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Large Superconducting Magnets

by
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Doctor of Philosophy in Nuclear Science & Engineering

Abstract

Large superconducting magnets used in fusion reactors, as well as other applica-
tions, need a diagnostic that can non-invasively measure the temperature and strain
throughout the magnet in real-time. A new fiber optic sensor has been developed for
these long-length superconducting magnets that simultaneously measures the temper-
ature and strain based on spontaneous Brillouin scattering in an optical fiber. Using
an extremely narrow (200 Hz) linewidth Brillouin laser with very low noise as a fre-
quency shifted local oscillator, the frequency shift of spontaneous Brillouin scattered
light was measured using heterodyne detection. A pulsed laser was used to probe
the fiber using Optical Time Domain Reflectometry (OTDR) to define the spatial
resolution. The spontaneous Brillouin frequency shift and linewidth as a function
of temperature agree well with previous literature of stimulated Brillouin data from
room temperature down to 4 K. Analyzing the frequency spectrum of the scattered
light after an FFT gives the Brillouin frequency shift, linewidth, and intensity. For
the first time, these parameters as a function of strain have been calibrated down
to 4 K. Measuring these three parameters allow for simultaneously determining the
temperature and strain in real-time throughout a fiber with a spatial resolution on
the order of several meters. The accuracy of the temperature and strain measure-
ments vary over temperature-strain space, but an accuracy of better than ± 2 K and
± 100 µε are possible throughout most of the calibrated temperature-strain space
(4-298 K and 0-3500 µε). In the area of interest for low-temperature superconducting
magnets (4-25 K), the temperature accuracy is better than ± 1 degree. This tem-
perature accuracy, along with the sub-second measurement time, allows this system
to be used not only as a quench detection system, but also as a quench propagation
diagnostic. The sensing fiber can also simultaneously provide the first ever spatially
resolved strain measurement in an operating magnet.

Thesis Supervisor: Joseph V. Minervini
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Chapter 1

Introduction

Consistently increasing energy consumption, coupled with dwindling reserves of nat-

ural resources, magnifies the need for alternative energy sources. Renewable energy

such as hydroelectric, wind, and solar power can help supplement the power genera-

tion, but they all have limitations and challenges associated with when, where, and

how much power they can generate. On the other hand, nuclear power has the po-

tential to supply the worldwide energy demand for orders of magnitude longer than

the current energy sources, as shown in Table 1.1 [6].

Table 1.1: Energy reserves for several selected resources and the length of time that
they could power the world, assuming that the total usage is 500 quads/year (from
Reference [6]).

Energy Reserves Usage Length
(Quads) (Years)

Coal 105 200
Oil 104 20
Natural Gas 104 20
Nuclear Fission (standard) 104 20
Nuclear Fission (breeder) 107 20,000
Nuclear Fusion (D-T) 107 20,000
Nuclear Fusion (D-D) 1012 2,000,000,000

Coal, oil, and natural gas are all fossil fuels that will eventually be depleted and

prohibitively expensive to extract. Standard nuclear fission reactors use Uranium-235

at a non-sustainable pace. Breeder reactors that use Uranium-238 or Thorium could
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Figure 1-1: Diagram of the International Thermonuclear Fusion Experimental Reac-
tor (ITER).

power the world for another 20,000 years, but have limited public acceptance, because

of concerns about proliferation and high-level waste.

Nuclear fusion reactors have the potential to provide energy for orders of mag-

nitude longer than any of these options. Although the first electricity producing

fusion reactor is still decades away, extremely productive experimental reactors are

providing the needed information to design the first fusion based power plant. The In-

ternational Thermonuclear Experimental Reactor (ITER) is a joint project to build

the first power plant size fusion reactor, capable of generating 500 MW of fusion

power, as seen in Figure 1-1 [9].

The massive size of ITER is seen by the inclusion of a person in the bottom

left of Figure 1-1. Engineering a system of this size is difficult, not to mention the
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extremely complex systems that are needed to run and control a fusion reactor. In

particular, ITER’s magnet system is an extremely complex system on the leading edge

of superconducting magnet capabilities, and will be discussed later in this chapter.

1.1 Fusion Energy

Nuclear fusion reactors are composed of complicated systems that demand both lead-

ing edge physics and engineering. Over the last several decades, plasma physics re-

search has brought the idea of a fusion-based power plant from small-scale laboratory

experiments to the production of megawatts of fusion power.

Fusion reactors will most likely use some combination of hydrogen isotopes as

the fuel. Deuterium is hydrogen with an extra neutron, and tritium is hydrogen

with two extra neutrons. The three most likely nuclear fusion reactions for a reactor

are deuterium-deuterium, deuterium-helium, and deuterium-tritium, as described by

Equations 1.1 - 1.4, where Equations 1.1 and 1.2 happen with equal likelihood for a

reactor operating with deuterium-deuterium fuel.

1D
2 +1 D

2 →2 He
3 +0 n

1 + 3.27MeV (1.1)

1D
2 +1 D

2 →1 T
3 +1 p

1 + 4.03MeV (1.2)

1D
2 +2 He

3 →2 He
4 +1 p

1 + 18.3MeV (1.3)

1D
2 +1 T

3 →2 He
4 +0 n

1 + 17.6MeV (1.4)

The energy released in a fusion reaction comes from the mass difference between

the sum of the products and the sum of the initial nuclei according to Equation 1.5.

E = mc2 (1.5)
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For example, the deuterium and tritium nuclei weigh 3.14 × 10−29 kg more than

the alpha particle and neutron. Plugging that mass loss into Equation 1.5, a value of

17.6 MeV is calculated [10]. Deuterium is naturally occurring in ocean water, about

1 part in 6700; however, there is no naturally occurring tritium, since its half-life is

only twelve years [6]. Luckily, bombarding a lithium blanket with neutrons will breed

tritium according to Equations 1.6 and 1.7.

3Li
6 +0 n

1(slow)→2 He
4 +1 T

3 + 4.8MeV (1.6)

3Li
7 +0 n

1(fast)→2 He
4 +1 T

3 +0 n
1 − 2.5MeV (1.7)

Because of the positive charge of all nuclei on the left sides of Equations 1.1 -

1.4, the atoms must be at a high enough energy to overcome Coulombic repulsion.

This means that their energies need to be in the KeV range or higher. Another

important parameter is the density. In order for collisions to occur regularly, the

plasma must have a density on the order of 1020 atoms per cubic meter. A third

important parameter is the energy confinement time, τE, which varies from reactor

to reactor based on many parameters such as size, magnetic field strength, particle

transport, etc. The fusion triple product is calculated by multiplying these three

parameters.

Along with the fusion triple product, nτT , another common parameter used to

compare reactors is the gain of the plasma, Q. The gain of the plasma is defined

as the power output divided by the power input. Important values include Q = 1,

which corresponds to break-even, and Q = ∞ which corresponds to ignition, when

the plasma heats itself enough that no input power is necessary. A fusion reactor

would ideally operate at some finite value of Q, e.g. Q = 25, since ignited plasmas

are thermally unstable. Figure 1-2 shows a triple product of 5×1021m−3sKeV , which

is the value needed for ignition of a deuterium-tritium plasma. In terms of the three

parameters, this corresponds to a temperature on the order of 10 KeV, a density on

the order of 1020 atoms per cubic meter, and an energy confinement time around 1
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second. As seen in Figure 1-2, ITER is designed to operate slightly below this value,

where Q is finite, but plasma heating is dominated by the internal heating of fusion

alpha particles.

Figure 1-2: Comparison of the fusion triple product of many research tokamaks, as
well as the projected ITER parameter for comparison. (Figure from Reference [1]).

One of the main plasma physics demonstrations is that the confinement time,

τE, of the plasma in a fusion reactor increases with increasing size of the reactor.

Throughout the world, there are many fusion reactors; however, ITER will have twice

the diameter of the largest current reactor, which gives it a plasma volume ten times as

large [11]. One of the many engineering issues associated with nuclear fusion reactors

is the magnet system. Since the plasma needs to be heated to millions of degrees,

fusion reactors rely on magnet systems to confine the plasma within its vacuum vessel

so that it does not destroy the walls. The poloidal and toroidal magnetic fields are

used to hold the plasma in place as well as to position and shape the plasma as seen

in Figure 1-3. A central solenoid magnet is also used to drive current in the plasma,

which helps to stabilize the plasma. (For a much more comprehensive discussion on

fusion reactors see References [6, 10]).
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Figure 1-3: Schematic diagram of the magnet layout of standard tokamak fusion
reactor. (Figure from Reference [1]).

For ITER to achieve steady state operation using high magnetic field strengths,

and to simultaneously demonstrate satisfactory fusion energy gain, these magnet

systems need to be superconducting. Not only do the specifications of the ITER

superconducting magnets approach the present limits of superconducting capabilities,

but the total stored energy in the magnet set is close to 100 GJ. It is extremely

important to have a fast and reliable system to detect an unstable magnet so the

magnet’s stored energy can be properly discharged. It is equally important that

the detection system can distinguish the magnet signal from background noise in the

complicated fusion reactor environment, as will be discussed in the following sections.
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1.2 Superconducting Magnets

Outside of fusion reactors, superconducting magnets are used in a variety of fields,

including health care and physics research, as well as being proposed for electrical

power and transportation. Magnetic Resonance Imaging (MRI), and Nuclear Mag-

netic Resonance (NMR) machines use both low and high temperature superconduct-

ing magnets. The proton-antiproton collider at Fermilab was the first collider to use

superconducting magnets, and the most recent collider, the Large Hadron Collider at

CERN, is also being constructed with superconducting magnets. Electric generators,

fault current limiters, and motors using superconductors are being implemented since

they are more efficient and compact than conventional electrical equipment made with

copper wires. Superconducting transmission lines are currently under development to

eliminate the large losses in long distance high power cables, and to increase capacity

in existing conduits. Magnetically levitated trains (MAGLEV) have been developed

that float above a guide-way due to magnetic repulsion, while a second set of super-

conducting magnets serves as the linear synchronous “motor” in the guide-way. In

order to incorporate superconducting magnets into existing and developing technolo-

gies, the fundamental physics and limitations of the magnets must be understood.

1.2.1 Background and Basics

Superconductivity was discovered by Kammerlingh Onnes in 1911 as a result of his

joint studies in helium liquefaction and the conductivity of metals [12]. Onnes mea-

sured the resistivity of distilled, purified mercury as he cooled his sample down to 4

Kelvin, as shown in Figure 1-4. In his experiment, Onnes discovered that the critical

temperature, Tc, of mercury is about 4.2 K [13].

Onnes continued his experiments with mercury, and also investigated lead and tin.

His hopes of using superconductive metals to make large and powerful electromagnets

were crushed when he discovered that his samples had not only a critical temperature,

but also a low critical magnetic field, Bc. Using his samples of mercury, lead, and

tin, Onnes determined that the critical magnetic field is only about 0.05 Tesla [12].
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Figure 1-4: Kammerlingh Onnes’ plot of resistance as a function of temperature for
mercury (left), and a similar plot for a high temperature superconductor (right).

The materials that Onnes studied are now called “Type I”, or “soft” superconductors

and are not used in magnets because of their low critical magnetic field. The first

“Type II” or “hard” superconductor, a lead-bismuth alloy, was discovered by Haas and

Voogd in 1930 [3]. Type II superconductors are normally alloys including part Type

I superconductor material, and part normal conducting material. These alloys have

critical magnetic fields much higher than the 0.05 Tesla of the Type I superconductors,

which allow these alloys to be used to make the large and powerful electromagnets

Onnes envisioned.

The superconductivity of a material is not only constrained by a critical temper-

ature and a critical magnetic field, but also by a critical current density, Jc. When

a critical surface is plotted in temperature, magnetic field, current density space, the

material is superconducting anywhere under the curve shown in Figure 1-5.

Niobium titanium, NbTi, has a critical temperature of 9.3 K, where the surface

would cross the temperature axis in Figure 1-5. Although NbTi is superconducting at

9.3 K, it is not useful at that temperature since any magnetic field or current would

make it non-superconducting, or “normal”. Most low temperature superconductors

operate at 4.2 K, since that is the boiling point of liquid helium under atmospheric

pressure. Assuming that a NbTi or Nb3Sn magnet is at 4.2 K, its critical current

densities and critical magnetic fields are shown in Figure 1-6.
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Figure 1-5: The general shape of a critical temperature, magnetic field, and current
density surface for niobium titanium.

To put the numbers in this plot in perspective, normal household wires are rated

to about 107 A m−2, and fuses blow at about 108 A m−2. Also shown in Figure 1-6 is

the range where conventional iron-cored electromagnets operate. Since iron saturates

at about 2 T, that is the upper limit on the possible magnetic field for a conventional

iron-cored electromagnet [12].

All low temperature superconducting magnets use a composite wire, part Type

II superconductor and part normal conductor, where the normal conductor is called

“stabilizer” since it improves stability against perturbations in the case of a quench.

There are several different ways that composite superconducting wires are made. Most

methods involve a large cylinder with the appropriate dimensions, which eventually

is drawn down to wire size. Different companies use different layouts, but in general

all superconducting wires are designed to have a matrix of superconducting filaments

embedded in a stabilizer. Depending on the type of superconductor, the wire may also

need to be heat treated to form superconducting filaments. For example, the niobium

and tin are separate during the drawing of the wire, and do not join together to make

Nb3Sn until the wires undergo a heat treatment ranging from tens to hundreds of

hours. While the magnet is operating in a superconducting state, the current flows

exclusively through the superconducting filaments; however, when a magnet quenches,

current is transferred to the stabilizer. Figure 1-7 shows the cross section of an ITER

cable and of a wire, along with the general sub-wire layout before being drawn down

and heat treated.
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Figure 1-6: Critical curves at 4.2 K for niobium titanium and niobium tin compared
to the critical region for conventional iron-cored electromagnets.

Since most low temperature superconducting magnets are operated at around 4

K, they need to be continually cooled using cryogens. The oldest method is pool

boiling He I cooling, which uses saturated helium at atmospheric pressure and at a

temperature of 4.25 K [13]. The helium will boil off, so it will have to be replaced

periodically or continuously. These cryostable pool boiling magnets tend to have low

current density, which means that they need to be large and expensive [14].

In 1974, Hoenig developed a new method for cooling the superconducting filaments

called a Cable in Conduit Conductor, or CICC [15]. This design incorporates a

strong jacket, usually a steel alloy, surrounding the superconducting wires. The jacket

not only protects the filaments, but it also provides a channel that helium can be

pumped through as a coolant. CICC magnets today, including the magnets being

designed for ITER, are normally cooled by pumping supercritical helium through

the conduit. Helium in the supercritical state has low viscosity and extremely large

thermal conductivity, making it an ideal coolant for CICCs. The phase diagram

showing the characteristics of supercritical helium is shown in Figure 1-8. As seen in

32



Figure 1-7: Cross sections of: an ITER cable in conduit conductor (top left), a single
strand in the CICC (top right), a diagram of the sub-components of part of a strand
(bot. left), and a superconducting filament (bot. right).
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Figure 1-7, there is a central cooling channel as well as space between the wires for

the helium to flow; typically the void fraction between the wires is about 28-40 %

[14].
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Figure 1-8: Phase diagram of helium at cryogenic temperatures [2].

