mainly occurs on

axis, and the ion density is quite unperturbed at r ∼ rp and cos θ ∼ 0. On the other

hand, in a strongly-focusing regime the ion stream is focused on the probe surface

at cos θ ∼ 0. Because the probe electrostatic potential is much higher than the ions’

thermal energy, some ions are reflected several times, and space-charge builds up

outside the depletion cone delimited by θlim (Eq. (IV.10)).

III.2 Space-charge distribution

III.2.1 Quasineutral plasma

Because in the limit of zero Debye length the ion density is linked to the potential by

the quasineutrality relation (Eq. (II.8)), it is sufficient to study the ion charge-density

distribution. Fig. (III-2) shows the axial (cos θ = 1) and perpendicular (cos θ = 0)
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radial density profiles when the ion temperature at infinity is unity (T̄i = 1), for three

different magnetic field strengths.

a) Charge-density at cos θ = 1
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b) Charge-density at cos θ = 0
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Figure III-2: Axial and Perpendicular charge-density profiles at T̄i = 1 and λ̄De = 0 for
β = 0, β = 0.56 and β = 1.0. On axis (Fig. a), the ion density reaches an asymptote
within the computational domain, confirming our our hypothesis that ∂/∂z = 0 at
the outer boundary (Eq.(II.27)). Fig. b shows that the perpendicular geometrical
shielding length λ⊥ grows with β.

The profiles cos θ = 1 show that the ion density reaches an asymptote within

the computational domain, which is consistent with the fact that we are only re-

solving the collisionless presheath. Intuitively the ion charge-density at the transition

collisionless-collisional presheath (Edge of the computational domain) drops as β rises

since the ion mobility across the field lines is reduced. Because we reinject an unper-

turbed Maxwellian regardless of the potential at the boundary, our model would give

an ion charge density in the magnetic shadow of n̄i = 1/2 in the limit β = ∞. In

reality, because of cross field transport and collisions in the far presheath the value

might be n̄i > 1/2. By restricting ourselves to β ≤ 1 we shall not worry about this

issue.

Although we are considering a zero-Debye length situation, it is still possible to

qualitatively define a geometrical perpendicular shielding length λ⊥, measuring the

radial potential decay at cos θ = 0. The profiles show that λ⊥ rises with β. Indeed

the higher the magnetic field, the more adiabatically the ions are accelerated in the

z direction; therefore the ion density at r ∼ rp and cos θ ∼ 0 is a decreasing function
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of β.

It is possible to get a better understanding of the preceding remarks through

an analysis of charge-density contour plots. Fig. (III-3) compares the ion space-

charge distribution at β = 0.36 and β = 1.00 for T̄i = 0.3. In each case, the flux

tubes are straight cylinders aligned with the magnetic field. Because we do not

solve Poisson’s equation this result is not the consequence of an imposed boundary

condition. Comparison of the two plots shows that raising the magnetic field opens

equipotentials that were closed around the probe. The n̄i = 0.95 line, open in both

cases, moves from ρ ∼ 3rp to ρ ∼ 4rp, which is consistent with λ⊥ rising with β

(Fig. (III-2b)).

Fig. (III-4) compares the ion space-charge distribution at two different tempera-

tures (T̄i = 0.1 and T̄i = 1.0) for β = 1.0. The perpendicular shielding length λ⊥ is

higher at small T̄i. Indeed typical sheath edge potentials are φs ∼ −1, independent

of T̄i. However the effective potential drop felt by the ions from infinity to the sheath

edge is χ = −φZTe

Ti
. At low T̄i this potential well is deeper, and since the ions are

accelerated preferentially in the z direction their density around the probe is lower,

and λ⊥ higher.

III.2.2 Plasma with finite shielding

When the electron Debye length is non negligible, the potential at a given point

depends on the whole charge density distribution, and density perturbations are

smoothed over a scale-length λs ∼ λDe/
√

1 + ZTe/Ti (Eq. (I.52)). This can be seen

in Fig. (III-5), where axial and perpendicular profiles for T̄i = 1 and λ̄De = 1 are

shown.

On axis (Fig. (III-5a)) and far from the probe, φ ∼ ln(n̄i) for β<∼ 0.3. Indeed in

such a regime the average ion Larmor radius is substantially larger than the probe size,

and the magnetic shadow radius. The ion density depletion is therefore transversely

spread over several λ̄De (∇⊥ni � 1/λDe). For β<∼ 0.3 quasineutrality is satisfied down

to z ∼ 4: this is the sheath entrance.

At β = 1 (rL = rp), the density depletion on axis is approximately limited to 2rp
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Figure III-3: Ion charge-density contour plots at T̄i = 0.3 in the quasineutral regime
for β = 0.36 and β = 1. The solid lines are charge-density contours.
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a) T̄i = 0.1
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Figure III-4: Charge-density contour plots at β = 1 in the quasineutral regime for
T̄i = 0.1 and T̄i = 1.0. The solid lines are charge-density contours.
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in the transverse direction. Therefore Poisson’s equation “smooths” the potential,

and φ > ln(n̄i). In this case it is not really appropropriate to distinguish between

sheath and presheath anymore.

a) Axial profiles (cos θ = 1)
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b) Perpendicular profiles (cos θ = 0)
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Figure III-5: Axial and Perpendicular space-charge profiles at T̄i = 1 and λ̄De = 1
for different magnetic fields strengths, and a probe potential φp = −3. The density is
shown as ln(Zni) in order to indicate the regions where quasineutrality is satisfied. On
axis (Fig. a), the potential reaches an asymptote within the computational domain,
although we see that at β = 1.0 we are at the limit of not satisfying ∂φ/∂z =
0. Increasing the domain size would not help, and this is an indication that our
collisionless treatment would fail at higher magnetic fields. This issue is more visible
on the ion density profile. Fig. b shows that the plasma density is approximately
unperturbed in the transverse direction.

By comparing charge-density contour plots at two different Debye lengths, but

with the other parameters kept fixed, one can see that in the magnetic shadow the

transverse density variation only weakly depends on the shielding length. Fig. (III-6)

shows such contour plots for λ̄De = 0.3 and λ̄De = 3.0, with β = 1.0 and T̄i = 0.1.

In both cases, the contour lines n̄i = 0.5 and n̄i = 0.7 are at ρ ∼ 2 and ρ ∼ 3.

Fig. (III-6b) (λ̄De = 3.0) shows a strong density enhancement at cos θ ∼ 0 and

r<∼ 4rp. This phenomenon, characteristic of strong focusing regimes, corresponds to

the orbit accumulation shown in Fig. (III-1b).

Fig. (III-7) shows the potential contour plots for the same parameters. In this

case the electron Debye length has a strong influence on the contour lines. In the

vicinity of the probe where the equipotentials are closed, their spacing grows with
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a) λ̄De = 0.3
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Figure III-6: Charge-density contour plots for T̄i = 0.1 and β = 1.0. The compu-
tational domain size is rb = 24rp, but for convenience we only show the region of
interest. Although the color scale is bounded by Zni = 1.8, the ion charge-density
reaches higher values in the accumulation region.

74



λDe as expected. The magnetic shadow potential is higher (lower in magnitude) in

the high Debye length case, since Poisson’s equation operates a transverse smoothing

of the potential over a few λDe and the potential on axis “does not know” that the ion

density is depleted there. Also because of this smoothing effect, the strong density

enhancement at cos θ ∼ 0 and r<∼ 4rp is not translated into a potential barrier.
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Figure III-7: Potential contour plots for T̄i = 0.1 and β = 1.0. The computational
domain size is rb = 24rp, but for convenience we only show the region of interest.
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III.3 Total ion current to the probe

III.3.1 Dependence on β

Fig. (III-8) shows the ion current dependence on β in the quasineutral regime (λDe =

0) for three different ion temperatures. It clearly appears that for small β the de-

pendence is linear, in accordance with the analytical calculations for a sphere at

space-potential (Eq. (I.26)). Interestingly if we scale the ion current to its value at

β = 0, the slope of this linear dependence is independent of T̄i. Fitting the ion current

in the form:

Ii = Iβ=0
i [1 − Cββ] + 0(β2) (III.1)

we find Cβ = 0.21. The free-flight calculations give Iβ=0
i = I0

i and Cβ = 1/3π ∼ 0.106

(Eq. (I.24)).
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Figure III-8: Total ion current to the sphere as a function of the magnetic field for
different ion temperatures, with λ̄De = 0. The current is scaled to its value at β = 0.
Iβ=0
i (T̄i = 1.0) = 1.57I0

i ; I
β=0
i (T̄i = 0.3) = 2.49I0

i ; I
β=0
i (T̄i = 0.1) = 4.28I0

i . Also
shown is the linear dependance given by Eq. (III.1) with Cβ = 0.21.