The ITER central solenoid and toroidal field coils use a CICC design with roughly

1100 wires, each about 0.7 mm in diameter, inside a conduit with about a 4 cm diame-

ter channel. These wires are not randomly packed into the channel, but are carefully

cabled in a strategic pattern. The exact ITER pattern is still being determined;

however, the Quench of Long Length (QUELL) magnet, which was built to simulate

conditions in the ITER magnets, used a subsized conductor with a 3×3×4×6 cabling

pattern. Groups of three wires are cabled together, then three of those groups are

cabled together. Next, four of those groups are cabled together, producing six large

groups which are ultimately cabled around the central cooling channel. Once the

cabling is done, the wires are pulled into the conduit and it is compacted to achieve

the desired void fraction. Figure 1-9 shows a similar cabling pattern in a short length

of unwound wires.

Each of the six ITER central solenoid coils, shown as light purple in the middle of

the reactor in Figure 1-1, are made up of approximately 6 km of CICC. The conduit is
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Figure 1-9: CICC partially uncabled to show the cabling pattern of the wires.

bent into shape and “pancake wound”, meaning it is wound from the outside spiraling

inward to the inner radius, and then moves up a level and spirals back out, as shown

in Figure 1-10.

Figure 1-10: Schematic diagram of a “pancake” winding (cover of Reference [3]).

This winding continues until the magnet has the designed dimensions. The conduit

is wrapped in insulation composed of fiberglass and kapton tape, which is eventually

impregnated with epoxy once the magnet is in its final form. The central solenoid

model coil made for ITER testing in 1999 is shown in Figure 1-11.
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Figure 1-11: The ITER CS model coil achieved a maximum field of 13.5 T, with a
maximum current of 46 kA, and a stored energy of 640 MJ.

1.2.2 Quench Detection

The most important aspect of superconducting magnet protection is the detection of

a thermal instability called a quench. Quenches are caused when one or more of the

critical values are exceeded and the magnet moves out from under the curve in Figure

1-5. Since quenches are the irreversible loss of superconductivity somewhere in the

magnet, the stored energy in the magnet must be eliminated before it damages the

magnet. Most quenches begin locally, and immediately begin to spread throughout

the magnet at a speed known as the quench propagation velocity. As a quench

propagates, the temperature increase also propagates, causing more of the magnet to

lose its superconductivity, or “go normal”.

Once a magnet has begun to quench, it rarely continues to operate at constant

current since the “normal” zones are now resistive. The current and the stored energy

in the magnet need to be eliminated by either absorbing the energy throughout the

magnet, or by dumping the current and energy externally. During a quench, the cur-
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rent is transferred from the superconducting filaments to the stabilizer wires, since the

stabilizer wires are designed to have lower resistance than the normal superconducting

filaments. Some magnets are designed to have enough enthalpy in their stabilizers and

other passive components to absorb the energy without unacceptable temperature or

pressure rises [7]. This is only acceptable if the peak-to-average ratio of temperature

and pressure rise is held to a moderate level. A magnet can be designed to have a

moderate peak-to-average temperature and pressure ratio by incorporating internal

resistive or inductive heaters to quench the whole magnet at the same time. Most

MRI and NMR magnets are designed to be passively protected by shunt diodes and

resistors across the magnets [3]. Another way to obtain a moderate ratio is to rapidly

dump the helium coolant in a pool-boiling magnet, so the quench zone will spread to

a much larger fraction of the magnet quickly. As mentioned previously, the alterna-

tive to designing a passively protected magnet is to dump the current, and therefore

the energy, into external dump circuits that can either be at room temperature or

cryogenically cooled.

Any active quench detection method, such as dumping the current into dump

circuits, requires rapid detection of a quench. Most magnets detect a quench electro-

magnetically: either by using voltage taps to detect a resistive voltage, or by detecting

a loss of superconducting diamagnetism. This works well for the small, DC magnets

used in MRI and NMR machines; however, electromagnetic detection is not ideal for

magnets in electromagnetically noisy environments, like fusion reactors. Pulsed coils

and multi-coil systems also introduce new challenges when trying to implement elec-

tromagnetic quench detection. When a magnet is operating near its stability limits,

as is the case for most high temperature superconducting magnets and large fusion

magnets, it will have a slow quench propagation velocity, which leads to small resis-

tive voltage signals [7]. These are the magnets that are in need of new, innovative

quench detection systems.
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1.2.3 Quench Diagnostics

While the quench detection system of a superconducting magnet is the most im-

portant system in terms of protection, it is usually not very informative of what

happened inside the magnet. From a standard voltage tap, we can not tell where a

quench originated, why it originated, or exactly how it spread through the magnet.

Standard temperature and strain diagnostics cannot be implemented to investigate

these interesting properties of superconducting magnets because they can only mea-

sure conditions on the surface of the magnet. First of all, to locate where the quench

originated and how it spread, the magnet would need to have hundreds (if not thou-

sands) of thermocouples and voltage taps covering different regions of the magnet,

which is not realistic. Even if it was possible, the holes and pathways for these voltage

taps and thermocouples would modify the heat transfer within the magnet.

Although actual quench location and propagation diagnostics do not exist, several

theoretical computer simulations have been developed. The ITER QUELL experi-

ment compared its results with several computer simulations, including GANDALF

and QUENCHER [16]. GANDALF is a one-dimensional model that consists of three

parts: the helium, the conductors, and the jacket. The helium is modeled by two flows,

one through the conductors and one through the central cooling channel. GANDALF

derives a numerical solution using adaptive meshing and time steps [17]. QUENCHER

is a simulation that relies on the conservation of helium mass, helium momentum,

helium/conductor energy, and conduit wall energy [18].

Minor uncertainties of input data into GANDALF can lead the numerical solu-

tions far from the actual data. Also, a simplified 2-flow model overestimates quench

propagation at the beginning and underestimates it at the end. During the QUELL

study there were initially problems with QUENCHER since it assumed an infinite heat

transfer coefficient between the cable and the hole space; however, it was modified to

QUENCHER2, which fixed that problem and achieved very accurate simulations of

the measured data [16].

Other simulation codes, such as SOLXPT3D [19], simulate the development of
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temperature, pressure, and thermal diffusion in cable-in-conduit superconductors.

SOLXPT3D also models the quench signal and voltage noise on voltage taps and co-

wound internal voltage sensors, which is very important in determining the type of

quench detector a magnet should use. Several commercial quench simulation codes are

now being developed, such as QUENCH by Vector Fields. The interest of companies

in developing quench codes shows that this is a difficult problem that many people

are interested in trying to solve.

1.3 Thesis Outline and Overview

Chapter 2 begins by describing standard quench detection diagnostics for supercon-

ducting magnets. Fiber optic basics and sensor capabilities are then discussed, fol-

lowed by several more advanced fiber optic sensing systems.

Spontaneous Brillouin scattering is explained in detail in Chapter 3, including

derivations of the key parameters, and temperature effects on these parameters. The

theoretical capabilities of a spontaneous Brillouin scattering system are also compared

with common superconducting diagnostics.

Chapter 4 describes the spontaneous Brillouin scattering system used in this the-

sis, as well as the experiments that were run and the results that were obtained.

The chapter concludes with a description of how to use this data to calculate the

distributed temperature and strain.

The tradeoffs of key measurement parameters, such as measurement time and

spatial resolution, are discussed in Chapter 5. This chapter also derives the accuracy

of the measurements and calculations made in Chapter 4.

The major engineering issues that need to be solved before this system is imple-

mented in an actual magnet are explained in Chapter 6, followed by conclusions and

suggestions for future work in Chapter 7.
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Chapter 2

Superconducting Magnet

Diagnostics and Fiber Optic

Sensors

2.1 Quench Detection

As discussed in the previous chapter, quench detection is the most important system

of an actively protected magnet. If a magnet is passively protected, as most MRI and

NMR magnets are, the detection of a quench is not as important because nothing is

actively changed.

Most superconducting magnets use a relatively simple voltage tap system to detect

quenches. Others use changes in temperature, pressure, and flow of the cryogenic

coolant to detect a quench; however, these methods are inadequate in strongly pulsed

magnetic fields [7]. Noise in the voltage tap systems is only made worse by the growing

size of fusion magnets.

Although voltage taps have been the easy and reliable solution in the past, su-

perconducting magnet systems with high terminal voltages and large unpredictable

voltage transients demand other solutions. The QUench Experiment on Long Length

(QUELL) was designed and run with the sole purpose of figuring out the best quench
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protection system for the large ITER magnets. Several new quench detection meth-

ods were tested in this experiment, including fiber optic, pressure, mass flow, density,

and acoustic systems. These new systems, as well as internally wound voltage taps,

were tested and compared to the standard voltage tap, in order to determine the best

system to protect the extremely expensive ITER superconducting magnets.

2.1.1 Voltage Taps

Compared to all of the complicated engineering and design work that goes into making

a superconducting magnet, using a voltage tap to protect it is relatively simple. To

measure the voltage across a coil, or a section of a coil, wires penetrate the insulation

to the outer surface of the conductor. The locations of the two tap points are normally

as close as possible in order to avoid high inductance in the circuit. Even though the

basic idea behind a voltage tap seems straightforward: superconducting magnets

do not have any resistance when they are superconducting, but when they become

normal the voltage drop due to the resistance can be measured by the voltage taps.

While the basic idea is simple enough, there are some subtleties that one has to

consider when using voltage taps. One may expect that during a quench the voltage

measured across the terminals of the coil will be large and increasing, due to the

increasing resistance in the magnet; however, this is not necessarily the case. Most

of the voltage drop is located in the coil, where the resistive and inductive voltages

oppose each other [12]. The only voltage measured across the terminals is that of the

current supply, which is turned off soon after a quench is detected, as illustrated in

Figure 2-1. Also, the supply only provides a few volts, compared to the hundreds or

even thousands of volts produced in the resistive quenching part of the magnet [12].

When a superconducting coil, like the ITER central solenoid, is being designed

to operate with alternating current, the inductance will render a simple voltage tap

useless. (This also pertains to the ramping up and down of direct current magnets).

The voltage across a simple voltage tap in this case is described in Equation 2.1.
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L1 RQuench            L2

I                 Vcurrent supply

Vcurrent
 supply

Vquench

Figure 2-1: The resistive voltage due to a quench is opposed by the magnet’s inductive
voltages.

V = IR + L
dI

dt
(2.1)

The inductance term, LdI
dt

, in Equation 2.1 is normally much larger than the

resistive term, even at relatively low currents.

In order to measure the resistive voltage between voltage taps in an AC, or charg-

ing DC magnet, the inductance term needs to be canceled. The most common way to

cancel the inductive voltage is to use a bridge circuit. By putting two equal inductive

signals, normally two adjacent double pancakes, into the two arms of a bridge circuit

the inductive voltages will cancel each other out [7]. The use of a bridge circuit to

cancel the inductances can also be used by a hybrid magnet, with the two magnets

as the two arms of the bridge [3]. In Figure 2-2, L1 and L2 are the self inductances

of two coils connected in series, which can be two adjacent double pancakes, the two
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coils of a hybrid magnet, or even one coil divided into two.

Vout+                -

L1

L2

r

I

R1

R2

Figure 2-2: Standard bridge circuit for quench detection using voltage taps.

Since the two coils are connected in series, the mutual inductance can be included

in the self inductances [3]. Using L1 and L2 as the inductances of coils 1 and 2

respectively, R1 and R2 as the bridge circuit resistors, r as a normal zone resistance

in coil 1, and Vout as the bridge circuit output, we can write Equations 2.2 - 2.4 [3].

Vcl(t) = L1
dI(t)

dt
+ rI(t) + L2

dI(t)

dt
(2.2)

iR(t) =
Vcl(t)

R1 +R2

(2.3)

Vout(t) = L1
dI(t)

dt
+ rI(t)−R1iR(t) (2.4)

Combining these equations gives an equation for Vout, expressed in Equation 2.5.

Vout(t) =
(

R2

R1 +R2

)
L1
dI(t)

dt
−
(

R1

R1 +R2

)
L2
dI(t)

dt
+
(

R2

R1 +R2

)
rI(t) (2.5)

When R2L1 = R1L2, the first two terms on the right hand side of Equation 2.5

cancel each other out and Vout becomes a function of the normal zone resistance and
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current, as shown in Equation 2.6.

Vout(t) =
(

R2

R1 +R2

)
rI(t) (2.6)

Another way to eliminate the inductive term in Equation 2.1 is to co-wind the

voltage tap with the superconducting cable. If the voltage tap travels along the same

path as the conductor, it will experience the same inductive effects as the magnet,

and the signal will simply be the resistive voltage. The location of the co-wound

voltage tap is also important in canceling the inductive voltage. The best location for

the voltage tap is to have it cabled into the windings as a part of a triplet as if it was

a superconducting wire; however, the second best place, which is in the center of the

final stage of the cable winding, is easier to cable [7]. QUELL tested co-wound voltage

taps inside the conduit and showed an inductive voltage rejection 500 times better

than the normal voltage taps [7]. The location of the co-wound voltage taps were

studied in the Tokamak Physics Experiment, TPX, and determined that depending

on the location of the sensor in a cable, the noise rejection can be up to 60,000 times

that of a standard voltage tap [20]. Using signal processing methods to use a volt-

second threshold instead of an absolute voltage threshold has been shown to give an

additional noise rejection factor of 20 [7].

The ITER superconducting coils will use a combination of conventional and co-

wound voltage taps as their method of quench detection. While this system may work

adequately as a quench detector, it will not give any additional information such as

quench location and quench propagation. By using a certain number of internally

terminated co-wound voltage taps, a degree of spatial resolution can be achieved

equal to the total length of the coil divided by the number of voltage taps used.

Since the only job of the co-wound voltage taps in the ITER magnets is to detect

quenches, a lack of spatial resolution is not a problem; however, a spatially resolved

measurement that can locate and track a quench in real time would be a significant

improvement.
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2.1.2 Other Quench Detection Methods

Voltage is the most common quench detection signal; however, there are a lot of other

changes in a quenching magnet that can be measured, leading to many other quench

detection methods. These other quench detection methods include pickup coils to

detect a change in diamagnetism, pressure sensors to detect the rising pressure in a

warming conduit, mass flow measurements to monitor the helium flow, helium flow

density measurements, and acoustic sensors to listen for internal changes in flow.

Aside from voltage taps, pickup coils are the next most common quench detection

diagnostics. One major advantage that pickup coils have over voltage taps is that

they do not interfere with the structural integrity of the actual magnet, i.e. they do

not penetrate through the insulation and conduit as voltage taps do. By connecting

a pickup coil to a low transient impedance circuit, it can detect a quench by sensing

a change in overall current [7]. When a superconducting magnet is quenching, the

super-currents are suppressed faster than the overall current causing a rapid decrease

in diamagnetism, which is detected by the pickup coils [7]. A pickup coil array is

used to protect the Fermi National Accelerator Laboratory’s Tevatron magnet [21].

Placing an array of higher-order pickup coils around a superconducting magnet will

act as a multi-pole antenna which will detect the rapid change in diamagnetism of a

quenching magnet. An eight coil array is used on the Relativistic Heavy Ion Collider,

RHIC, at Brookhaven National Laboratory and operates in excellent agreement with

the voltage taps [22].

When a superconducting magnet quenches, the helium is violently heated and

expelled from the original quench zone [14]. This is what propagates the temperature

increase longitudinally, as well as causing a significant increase in pressure. Pressure

sensors installed in the QUELL experiments saw a pressure rise of 0.6 - 14.5 bars [23].

Initially the pressure will rise due to the increase in temperature. This is followed

by the expulsion of helium at the cable ends, which will allow the density to drop,

followed by a drop in the pressure. In 1980 Miller conducted an experiment to study

the pressure rise due to a quenching magnet. Using a dummy CICC, he compared
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experimental data with a theoretical derivation of the maximum pressure achieved

during a quench, Equation 2.7 [24].

Pmax = 0.65

fQ2
(
L
2

)3

Dh


0.36 (

1− po
pmax

)−0.36

(2.7)

In Equation 2.7, f is the space and time averaged friction factor, Q is the heating

rate per unit helium (which is assumed to be a constant), L is the length of the con-

duit, Dh is the hydraulic diameter, and po is the initial pressure. Normally, the initial

pressure is much less than the maximum pressure, allowing Equation 2.7 to be sim-

plified to Equation 2.8, which was in excellent agreement with Miller’s experimental

data [24].

Pmax = 0.65

fQ2
(
L
2

)3

Dh


0.36

(2.8)

Pressure sensors were part of the QUELL experimental diagnostics, and although

they had reproducible sensitivities of only ± 0.5 %, the experiment determined that

they should not be used in ITER magnets due to the slow propagation time of the

pressure wave through the conduit. QUELL experiments measured this speed to be

about 100 m/s, meaning it would take on the order of seconds for the pressure from

a quench in the middle of a coil to reach the ends, as well as another few seconds for

it to reach the threshold pressure [23].

As mentioned above, there is a change in the helium flow rate in the conduit

during a quench. Dresner derived a theoretical expulsion velocity, Equation 2.9, for

the ends of a completely normal-conducting cable [25].

v ≈ 0.952

(
Qβco
ρCp

) 2
3
(
Dh

f
t

) 1
3

(2.9)

β is the thermal expansion coefficient of helium in a constant pressure process,

c is the isentropic speed of sound, ρ is the helium density, Cp is the specific heat at

constant pressure, and t is the time since the quench began. Equation 2.9 was derived
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assuming frictional heating was small compared to Joule heating, as well as assuming

constant helium properties, which means that it can only be used as a first-order

approximation. Even so, at early values of t, it agrees relatively well with the data

from Miller’s experiment [7].

Computer simulations predicted that the flow rate of helium would increase from

10 g/s to 50 g/s during a quench in the QUELL sample [26]. Flow meters were also

installed on QUELL, but since the flow measurement is a function of pressure it ran

into the same delay problems as the pressure sensors [23].

Another quench diagnostic that was tested in QUELL was a fiber optic interfer-

ometer [16]. The general idea behind using a fiber optic probe is that it is immune

to electromagnetic fields and fluctuations; and therefore is not affected by an AC

magnet like most electromagnetic sensors. This fiber optic interferometer, as well as

many other fiber optic sensors, will be discussed further in the following sections.

2.2 Fiber Optics

Channeling light through a long narrow dialectic was first accomplished in 1870 when

John Tyndall showed that light could be guided along a thin stream of water due to

total internal reflection [27]. This idea was developed using glass fibers in the 1920s,

but it was not until the 1950s, with the addition of cladding around the glass fibers,

that the potential of fiber optics was realized [28]. The early fiber optics in the 1960s

had losses of more than 1000 dB per kilometer; however, in 1970 the losses were

reduced to below 20 dB per kilometer. Further processing developments led to fibers

with losses of 0.2 dB per kilometer in 1979 in the 1.55 µm range, which is limited by

the Rayleigh scattering losses [28].

2.2.1 Fiber Optic Basics

In order to understand light propagation in a fiber optic cable, we look at the interac-

tion of an electromagnetic wave at a boundary (the surface of the core and cladding

layers in a fiber), shown in Figure 2-3.
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Figure 2-3: Diagram of a plane wave being reflected and refracted at the boundary
between two media.

Taking an incident monochromatic plane wave, Equation 2.10, we write the equa-

tions for the reflected wave, Equation 2.11, and the transmitted wave, Equation 2.12.

ẼI(r, t) = ẼoIe
i(kI ·r−ωt), B̃I(r, t) =

1

v1

(
k̂I × ẼI

)
(2.10)

ẼR(r, t) = ẼoRe
i(kR·r−ωt), B̃R(r, t) =

1

v1

(
k̂R × ẼR

)
(2.11)

ẼT (r, t) = ẼoT e
i(kT ·r−ωt), B̃T (r, t) =

1

v2

(
k̂T × ẼT

)
(2.12)

In Equations 2.10, 2.11, and 2.12, v1 and v2 are the wave propagation velocities

in the two media. The subscripts I, R, and T stand for the incident, reflected, and

transmitted components respectively. Since the boundary conditions must hold at

all points along the interface and at all times, the exponential parts of the equations

must be equal at the interface [29]. Normal convention orients the axes such that

kI lies in the x-z plane and the interference surface is located at z = 0. The spatial

terms in the exponential parts of Equations 2.10-2.12 lead to Equation 2.13.
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kI · r = kR · r = kT · r|z=0 (2.13)

Equation 2.13 only holds when all of the components are separately equal, which

leads to the first fundamental law of geometrical optics: the incident, reflected, and

transmitted waves form a plane, called the plane of incidence [29]. Equation 2.13

implies Equation 2.14.

kI sin θI = kR sin θR = kT sin θT (2.14)

Since the wave numbers are related by Equation 2.15, Equation 2.14 gives us the

second fundamental law, or the law of reflection: the angle of incidence equals the

angle of reflection, expressed in Equation 2.16.

kIv1 = kRv1 = kTv2 = ω (2.15)

θI = θR (2.16)

The third fundamental law of geometrical optics, also known as the law of refrac-

tion, or Snell’s law, is shown in Equation 2.17.

sin θT
sin θI

=
n1

n2

(2.17)

In a fiber designed for total internal reflection, we do not want any light trans-

mitted through the core to the cladding. Referring to Figure 2-3, when the angle

of incidence increases to a certain critical angle, θc, all of the light will be reflected.

At the critical angle, the angle between the refracted ray and the line normal to the

surface will be 90◦. Using this information with Snell’s law, Equation 2.17, we derive

Equation 2.18.

sin θc =
n2

n1

(2.18)
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In a fiber, n1 is the core index of refraction, and n2 is the cladding index. If

light travels in the core of a fiber with an angle of incidence greater than the critical

angle, it will be completely reflected, and will continue through the fiber. However,

if the light travels with an angle of incidence less than the critical angle, it will be

transmitted out of the core to the cladding, and will not propagate down the fiber,

as illustrated in Figure 2-4.

cladding  (n2)

core  (n1)air  (n)
Io

θTo
I R

θ

θθ

I Rθθ

Figure 2-4: Ray entering a fiber and reflecting down the core.

The numerical aperture, N.A., of a fiber is a measure of the light acceptance

capability of a fiber, and can be derived as shown in Equation 2.19 [30].

n sin θ = n1 sin θ1 = n1 sin
(
π

2
− θc

)
= n1

√
1−

(
n2

n1

)2

=
√
n2

1 − n2
2 = N.A. (2.19)

There are four main types of fiber optic cables: multi-mode, single-mode, graded

index, and polarization maintaining. The major differences are in the density cross-

sections of the fibers, leading to different propagation properties of the fibers. Figure

2-5 shows the four different types of fibers, along with their cross-sections as a function

of their indices of refraction.

The multi-mode and single-mode fibers are both step index fibers, where there is

an abrupt change from the core to the cladding. However, the multi-mode fiber’s core

is significantly larger than that of the single-mode fiber. This allows the propagation
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Figure 2-5: Profile of the index of refraction of four different types of fibers, and the
dispersion of the input signal (in both time and frequency space).

of many modes of light, as well as many different wavelengths. The graded index

fiber has a gradual change from the core to the cladding, which bends the light

instead of reflecting it right at the boundary of the core and cladding, as is the

case in step indexed fibers. Polarization maintaining fiber is also a single-mode,

step index fiber, but it also has some sort of stress rods in the fiber, which separate

the propagation paths in the core into a “fast” and a “slow” axis. Each axis only

propagates linearly polarized light, and can be viewed as two separate paths in the

same fiber. Applications of polarization maintaining fibers will be discussed later.

As shown in Figure 2-5, the single-mode fiber has a much smaller diameter core

than the multimode fiber, which leads to the cutoff of other modes. In order to

understand the physics behind the cutoffs for certain modes in a fiber, we start with

Maxwell’s equations, Equations 2.20-2.23.

∇× E = −∂B

∂T
(2.20)
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∇×H = J +
∂D

∂T
(2.21)

∇ ·D = ρ (2.22)

∇ ·B = 0 (2.23)

In Equations 2.20 through 2.23, E is the electric field, H is the magnetic field, D

is the electric flux density, and B is the magnetic flux density. The current density,

J , and the charge density, ρ, are both equal to zero in an optical fiber since there

are no free charges [28]. The relations of D and E, as well as B and H are shown in

Equations 2.24 and 2.25.

D = εoE + P (2.24)

B = µoH + M (2.25)

In Equations 2.24 and 2.25, µo and εo are the vacuum permeability and permittiv-

ity respectively. P and M are the induced electric and magnetic polarizations. Since

optical fibers are nonmagnetic, M = 0 [28]. Equation 2.26 can be obtained by taking

the curl of Equation 2.20, and using Maxwell’s other equations.

∇×∇× E = − 1

c2

∂2E

∂t2
− µo

∂2P

∂t2
(2.26)

Determining the relationship between the induced polarization and the electric

field is usually done quantum mechanically. However, in the 0.5-2 µm range commonly

used in optical fibers, the third order nonlinear effects are the dominant component

of the induced polarization [28]. Using only the third order effects, and assuming

that the fibers are low loss and spatially uniform, Equation 2.26 can be simplified to

Equation 2.27 (A more detailed derivation is available in Reference [28]).
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∇2Ẽ + n2(ω)
ω2

c2
Ẽ = 0 (2.27)

In Equation 2.27, Ẽ is the Fourier transform of the electric field, defined by Equa-

tion 2.28.

Ẽ(r, ω) =
∫ ∞
−∞

E(r, t)eiωtdt (2.28)

Since fibers are cylindrical, it makes sense to write Equation 2.27 in cylindrical

coordinates, as is done in Equation 2.29.

∂2Ẽ

∂ρ2
+

1

ρ

∂Ẽ

∂ρ
+

1

ρ2

∂2Ẽ

∂φ2
+
∂2Ẽ

∂z2
+ n2k2

oẼ = 0 (2.29)

Equation 2.29 uses ko = ω
c

= 2π
λ

. Since E and H satisfy Maxwell’s equations, only

two of the six components are independent. Conventionally, Ẽz and H̃z are chosen as

the independent variables, and using the method of separation of variables, the wave

equation for Ẽz can be solved in the form shown in Equation 2.30 [28].

Ẽz(r, ω) = A(ω)F (ρ)e±imφeiβz (2.30)

In Equation 2.30, A is a normalization constant, β is the propagation constant, m

is an integer, and F (ρ) is the solution of the differential equation for Bessel functions

expressed in Equation 2.31.

d2F

dρ2
+

1

ρ

dF

dρ
+

(
n2k2

o − β2 − m2

ρ2

)
F = 0 (2.31)

The index of refraction, n, in Equation 2.31 is the core index of refraction for

ρ ≤ a, and the cladding index of refraction for ρ > a. Using boundary conditions,

and looking for physically meaningful solutions, the general solutions can be expressed

as in Equations 2.32 and 2.33 [28].

F (ρ) = Jm(κρ), κ =
(
n2

1k
2
o − β2

) 1
2 (2.32)

54



F (ρ) = Km(γρ), γ =
(
β2 − n2

2k
2
o

) 1
2 (2.33)

Solving the eigenvalue equation, we obtain an important relationship, Equation

2.34 [28].

κ2 + γ2 =
(
n2

1 − n2
2

)
k2
o (2.34)

Fiber design parameters, such as the core diameter, a, as well as the indexes of

refraction for the core and cladding will determine what modes of a given wavelength

are supported in that fiber. The cutoff frequency of a fiber is determined by solving

Equation 2.34 when γ = 0 [28]. A common parameter associated with the cutoff

frequency is the normalized frequency, V , as expressed in Equation 2.35.

V = κca = koa
(
n2

1 − n2
2

) 1
2 (2.35)

A single mode fiber, by definition, supports only one mode, the HE11 mode which

is also known as the fundamental mode. When the normalized frequency is less than

the critical normalized frequency of Vc ≈ 2.405, determined by the smallest solution

to the Bessel function, all other modes are cut off, and the fiber is a single-mode

fiber as seen in Figure 2-6. Since the micro-bending losses increase with decreasing

V
Vc

, single mode fibers are generally designed with V close to Vc [28]. In order to

determine the cutoff wavelength for a fiber, ko = 2π
λc

can be substituted into Equation

2.35, using V = 2.405.

Energy is not only carried in the core of the fiber, but also in the cladding. This

energy carried in the cladding is due to evanescent wave phenomena, and exponen-

tially decreases with distance into the cladding as described by Equations 2.36 and

2.37 [30].

E = Eoe
−βr (2.36)
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Figure 2-6: Mode formation as a function of the normalized frequency parameter, V .

β = ko

√
n2

1 sin2 φ− n2
2 (2.37)

The penetration distance can be solved by using Maxwell’s equations at the in-

terface, as is done in Equation 2.37 [31].

dp =
λ

2π
√
n2

1 sin2 φ− n2
2

(2.38)

Although the penetration depth is expressed in Equation 2.38, most of the power

is contained in a distance of 1-10 λ into the cladding. Figure 2-7 shows the basic

layout of a fiber optic cable, along with some of the general dimensions.