Figs (III-9,III-10,III-11) show the ion current dependence on β for T̄i = 1.0, T̄i =
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0.3 and T̄i = 0.1 when the shielding length is finite. The probe potential is set to

φp = −3. Also shown is the lower of the Helical and Canonical Upper bounds. As

expected the current drops with a rising magnetic field, and the dependence at β = 0

is linear. We see that for our parameters, the ion current is systematically lower than

the Upper bounds, except at λ̄De � 1 and β = 0 in which case the current is simply

given by the OML formula (Eq. (I.35)).
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Figure III-9: Total ion current to the sphere as a function of the magnetic field for
different electron Debye lengths at T̄i = 1.0 and φp = −3. The values at λ̄De = ∞
are taken from Ref. [12]. Also shown as a dotted line is the lower of the Helical and
the Canonical upper bounds (Eqs (I.43, I.78)).

III.3.2 Dependence on λDe

Fig. (III-12) shows the evolution of the slope factor Cβ occurring in Eq. (III.1), and

defined as:

Cβ = − 1

Iβ=0
i

dIi
dβ |β=0

(III.2)

The slope factor is a rising function of λDe, which is intuitive since the ion current

must decrease from its value at β = 0 (a rising function of λDe) to its value at β = ∞
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Figure III-10: Total ion current to the sphere as a function of the magnetic field for
different electron Debye lengths at T̄i = 0.3 and φp = −3. The figures at λ̄De = ∞
are taken from Ref. [12]. Also shown as a dotted line is the lower of the Helical and
the Canonical upper bounds (Eqs (I.43, I.78)).
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Figure III-11: Total ion current to the sphere as a function of the magnetic field for
different electron Debye lengths at T̄i = 0.1 and φp = −3. The figures at λ̄De = ∞
are taken from Ref. [12]. Also shown as a dotted line is the lower of the Helical and
the Canonical upper bounds (Eqs (I.43, I.78)).
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(independent of λDe in our collisionless model). For λ̄De<∼ 0.3, the slope factor does

not depend on T̄i.
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Figure III-12: Variation of the slope factor Cβ with the electron Debye length. For
the purpose of the semi-log plot, we assume λ̄De = 1 ·10−3 in the quasineutral regime.

It can be seen on Figs (III-9,III-11) that some current curves cross each-other:

when the magnetic field is non zero, a large Debye length does not maximize the

ion current. Fig. (III-13) shows the ion current dependence on λDe at β = 0.5 in

different regimes. It is found that the current systematically peaks at λDe<∼ rp. The

physics behind this result is a competition between two effects. If we raise the Debye

length from λ̄De ∼ 1 the current drops because the scale length of potential variation

grows, hence the ions are accelerated more adiabatically. If we reduce λ̄De, we create

intermediate potential barriers close to the probe, and the ion current drops as well.

III.3.3 Dependence on χp

If the current were exactly given by the Helical upper-bound limit (Eq. (I.78)), raising

χp would increase the ion focusing on the probe, hence the ion current. On the other

hand if the current were exactly given by the adiabatic limit (Eq. (I.79)), increasing
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Figure III-13: Total ion current to the sphere as a function of λDe for different combi-
nations of ion temperature and probe potential, normalized to their value at λ̄De = ∞
taken from Ref. [12]. For the purpose of the semi-log plot, we assume λ̄De = 1 · 10−3

in the quasineutral regime, and λ̄De = 1 · 102 in the Coulomb case.
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χp would increase the average pitch-angle of the orbits close to the probe, resulting in

a current reduction. Because the ion acceleration is never purely adiabatic or purely

tri-dimensional, depending on the conditions the balance between those two effects

can be positive or negative. Fig. (III-14) shows the ion current dependence on the

probe potential under different magnetization conditions, for T̄i = 1 and λ̄De = 1. At

least for β ≤ 1, Ii is a rising function of χp.
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Figure III-14: Total ion current to the sphere as a function of its potential for different
magnetic field strengths. T̄i = 1 and λ̄De = 1. For this ion temperature, χp = −φp.
Also shown as dotted lines are the lower of the Helical and the Canonical upper
bounds (Eqs (I.43, I.78)).

Sonmor and Laframboise [12] show that in the limit λ̄De = ∞, there are regimes

where Ii decreases with χp. This usually involves β � 1, and is therefore outside

our range of interest. At β ≤ 1, the ion acceleration is not adiabatic enough for a

“negative resistance” effect to show.
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III.4 Angular distribution of the ion current

III.4.1 Quasineutral regime

Fig. (III-15) shows the angular distribution of the ion current to the probe for different

values of β at T̄i = 0.1 and T̄i = 1, in the quasineutral regime. The main features of

the plot are independent of the ion temperature. The angular distribution of collected

current is flat at β = 0, and progressively becomes convex as β rises. Only for T̄i = 0.1

and β<∼ 0.01 is the distribution concave.
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Figure III-15: Angular dependence of the ion flux density in units of Γ0
i = n∞vti/2

√
π

as a function of the magnetic field for T̄i = 0.1 and T̄i = 1.0 in the quasineutral regime,
fitted to Eq. (III.3).

In order to quantify those features we can look for a even second order spherical

harmonic fitting to those curves:

Γi = Γ0
i

Ii
I0
i

(1 + Aβ
1

2
(3 cos2 θ − 1)). (III.3)

, where Γ0
i is the random flux density in a stationary unmagnetized plasma. Aβ is a

measure of the asymmetry introduced by the magnetic field, and Ii/I
0
i is plotted on

Fig. (III-8).

Fig. (III-15) shows that this choice of fitting is extremely satisfactory (The er-

ror on the flux is systematically less than 1%, which is below other uncertainties).
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Figure III-16: Aβ fitting parameter. Aβ at T̄i = 0.1 and β<∼ 0.2 is slightly negative,
but its magnitude is below numerical uncertainties.

The fitting coefficient Aβ is plotted on Fig. (III-16), and rises with β. However we

expect from SCEPTIC an accuracy of 1% (within our hypothesis for the collisional

presheath dynamics); therefore only the trend given by Fig. (III-16) is relevant, since

the numerical values are of the order of 1%. At T̄i = 0.1 and β<∼ 0.2 we find Aβ < 0.

Unfortunately the magnitude of Aβ in this region is too low to say for sure if this

negative value is physical.

III.4.2 Plasma with finite shielding

Fig. (III-17) shows the angular distribution of the ion flux density to the probe as a

function of the shielding length for φp = −3 and two different ion temperatures.

Fig. (III-17a) is similar to Fig. (III-15) in the sense that the collection is convex.

In this case, T̄i = 1.0, hence χp = −φp = 3 and we are in a weakly focusing regime.

Fig. (III-17b) shows that for highly focusing probes (Here T̄i = 0.1, hence χp =

−10φp = 30) collection becomes concave. This difference is a direct consequence of

the way ions are focused on the probe, as explained in Section III.1.
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Figure III-17: Angular distribution of the ion flux density to the probe for φp = −3.
In a weakly focusing regime (Fig. a) the collection is convex, while it is concave in
the opposite situation (Fig. b).
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Chapter IV

Solutions for a flowing plasma

IV.1 Cold ion orbits in a flowing plasma

Because the spherical symmetry of the problem is broken by a plasma drift regardless

of the magnetic field strength, the distinction between weakly and strongly focusing

regimes has already been pointed out by Hutchinson [3] in the context of unmag-

netized plasmas. Although it was known that probe focusing causes the density to

peak downstream, Hutchinson found the unexpected result that for Ti<∼ 0.1ZTe and

λDe ∼ rp, the focusing is strong enough to induce a reversal of the angular distribu-

tion of ion flux density to the sphere. In other words, in this regime the probe collects

more current downstream than upstream.

Fig. (IV-1) shows some ion orbits with λ̄De = 1.0, T̄i = 0.1 and v̄d = 1.0 at β = 0.

In order to emphasize that vti � vd, only orbits whose initial velocity is equal to

the drift velocity are plotted; the simulation has obviously been run with the full ion

distribution function. For the purpose of showing more visible orbits, in this section

SCEPTIC has been used with a θ-averaged potential as in Section III.1. None of our

conclusions are affected by this manipulation.

It can be seen that the probe strongly focuses the ion flux at cos θ ∼ 1. Although

the radial (ρ) spacing between collection orbits downstream is higher than upstream,

the poloidal (ϕ) spacing at a point of cylindrical radius ρ is reduced by an amount

ρ∞/ρ, where ρ∞ is the orbit impact parameter. Because of particle conservation,

85



the flux asymmetry is reversed if the poloidal reduction overcompensates the radial

increase. For the particular example shown in Fig. (IV-1) this is the case.
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Figure IV-1: Cold ion orbits for T̄i = 0.1, v̄d = 1, φp = −4 and λ̄De = 1 for β = 0.
The probe strongly focuses the ion flux downstream, resulting in a reversal of the
flux-density collection asymmetry.

The effect of a magnetic field parallel to vd on cold orbits is to create a depletion

cone downstream, whose angle grows with β. This situation is similar to what we

have seen in Fig. (III-1) for a stationary plasma, the difference being that in a flowing

plasma cold ions only come from upstream, hence no current at all is collected in

the depletion region. Fig. (IV-2) shows ion orbits whose initial velocities are equal to

the drift velocity (Cold plasma limit) for the same parameters as Fig. (IV-1), at two

different magnetic field strengths.