There are many sources of attenuation in fibers, such as absorption, scattering,

micro-bending and end losses due to reflection. Attenuation in fibers is defined by

Equation 2.39, where Pi is the input power, and Po is the output power. The units

of attenuation are decibels per unit length, normally dB/km.
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Figure 2-7: Cross-section and cut-away of a fiber with typical dimensions.

A = −10 log
Pi
Po

(2.39)

Impurities in fibers, such as copper, chromium, iron, and hydroxyl ions absorb and

scatter the light [30]. These different impurities cause losses at different wavelengths,

and the sum of the losses from these impurities creates certain “pockets” where at-

tenuation is a minimum. Rayleigh scattering is the dominant attenuation mechanism

for low wavelengths since it is proportional to λ−4 [30]. Micro-bending losses are due

to changes in the shape of the fiber, and are very useful in sensor applications. Reflec-

tion losses at the ends of the fibers are unavoidable if there is a glass-local atmosphere

interface; however, it is easy to calculate using Fresnel’s equations.

Another unavoidable problem with fiber optics is the dispersion of the initial

signal as a function of length traveled. The most obvious source of dispersion seen

in multimode fibers is the different total lengths of travel by the light. Since the

core of a multi-mode fiber is quite large, a ray bouncing off of the walls a lot will

travel slower than a wave traveling straight down the center, and therefore broaden

the input pulse, as shown in Figure 2-5.
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A more subtle form of dispersion is called chromatic dispersion, which is due to

the frequency dependence of the index of refraction. Lasers do not produce perfect

delta functions in frequency space; therefore, all laser pulses have a distribution of

frequencies. The frequency dependence of the index of refraction allows the longer

wavelengths to travel faster than the shorter wavelengths, which over a long fiber,

will lead to broadening of the input pulse.

Polarization mode dispersion is another type of dispersion that will broaden an

input pulse. Irregularities in the fiber will cause the light to travel at different speeds

at different spatial locations in the fiber. This change in speed of the modes in a fiber

will cause them to arrive at the detector at slightly different times, which causes the

input pulse to broaden.

In order for chromatic dispersion or polarization mode dispersion to have deleteri-

ous effects on a signal, the optical path needs to be extremely long or the input pulses

need to be very short. Luckily, in the field of fiber optic sensors, it is uncommon to

use sensing paths long enough or pulses short enough for dispersion to be a problem.

2.2.2 Fiber Optic Diagnostics

As the field of fiber optic sensing continues its rapid development, fiber optic sensors

are being implemented in many applications with better results than conventional

sensors. The most obvious advantage fiber optic sensors have over conventional sen-

sors is that fiber optics are immune to radio frequency and electromagnetic fields and

fluctuations. Due to the small size and weight, fiber optic sensors can be fit into

normally inaccessible spaces. Since fiber optic cables are extremely low-loss, they can

be used as remote sensors. Fiber optic sensors can securely transfer data over long

ranges, and can easily be interfaced with data communication systems.

Fiber optic sensors can be used to measure an extremely wide range of parameters.

The most common fiber optic sensors are Fiber Bragg Gratings (FBG), which are used

to measure temperature and strain; however, the temperature and strain can also be

measured using many other fiber optic sensors. Pressure and flow are two common

parameters measured by fiber optic sensors. Although fiber optic cables are immune
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to electromagnetic fields and fluctuations, specially engineered fiber optic sensors can

be used to measure magnetic fields, electric fields, and even the current in a wire.

Fiber optic sensors are commonly used as radiation sensors and also chemical sensors

in solutions that would destroy conventional sensors. Three dimensional motion is also

routinely measured using fiber optic interferometric sensors called optical gyroscopes.

Fiber optic systems are employed in buildings and bridges and can monitor the real

time temperatures and strains throughout the structures.

Fiber Bragg Gratings are used routinely to measure either temperature or strain in

experiments operating around room temperature. Using ultraviolet light, a grating

is inscribed in the core of the fiber. The grating will reflect light with the same

wavelength as the period of the inscribed grating. When the FBG is heated or

strained, the physical period of the grating also changes, and therefore the grating

reflects a different wavelength. The change in the reflected wavelength of a FBG is

dependent on both the change in temperature and the change in strain as expressed

in Equation 2.40.

∆λFBG = ∆λε + ∆λT (2.40)

The shifts due to temperature and strain are described in Equations 2.41 and 2.42.

∆λT = λFBG(α + ξ)∆T (2.41)

∆λε = λFBG(1− Pε)∆ε (2.42)

In Equation 2.41, α is the thermal expansion coefficient, and ξ is the thermo-

optic coefficient. In Equation 2.42, Pe is the photo-elastic constant. Special FBGs

known as Long Period Gratings, or LPGs, can be used together with regular FBGs to

simultaneously determine temperature and strain. The length of a grating, typically

about one cm, is a design variable that can be decreased to achieve better spatial

resolution. However, the amount of reflected light is proportional to the length of the

grating. Although FBGs are “point” sensors, one fiber can have many FBGs inscribed
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along its length. There are two methods that are used to separate the signals from the

FBGs on a fiber: time-based and time-based. The time-based method uses Optical

Time Domain Reflectometry (OTDR), sending pulses of light down the fiber and

mapping the position of the signal based on the time the signal is received. The

frequency-based system uses gratings with different initial periods, so that they all

reflect a different wavelength of light. In the experiments discussed in this thesis we

used FBGs as strain gages, described in more detail in Appendix A.

Fiber optic temperature sensors use a variety of materials that change their spec-

tral response, size, or opaqueness, such as liquid crystals, birefringent materials, semi-

conductor materials, and fluorescent materials [30]. One example of a fiber optic

temperature sensor is shown in Figure 2-8.

Aluminum

Silica
Output fiber

Input fiber
Laser

Detector

Thermal
contact
plate

Figure 2-8: Temperature sensor using the difference in thermal expansions of alu-
minum and silica.

The aluminum and silica have different thermal expansion coefficients, so a tem-

perature change will change the relative location of the mirrors; and therefore, the

light coupled back into the fiber.

Another fiber optic temperature sensor relies on the absorptivity of erbium-doped

glass. Erbium is mixed into the glass fiber and as the temperature changes the

intensity of the light at the far end of the fiber is measured [4]. Figure 2-9 shows the

temperature dependence of Erbium, which allows an erbium-doped fiber to be used

as a thermometer for some cryogenic applications.

Displacement sensors are another area where fiber optic sensors are frequently

used. There are two main fiber optic displacement sensors: reflective sensors, and
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Figure 2-9: Absorption spectrum for an Erbium doped fiber at 4 K and 77 K (From
reference [4].

micro-bending sensors. Reflective sensors have at least two fibers ending very close

to a reflective surface. One fiber carries the source light, and the other fibers receive

the reflected light. Since the angle of reflection is equal to the angle of incidence, the

area of the reflected spot at the fiber tips is twice as large as the spot that hits the

target originally. As the length, L, between the fiber tips and the reflective surface

increases, the spot area increases proportional to L2, and the intensity received by

the sensing fibers is proportional to 1
L2 [30]. The layout is shown in Figure 2-10.

Micro-bending of a fiber causes losses due to radiated energy [32]. A simple way

to think about this loss is that when a fiber is bent, the normal plane changes relative

to the propagating light, so the rays propagating at close to the critical angle may

get absorbed into the cladding depending on the degree of the bend. By placing a

fiber in a mechanism, like the one shown in Figure 2-11, and measuring the intensity

of the light at the far end of the fiber, the displacement can be measured as a loss in

intensity.

Parameters like pressure and flow can be measured by fiber optics by relating

the parameter to a displacement. Using a reflective surface on a diaphragm would

relate the pressure to a displacement. By forcing fluid through a restriction area with

reduced area causes an increase in flow rate around that point, causing a pressure
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Figure 2-10: A displacement sensor with one input fiber and two fibers receiving the
reflected light.

drop [30]. This pressure drop can also be related to a displacement, as described

above.

Using a fiber optic sensor to detect magnetic or electric fields is similar to using

fiber optics to detect pressure or flow. The most common way to detect a magnetic

field is to use a magnetostrictive material, and somehow make that material cause

a physical change in the fiber. Fibers can be coated with materials such as nickel

alloys, cobalt-iron alloys, or certain metallic glasses [30]. A fiber can also be wound

around a cylinder, or epoxied to a plate of one of these alloys. By positioning an

FBG to be epoxied to the surface of the magnetostrictive material, or to be coated by

one, the magnetic field is converted to a strain, which is easily measured by standard

FBG methods. By positioning a magnetostrictive material in the correct location

and orientation in regards to a cable, the magnetic field can be used to determine the

current in the cable.
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Figure 2-11: Micro-bending losses in a fiber being used as a displacement sensor.

The electric field can be measured in the same way as the magnetic field, only

using an electro-optic material instead of a magnetostrictive material. Epoxying an

FBG to the electro-optic material will convert the effect of the electric field into a

strain that can be easily measured. Materials exhibiting the Pockels effect, a change

in refractive index directly proportional to the electric field, or the Kerr effect, a

change in the refractive index proportional to the square of an electric field, can also

be used to measure the electric field [30]. This requires an electro-optic material to

be in the light path, which normally requires lenses to couple the light out of, and

back into, the fibers.

Fiber optic gyroscopes have several advantages over other mechanical devices:

there are no moving parts, they are small and extremely rugged, they turn on in-

stantly, have a long shelf-life, and are almost maintenance free [33]. The most com-

mon gyroscope uses the Sagnac effect to determine the rotation rate [30]. By using

three gyroscopes to determine the rotation in all three dimensions, a system can be

tracked or directed. This type of gyroscope system is used in navigational systems

in planes, missiles, and satellites. As shown in Figure 2-12, the light is split into two

paths, each traveling along the same circle, but in opposite directions.

This gyroscope is an interferometer, where the two legs are the paths in opposite
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Figure 2-12: In a Sagnac interferometer, light travels in opposite directions around a
circle and then is recombined to measure rotation.

directions around the circle. When the gyroscope rotates, the relative path lengths

of the two directions changes, and it takes the light traveling in one direction a little

longer to get to the detector than the other direction. The phase shift, ∆φ , of the

interfered light is measured and can be expressed as a function of rotation rate, Ω,

shown in Equation 2.43.

∆φ =
(

2πLD

λoc

)
Ω (2.43)

The fiber length, L, and loop diameter, D, can also be used in an expression for

the total change in path length shown in Equation 2.44.

∆L =
(
LD

c

)
Ω (2.44)

Although the previously discussed fiber optic sensors are mostly point sensors,

they can be combined into systems that give some spatial resolution. Knowing the

location of an array of point sensors, and being able to distinguish the signals from

each of the different sensors allows a degree of spatial resolution. Fibers can also be

run along pipelines, country borders, bridges, etc. to sense changes in the initial con-
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ditions. Using the simplest techniques, a break in a fiber due to a pipeline explosion,

or concrete cracking can be detected and located. More advanced systems looking at

scattered light can make distributed measurements along long sensing paths, which

will be described in more detail later in this chapter.

2.2.3 Interferometers

Different types of interferometers can be used to measure parameters other than

rotation, including temperature and strain. If a fiber optic cable is heated, the optical

path length changes due to thermal expansion, as well as due to the temperature

dependence of the index of refraction, as expressed in Equation 2.45.

∆φ =
2π

λ
(n∆L+ ∆nL) (2.45)

By carefully measuring the change in the optical path length, the associated

change in temperature can be derived. In order to accurately measure the change

in optical path length, an interferometer is used. The two most common types of

interferometers are the Mach-Zehnder and the Michelson interferometers, pictured in

Figure 2-13.

LASER C C D
PZT POL

LASER IS C

D

PZT POL

Mach-Zehnder

Michelson

Figure 2-13: Schematic diagram of a Mach-Zehnder and Michelson interferometer.

65



One leg of the interferometer is subject to the change in temperature and the

other leg is held at a constant temperature to serve as a reference. Laser light is

coupled into both legs, and then recombined after passing through the two legs. An

interference pattern is formed based on whether the two signals are constructively or

destructively interfering. As the temperature in the sensing arm increases, the index

of refraction increases, causing the speed of light in the fiber to decrease. This has the

overall effect of lengthening the optical path length compared to the reference path

length. The interference pattern shifts back and forth from constructive to destructive

interference as the optical path length increases, creating an intensity pattern that

oscillates from zero to some maximum value, as shown in Figure 2-14.

The reason that fiber optic interferometers are interesting for use in superconduct-

ing magnets is that the sensing path and reference arm can be any length because

fibers are so low-loss. Running a fiber through the conduit in a CICC magnet, will

allow the whole length of the cable to be monitored. Although the measurement is a

line-integrated measurement along the length of the fiber, it will be able to pick up

temperature changes at any location.

Placement of a temperature sensing fiber in a CICC is a very important decision

that needs to be made based on the mechanical integrity of the fiber as well as the

thermal diffusion time from the superconducting strands to the fiber. There are

several regions where the fiber will be relatively safe, such as the central cooling

channel and the inner or outer valleys created by the winding patterns, as shown

in Figure 2-15. Regardless of the placement of the fiber, it needs to be protected

from being crushed during the magnet fabrication and from Lorentz loads during a

magnet pulse. One way to protect the fiber is to put it in a steel capillary tube,

perhaps with a fiberglass sleeve between the fiber and the tube for further protection.

This protection system, shown in Figure 2-16, was used for the fibers in the QUELL

tests.

A coating for the fiber also has to be chosen carefully, since the fiber will have

to survive several thermal cycles from room temperature down to cryogenic temper-

atures. Depending on the type of superconductor being used, it may also have to
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Figure 2-14: A view of the signal before (left) and after (right) the sensing arm is
heated. The top view (A) is the heated fiber and the bottom (B) is the unheated fiber.
The changes in the heated fiber cause the signal in the unheated fiber to effectively
shift to the left. Combining this signal with the reference gives fringe shifts.

survive a heat treatment from tens to hundreds of hours at temperatures up to 700

C. At these high temperatures, the normal acrylate coating on fibers will vaporize,

leaving a bare fiber. One solution is to use gold or copper coated fibers that will

survive the extreme temperatures. These are typically much more expensive than

commercial fibers, but still significantly less expensive than a superconducting cable.

QUELL was the first major experiment to test a fiber optic quench detection sys-

tem for large magnets and compare it to other quench detection methods. A copper

coated fiber arranged as a Michelson interferometer was used with the sensing arm ter-

minated by an internal mirror in the magnet so only one extraction was needed. This
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Figure 2-15: The fiber can be placed in the valleys due to the winding, in the central
cooling channel, or co-wound with the superconducting wires.
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Figure 2-16: Diagram of the steel capillary tube and fiberglass protection of a fiber
optic cable.

system performed very well in the QUELL tests, quickly detecting sample quenches

with no false quench detections [16]. A positive feature of an interferometric quench

detection system is that the temperature sensitivity of the refractive index increases

with increasing cryogenic temperatures. The sensitivity is 200 times higher at 30 K

than it is at 5 K [7]. This means that a disturbance that raises the magnet temper-

ature from 5 K to 5.2 K over a 1 km length will give a much smaller signal than a

temperature rise to 30 K over only 1 meter of the magnet, which is a realistic early

quench stage [7].

Although the fiber optic quench detection system performed as well as the co-

wound voltage taps, external co-wound voltage taps were chosen to be used on ITER

with expected performance not quite as good as that of the internal co-wound taps

tested by QUELL. The extraction of a fiber from a conduit is a difficult and unproven

engineering task. A seal needs to be formed at the point of extraction that will not

break the fiber, or leak through many thermal and pressure cycles. Several sealants,
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such as Stycast, were shown to be leak-tight at a high vacuum level up to 70 atm.

However, no seals tested as part of the KSTAR program were able to survive tens of

thousands of pressure cycles.

Another problem facing the QUELL fiber optic quench detection system was the

elimination of the strain contribution to the fringe shifts. Both a change in temper-

ature and a change in strain of the fiber will lead to fringe shifts, and determining

what shift is due to temperature and what shift is due to strain is a problem that will

be discussed further in the next section.

2.2.4 Separation of Temperature and Strain

The optical path length in a fiber is a function of the actual length of the fiber and

its index of refraction. Unfortunately, both a change in temperature and a change in

strain will change the optical path length. If it is known that a fiber is either strain-

free or at a constant temperature, an interferometer system could easily measure

the other parameter. However, when the fiber can be strained and is not held at

a constant temperature, determining the change in temperature becomes a more

difficult problem. As seen in Equation 2.46, there is only one measured quantity, ∆φ,

and there are two unknowns, ∆T and ∆ε.

∆φ =
2π

λo

[
n
∂L

∂T
∆T + n

∂L

∂ε
∆ε+ L

∂n

∂T
∆T + L

∂n

∂ε
∆ε

]
(2.46)

In order to be able to separate the temperature and strain contributions, we

need another independent measurement. By using a dual-interferometer system of

two frequencies or two polarizations, the temperature and strain contributions to

the phase shift can be separated [34]. The layout of a dual-frequency interferometer

system is shown in Figure 2-17.

This system is based on the assumption that the two fibers traveling the same

path through the magnet, but carrying different frequencies of light, will experience

the same temperature and strain. By measuring the two phase shifts, ∆φ1 and ∆φ2,

we get two equations and two unknowns as described in Equations 2.47 and 2.48.
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Figure 2-17: A dual-frequency Mach-Zehnder interferometer system with the common
sensing path circled in green.

Assuming that
(
∂n
∂T

)
1

and
(
∂n
∂T

)
2

are different, which is true for certain wavelengths,

we can solve this set of equations for the change in temperature and strain [35].

∆φ =
2π

λo

[
n
∂L

∂T
∆T + n

∂L

∂ε
∆ε+ L

(
∂n

∂T

)
1

∆T + L
∂n

∂ε
∆ε

]
(2.47)

∆φ =
2π

λo

[
n
∂L

∂T
∆T + n

∂L

∂ε
∆ε+ L

(
∂n

∂T

)
2

∆T + L
∂n

∂ε
∆ε

]
(2.48)

Another way to eliminate the strain contribution is to use a polarization main-

taining fiber, and to have interferometer’s two arms be the two axes in the fiber.

A polarization maintaining fiber is designed so that there is a fast axis and a slow

axis that can each propagate linearly polarized light independent of the other axis,

as shown in Figure 2-18.

LASER POL S C D

Figure 2-18: A dual-polarization interferometer with the sensing path circled in green.

Although we can assume that the two sensing fibers with different frequencies of

light in the previous dual-interferometer system experience the same strain, in this

system we know that both arms of the interferometer experience the same strain,
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since they are in the same fiber. Since the change in length of the fast and slow axis

is exactly the same, the first two terms in Equation 2.49 are zero.

∆φ =
2π

λo

[
n

(
∂Lf
∂T
− ∂Ls
∂T

)
∆T + n

(
∂Lf
∂ε
− ∂Ls

∂ε

)
∆ε+ L

(
∂nf
∂T
− ∂ns
∂T

)
∆T + L

(
∂nf
∂ε
− ∂ns

∂ε

)
∆ε

]
(2.49)

Because both arms are in the same fiber, the effect of strain on the two arms is

negligible. However, there is a small difference in the propagation constants of the

two axes which causes them to experience slightly different responses to changes in

temperature [34]. This leaves us with Equation 2.50.

∆φ =
2π

λo

[
L

(
∂nf
∂T
− ∂ns
∂T

)
∆T

]
(2.50)

By measuring the relative phase change between the two axes of the polarization

maintaining fiber, we can calculate the change in temperature because everything else

in Equation 2.50 is known.

The typical sensitivities of the dual-frequency and the dual-polarity interferometer

systems are shown in Table 2.1.

Table 2.1: Sensitivities of dual-interferometers to temperature and strain (from Ref-
erence [7]).

Method Temperature Sensitivity Strain Sensitivity
(radians / m K) (radians / m ε)

Dual-Frequency 0.1 500
Dual-Polarity 1.2 5000

2.3 Fiber Optic Scattering System

While a dual-interferometer system is able to cancel the strain contribution to the

phase shift, and therefore provide a reliable temperature measurement, it can still

only provide a line-integrated measurement. By using several Michelson interferom-

eters of different lengths which monitor different parts of the magnet, one could get
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some spatial resolution, proportional to the channel length divided by the number

of interferometers. In order to achieve better spatial resolution, scattering measure-

ments need to be used. The three main scattering processes in optical fibers are

Rayleigh, Raman, and Brillouin scattering, and their relative frequency shifts are

shown in Figure 2-19.
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Figure 2-19: Typical spectrum of scattered light in a fiber.

There are three commonly used reflectometric techniques used in fiber-based mea-

surements: optical time domain reflectometry (OTDR), low coherence frequency do-

main reflectometry (OLCR), and coherent optical frequency domain reflectometry

(OFDR). These techniques differ in the basic physics and consequently have trade

offs in resolution, speed, sensitivity, and accuracy. OTDR is generally used for long

range (km) low-resolution (≈ 1 m) applications, OLCR achieves sub-millimeter reso-

lution over short ranges (≤ 5 m), and OFDR operates in the middle with a range of

10s to 100s of meters and resolution on the mm to cm scale [36].

2.3.1 Rayleigh Scattering

Rayleigh scattering in an optical fiber is generated by fluctuations in the density and

radius of the core as a function of length. A baseline measurement of the Rayleigh

backscatter along the length of a fiber can be used as a “signature” since it is a

permanent feature of the fiber [37]. These random fluctuations are static; therefore,

they can be modeled as a continuous FBG in Equation 2.51 [38].

νR =
c

2nΛ̄
(2.51)

72



Here νR is the spectral frequency associated with the grating, n is the index

of refraction, c is the speed of light, and Λ̄ is the average fluctuation period. A

change in the local index of refraction or average fluctuation period (due to a stimulus

like temperature or strain) will cause shifts in the local spectral frequency of the

Rayleigh backscatter. Accumulated changes will be seen as a time shift of the Rayleigh

backscatter return loss amplitude. By cross-correlating the backscatter amplitude

time domain or frequency domain data, the system will measure the shifts and scale

them to a change in temperature or strain [39].

Some systems use swept-wavelength interferometry (SWI) to measure the complex

scalar response of the system, including the amplitude and phase [40]. Figure 2-20

shows a simplified diagram of this type of system [37].
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Figure 2-20: Diagram of a typical Rayleigh backscatter system.

Light from a tunable laser source is split by the first coupler with half of the

signal going to the fiber under test and the other half going through the reference

path and the polarization controller. Another coupler recombines the two signals

and a polarization beam splitter splits the signal to detect two polarizations of light

independently. The polarization controller is used to align the reference field so that

it is split evenly between the polarization states, which ensure that an interference

signal will be present on at least one of the detectors regardless of the polarization

state coming out of the fiber under test [37].

The frequency response of the fiber under test is a function of amplitude and

phase response, as shown in Equation 2.52 [38].
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H(ω) = ρ(ω)eiΦ(ω) (2.52)

Assuming that the field from the laser is Ein, Equation 2.53 is the field at the

coupler [38].

Eout =
1√
2
Ein +

1√
2
Einρ(ω)ei(Φ(ω)+ω(t)∆τ) (2.53)

In the above equation, ∆τ is the delay difference between the two arms of the

interferometer, and ω(t) is the laser frequency. By squaring the magnitude of the

field we can get the detected power shown in Equation 2.54.

P (ω) ≈ 1

2
E2
in(ω) +

1

2
ρ2(ω)E2

in(ω) + Ein(ω)ρ(ω) cos [Φ(ω) + ω(t)∆τ ] (2.54)

This equation is a frequency domain description of the fiber under test. By Fourier

transforming this equation into the time domain, we get a representation of the fiber

under test as a function of length [37].

LUNA Technologies has developed a commercial temperature and strain mea-

suring system based on Rayleigh scattering. In order to make a measurement, the

Rayleigh scattering signature is measured and stored. The scatter profile is then mea-

sured after some change in strain or temperature, and the data sets are compared in

pre-determined increments [41]. The basic LUNA system cannot simultaneously mea-

sure the temperature and strain; but for a constant strain, the change in temperature

can be calculated using Equation 2.55 [38].

∆T =
−λ̄
cKT

∆ν (2.55)

For a constant temperature the strain can be calculated using Equation 2.56.

∆ε =
−λ̄
cKε

∆ν (2.56)
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Shown in Equation 2.57 the maximum sensing length can also be calculated [36].

Lmax =
c∆τg
4ng

(2.57)

Here c is the speed of light in a vacuum, ng is the group index, and ∆τg is the

delay in the interferometer.

The spatial resolution is directly related to the resolution in the time domain and

is determined by the spectral bandwidth of the scan range by Equations 2.58 and

2.59 [36].

∆z ≈ c

2ng∆f
(2.58)

∆f ≈ c∆λ

λ2
(2.59)

The fundamental limits of temperature and strain measurements are not indepen-

dent of the variables selected for measurement. For distributed sensing, the parame-

ters of the LUNA system are expressed in Table 2.2 [36].

Table 2.2: LUNA’s Rayleigh scattering system’s specifications.
Spatial Resolution 2.0 cm
Temperature Resolution ± 0.1 C
Strain Accuracy ± 1 µε
Maximum Fiber Length 70 m
Measurement Timing 3 - 10 sec

Temperature and strain can be simultaneously measured using a polarization

maintaining fiber with a spatial resolution of 2 cm with temperature and strain reso-

lution of ± 3.5 C and ± 35 µε [42]. As seen in Table 2.2, although the resolutions and

accuracies would be adequate for distributed superconducting magnet thermometry,

the measurement time of several seconds would be unacceptable for use as a quench

detection system in any conductor with a copper current density greater than 50-100

A/mm2.
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2.3.2 Raman Scattering

Raman scattering occurs in fibers due to the propagating light interacting with the

vibrational modes of the silica molecules. This scattering process is also commonly

described as the scattering of light off optical phonons [43]. The frequency shift of

the scattered light is equal to the vibrational frequency of the molecule it scatters off

[44]. A photon excites an electron to a virtual state, which will immediately relax

into a certain vibrational energy state. Depending on the initial state of the molecule,

the relaxation will generate either Stokes Raman scattering or Anti-Stokes Raman

scattering as seen in Figure 2-21.

Virtual
Energy
States

Vibrational
Energy
States0

1
2

Rayleigh Raman
Stokes

Raman
Anti-Stokes

Figure 2-21: Diagram of Raman Stokes and Anti-Stokes scattering compared to
Rayleigh scattering.

Most temperature sensors that use Raman scattering compare the Stokes to Anti-

Stokes waves. According to Equation 2.60, the higher the temperature, the more

Anti-Stokes scattering there will be [45].

PAS
PS

=

(
λS
λAS

)4

e−
h∆ν
kT (2.60)

In Equation 2.60 PAS is the measured Anti-Stokes power, PS is the measured
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Stokes power, λS is the wavelength of the Stokes scattered light, and λAS is the

wavelength of the Anti-Stokes scattered light.

The Stokes scattering power of a single molecule can be calculated starting with

the power-per-unit solid angle radiated from an oscillating dipole moment, Equation

2.61 [44].

dPS,mol
dΩ

=
k3
SωS

32π2εrεo
|pS|2 sin2 θ (2.61)

In Equation 2.61, pS is the oscillating dipole moment, admitting a Stokes wave

with angular frequency ωS at an angle, θ, from the direction of the dipole moment.

Also, εr = n2 and pS = αREoe
jωSt. Ignoring the imaginary part of εr and using the

intensity of the incident light, Io = ncεo|Eo|2
2

, we arrive at Equation 2.62.

d2PS,mol =
ω4
S

16π2c4ε2
o

α2
RIo sin3 θdθdψ (2.62)

In Equation 2.62, the emitted Stokes light is monochromatic, but realistically

it should reflect the statistical properties of the motion of the molecules. Using a

function, gs(ωS), to incorporate the motion, we get Equation 2.63, where β is the

angle between the incident and scattered waves.

d3PS,mol =
ω4
S

16π2c4ε2
o

α2
RIo cos3(β)gs(ωS)dωSdβdψ (2.63)

Equation 2.63 gives the Stokes power of a particular frequency, ωS. By integrating

Equation 2.63 over all frequencies we arrive at Equation 2.64.

d2PS,mol =
dσ

dΩ

(
π

2
, ωSo

)
Io cos3(β)dβdψ (2.64)

Equation 2.64 introduces the term ∂σ
∂Ω

(
π
2
, ωSo(T )

)
, which is the temperature de-

pendant differential Raman cross-section of one molecule. Integrating Equation 2.64

gives us Equation 2.65, which is the total Stokes scattering power of a single molecule.

d2PS,molTOTAL =
8π

3

Po
πr2

eff

e
− r

r2
eff

dσeff
dΩ

(
π

2
, ωSo(T )

)
(2.65)
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Using the density and volume of the fiber, the total Stokes scattering power for

a fiber can be calculated. The Anti-Stokes power can also be calculated theoreti-

cally and plugged into Equation 2.60 to compare with experimental results. While

spontaneous Raman scattering can theoretically be used as a temperature sensor, it

normally takes on the order of minutes to build up enough signal for a measurement.

A common application of a Raman scattering based temperature sensor is embedding

the fiber in concrete to monitor the temperature as it dries over the course of days.

Other than the time it takes to make a single measurement, the main reason Raman

scattering systems cannot be used for low temperature superconducting magnets is

that below 77 K, spontaneous Raman scattering is totally ineffective due to the lack

of thermal noise at the Raman frequencies [46].