Fig. (IV-3) illustrates the influence of the shielding length on cold orbits, still

using a θ-averaged potential. For this purpose, it is assumed that β = 1, T̄i = 0.1,

and v̄d = 1.0. When λDe is small, the potential gradients are confined in a thin crown

around the probe, therefore orbits whose initial impact parameter is large enough

are barely affected. In the opposite limit of large electron Debye length, the probe

perturbs the plasma on a longer scale-length. The depletion cone angle however does

not depend on λDe.

In order to quantify the angular aperture of the depletion cone, we recall that con-
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Figure IV-2: Cold ion orbits for λ̄De = 1, T̄i = 0.1, φp = −4 and v̄d = 1 for two
different magnetic field strengths. Also shown by a dashed line is the depletion cone,
whose angle θlim is given by Eq. (IV.10).
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a) λ̄De = 0.1
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b) λ̄De = 3.0
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Figure IV-3: Cold ion orbits for β = 1, T̄i = 0.1, φp = −4 and v̄d = 1 for two different
electron Debye lengths. Also shown by a dashed line is the depletion cone, whose
angle θlim is given by Eq. (IV.10).
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servation of energy and canonical angular momentum for a cold ion reads (Eq. I.40):

ρ2 ≥ ρ2
∞

1 + 2mi

ZeB

[

2
miρ2

(1
2
miv

2
d − ZeV (ρ, z))

]1/2
(IV.1)

The preceding equation can be rewritten as:

ρ ≥ ρ2
∞Ω

Ωρ + 2
√

2
[

1
2
v2
d − ZeV (ρ, z)/mi

]1/2
(IV.2)

(ρ, z) is the trajectory of an ion whose impact parameter is ρ∞. In the vicinity of the

probe if β ≤ 1 and T̄i ≤ 0.1, it is in practice always the case that:

2
√

2

[

1

2
v2
d − ZeV (ρ, z)/mi

]1/2

� Ωρ (IV.3)

For example in the unfavorable case v̄d = 0, if we take φ = φp = −2.5, ρ = rp and

Ω̄ = 0.4 (corresponding to β ' 1 for T̄i = 0.1), Eq. (IV.3) is equivalent to 4.47 � 0.4.

Eq. (IV.2) can therefore be simplified as:

ρ ≥ ρ2
∞Ω

2
√

2
[

1
2
v2
d − ZeV (ρ, z)/mi

]1/2
(IV.4)

Because it is more convenient to work in spherical coordinates, we rewrite

ρ = r sin θ = rp(1 +
δ

rp
) sin θ where δ = r − rp (IV.5)

If we approximate the potential as Debye-Hückel with shielding length λs (Eq. (I.53)),

then:

V (r) = Vp(1 − δ

rp
− δ

λs
) +O(δ2) (IV.6)

Let us assume that the impact parameter of the last collection orbit, ρ0
∞, is known.

To first order in δ, there exists an unknown constant k such that ρ∞ = ρ0
∞(1 + k δ

ρ0∞
).
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Eq. (IV.4) becomes:

rp(1 +
δ

rp
) sin θ ≥

(ρ0
∞)2Ω(1 + 2k δ

ρ0∞
)

2
√

2
[

1
2
v2
d −

ZeVp

mi

]1/2



1 − ZeVp/mi

2
[

1
2
v2
d −

ZeVp

mi

](
δ

rp
+

δ

λs
)



 (IV.7)

Because in most of the cases 1
2
v2
d � ZeVp

mi
, to first order in δ Eq. (IV.7) can be expanded

as follows:

sin θ ≥ (ρ0
∞)2Ω/rp

2
√

2
[

1
2
v2
d −

ZeVp

mi

]1/2
[1 + κδ] (IV.8)

with κ defined by:

κ =
1

2λs
− 1

2rp
+

2k

ρ0
∞

(IV.9)

If κ ≥ 0, cold orbits are depleted in a cone centered on the probe with aperture angle

given by:

sin θlim =
(ρ0

∞)2Ω/rp

2
√

2
[

1
2
v2
d −

ZeVp

mi

]1/2
(IV.10)

If λs ≤ rp, κ is necessarily positive. For longer shielding lengths this property

can not be proved, although it is in practice always satisfied. Indeed as shown in

Fig. (IV-3b), for λ̄De>∼ 1 the spacing between orbits close to the probe downstream is

approximately equal to their spacing upstream at infinity. Therefore in this situation

k ∼ 1, and unless ρ0
∞ ≥ 4, κ is positive.

When T̄i � 1, ρ0
∞ can easily be evaluated if the total current to the probe is

known, using the formula:

π(ρ0
∞)2n∞vd = Ii (IV.11)

Because the orbits are readily available in our plots however, θlim in Figs (III-1,IV-2,IV-3)

has been calculated with the “real” ρ0
∞.

θlim is an accurate estimate of the depletion cone aperture only to first order in δ =

r−rp, and in the limit T̄i � 1. It is however interesting to notice that experimentally
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its validity extends a few rp from the probe surface (See Figs (III-1,IV-2,IV-3)). When

vti>∼ min(vd, vti
√
χp), transverse thermal motion blurs the depletion cone boundary,

and θlim must then only be seen as a scaling parameter.

An important point to notice is that the magnetic field enters in θlim under the

non-dimensional form Ωrp
vp

, where vp is a typical particle velocity at the probe edge.

Therefore β does not directly control the depletion cone width.

IV.2 Space-charge distribution

IV.2.1 Quasineutral regime

Fig. (IV-4) shows the radial dependence of the density upstream and downstream for

two very different situations, in the quasineutral regime.

If the flow is subthermal, the density distribution at β = 0 is highly symmetric

far enough from the probe and similar to what we would get in the flow-free case. As

β rises this symmetry breaks; since the ion mobility across the field lines is reduced,

the density upstream rises past the flow-free level and the density downstream drops.

The important point however is that the density still reaches an asymptote within

our computational domain.

If the flow is suprathermal, the drift velocity approaches the sound speed and the

Bohm criterion is nearly satisfied by the flow at infinity: the upstream charge-density

is therefore hardly perturbed. Because the plasma is cold, there is little thermal

motion across the field lines, and increasing a magnetic field parallel to the plasma

drift does not influence this result.

The downstream side is on the contrary affected by a change in β. As β rises, the

density there is reduced because of the depletion cone discussed in in Section IV.1.

For β = 1, we notice that the collisionless perturbation downstream extends out of

the computational domain. This is not an issue since the number of ions entering the

computational domain from the downstream side is negligible compared to the ions

entering upstream. Because in the quasineutral regime outer boundary conditions on
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a) T̄i = 1 and v̄d = 0.5
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b) T̄i = 0.1 and v̄d = 1.0
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Figure IV-4: Upstream and Downstream ion charge-density as a function of z
(| cos θ| = 1) for different magnetic field strengths in the quasineutral regime. Fig. a
is for T̄i = 1 and v̄d = 0.5, the flow is therefore subsonic. Fig. b is for T̄i = 0.1 and
v̄d = 1.0, the flow is therefore suprathermal and approximately sonic. The dotted
lines correspond to the asymptotic limit of the charge-density in the flow-free case.

the potential are not required, there is no need to extend the domain.

It has been pointed out by Hutchinson [2] that at low ion temperatures Landau

Damping is weak enough to allow the formation of a Mach-cone for sufficiently high

flow velocities. However even in the regime vd<∼ cs a Mach-cone shaped rarefaction

sometimes forms. The angle made by this rarefaction with the drift axis is different

from the standard Mach-cone angle given by

θMach = arcsin(vd/cs) (IV.12)

, because the underlying physics is different. In the present case, it can be seen

on Fig. (IV-1) that for z>∼ 1, orbit spacing is increased by the probe focusing. At

cos θ ∼ 1 this effect is compensated by the reduction in cross-sectional area 2πρdρ

(This is the effect discussed in Section IV.1 causing the ion flux asymmetry reversal).

At cos θ ∼ 0, the orbits are not significantly deflected yet, hence the density is hardly

perturbed. There is however an angle in between where the density decreases.

As can be seen in Fig. (IV-5), the effect of the magnetic field is to shift the

Mach-cone shaped rarefaction down to the magnetic axis.
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a) β = 0.0
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b) β = 1.0
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Figure IV-5: Charge-density contour plots for T̄i = 0.3 and v̄d = 1.0 in the
quasineutral regime. a) β = 0.0. b) β = 1.0. The contour lines are for
Zni = 0.7, 0.85, 0.95, 0.98n∞. The Mach-cone shaped rarefaction is shifted towards
the drift axis by the magnetic field.
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IV.2.2 Plasma with finite shielding

As explained in Section III.1, the focusing properties of the probe are maximal when

the shielding length is of the order of the probe radius. When the plasma is flowing

and no background magnetic field is present, this results in a strong density peak

downstream [3].

Fig. (IV-6) shows the evolution of this density peak when the background magnetic

field strength rises, for λ̄De = 1.0, T̄i = 1.0, and v̄d = 1.5. In accordance with the cold

ion orbits picture developed in Section IV.1, the background magnetic field causes an

ion depletion in the downstream side of the magnetic shadow. In the present case

T̄i 6= 0, therefore the depletion is not total. The transition between the unmagnetized

and magnetized regime occurs at β ∼ 0.5. Indeed Fig. (IV-6b) shows simultaneously

the density peak due to ion focusing and, starting a few rp from the probe edge, the

ion-depleted magnetic shadow.

The qualitative differences between the charge-density and potential contour plots

when the electron Debye length is non zero arise from the smoothing operated by

Poisson’s equation over a range of a few λDe, and have already been discussed in

Section III.2.2 in the context of stationary plasmas. The potential contour plots

corresponding to Fig. (IV-6) are shown in Fig. (IV-7). At β>∼ 1.0 it can be seen on

Fig. (IV-7c) that the φ = −0.02 contour line opens upstream. For v̄d>∼ 2 this would

not be the case since the Bohm criterion would be naturally satisfied by the flow at

infinity.

When the temperature is low and the shielding length of comparable magnitude

with the probe radius, the wake shows three different regions. Fig. (IV-8) illustrates

this phenomenon for the case T̄i = 0.01, v̄d = 2, φp = −3, λ̄De = 1 and β = 1. At

very small θ can be seen the depletion cone due to the magnetic field. The white

solid line shows the region delimited by θlim, calculated using Eqs (IV.10,IV.11). For

this purpose we used additional information provided by SCEPTIC, namely the total

collected current Ii = 31.2I0
i . For the considered parameters, Ω̄ = β

√

T̄iπ/2 = 0.125.

At an angle θ = θMach (Eq. (IV.12)), the V-shaped depletion region characteristic of
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a) Zni/n∞ for β = 0.2

b) Zni/n∞ for β = 0.5

c) Zni/n∞ for β = 1.0

Figure IV-6: Evolution of the ion charge-density distribution with a rising magnetic
field at T̄i = 1.0, λ̄De = 1.0, v̄d = 1.5 and φp = −5. The computation has been
performed on a domain of size rb = 20rp, but only the region of interest is shown.
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a) φ for β = 0.2
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Figure IV-7: Evolution of the potential distribution φ(r) with a rising magnetic field
at T̄i = 1.0, λ̄De = 1.0, v̄d = 1.5 and φp = −5.
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Mach-cones is present, shown as a white dashed line in the charge-density contour

plot. Because of the negligible ion temperature, the sound speed is simply given by

c̄s = 1, hence the Mach number is M = 2. On the other hand, the ion charge-density

in the region θ ∈ [θlim : θMach] is much higher than n∞, due to probe focusing. Because

the drift velocity is high, the density peak detaches from the immediate downstream

region, and extends on a long, linear stripe.

Figure IV-8: Charge-density contour plot of the downstream wake in a supersonic,
magnetized regime. Here T̄i = 0.01, v̄d = 2, φp = −3, λ̄De = 1 and β = 1. The dashed
line indicates the Mach cone (θMach), and the solid line the magnetic depletion cone
(θlim).

IV.3 Total collected current

Fig. (IV-9) shows the ion current dependence on β at T̄i = 1.0, φp = −5 and λ̄De = 1.0,

for several drift velocities.

This dependence can be seen to be linear in β for low β, and the slopes decrease

with an increasing magnetic field. This is in agreement with our results for the

sphere at space potential (See Fig. (I-5)) although the slope magnitudes are obviously
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different. Because the electron Debye length is equal to the probe size, the current at

β = 0 is slightly lower than the OML value given by Eq. (I.34). However for β<∼ 0.3

it can be seen that the current drops with a rising drift velocity, a property typical of

the unmagnetized OML regime (See Fig. (B-3a)). For β>∼ 0.3, the current rises with

the drift velocity as expected.
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Figure IV-9: Total ion current to the sphere as a function of the magnetic field for
different drift velocities at T̄i = 1.0, λ̄De = 1.0 and φp = −5.

For lower shielding lengths the picture is slightly different, as can be seen on

Fig. (IV-10). In this case the current rises with vd regardless of the magnetic field.

IV.4 Angular distribution of the ion current for

weakly focusing probes

IV.4.1 Quasineutral regime

The main purpose of a Mach probe is to determine the drift velocity of a plasma,

usually by comparing the upstream flux density (ΓUi ) with the downstream flux den-

sity (ΓDi ). In the unmagnetized or the strongly magnetized case, different heuristic

and theoretical models have been developed, most of them expressed as a calibration
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Figure IV-10: Total ion current to the sphere as a function of the magnetic field for
different drift velocities at T̄i = 1.0, λ̄De = 0.1 and φp = −5.

of the form:
ΓUi
ΓDi

= exp(Kv̄d) (IV.13)

Inversion of Eq. (IV.13) gives the drift velocity as:

vd =
1

K
ln(

ΓUi
ΓDi

) (IV.14)

In order to find the constant K in the non magnetized case, Hutchinson [2] fitted

the angular current collected by a spherical probe at λ̄De = 0 and T̄i = 1 to:

Γi(vd, cos θ) = Γvd=0
i exp (1/2v̄d((1 − cos θ)Ku − (1 + cos θ)Kd)) (IV.15)

with Γvd=0
i = 1.56Γ0

i , Ku = 0.64, Kd = 0.70, yielding K = Ku +Kd = 1.34.

Fig. (IV-11) shows the angular distribution of the ion flux for T̄i = 1 and T̄i = 0.1

at subthermal and suprathermal velocities. Because the magnetic field impedes the

downstream ion focusing, the coefficient K grows with β.

At high velocities, the magnetic field is not perceptible for T̄i = 1. At T̄i = 0.1 and

β = 0, the angular distribution of the ion flux is non monotonic due to ion focusing,

but because λ̄De = 0, this effect is not strong enough to cause reversal of the flux
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b) T̄i = 1.0, v̄d = 1.5
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d) T̄i = 0.1, v̄d = 1.0
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Figure IV-11: Angular distribution of the ion flux as a function of β at subthermal
and suprathermal velocities in the quasineutral regime, for T̄i = 1.0 and T̄i = 0.1.
Also plotted are the unmagnetized fittings at T̄i = 1.0 (Eq. (IV.15)), and the free
flight solution (Eq. (I.15)).
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asymmetry. The magnetic field reduces the focusing, but at β = 1 the downstream

current is still more than 1000 times larger than the free flight value, implying that

the downstream current comes from upstream. This point is important from the

computational point of view. Indeed at high flow velocities the plasma is hardly

perturbed upstream, hence the potential at cos θ = −1 tends to a value close to zero:

our approximation of reinjecting the ions as an unperturbed Maxwellian regardless of

the potential at the outer boundary becomes asymptotically exact as vd rises. Since as

mentioned in Section III.1 the potential well felt by the ions depends on χ = −φZTe

Ti
,

it is no surprise if the curves at T̄i = 1 are closer to the free flight model.

Calibrating Mach-probes at low temperature appears problematic because of this

focusing effect, we will therefore concentrate on the T̄i = 1 case. Fig. (IV-12) shows

that K is not simply a function of β, but also of v̄d. For β = 0, K has a value

within 10% of 1.34 as predicted by Hutchinson calibration. K is a growing function

of β, having a larger slope at low velocities, confirming the conclusions drawn from

Fig. (IV-11). Fig. (IV-12) also shows the calibration factor derived by Hutchinson

for the strongly magnetized case assuming l � L in the collisional presheath [7]

(See Section I.5.5 for a summary of the theory). Unless the drift velocity is highly

supersonic, we notice that our computed value of K rises higher than Hutchinson’s

limit near β ' 1. This feature is unlikely to depend on our assumption l ' L in the

collisional presheath since for example at v̄d = 1 we would find that the potential

upstream tends to 0 within the collisionless presheath. Since the current collected

downstream also comes from upstream, collisionality does not influence this result.

The most plausible hypothesis is that K is not a monotonic function of β, but peaks

somewhere around β = 1, and drops afterwards. The asymptotic value at β � 1

would then depend on the collisional hypothesis on the perturbation downstream,

as in this limit the upstream and downstream sides of the probe are separated. A

collisional treatment of the full magnetized presheath problem is required to find this

limit.

Fig. (IV-12) also shows the Mach-probe calibration factor in the form of contour

lines. Good calibration properties require vertical lines in order for K to be inde-
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a) K dependence on β
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Figure IV-12: Mach-probe calibration factor for T̄i = 1.0 and λ̄De = 0. Fig. a shows
the data (as well as the unmagnetized and strongly magnetized values calculated by
Hutchinson, respectively K = 1.34 and K = 1.7) under the form K = f(β). Fig. b
shows the same data under the form of contour lines. Good calibration properties
require vertical lines.

pendent of vd in the presence of a given magnetic field. We see that for β<∼ 0.3, the

contour lines are almost vertical and rather spaced. Hence Hutchinson’s calibration

factor can applied for β<∼ 0.3 and arbitrary reasonable drift velocity.