2.3.3 Stimulated Brillouin Scattering

Brillouin scattering is when light is scattered off sound, or propagating density, waves.

Similar to Raman scattering coming from light scattering off optical phonons, Bril-

louin scattering is scattering off acoustic phonons [43]. Brillouin scattering is broken

down into spontaneous scattering, which will be discussed in the next chapter, and

stimulated scattering. Stimulated Brillouin systems are not as commonly used as the

spontaneous systems; however, they have a much better signal to noise ratio which

allows a measurement in the time it takes for a single pass of light [47].

Brillouin scattering occurs when light is Bragg reflected 180 degrees due to refrac-

tive index modulations produced by acoustic waves [48]. The reflected light is shifted

by the Brillouin frequency, νB, as described in Equation 2.66.

νB =
2nVa
λ

(2.66)

Here n is the index of refraction, Va is the acoustic velocity, and λ is the wavelength

of the incoming light. The frequency shift for Brillouin scattered light is much smaller

(GHz) than the frequency shift for Raman scattering (THz) [45].

The Brillouin frequency, calculated in Equation 2.66, varies as a function of strain
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and temperature, where νBo is the Brillouin frequency at zero degrees Celsius and

zero strain, as shown in Equation 2.67.

νB = νBo +
∂ν

∂T
T +

∂ν

∂ε
ε (2.67)

When the difference in frequency of the two counter-propagating waves is equal to

the Brillouin frequency, power is transferred from the wave with the lower frequency

to the wave with the higher frequency. The Brillouin power can be expressed as the

sum of the original pulse power and the additional power due to temperature and

strain sensitivity, as written in Equation 2.68, where Po is the Brillouin power at zero

degrees Celsius and zero strain [48].

PB = Po +
∂P

∂T
T +

∂P

∂ε
ε (2.68)

In designing a Brillouin scattering experiment, there are many trade-offs that

must be weighed based on the desired measurements. The spatial resolution and the

signal power are inversely proportional to the pulse width [49]. However, decreasing

the pulse width too much will create other problems. The Brillouin frequency is

insensitive to the length of the pulse width if it is above 50 ns, but dependent on the

pulse width if it is less than 50 ns, as shown in Figure 2-22 [50].

Stimulated Brillouin scattering requires that the waves have the correct polar-

izations. As expected, in single mode fibers the state of polarization varies due to

polarization mode dispersion, as well as to changes in temperature and strain, which

limit the spatial resolution to the order of meters. To solve this problem, polariza-

tion maintaining (PM) fiber can be used to provide spatial resolution on the order of

centimeters, strain resolution of 10-30 µε, and temperature resolution of 1-2 C [51].

Three measurable quantities can be used to measure the temperature and strain

simultaneously: 1) Brillouin power and frequency, 2) Brillouin power and linewidth,

3) Brillouin linewidth and frequency. For 2), there are certain temperature and strain

ranges where the power and bandwidth are related, and therefore cannot be used to

simultaneously measure both temperature and strain [51].
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Figure 2-22: Brillouin frequency shift dependence on the pulse length.

Looking at the Brillouin power and frequency shift, the temperature and strain

can be calculated using Equations 2.69 and 2.70 respectively [8].

∆T =
∆νCε

P − Cε
ν∆P

Cε
PC

T
ν − Cε

νC
T
P

(2.69)

∆ε =
∆νCT

P − CT
ν ∆P

Cε
νC

T
P − Cε

PC
T
ν

(2.70)

Equations 2.69 and 2.70 use the shorthand notation explained in Equation 2.71.

Cε
ν =

(
∂ν

∂ε

)
T

, CT
ν =

(
∂ν

∂T

)
ε

, Cε
P =

(
∂P

∂ε

)
T

, CT
P =

(
∂P

∂T

)
ε

(2.71)

The values of these “constants” have been experimentally determined, and pre-

sented in Table 2.3, in the normal temperature range of 0 C - 50 C for the three most

common types of PM fibers: PANDA, Bow Tie, and Tiger.

Existing stimulated Brillouin scattering systems take measurements while the fre-

quency of one of the lasers is changed, so that the difference in frequency between

the two lasers sweeps through the range of Brillouin frequencies. At each frequency
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Table 2.3: Sensitivities of several types of polarization maintaining fibers to temper-
ature and strain (from Reference [8]).

PM Fiber Type PANDA Bow Tie Tiger
CT
v (MHz/C) 1.37 ±0.007 2.30 ±0.05 1.66 ±0.07

CT
P (%/C) 0.26 ±0.03 0.23 ±0.01 0.04 ±0.09

CT
B (MHz/C) -0.15 ±0.02 -0.20 ±0.02

Cε
v (MHz/µε) 0.077 ±0.002 0.023 ±0.001 0.091 ±0.005

Cε
P (%/µε) -0.028 ±0.003 0.018 ±0.002 0.011 ±0.004

Cε
B (MHz/µε) 0.058 ±0.004 -0.031 ±0.002

step a pulse is launched and data at that frequency difference is recorded. The time

required for this part is the time of flight for the light, and the data acquisition time:

both a small fraction of a second. The part that takes the most time is temperature

tuning a laser to obtain the next frequency step. For a temperature tuned laser,

this takes on the order of a half of a second, causing scans to take on the order of

minutes. While this is too slow to be used for quench detection in a superconducting

magnet, a threshold approach could potentially work. The idea behind a threshold

approach is to set the frequency difference between the two lasers to a predetermined

frequency which corresponds to a threshold temperature. However, strain effects on

the frequency shift could cause false signals.

Brillouin scattering has been used in many different systems to measure temper-

ature and strain, including systems that also use Raman scattering. Since Raman

scattering does not depend on strain, by measuring the Brillouin scattering’s temper-

ature and strain dependent signal, then subtracting out the temperature calculated

by the Raman scattering signal, both the temperature and strain can be calculated.

As discussed in the previous section, this type of system would not work for super-

conducting magnets since Raman scattering is not measurable below 77 K. Brillouin

scattering also encounters difficulties at cryogenic temperatures, which will be dis-

cussed in more detail in the next chapter. Some Brillouin scattering systems also use

methods that are similar to the frequency domain analysis used in LUNA’s Rayleigh

scattering system. While the operating parameters are different from what is needed

for a quench detection diagnostic, this type of system would be ideal for other mea-
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surements described in Appendix B.
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Chapter 3

Spontaneous Brillouin Scattering

Brillouin scattering is due to the interaction between light propagating in a fiber optic

cable and acoustic phonons. Acoustic phonons are bulk vibrations in glass that travel

at about 6 km/sec. These traveling waves change the local glass densities and indexes

of refraction as they move down the fiber, which acts like a moving Bragg grating that

backscatters Doppler shifted light. If energy is lost by the photon to the glass, the

Brillouin shifted light is lower in frequency than the input light and is called Stokes

light. If the photon gains energy from the glass, its frequency is increased and the

light is called Anti-Stokes light.

The basis of Brillouin scattering diagnostic systems lies in three parameters of the

scattered light: the intensity, the frequency shift, and the linewidth. All three of these

parameters are functions of temperature and strain, so theoretically the temperature

and strain can be derived by measuring the intensity, frequency shift, and linewidth

of Brillouin scattered light. Near room temperature, these parameters vary linearly

with temperature and strain, so only two of the three parameters need to be measured

to determine both temperature and strain. However, at cryogenic temperatures the

frequency shift and linewidth are nonlinear and not everywhere monotonic, so all

three parameters need to be measured to determine the temperature and strain.

We have developed a spontaneous Brillouin scattering system that measures all

three parameters of the backscattered light. This system’s ability to measure the three

parameters as a function of position along a fiber transforms the standard fiber optic
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cable into a distributed temperature and strain sensor. By incorporating a fiber in

a superconducting magnet, our spontaneous Brillouin scattering system can not only

act as a quench detection system, but also as a quench locater, quench propagation

monitor, and a general magnet diagnostic.

3.1 Derivation of Important Parameters

The three important parameters of the scattered light are the intensity, or power, the

frequency shift, and the linewidth, or full width at half maximum (FWHM). These

are commonly measured parameters of light, and the next few sections theoretically

derive expressions for these parameters.

3.1.1 Intensity

Since Brillouin scattering is the scattering of light by pressure waves, it makes sense

to start with the equation of motion for a pressure wave, Equation 3.1 [52].

∂2∆p̃

∂t2
− Γ′∇2∂∆p̃

∂t
− ν2∇2∆p̃ = 0 (3.1)

In Equation 3.1, ∆p̃ is a pressure wave propagating though a medium as expressed

in Equation 3.2. The second term in Equation 3.2 is the complex conjugate of the first

term, to ensure that is real, as it must be in order to represent a physical field [43]. Γ′

is the damping parameter expressed in Equation 3.3, where ηs is the shear viscosity

coefficient, ηb is the bulk viscosity coefficient, and κ is the thermal conductivity. For

most optical materials, the last term in Equation 3.3 is much smaller than the first

two terms. The speed of sound, v, is expressed thermodynamically in Equation 3.4,

where Cs is the compressibility measured at constant entropy [43].

∆p̃ = ∆pei(qz−Ωt) + c.c. (3.2)

Γ′ =
1

ρ

[
4

3
ηs + ηb +

κ

Cp
(γ − 1)

]
(3.3)
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v2 =
1

Csρ
(3.4)

Using the relation described in Equation 3.5, Cs = CT
γ

= 1
γp

can be substituted

into Equation 3.4 to give Equation 3.6.

CT
Cs

=
cp
cV

= γ (3.5)

v =

(
γp

ρ

) 1
2

=

(
γNkT

ρV

) 1
2

=

(
γkT

µ

) 1
2

(3.6)

Making these substitutions in Equation 3.1, we find that q and Ω are related by

a dispersion equation of the form shown in Equation 3.7.

Ω2 = q2
(
v2 − iΩΓ′

)
(3.7)

By introducing the phonon decay rate, Γ = Γ′q2, Equation 3.7 can be simplified

to Equation 3.8.

q ≈ Ω

v
+
iΓ

2v
(3.8)

Inserting Equation 3.8 into Equation 3.2, and introducing a sound absorption

coefficient, αs = q2Γ′

v
= Γ

v
, Equation 3.9 shows the spatial variation of the acoustic

wave.

|∆p(z)|2 = |∆p(0)|2e−αsz (3.9)

Taking a standard incident optical field, Equation 3.10, we assume that it obeys

the driven wave equation, shown in Equation 3.11.

Ẽo(z, t) = Eoe
i(k·r−ωt) + c.c. (3.10)

∇2Ẽ− n2

c2

∂2Ẽ

∂t2
=

4π

c2

∂2P̃

∂t2
(3.11)
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The polarization of the medium is given by Equation 3.12, and a typical component

of the thermally excited pressure disturbance is given in Equation 3.13 [43].

P̃(r, t) =
1

4π
γeCs∆p̃(r, t)Ẽo(z, t) (3.12)

∆p̃(r, t) = ∆pei(q·r−Ωt) + c.c. (3.13)

Combining Equations 3.10 through 3.13, we can write the wave equation for the

scattered field as Equation 3.14 [43].

∇2Ẽ−n
2

c2

∂2Ẽ

∂t2
= −γeCs

c2

[
(ω − Ω)2Eo∆p

∗ei(k−q)·r−i(ω−Ω)t + (ω + Ω)2Eo∆pe
i(k+q)·r−i(ω+Ω)t + c.c.

]
(3.14)

Using the electric field from Equation 3.14, the intensity of the Brillouin scattered

light can be calculated using Equation 3.15.

IS =
(
nc

4π

)〈
Ẽ

2

S

〉
(3.15)

3.1.2 Frequency Shift

The first term in the bracket of Equation 3.14 is the Stokes scattering, and the

second term is the Anti-Stokes scattering [43]. As seen in Figure 3-1, the wave vector

and frequency for Stokes scattering can be described by Equations 3.16 and 3.17

respectively.

k′ = k− q (3.16)

ω′ = ω − Ω (3.17)

The relationship between the frequency, ω, and wave vector, k, of the initial

optical field is given in Equation 3.18. Also, the frequency, Ω, and wave vector, q, of
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ω' = ω - Ω
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Stokes Scattering

Anti-Stokes Scattering

Figure 3-1: Diagram of Stokes and Anti-Stokes Scattering.

the acoustic wave are related according to Equation 3.19.

ω =
|k|c
n

(3.18)

Ω = |q|v (3.19)

Satisfying Equations 3.16 through 3.19 leads to the acoustic frequency, shown in

Equation 3.20.

Ω = 2|k|v sin

(
θ

2

)
= 2nω

v

c
sin

(
θ

2

)
(3.20)

Equation 3.20 shows that when θ = 0, or forward scattering, the Stokes shift is

zero; however, when θ = 180, or backscatter in an optical fiber, the Stokes shift is a

maximum, as expressed in Equation 3.21.

Ωmax = 2nω
v

c
(3.21)

87



A similar procedure can be carried out to calculate the Anti-Stokes frequency

shift.

3.1.3 Linewidth

The derivations in the last two sections assumed that the Brillouin scattered light was

monochromatic, which is not the case. The scattered light has a spread in angular

frequency whose full width at half maximum (FWHM) is given in Equation 3.22 [43].

δω =
1

τp
(3.22)

The phonon lifetime, τp, is given by Equation 3.23, so Equation 3.22 can be

rewritten as Equation 3.24.

τp =
1

Γ
=

1

q2Γ′
(3.23)

δω = q2Γ′ (3.24)

Referring to Figure 3-1, |q| = 2|k|sin
(
θ
2

)
, where θ is the angle between k′ and q,

which leads to Equation 3.25, the linewidth of Brillouin scattered light.

δω = 4n2Γ′
ω2

c2
sin2

(
θ

2

)
(3.25)

3.2 Temperature Effects

The Brillouin frequency shift, derived in Equation 3.2, varies with strain and tem-

perature based on the fact that the acoustic velocity depends on both the strain and

temperature of the medium [53]. This can be represented by Equation 3.26, where

νBo is the frequency shift at zero Celsius and zero strain.

νB = νBo +
∂ν(va)

∂T
T +

∂ν(va)

∂ε
ε (3.26)
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The power of the Brillouin scattered light is also a function of both strain and

temperature, and is represented in Equation 3.27 [54].

PB = PBo +
∂P

∂T
T +

∂P

∂ε
ε (3.27)

Similarly, the linewidth of the Brillouin scattered light is also a function of strain

and temperature, as expressed in Equation 3.28 [48].

δωB = δωBo +
∂(δω)

∂T
T +

∂(δω)

∂ε
ε (3.28)

3.2.1 Brillouin Scattering at Room Temperature

Equations 3.26 through 3.28 can be used as a set of three equations and two unknowns,

the temperature and strain. In order to determine the temperature and strain, a

sensor may only need to measure two out of the three parameters. For example, if

we experimentally measure the Brillouin scattered frequency and the power of the

scattered light, we can calculate the temperature and strain using Equations 3.29

and 3.30 from the previous chapter [51].