Since in typical experiments flux-ratio measurements can have uncertainties up to

30%, we can safely use the following expression, valid for 0 < vd < 1.5 and βi ≤ 1 to

within 10% (See Fig. (IV-12)):

K∗(T̄i = 1, λ̄De = 0, β) = 1.28 + 0.50β (IV.16)

IV.4.2 Plasma with finite shielding and equithermal ions and

electrons

In Figs (IV-13,IV-14) are shown flux density versus angle for β ∈ [0 : 1], and respec-

tively λ̄De = 1.0 and λ̄De = 0.1.

The key features of those plots are similar to what has been seen in Fig. (IV-11).

The main effect of the magnetic field is to impede ion collection downstream. Because

for low drifts ions come from both sides of the probe, the effect of a rising field is to
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shift the whole flux-density curve down, while slightly increasing the magnitude of its

slope. For higher drifts, the flux density upstream is hardly affected by β, and the

angular flux density flattening present at cos θ ∼ 1 is progressively removed.
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d) β = 1.0
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Figure IV-13: Angular distribution of the ion flux density to the probe for φp = −5,
λ̄De = 1.0, and a wide range of drift velocities (v̄d ∈ [0 : 3]) and magnetic field
strengths (β ∈ [0 : 1]).

The flux ratio as defined by Eq. (IV.13) is therefore expected to be a rising function

of β as in the quasineutral regime. This is confirmed by SCEPTIC computations as

shown in Fig. (IV-15).

For β ∼ 0, the calibration factor K is similar for λ̄De = 1.0 and λ̄De = 0.1, well

below the λ̄De = 0 value. The physical reason is that downstream focusing is much
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d) β = 1.0
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Figure IV-14: Angular distribution of the ion flux density to the probe for φp = −5,
λ̄De = 0.1, and a wide range of drift velocities (v̄d ∈ [0 : 3]) and magnetic field
strengths (β ∈ [0 : 1]).
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weaker in the quasineutral regime.

On the other hand for β ∼ 1, similarities in K exist between the case λ̄De = 0 and

λ̄De = 1.0, while flux ratios are much lower for λ̄De = 0.1. The physical interpretation

is as follows. At λ̄De = 0.1, the radial extension of the probe potential perturbation

is shorter than at λ̄De = 1.0. This implies that the maximum impact parameter

is smaller, resulting in a narrower depletion cone in the presence of a background

magnetic field (See Fig. (IV-3)). This directly results in a reduced flux-ratio. When

λ̄De is further decreased however, the total collected current drops significantly over

the whole sphere, helping the flux ratio to increase.
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Figure IV-15: Mach-probe calibration factor contour lines for λ̄De = 1.0 and λ̄De = 0.1
at T̄i = 1.0 and φp = −5.

Fig. (IV-15) shows that for moderate drift velocities the calibration factor is ap-

proximately independent of the drift velocity at a given β. Expressions for K valid

to within 10% for v̄d ≤ 1.5 are given by (See Fig. (IV-16)):

K∗(T̄i = 1, λ̄De = 1.0, β) = 0.55 + 1.36β (IV.17)

K∗(T̄i = 1, λ̄De = 0.1, β) = 0.55 + 0.78β (IV.18)
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Figure IV-16: Mach-probe calibration factor as a function of β for λ̄De = 1.0 and
λ̄De = 0.1 at T̄i = 1.0 and φp = −5. Also shown as dotted lines are the fittings of
Eqs (IV.17,IV.18).

IV.5 Flux asymmetry reversal suppression for strongly

focusing probes

Ion collection asymmetry reversal, already discussed in Section IV.1, requires strongly

focusing conditions, which for reasonable probe potentials this implies low ion tem-

perature.

Fig. (IV-17) shows the evolution of the angular distribution of collected current

for different magnetic field strengths and drift velocities for φp = −3, T̄i = 0.1 and

λ̄De = 1. The overall effect of raising the magnetic field strength is, as expected, to

reduce the total ion current. As for the T̄i = T̄e case, the flux ratio increases with β;

however because at β = 0 we start with a negative K = ln(ΓUi /Γ
D
i ), and the flux-ratio

contour lines differ sensibly from those in Fig. (IV-15).

This is shown in Fig. (IV-18). At low β, K is negative, and rapidly grows with

the magnetic field. In no (weak) magnetic-field regime however are the contour lines

vertical, implying that calibrating a mach probe under the form of Eq. (IV.13) in a

weakly magnetized plasma is hardly feasible if ZTi is substantially lower than Te.

When the ion temperature is further decreased, we can approach the regime where
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c) v̄d = 1.5
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d) v̄d = 2.0
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Figure IV-17: Angular distribution of the ion flux density to the probe for φp = −3,
T̄i = 0.1, λ̄De = 1.0, and a wide range of drift velocities (v̄d ∈ [0.5 : 2]) and magnetic
field strengths (β ∈ [0 : 1]).
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Figure IV-18: Mach-probe calibration factor contour lines for T̄i = 0.1 and λ̄De = 1.0,
and φp = −3. In no region are the lines vertical, hence calibrating a Mach-probe
using Eq. (IV.13) at low ion temperature and weak magnetic field does not appear
feasible.

the plasma can be considered as a cold beam provided vd is high enough. The down-

stream region delimited by θlim (Eqs (IV.10,IV.11)) is therefore depleted, while the

rest of the probe collects a comparable amount of current regardless of β.

This effect causes the angular ion flux-density distribution to peak at cos θ<∼ 1,

as shown on Fig. (IV-19). At v̄d = 0.5, the ratio of drift over thermal energy is not

high enough for the ion flux-density distribution to peak at cos θ ∼ cos θlim. When

v̄d = 1, the ratio of drift over thermal energy is higher, and the peak is exactly

at cos θ = cos θlim. The values of cos θlim, indicated by small vertical bars on the

graphs, have been calculated using the total ion current computed by SCEPTIC. It

is interesting to notice that depending on the drift velocity, raising the magnetic field

displaces the peak at lower or higher angles. In practice electrodes have a finite width,

and it is not obvious that this effect could be experimentally verified.
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a) v̄d = 0.5
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b) v̄d = 1.0
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Figure IV-19: Angular distribution of the ion flux-density at T̄i = 0.01, φp = −3 and
λ̄De = 1.0 for v̄d = 0.5 and v̄d = 1.0, and various magnetic field strengths. Vertical
bars indicate the angles θlim (Eqs (IV.10,IV.11)) corresponding to the curves. Circles:
β = 0.5, Cross: β = 1.0, Squares: β = 1.5, Triangles: β = 2.0.
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Chapter V

Conclusions

V.1 Review of our computation hypothesis

Perhaps the most difficult task in any quantitative analysis is to provide an estimate of

the results accuracy. In the present case uncertainties arise from inherently numerical

reasons, as well as from our choice of boundary conditions.

In theory numerical uncertainties are not an issue. By increasing the number of

computational particles per Debye-cube, the noise on the charge-density distribution

and the potential can be made arbitrarily small. By simultaneously reducing the

ion orbit integrator time-step, the error on the ion trajectories, hence the ion current,

becomes negligible. In preceding SCEPTIC publications [2, 3] as well as in this thesis,

the number of computational particles and the orbit-integrator time-step are chosen

in order for the computation to be 1% accurate or more.

Provided the computational domain is large enough, the potential boundary con-

dition has been shown not to be a cause of uncertainties. Indeed in the quasineutral

regime we do not solve for the potential, and in the limit of zero collisionality it is

exact to assume ∂/∂z = 0 on the collisionless presheath scale length: This is the

condition we use to solve Poisson equation when when plasma shielding is finite.

The real challenge is to estimate the error introduced by assuming that momentum

loss in the non-collisionless presheath can be modeled by reinjecting the unperturbed

ion distribution function at the outer boundary, regardless of the potential there. A
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simple a posteriori estimate of the error bound on the total ion current is given by:

|∆Ii|
Ii

≤ < φb >

φ̃p
(V.1)

where < φb > is the average potential seen (but not felt) by collection ions when they

enter the computational domain, and φ̃p the “effective” probe potential felt by the

ions, that is to say φ̃p = φp if λ̄De � 1 and φ̃p = φs if λ̄De � 1. Because a typical

sheath entrance potential is φs ∼ −1, and | < φb > | is maximal in the flow-free case,

higher error bounds are found in the regime v̄d = 0 and λ̄De = 0. A typical worse case

is therefore given by the parameters of Fig. (III-3b), i.e. v̄d = 0, λ̄De = 0, T̄i = 0.3

and β = 1. Because in this case SCEPTIC computes Ii = 1.77I0
i (See Fig. (III-8)),

a crude approximation to < φb > is < φb >= φb(ρ = rp
√

1.77) ∼ −0.2. The error

bound is therefore on the order of 20%.

This value of 20% is high, but it is only a guarantee that the error can not be

higher. Because we heuristically modeled the non-collisionless presheath dynamics,

the result computed by SCEPTIC might be much closer to the reality. In addition

we considered the worse possible regime. By taking β < 1, λ̄De 6= 0 or v̄d 6= 0, the

error bound quickly goes to 0.

V.2 Implications of our results

Several results presented in this thesis are relevant to dusty plasma physics, and

flux-collecting probes operation.

We proved, within the free flight approximation, that the ion current dependence

on the magnetic field is linear in β (the ratio of probe radius over a mean ion gy-

roradius) for β � 1. Furthermore numerical investigation clearly indicates that this

property is valid for an arbitrary probe potential. This result is in contradiction with

the statement of Rubinstein and Laframboise [11], and implies that the magnetic field

effect on ion collection is non negligible even for small β.

Mach-probe calibration factors independent of the drift velocity have been pro-

112



vided when Ti = ZTe for λDe = 0, λDe = 0.1rp and λDe = rp, covering the typi-

cal regimes of Mach-probes operation. Although in the strongly magnetized regime

Mach-probes can easily be calibrated even at low ion temperature [7], ion focusing

causes this task to be more difficult when β<∼ 1.

V.3 Suggestions for future work

This thesis leaves many questions unanswered, and several paths for future investiga-

tion exist. One route would be to solve the potential on a three-dimensional mesh in

order to assess the effect of turbulence, and to be able to study regimes where the flow

is not parallel to the magnetic field. Also of major importance would be to resolve

the whole non-collisionless presheath in order to bridge the gap between β ∼ 1 and

β = ∞.

However those undertakings require deep modifications of SCEPTIC. There is

perhaps more straightforward yet interesting physics to be done with the present

code. The two next steps will be to compute the ion drag force in the weakly mag-

netized regime (See Ref. [26] for an explanation of the procedure when β = 0), and

to investigate the influence of ion charge-exchange collisions on the collection cur-

rent (The reader is referred to Ref. [27] for a description of the implementation of

charge-exchange collisions in SCEPTIC).
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Appendix A

Low β expansion of Whipple-like

integrals

A.1 Sphere at space potential in a drifting plasma

The current drawn by a spherical probe at space potential from a drifting Maxwellian

is given by Eqs (I.21,I.25), that we repeat here for convenience under the following

form using the notation ι = Ii/I
0
i :

ι(β, vd) = ιin(β, vd) + ιout(β, vd) (A.1)

with

ιin(β, vd) =
1

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

f̃(β, vd, s, t)
1

2
θ(1 − s)(1 − s)2stdtds (A.2)

and

ιout(β, vd) =
1

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

f̃(β, vd, s, t)

∫ s+1

u=|s−1|

1

2π

∫ 2π

ψ=0

H(u, s, t, ψ)udustdtds

(A.3)

We recall that

f̃(β, vd, s, t) =
1

2

[

exp(−π
4
β2(s2 + (t− vd

vti

2

β
√
π

)2)) + exp(−π
4
β2(s2 + (t +

vd
vti

2

β
√
π

)2))

]

(A.4)
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In the rest of this section, ι is implicitly assumed to be a function of β and vd, so

that “(β, vd)” can be dropped.

A.1.1 Current drawn from orbits in the magnetic shadow:

ιin

Eq. (A.2) counts the orbits with s+u < 1, that we know for sure are collection orbits.

The contribution of those orbits to the total current is of order β2, as can be seen by

directly evaluating the integral:

ιin =
1

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

f̃(β, vd, s, t)

exp(−π
4
β2(s2 + t2))

1

2
θ(1 − s)(1 − s)2stdtds (A.5)

=
1

4
π2β4

[√
π
vd
vti

erf(
vd
vti

) + exp(− v2
d

v2
ti

)

]

·
[

−4erf(1
2
β
√
π)

π2β5
− 8 exp(−1

4
πβ2)

π3β6
+

2

π2β4
+

8

π3β6

]

(A.6)

= π

[√
π
vd
vti

erf(
vd
vti

) + exp(− v2
d

v2
ti

)

]

β2

48
+O(β4) (A.7)

A.1.2 Current drawn from the other orbits: ιout

Eq. (A.3) counts the current collected from the orbits with s+u ≥ 1 and |u− s| ≤ 1.

That is to say helixes part in the magnetic shadow and part outside. H(u, s, t, ψ)

is an impact factor equal to 1 if the orbit characterized by (u, s, t, ψ) intersects the

sphere at least once, and 0 otherwise.

1
2π

∫ 2π

ψ=0
H(u, s, t, ψ)dψ can be replaced by min(1, t

∗(s,t,u)
t

). The significance of t∗

is as follows: If t < t∗(s, t, u), the orbits characterized by (s,t,u) cross the sphere at

least once regardless of ψ. If t ≥ t∗(s, t, u), orbits do not cross the sphere or cross it

only once depending on ψ.
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ιout =
1

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

f̃(β, vd, s, t)

∫ s+1

u=|s−1|
min(1,

t∗(s, t, u)

t
)udustdsdt (A.8)

=
1

4
π2β4

∫ ∞

s=0

∫ s+1

u=|s−1|

[

∫ t̃(s,u)

t=0

f̃(β, vd, s, t)(t− t∗(s, t, u))dt

+

∫ ∞

t=0

f̃(β, vd, s, t)t
∗(s, t, u)dt

]

udusds (A.9)

where t̃(s, u) is defined by t∗(s, t̃(s, u), u) = t̃(s, u)

For convenience we now rewrite ιout as:

ιout(β, vd) = ιoutL (β, vd) + ιoutC (β, vd) (A.10)

with:

ιoutL =
1

8
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=|s−1|
u

∫ t̃(s,u)

t=0

(t− t∗(s, t, u))

[

exp(−π
4
β2(t− vd

vti

2

β
√
π

)2) + exp(−π
4
β2(t+

vd
vti

2

β
√
π

)2)

]

dsdudt(A.11)

and

ιoutC =
1

8
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=|s−1|
u

∫ ∞

t=0

t∗(s, t, u)

[

exp(−π
4
β2(t− vd

vti

2

β
√
π

)2) + exp(−π
4
β2(t+

vd
vti

2

β
√
π

)2)

]

dsdudt(A.12)

A.1.3 Analysis of t∗(s, t, u)

In this section we implicitly assume that u ∈ [|s− 1|, s+ 1].
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t∗(s, t, u) has been calculated analytically in Ref. [11], and is given by:

t∗(s, t, u) =
1

π

√

−(s2 + u2 − 1 + 2t2) + 2
√

(s2 + u2 − 1)t2 + t4 + s2u2

+
t

π
arccos(

−t2 +
√

(s2 + u2 − 1)t2 + t4 + s2u2

su
) (A.13)

This expression has a simple limit when t→ 0 with (s, u) fixed:

lim
t→0

t∗(s, t, u) =

√

1 − (s− u)2

π
+O(t2) (A.14)

The physical meaning of Eq. (A.14) is as follows. An orbit characterized by t � 1

is, locally, a straight line perpendicular to the magnetic axis. Therefore 2πt∗(s, t, u)

is simply the width of the unit sphere at ρ = |s − u|, i.e. 2 cos(arcsin(|s − u|)) =

2
√

1 − (s− u)2.

The expansion of t∗(s, t, u) as (s, u) → ∞ with t fixed can easily be calculated as

well:

lim
(s,u)→∞

t∗(s, t, u) =

√

1 − (s− u)2

π
+

1

2π

t2
√

1 − (s− u)2

s2
+O(

1

s4
) (A.15)

We recall that |s− u| ≤ 1, therefore when (s, u) → ∞, 1
s2

∼ 1
su

.

The equation t∗(s, t̃(s, u), u) = t̃(s, u) can not be analytically solved for t̃(s, u),

however we have the following property, that can be easily shown from the symmetry

t∗(s, t, u) = t∗(u, t, s):

∀(s, u) : t̃(s, u) ≤ t̃(s, s) ≤ t̃(
1

2
,
1

2
) (A.16)

We have, for example, t̃(1
2
, 1

2
) = 1

2
and t̃(1, 1) ' 0.336. An expansion for t̃(s, u) as

(s, u) → ∞ can be calculated using Eq. (A.15) :

lim
(s,u)→∞

t̃(s, u) =

√

1 − (s− u)2

π
+

(1 − (s− u)2)3/2

2π3s2
+O(

1

s4
) (A.17)
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When t→ ∞ with (s, u) fixed we have:

lim
t→∞

t∗(s, t, u) = arccos(
s2 + u2 − 1

2su
)
t

π
+O(

1

t
) (A.18)

If we then let (s, u) → ∞, we get:

lim
(s,u)→∞|t�(s,u)

t∗(s, t, u) =

√

1 − (s− u)2

su

t

π
+ O(

1

t
) (A.19)

If (s, t, u) � 1, and we make the assumption t � s2 (That is to say t and s have

the same magnitude), we can expand t∗(s, t, s) with α = t
s
� s and obtain:

lim
(s,u)�1|α�s

t∗(s, αs, u) =

√
α2 + 1

√

1 − (s− u)2

π

+
1

2π

α2(s− u)
√

1 − (s− u)2

s
√

1 + α2
+O(

1

s2
) (A.20)

A.1.4 Analysis of ιout
L

We have seen that t̃(s, u) ≤ 1
2
, therefore the t integral is over a compact (i.e.