∆T =
∆νCε

P − Cε
ν∆P

Cε
PC

T
ν − Cε

νC
T
P

(3.29)

∆ε =
∆νCT

P − CT
ν ∆P

Cε
νC

T
P − Cε

PC
T
ν

(3.30)

Equations 3.29 and 3.30 use the short hand expressions described in Equation

3.31.

Cε
ν =

(
∂ν

∂ε

)
T

, CT
ν =

(
∂ν

∂T

)
ε

, Cε
P =

(
∂P

∂ε

)
T

, CT
P =

(
∂P

∂T

)
ε

(3.31)

In order for Equations 3.29 and 3.30 to produce a unique solution, the coefficients

in Equation 3.31 have to be monotonic throughout the range of measurement. This

is a good approximation for measurements around room temperature, and even at

higher temperatures; however, at cryogenic temperatures, these coefficients are no
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longer monotonic.

3.2.2 Brillouin Scattering at Cryogenic Temperature

Many functions that are linear and well-understood around room temperature be-

come non-linear and unexplained as temperature decreases from 300 K to 4 K. The

coefficients in Equation 3.31, which are all constant around room temperature, change

drastically at cryogenic temperatures. The main effect of this on Brillouin scattering

systems is that the frequency shift, intensity, and linewidth are no longer single-valued

functions: a single value can represent more than one temperature.

These changes can be attributed to similar nonlinearities in the acoustic velocity

and attenuation at cryogenic temperatures. The Brillouin frequency shift in Equation

3.21 is a direct function of the acoustic velocity, so any temperature dependence of

the acoustic velocity will change the frequency shift. At room temperature, the tem-

perature dependence of the acoustic velocity is linear, but at cryogenic temperatures

it is non-linear as seen in Figure 3-2 [55].

The behavior of the acoustic velocity in the range of 1 - 6 K is consistent with

the prediction of a model based on a tunneling process in a distribution of two-level

systems [56]. Also, the acoustic velocity in the range of 7 - 70 K is explained as an

effect due to thermally activated relaxation processes. However, the increase of the

acoustic velocity from 70 K up to room temperature is still unexplained [5].

It is clear from Figure 3-2 that measuring the acoustic velocity below 5.89 km/s

will correspond to two different temperatures. Due to the direct correlation between

acoustic velocity and frequency shift, there will be frequency shift measurements that

correspond to more than one temperature as well, as shown in Figure 3-3.

The linewidth of Brillouin scattered light is a function of the acoustic phonon

damping parameter, as shown in Equation 3.25. Figure 3-2 shows the attenuation of

fused silica, which is directly related to the acoustic phonon damping. It is apparent

that although the slope is linear around room temperature, it becomes non-linear as

the temperature decreases. There are two mechanisms that could account for these

changes: the anharmonic or three-phonon interaction, which is the usual case for this
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Figure 3-2: The acoustic velocity (+) and the attenuation (o) in fused quartz are not
linear in the 0 - 300 K range.

type of damping, or a structural relaxation process [57].

The first mechanism, the anharmonic model, was first derived by Bommel and

Dransfeld as an explanation of acoustic absorption measurements in quartz [58]. They

derived the damping rate in Equation 3.32 based on Akhieser’s model of sound-

induced changes in thermal-phonon distributions. The assumptions going into the

derivation of Equation 3.32 can be found in reference [57], but the important point is

that they are valid for the fused quartz used in fiber optics.

Γ =
γ2ωTcv

8ρv2
i

ωτ

1 + (ωτ)2
(3.32)

In Equation 3.32, ρ is the crystal density, T is the temperature, ω is the frequency

of the sound wave, and vi is the sound wave’s velocity. τ is the thermal phonon

damping time, and cv is the heat capacity. γ2 is an average Gruneisen constant, of
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Figure 3-3: Brillouin frequency shift as a function of temperature down to 4 K (from
Reference [5]).

order unity, which measures anharmonicity. As mentioned previously, the Brillouin

scattering linewidth is related to the phonon damping rate, expressed in Equation

3.33.

δω =
Γ

π
(3.33)

Due to the relation expressed in Equation 3.33, the linewidth as a function of

temperature should look somewhat similar to the phonon attenuation curve in Figure

3-2. Experimental results, seen in Figure 3-4 from Reference [5], show that the

linewidth of Brillouin scattered light has a similar shape to that of the acoustic phonon

attenuation as a function of temperature.

Similar to the problems encountered by the non-linearity of the Brillouin frequency

shift as a function of cryogenic temperatures, the non-linearity of the linewidth also

has a range where the linewidth could represent two different temperatures. By mea-

suring both the linewidth and frequency shift, one could determine the temperature

only if the strain effects were also known. If the strain that the sensor fiber is expe-
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Figure 3-4: Brillouin scattered light’s linewidth as a function of temperature down to
4 K (from Reference [5]).

riencing is not known, the third parameter, intensity of the Brillouin scattered light,

also needs to be measured to determine the temperature and strain in the fiber.

3.3 Comparison to Other Magnet Diagnostics

The purpose of developing a fiber optic diagnostic for superconducting magnets is

not to simply replace existing sensors, but to improve and broaden the information

that can be derived from measurements as well. As mentioned in the previous chap-

ter, a fiber optic interferometer would work as well as a co-wound voltage tap for

quench detection; however, it does not provide any additional information. On the

other hand, a spontaneous Brillouin scattering sensor could make measurements in a

superconducting magnet that have not been possible in the past.

3.3.1 Quench Detection

A reliable quench detection system is the most important diagnostic in actively pro-

tected superconducting magnets. As discussed in the previous chapter, many different

93



methods have been used to detect quenches in magnets of all shapes and sizes. Large

superconducting magnets being developed for nuclear fusion experimental reactors

are state-of-the-art, and therefore, their diagnostic systems should be as well. While

the co-wound voltage taps will work for ITER-sized magnets, they will work only as

a quench detector.

Implementing a fiber optic sensor based on spontaneous Brillouin scattering would

not only work as a quench detector, but also as a quench locater. Voltage taps can

get some degree of spatial resolution by implementing a system with voltage taps of

different lengths, monitoring different parts of the magnet, but this does not come

close to the resolution capabilities of a Brillouin scattering system. For example take

the ITER central solenoid with its six sub-sections, each a little over six kilometers

long. In order to get “spatial resolution” on the order of one kilometer, 36 voltage

taps would be needed. On the other hand, a single fiber could give spatial resolution

on the order of five meters, 200 times better resolution.

Using Optical Time Domain Reflectometry, sending pulses of light down the sens-

ing fiber allows distributed measurements based on the time of flight of light and the

time that signals are detected. The spatial resolution of the system is determined by

the pulse length of the light. The shorter the pulse length, the shorter the physical

length of the light pulse excited in the fiber at any given time. Although decreasing

the pulse length improves the spatial resolution, the signal to noise ratio decreases

with decreasing pulse length. This continues down to a fundamental limit of about

a 50 ns pulse, which corresponds to about 5 meter spatial resolution, when the fre-

quency shift becomes a function of pulse length as well as temperature and strain

[50]. Chapter 5 will discuss the these tradeoffs in more detail.

3.3.2 Quench Propagation

Quench propagation throughout superconducting magnets is an interesting area of

study since there is very little experimental data to confirm the theoretical calcula-

tions. As discussed in Section 1.2.3, several numerical codes have been developed to

predict how a quench will propagate through a magnet. Quench experiments have
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explored a moderate sample of possible quench behavior and the existing codes have

had some success in simulating quench behavior, after the fact. However, the pos-

sibility of distributed thermometry would greatly improve the ability to understand

magnet behavior during routine operation and quench. Thousands of thermocouples

could be positioned in a three dimensional array in an operating magnet to measure

a distributed temperature. However, aside from the wiring nightmare, the lead wires

from the thermocouples through the insulation would alter the thermal transport of

the magnet, not to mention the electrical integrity of the magnet.

Winding an optical fiber in the cable and using our spontaneous Brillouin scatter-

ing system would provide a real-time distributed temperature measurement through-

out the magnet, without interfering with any electromagnetic or structural properties

of the magnet. Because of the ability to spatially resolve the temperature measure-

ments in real-time, the propagation of a quench could be tracked as the magnet

quenches. Experimental data tracking the propagation of a quench through a mag-

net would be a superior method of calibrating the theoretical simulations that are

currently used in the design of superconducting magnets.

3.3.3 Heat Treatment

Depending on the type of superconductor used in a magnet, a heat treatment may be

necessary to react the metals. Of the two most common superconductors, NbTi does

not need to be heat treated, but Nb3Sn requires a lengthy heat treatment. During

the drawing of a Nb3Sn wire, the niobium and tin are separate. A several hundred

hour heat treatment at temperatures around 600 C - 700 C allows the niobium and

tin to diffuse together and form the Nb3Sn superconducting alloy. For large super-

conducting magnets, the heat treatment process occurs in a huge oven which is heated

very slowly to allow the magnet to warm uniformly. Obviously there is no way to

measure the temperature in the inner windings of the magnet, so the approximate

temperature throughout the magnet has to be theoretically calculated based on ther-

mal diffusion times. While these calculations are conceptually straightforward, it is

desirable to have real-time temperature measurements throughout the magnet during
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this process.

Brillouin scattering in fused silica has been studied through the glass transition

temperature of 1200 C, up almost to the melting point of the glass, 1700 C [59].

Obviously, the normal plastic coating on a fiber would not survive these temperatures.

The plastic coating vaporizes at around 200 C, but some metal coated fibers can

survive the temperatures of the heat treatment. However, once the fiber is in place

as a sensor, the evaporation of its plastic coating may not matter. Depending on how

the metal coating is applied to the fiber, there could be stresses in the fiber due to

the coating, but a thermal cycle can relieve these stresses [60]. Fiber survival is one

of the engineering issues of our spontaneous Brillouin scattering system that will be

discussed more in Chapter 6.

While studying the high temperature characteristics of Brillouin scattering in

fused silica, a noticeable hysteresis was observed. A discrepancy of about 50 MHz

between the heating and cooling was measured during a thermal cycle between 20 C

and 850 C, as seen in Figure 3-5 [61].
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Figure 3-5: Hysteresis in the Brillouin frequency shift during a thermal cycle (left).
An annealing process at 850 C that eliminates the hysteresis (right).

Although a 50 MHz discrepancy is a large deviation, Figure 3-5 also shows that

several hours into an annealing process at 850 C, the Brillouin frequency shift levels

out. This process eliminates the hysteresis, as shown in a post-annealing thermal

cycle in Figure 3-6 [61].

These experiments imply that our spontaneous Brillouin scattering system should
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Figure 3-6: Brillouin frequency shift during a thermal cycle after the fiber has been
annealed.

work well at the temperatures encountered during a heat treatment. By annealing,

and calibrating our fiber before winding it in the magnet, we could eliminate the

hysteresis and be able to use it as a distributed temperature sensor during the heat

treatment. By obtaining spatially resolved temperature measurements, our system

would be able to confirm that the magnet is heating at a uniform temperature, which

is a measurement that has not been possible in the past.

3.3.4 Strain Measurement

Another measurement that has been impossible to date is an internal distributed

strain measurement. Strain gages can be placed on the surface of the magnet; how-

ever, there is no strain diagnostic that can measure the internal strains in a magnet.

By winding a fiber in the magnet’s wires, our spontaneous Brillouin scattering system

can measure distributed strain. Theoretically, the distributed strain could be mea-

sured throughout the cabling process, the heat treatment, and even during magnet

operation. Quenches and other electromagnetic variations exert forces on the magnet

that can be simulated, but having experimental data to confirm these calculations

would be very helpful. Not only could a distributed strain sensor confirm the pre-
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dicted strains, but it could also potentially find unexpected strains that would lead

to a better understanding of a magnet during normal operation and quenches.
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Chapter 4

Experimental Data

The experiments of this thesis were designed as a proof of concept that a sponta-

neous Brillouin scattering system can work as a superconducting magnet diagnostic.

Other Brillouin scattering systems have worked as distributed temperature and strain

sensors. However, their measurements take on the order of minutes, and these mea-

surements are all approximately room temperature. In order to be used as a quench

detection system, a measurement needs to be taken at cryogenic temperatures, within

seconds, not minutes. The previous section presented figures of the frequency shift

and linewidth at cryogenic temperatures, but the data for them was generated using

Thévenaz’s stimulated Brillouin scattering system. Although stimulated and spon-

taneous Brillouin scattering are based on the same physics for the most part, it is

still necessary to verify the cryogenic temperature dependence of the frequency shift,

linewidth, and intensity for a spontaneous scattering system.

Previous experiments have addressed the effect of strain on the key parameters;

however, these experiments were in the linear, room temperature range. Chapter

3 discussed how the introduction of non-linear effects makes a set of two equations

and two unknowns inadequate to solve for the two unknowns. We needed to verify

that a spontaneous Brillouin scattering system did not need a fourth parameter and

equation to solve for the temperature and strain.

To complete the proof of concept we also needed to plot the Brillouin frequency

shift, intensity and linewidth as functions of temperature and strain. Once these
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plots were generated, they could be used as a multi-dimensional lookup table. After

measuring the frequency shift, intensity, and linewidth, a unique temperature and

strain can be determined.

4.1 Our Spontaneous Brillouin Scattering System

The problem with previous stimulated Brillouin scattering systems was that they

required several minutes to make a measurement. Stimulated Brillouin scattering

systems need to temperature tune a laser many times for each measurement, requiring

approximately 30 seconds for each tuning. One solution to this problem is to tune

the laser with something other than temperature so that the tuning time is greatly

reduced. NP Photonics has developed a fiber laser that can be piezo-electrically

re-tuned thousands of times per second.

Previous spontaneous Brillouin scattering systems also required several minutes

of data acquisition in order to achieve a good signal to noise ratio. NP Photonics has

developed a spontaneous Brillouin backscatter system that is capable of acquiring

a good signal to noise ratio in less than a second. The system uses Optical Time

Domain Reflectometry (ODTR) to spatially resolve measurements, as discussed in

Chapter 2. A fiber laser sends light at 1550 nm through a coupler that splits the light

into two different paths, as shown in Figure 4-1.

Fiber laser

Brillouin
Laser

AOM
Sensor

Coherent
Detection

Figure 4-1: Diagram of spontaneous Brillouin scattering system.

The light from the fiber laser going to the upper path is used to pump NP Photon-
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ics’ Brillouin laser, which is an ultra-narrow linewidth (100 Hz)laser [62]. The light

leaving the Brillouin laser is combined with the Brillouin backscattered light from

the lower path in Figure 4-1. The Brillouin laser is used as a frequency-shifted local

oscillator for the heterodyne detection of the spontaneous Brillouin scattered signal.