[0, t̃(s, u)]), and we can Taylor expand exp(−π
4
β2(t± vd

vti

2
β
√
π
)2) for low β inside the t

integral.

Because of the term exp(−π
4
β2s2), when β → 0 the s integral is determined by

the value of the integrand at large s. It is therefore appropriate to use the asymptotic

values of t∗ given by Eq. (A.15) and t̃ given by Eq. (A.17). For the same reason we

replace |s− 1| by s− 1.
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ιoutL =
1

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π
+O( 1

s2
)

t=0

[

exp(− v2
d

v2
ti

) +O(β)

]

·
[

t−
√

1 − (s− u)2(
1

π
+O(

1

s2
))

]

dtduds+O(β3) (A.21)

=
1

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π

t=0

exp(− v2
d

v2
ti

)

[

t−
√

1 − (s− u)2

π

]

dtduds+O(β2) (A.22)

=
1

4
π2β4 exp(− v2

d

v2
ti

)

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

[

−1

2

1 − (s− u)2

π2

]

duds+O(β2) (A.23)

= −1

4
π2β4 exp(− v2

d

v2
ti

)

∫ ∞

s=0

exp(−π
4
β2s2)

2

3

s2

π2
ds+O(β2) (A.24)

= − exp(− v2
d

v2
ti

)
β

3π
+O(β2) (A.25)

A.1.5 Analysis of ιout
C

Let us rewrite ιoutC as:

ιoutC =
1

8
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ ∞

t=0

[

exp(−π
4
β2(t− vd

vti

2

β
√
π

)2)

+ exp(−π
4
β2(t+

vd
vti

2

β
√
π

)2)

]
∫ s+1

u=s−1

t∗(s, t, u)ududsdt (A.26)

We are interested in the whole range of α = t
s
. However when β → 0 the weight

of the triple integral is given by the value of the integrand for (s, t, u) � 1. We can

use the following change of variables:





t

s



 →





α = t
s

s



 (A.27)

The Jacobian of the transformation is J = s, we therefore have dtds = sdαds.
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In order to get the first terms of the taylor expansion of the whole triple integral

at low β, we can replace t∗(s, t, u) by its asymptotic expansion at high s, but without

making any assumption on α (Eq. (A.20)).

∫ s+1

u=s−1

t∗(s, αs, u)udu =

√
α2 + 1

π

∫ s+1

u=s−1

√

1 − (s− u)2udu+

α2

2π
√
α2 + 1

∫ s+1

u=s−1

s− u

s

√

1 − (s− u)2udu (A.28)

=
s
√
α2 + 1

2
− α2

16s
√
α2 + 1

+O(
1

s2
) (A.29)

=
s
√
α2 + 1

2
+O(

1

s
) (A.30)

(A.31)

We can now rewrite ιoutC as:

ιoutC =
1

8
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ ∞

α=0

[

exp(−π
4
β2(αs− vd

vti

2

β
√
π

)2)

+ exp(−π
4
β2(αs+

vd
vti

2

β
√
π

)2)

]

s

√
α2 + 1

2
sdαds+O(β2) (A.32)

=
1

16
π2β4

∫ ∞

α=0

√
α2 + 1

∫ ∞

s=0

[

exp(−π
4
β2(s2 + (αs− vd

vti

2

β
√
π

)2))

+ exp(−π
4
β2(s2 + (αs+

vd
vti

2

β
√
π

)2))

]

s3dsdα +O(β2) (A.33)

=
1

2

∫ ∞

α=0

1

(1 + α2)3

[

(2α3 v
3
d

v3
ti

+ 3α3 vd
vti

+ 3α
vd
vti

)
√
πerf(

αvd/vti√
1 + α2

) exp(− v2
d/v

2
ti

1 + α2
)

+2(α2 + α2 v
2
d

v2
ti

+ 1)
√

1 + α2 exp(− v2
d

v2
ti

)

]

dα+O(β2) (A.34)

=
1

2
exp(− v2

d

v2
ti

) +

√
π

2
(
vd
vti

+
vti
2vd

)erf(
vd
vti

) +O(β2) (A.35)
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A.1.6 Conclusion

Therefore, the total current to the probe is:

Ii/I
0
i =

[

1

2
exp(− v2

d

v2
ti

) +

√
π

2
(
vd
vti

+
vti
2vd

)erf(
vd
vti

)

]

− exp(− v2
d

v2
ti

)
β

3π
+O(β2) (A.36)

A.2 Charged sphere in a stationary plasma: Up-

per bound

The upper bound current drawn by a spherical probe with normalized potential χp

from a stationary Maxwellian is given by Eqs (I.75,I.22) that we repeat here for

convenience under the following form:

ιUp(β, χp) = ιUpin (β, χp) + ιUpout(β, χp) (A.37)

with

ιUpin (β, χp) =
exp(χp)

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

θ(s2 + t2 −D2)

f̃(β, s, t)
1

2
θ(1 − s)(1 − s)2stdsdt (A.38)

and

ιUpout(β, χp) =
exp(χp)

4
π2β4

∫ ∞

s=0

∫ ∞

t=0

θ(s2 + t2 −D2)

f̃(β, s, t)

∫ s+1

u=s−1

1

2π

∫ 2π

ψ=0

H(u, s, t, ψ)udustdsdt (A.39)

where

f̃(β, s, t) = exp(−π
4
β2(s2 + t2)) (A.40)

and

D =
2

β

√

χp
π

(A.41)
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A.2.1 Current drawn from the orbits in the magnetic shadow:

ιin

The contribution to the upper bound current from the orbits with s + u < 1 is

quadratic in β. Indeed using Eq. (A.7) we can write:

ιUpin ≤ exp(χp)ι
in(β, 0) (A.42)

≤ exp(χp)
πβ2

48
(A.43)

A.2.2 Current drawn from the other orbits: ιout

For convenience, we rewrite ιUpout as:

ιUpout(β, χp) = ιUpL (β, χp) + ιUpC (β, χp) (A.44)

with:

ιUpL =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫ t̃(s,u)

t=0

θ(s2 + t2 −D2)(t− t∗(s, t, u)) exp(−π
4
β2t2)dsdudt (A.45)

and

ιUpC =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫ ∞

t=0

t∗(s, t, u)θ(t2 + s2 −D2) exp(−π
4
β2t2)dsdudt (A.46)

A.2.3 Analysis of ιUp
L

Following the same procedure as in Section A.1.4 we can write, for low β:
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ιUpL =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π

t=0

θ(s2 + t2 −D2)(t−
√

1 − (s− u)2

π
)dtduds+O(β3) (A.47)

=
exp(χp)

4
π2β4

∫ ∞

s=D

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π

t=0

(t−
√

1 − (s− u)2

π
)dtduds

+
exp(χp)

4
π2β4

∫ D

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π

t=
√
D2−s2

(t−
√

1 − (s− u)2

π
)dtduds+O(β3) (A.48)

Because at low β,
∫ D

s=0
exp(−π

4
β2s2) ∼ D (Independent of β), the second term in

Eq. (A.48) is of lower order than the first. Hence:

ιUpL =
exp(χp)

4
π2β4

∫ ∞

s=D

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

[

−1

2
(t− 1 − (s− u)2

π2
)

]

duds+O(β3) (A.49)

=
exp(χp)

4
π2β4

∫ ∞

s=D

exp(−π
4
β2s2)

2

3

s2

π2
ds+O(β3) (A.50)

= −
[

1

3π
erfc(

√
χp) exp(χp) +

2

3

√
χp

π3/2

]

β +O(β3) (A.51)

A.2.4 Analysis of ιUp
C

Following the same procedure as in Section A.1.5 we can write, for low β:
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ιUpC =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ ∞

α=0

θ((1 + α2)s2 −D2)

exp(−π
4
β2α2s2)s

√
α2 + 1

2
sdαds+O(β2) (A.52)

=
exp(χp)

8
π2β4

∫ ∞

α=0

√
α2 + 1

∫ ∞

s= D√
1+α2

exp(−π
4
β2(1 + α2)s2)s3dsdα +O(β2) (A.53)

=
exp(χp)

8
π2β4

∫ ∞

α=0

exp(−χp)(χp + 1)

2
[

π
4
β2(1 + α2)

]2

√
1 + α2dα (A.54)

= 1 + χp +O(β2) (A.55)

A.2.5 Conclusion

Therefore, the total Upper bound current to the probe is:

IUpi /I0
i = (1 + χp) −

[

1

3π
erfc(

√
χp) exp(χp) +

2

3

√
χp

π3/2

]

β +O(β2) (A.56)

A.3 Charged sphere in a stationary plasma: Lower

bound

The lower bound current is given by Eqs (A.37,A.38,A.39) after replacing θ(s2 + t2 −
D2) by θ(s−D).

We adopt here the same notation as in Section A.2, and split ιLow in the same

three terms.

A.3.1 Current drawn from the orbits in the magnetic shadow:

ιLow
in

ιLowin is quadratic in β because Eq. (A.43) is still valid.
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A.3.2 Analysis of ιLow
L

ιLowL =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ s+1

u=s−1

u

∫

√
1−(s−u)2

π

t=D

(t−
√

1 − (s− u)2

π
)dtduds+O(β3) (A.57)

We can now notice that a sufficient condition to have
∫

√
1−(s−u)2

π

t=D
(t−

√
1−(s−u)2

π
)dt =

0 is D > 1
π
, or using Eq. (A.41): β < 2π

√
χp.

Therefore ιLowL = O(β3).

A.3.3 Analysis of ιLow
C

ιLowC =
exp(χp)

4
π2β4

∫ ∞

s=0

exp(−π
4
β2s2)s

∫ ∞

α=0

θ(αs−D)

exp(−π
4
β2α2s2)s

√
α2 + 1

2
sdαds+O(β2) (A.58)

=
exp(χp)

8
π2β4

∫ ∞

α=0

√
α2 + 1

∫ ∞

s=D/α

exp(−π
4
β2(1 + α2)s2)s3dsdα+O(β2) (A.59)

=

∫ ∞

α=0

α2(1 + χp) + χp
(1 + α2)3/2α2 exp(χp/α2)

dα +O(β2) (A.60)

= 1 −
√
π

2

√
χperfc(

√
χp) exp(χp) +O(β2) (A.61)

A.3.4 Conclusion

Therefore, the total Lower bound current to the probe has no linear term, and is

equal to:

ILowi /I0
i = 1 −

√
π

2

√
χperfc(

√
χp) exp(χp) +O(β2) (A.62)
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Appendix B

Derivation of the OML currents to

a sphere and infinite cylinder

B.1 Sphere

The ion current to an attractive spherical probe under the OML conditions can be

calculated by integrating the distribution function at infinity, weighted by the factor

|v|πr2
p(1 − ZeVp

E0
) corresponding to the flux collected by particles whose velocity at

infinity is v (See Eq. (I.32)).

The integration geometry is shown on Fig. (B-1), and the integral expression for

the current given by Eq. (I.33).

Ii = Z

∫ 2π

θ=0

∫ ∞

vz=−∞

∫ ∞

vρ=0

f∞
i (vz, θ, vρ)|v|πr2

p(1 − ZeVp
E0

)dθdvzvρdvρ (B.1)

with

f∞
i =

n∞/Z

(vti
√
π)3

exp(−
v2
z + v2

ρ + v2
d − 2vzvd

v2
ti

) (B.2)

and

E0 =
mi

2
(v2
z + v2

ρ) (B.3)
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v
z

vθ

z

θ┴ integration discs at infinity

v

Figure B-1: Geometry for the OML current calculation to a spherical probe. The
integration is performed over two disks perpendicular to the drift axis, and placed at
infinity.

Ii =
2π2r2

pn∞

(vti
√
π)3

∫ ∞

E0=0

[

∫

q

2E0
mi

vz=−
q

2E0
mi

exp(−2vzvd
v2
ti

)dvz

]

√

2E0

mi
exp(− 2E0

miv2
ti

)

[

1 − ZeVp
E0

]

dE0

mi
(B.4)

=
2π2r2

pn∞

(vti
√
π)3

∫ ∞

E0=0

√

2E0

mi

v2
ti

2vd

[

exp(
2vd
v2
ti

√

2E0

mi

) − exp(−2vd
v2
ti

√

2E0

mi

)

]

exp(− 2E0

miv2
ti

)(1 − ZeVp
E0

)
dE0

mi
(B.5)

=

√
2π2r2

p exp(− v2
d

v2ti
)v2
tin∞

(vti
√
π)3m

3/2
i vd

[A−B − C +D] (B.6)

where A,B,C,D are defined as follows:

A =

∫ ∞

E0=0

√

E0 exp(
2vd
v2
ti

√

2E0

mi
− 2E0

miv2
ti

)dE0 (B.7)

=
1

4( 2
miv2ti

)5/2

{

8vd
miv

3
ti

+ exp(
v2
d

v2
ti

)
√
π

[

8v2
d

miv
4
ti

+
4

miv
2
ti

]

(1 + erf(
vd
vti

))

}

(B.8)
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B =

∫ ∞

E0=0

√

E0 exp(−2vd
v2
ti

√

2E0

mi
− 2E0

miv2
ti

)dE0 (B.9)

=
1

4( 2
miv2ti

)5/2

{

− 8vd
miv3

ti

+ exp(
v2
d

v2
ti

)
√
π

[

8v2
d

miv4
ti

+
4

miv2
ti

]

(1 − erf(
vd
vti

))

}

(B.10)

C = ZeVp

∫ ∞

E0=0

1√
E0

exp(
2vd
v2
ti

√

2E0

mi

− 2E0

miv
2
ti

)dE0 (B.11)

= ZeVp exp(
v2
d

v2
ti

)

√
π

√

2/mi

vti

[

1 + erf(
vd
vti

)

]

(B.12)

D = ZeVp

∫ ∞

E0=0

1√
E0

exp(−2vd
v2
ti

√

2E0

mi
− 2E0

miv2
ti

)dE0 (B.13)

= ZeVp exp(
v2
d

v2
ti

)

√
π

√

2/mi

vti

[

1 − erf(
vd
vti

)

]

(B.14)

After simplification we recover Eq. (I.34)

Ii/I
0
i =

1

2
exp(− v2

d

v2
ti

) +

√
π

2

[

vd
vti

+
vti
2vd

+ χp
vti
vd

]

erf(
vd
vti

) (B.15)

where I0
i = n∞

vti

2
√
π
4πr2

p is the thermal current collected by the sphere.

B.2 Infinite cylinder

Similar calculations can be performed for an infinite cylindrical probe (The cylin-

der length L is large compared to its radius rp), provided vd is considered as the

drift velocity component perpendicular to the probe axis. The geometry is shown

in Fig. (B-2); the weighting factor is 2rpLv⊥

√

1 − ZeVp

E0
, where E0 is the ion kinetic

energy in the ⊥ direction at infinity.
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v

z
v

integration cylinder at infinity

θ

┴

z

Drift axis

v
┴

Figure B-2: Geometry for the OML current calculation to an infinite cylindrical probe.
The integration is performed over a cylinder coaxial with the probe, and placed at
infinity.

Ii = ZL

∫ 2π

θ=0

∫ ∞

vz=−∞

∫ ∞

v⊥=0

f∞
i (vz, θ, v⊥)2rpv⊥

√

1 − 2ZeVp
miv⊥2

dθdvzv⊥dv⊥ (B.16)

with:

f∞
i =

n∞/Z

(vti
√
π)3

exp(−v
2
z + v2

⊥ + v2
d − 2v⊥vd cos θ

v2
ti

) (B.17)

The integration over vz is straightforward and we are left with:

Ii = 2rpLn∞ exp(− v2
d

v2
ti

)
1

(vti
√
π)2

∫ ∞

v⊥=0

exp(−v
2
⊥
v2
ti

)v2
⊥

√

1 − 2ZeVp
miv⊥2

∫ 2π

θ=0

exp(
2v⊥vd cos θ

v2
ti

)dθdv⊥ (B.18)

By using the following property of second kind Bessel functions:

In(x) =
1

π

∫ π

0

exp(x cos θ) cos(nθ)dθ (B.19)

we can integrate over θ and express the current as:

Ii/I
0
i =

4√
π

exp(− v2
d

v2
ti

)

∫ ∞

ξ=0

exp(−ξ2)
√

ξ2 + χpI0(2ξ
vd
vti

)ξdξ (B.20)
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where ξ = v⊥
vti

and I0
i is the random thermal current collected by the cylinder (different

from the I0
i corresponding to the sphere):

I0
i = n∞

vti
2
√
π

2πrpL (B.21)

The integral of Eq. (B.20) can not be cast in closed form, unless vd = 0. In this

case we are left with:

Ii/I
0
i =

4√
π

∫ ∞

ξ=0

exp(−ξ2)
√

ξ2 + χpξdξ (B.22)

=
2√
π

√
χp + exp(χp)erfc(

√
χp) (B.23)

If χp>∼ 2 we are left with the well known form [1]:

Ii = I0
i

2√
π

√

1 + χp (B.24)

B.3 Comparison of the OML current for the sphere

and the cylinder

Fig. (B-3) compares the evolution of the OML current with the normalized probe

potential χp = −ZeVp

T
to an infinite sphere and a cylinder.

There is a noticeable difference between the two geometries. While for the cylinder

the current is a monotonic rising function of the drift velocity, this is not the case for

the sphere if the normalized potential is greater than 1.

131



a) Sphere
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b) Infinite cylinder
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Figure B-3: Attracted current to a sphere and an infinite cylinder as function of the
drift velocity and the normalized probe potential in the OML conditions.
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