Since the Brillouin frequency shift is in the 11 GHz range, measuring the frequency

of the light within a few MHz is very difficult and expensive. By using a Brillouin

laser as a local oscillator, with a frequency nearly 11 GHz lower than that of the fiber

laser, the beat signal is heterodyned from the microwave range to the radio frequency

range [63]. It is now possible to use a standard detector to measure the frequency

shift of the spontaneous Brillouin scattered light.

In order to measure the linewidth of the spontaneous Brillouin scattered light,

a MATLAB program was used to take the Fast Fourier Transform (FFT) of the

signal. These experiments were done under a Department of Energy Small Business

Innovative Research (SBIR) Phase I grant whose main purpose was to show feasibility

of this measurement approach. In Phase I, there was insufficient funding and time

to develop high speed hardware in addition to the existing system. Instead, the

signal was split and run through a General Purpose Interface Bus (GPIB) cable to a

second computer, where the signal was recorded. The signal data was run through the

MATLAB FFT program to convert the signal data in time-space to frequency-space.

Limited by the maximum data transfer speed of the GPIB cable, we were not able to

get as many averages of data for the linewidth measurements as we would have liked.

4.2 Temperature Experiment (Zero Strain)

The main goal of the temperature experiment was to characterize the effect of tem-

perature on the spontaneous Brillouin scattering in optical fibers at cryogenic tem-

peratures. We measured the frequency shift, linewidth, and power at many different

temperatures from 4 K to room temperature. We also determined that the best spa-

tial resolution of our system at 4 K was around 8 meters. A secondary goal was to

measure the effect of pulse length on the parameters at specific temperatures.
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We were able to measure the frequency shift, intensity and linewidth over a tem-

perature range from 4 K to room temperature. The frequency shift and linewidth data

agree qualitatively with data from other experiments. Two different DAQ systems

were used to measure the frequency shift and intensity, and both gave very similar

results. We were able to achieve a spatial resolution of 8 m along 40 meters of gold

coated fiber at 4 K, with a measurement time of less than a second.

4.2.1 Experimental Probe

One of the most important factors in the design of this experiment was that the fiber

needed to be at a uniform temperature during data acquisition. The probe had to be

cooled down to 4 K, and then the temperature needed to be stepped back up to room

temperature as measurements were being recorded. The experiments needed to be

done at NP Photonics in Tucson Arizona, because all of the optical components were

set up there spanning several optical tables. Consequently the probe was designed to

fit in a six-inch Dewar that was easy to ship. The Dewar, shown in Figure 4-2, has

a central helium reservoir that is thermally protected from room temperature air by

two vacuum layers and a liquid nitrogen reservoir.

Nitrogen
Reservoir

Helium
Reservoir

Vacuum
Jacket

Figure 4-2: Diagram of a cryogenic Dewar.

To provide a uniform temperature we loosely wound the fiber in a channel cut
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into an aluminum disk as seen in Figure 4-3. The aluminum holder was 4 inches in

diameter, 0.75 inches thick (with the top on), and the quarter inch by quarter inch

channel had an average diameter of 3 inches.

Figure 4-3: Location of the thermocouples and silicon diode relative to the coiled
fiber.

An initial experiment was run at MIT to check the temperature uniformity using

7 thermocouples, and it showed that the temperature was uniform in the channel to

within the accuracy of the thermocouples. In the experiment at NP Photonics, two

gold-chromega thermocouples and a silicon diode were equally spaced in the channel

to confirm that the fibers were heating uniformly, as seen in Figure 4-3. The silicon

diode and thermocouples were thermally anchored to the probe by winding them one

lap around the fiber channel.

In order to achieve the most accurate measurement at low temperatures, the

thermocouples were set up to measure a differential temperature, not the absolute

temperature. The temperature in the probe was measured compared to 4 K, so the

low temperature measurements were measuring a much smaller temperature difference

than when the probe was near room temperature. Since we were interested mostly in

the cryogenic temperatures where a magnet would be superconducting, it made sense

to have more accurate temperature measurements at low temperatures as opposed to

closer to room temperature. The differential thermocouples were set up as seen in

Figure 4-4.

Once the probe and fibers were cooled down in liquid helium to 4 K, the probe was
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Figure 4-4: Diagram of a differential thermocouple setup.

lifted up to a position directly above the liquid helium. The silicon diode interacted

with a Lake Shore temperature controller that read the temperature measured by

the silicon diode and the output current to a heater. For our probe, the heater was

2.3 meters (25 ohms) of a constantan wire that was non-inductively wound and held

against the top and bottom of the aluminum fiber holder, as seen in Figure 4-5. The

thermal contact was improved by applying Apiezon grease between the aluminum

holder, heater wire, and the fiberglass plate that held the heater wire in place.

Styrofoam was fitted around the probe to limit the effect of convection from the

boiling helium on the temperature stability of the probe. A full view of the probe,

including the thermocouple anchor, liquid helium level sensor, and insulation can be

found in Appendix C.

4.2.2 Results

The sample fiber in the probe was made up of 40 meters of gold coated fiber and

40 meters of copper alloy coated fiber. Light from the laser system came through a
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Figure 4-5: View of the top and bottom inductively wound constantan wire heaters.

standard single mode fiber that was fusion spliced to one end of the gold coated fiber

outside the cryostat at room temperature. The other end of the gold coated fiber was

fusion spliced to the one end of the copper alloy coated fiber inside the probe. The

other end of the copper coated alloy fiber in the probe was cleaved at 7 degrees to

minimize Fresnel reflection from the end of the fiber. The plan was to use ODTR to

analyze the data from the gold and copper coated fibers separately, but at 4 K the

attenuation in the gold coated fiber was so high that the signal through the copper

coated fiber could not be analyzed.

105



Cryogenic Results

In the temperature measurement experiment we used a silicon diode and two gold-

chromega thermocouples, equally spaced in the channel to monitor the temperature

in different locations. As seen in Figure 4-6, the temperature was uniform at the

three measuring points.
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Figure 4-6: Low temperatures measured by the thermocouples and silicon diode are
almost exactly the same.

The first day of the experiment, when temperatures from 4 K to 85 K were stud-

ied, liquid helium was used in the central reservoir of the cryostat. The differential

thermocouple reference was in the liquid helium at the bottom. On the second day,

when temperatures from 77 K to room temperature were studied, liquid nitrogen was

used as the cooling fluid in the cryostat, and the differential thermocouple reference

was in the liquid nitrogen at the bottom of the cryostat. Like the low temperatures

measured on the first day, the three measurement points were similar for the second

day, as seen in Figure 4-7.

Gold-chromega thermocouples are very accurate at cryogenic temperatures. A
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Figure 4-7: Higher temperatures measured by the thermocouples and the silicon diode
are the same within measurement error (the two thermocouple lines are on top of each
other).

one degree difference near 4 K corresponds to about a 12 µV difference in the signal.

The DAQ system was accurate to 1 µV , corresponding to an error of about 0.1

K. The copper lead wires from the cryogenic soldering blocks to the DAQ system

were made from adjacent pieces of a single spool of copper wire, so the lead wires

should not significantly contribute to the error. The silicon diode has an error of

± 0.5 K for 2 - 100 K and 1 % of the temperature from 100-305 K. Its signal was

on the order of mV, and the DAQ system was accurate to µV , so the overall error

from the silicon diode was about ± 0.5-3 K depending on the temperature. All

three signals were extremely close and within their respective error ranges, implying

that the temperature measurements were very accurate, and the sample fiber was

uniformly heated.
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Brillouin Frequency Shift Results

One of our main goals for this experiment was to measure the spontaneous Brillouin

frequency shift as a function of temperature. The probe was placed in liquid helium

to obtain the 4 K data; then the probe was raised slightly above the liquid helium

and the heater was used to warm up the fiber 1 degree at a time up to 25 K. From 25

K, the temperature was stepped up by 2 or 3 K until 85 K. At that point we removed

the probe and let it warm up to room temperature overnight as the remaining liquid

helium evaporated. The following day the probe was cooled to 77 K by liquid nitrogen,

and the temperature rose from 77 K to 300 K in 5 degree steps. Figure 4-8 shows the

data we recorded compared to a similar plot from the literature [5]. Thévenaz’s data

is the absolute Brillouin frequency shift as a function of temperature, while our data

is the frequency shift relative to the local oscillator (NP Photonic’s Brillouin fiber

laser). In order to make this plot, we subtracted a little over 11 GHz (the difference

between the pulse and the Brillouin laser frequency) from Thévenaz’s data to compare

it to our data.

As expected, Figure 4-8 shows that the frequency shift does not depend signifi-

cantly on the pulse width. Overall our curve is very similar to the one produced by

Thévenaz. An exact match between spontaneous and stimulated Brillouin scattering

would not be expected. Furthermore, Thévenaz used standard single mode fiber and

our data is from a gold coated fiber. Before we did our first cryogenic experiments,

Jihong Geng (at NP Photonics) did several experiments with several types of fibers

with different coatings in an oven, recording the frequency shifts at different tem-

peratures. His results, shown in Figure 4-9, show that different types of fibers and

coatings have different responses to temperature changes. This is not a problem for

Brillouin scattering sensors, but it means that the sensing fiber, or a fiber of similar

type and coating, needs to be calibrated.

The spontaneous Brillouin scattering frequency shift range that we are most in-

terested in for superconducting magnets is shown in Figure 4-10.

There are several interesting results shown in Figure 4-10. Until the second day
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Figure 4-8: Our relative spontaneous Brillouin frequency shift agrees well with
Thévenaz’s stimulated Brillouin frequency shift.

we did not take data for 20 and 53 ns pulses because the signal to noise ratio was

not good enough to get reliable data. Figure 4-8 shows that there was still too much

noise for the 20 ns pulses up to about 100 K, so that the 20 ns data points below 95

K are dominated by noise. Above 100 K, the signal intensity was high enough that

even the 20 ns pulse was reliable. The signal to noise ratio can be improved in several

ways that will be discussed further in Chapter 5, including improved hardware and

fibers with better attenuation properties.

Another interesting aspect of Figure 4-10 is the jump in frequency shifts around

77 K. One path follows from 4 K to 85 K (the data from the first day), and the second

path is continuous from 77 K to 300 K (the second day). This is due to the effect

of thermal cycling of the fiber. The slopes of the curves in Figure 4-11 show that

the attenuation in the gold coated fiber actually got better after a thermal cycle by

a factor of about 2.5. There is not enough data to quantify these changes accurately;

however, one can clearly see that there was a significant change in the attenuation of
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Figure 4-9: Different coatings and fibers will result in different frequency shifts (MHz)
at the same temperature.

the gold coated fiber between day one and two. The data for the copper coated fiber

is not as accurate, since it has the fewest data points and it has inaccuracies from

being adjacent to the end cleave. When the fiber was cooled down to 4 K, some of

the stresses in the fiber from the fabrication process were relieved, making the fiber

behave more like a standard single mode fiber (with better attenuation).

Even though both the gold coated fiber and copper coated fibers were affected

by the thermal cycle, it seems that the copper coated fiber was affected less. This

is evident in Figure 4-11 because the attenuation (slope) did not change as much as

it did for the gold coated fiber. Figure 4-12 also shows that the copper coated fiber

was less affected than the gold coated fiber, because the frequency jump between the

two days is not as large: about 10 MHz difference for the gold coated fiber and only

about 5 MHz difference for the copper coated fiber.

Determining the errors for the frequency shift measurements is relatively straight-

forward. The frequency shift is measured between the backscattered light and the

light coming from the local oscillator (the Brillouin laser). These two signals are op-

tically combined, and their frequency differences create a beat signal, which is mea-
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Figure 4-10: Area of interest for low temperature superconducting magnets.

sured using an embedded Field Program Gated Array (FPGA) which is run through

a MATLAB program. This is the only significant source of error for the frequency

measurement, and is mainly dependant on the number of averages. For our experi-

ments we took 65,000 averages which corresponds to an accuracy of better than 500

kHz.

There are a couple other factors that can come into play, such as the stability

of the lasers, but these errors should be insignificant, which is a major advantage of

this system. In order for the laser’s frequency stability to matter, the Brillouin laser

(which is an actively stabilized laser) would have to shift after the pulse is sent down

the fiber but before the backscattered light returns. Consequently for a 1 km sensing

path, the lasers would have less than 3 µs to shift to be detected. Even if the laser

shifts an order of magnitude more than its linewidth, 200 Hz, the error still would

only be in the kHz range. Also a control fiber at a known temperature and strain is

used as a reference to ensure that the lasers are not shifting, and to calculate the shift

if they do. Therefore, the major source of error for the frequency shift calculations is
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Figure 4-11: Room temperature intensity plots from day 1, before any cryogenic
temperature cycle, and from day 2 after going to 4 K and back to room temperature
on day 1.

Figure 4-12: Gold and copper coated fiber frequency shifts after a thermal cycle.

the error of the frequency counter, which is accurate to better than 500 kHz.

Brillouin Intensity Results

The intensity of the Brillouin backscattered light is also an interesting variable that

can help determine the temperature and strain in a fiber. Theoretically, one would

think that as the temperature goes down, the intensity of the backscattered light will

also go down since the scattering is off acoustic phonons, and movement slows down

as the temperature approaches absolute zero. This is the general trend we found in

our experiment. However, there is some interesting behavior when the temperature
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gets down to around 15 K, as shown in Figure 4-13.
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Figure 4-13: Intensity generally increases as a function of temperature, except for the
range below about 15 K.

As we expected, there was a general decreasing trend of the intensity of the signal

as we lowered the temperature. Below about 15 K, the intensity begins to rise as the

temperature decreases. While this is counterintuitive, it follows the qualitative shape

of the acoustic velocity curve in Figure 3-2. Similar to the non-monotonic Brillouin

scattered light’s frequency shift as a function of temperature, the intensity of Brillouin

scattered light is also non-monotonic.

The error of the intensity measurements should be very small since the voltage

is directly related to the power at the detector, written in Equation 4.1, where the

responsivity, <(λ), is a function of wavelength, but is constant around 1550 nm, where

we are operating.

Vout = P<(λ)Rload (4.1)

The digitizer we used has 10 bit resolution, so the estimated instrumental error for
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the intensity measurements is only about 0.1 % of the measured quantity. Adding in

the errors of the resistive load and the responsivity, the overall error of the intensity

measurements is on the order of a few percent. In a long-length distributed sensor

system, attenuation will become a factor in the intensity measurements as a function

of distance. While this was not a factor in this experiment which only measured a

single section of fiber, a distributed sensor that is a few kilometers long will have to

account for the attenuation of the scattered light as a function of distance. This will

be discussed further in Chapter 5.
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FFT Results

As part of the SBIR Phase I, we developed a second DAQ system to measure the

linewidth of the scattered light. This system was connected to the original DAQ

system with a GPIB cable, so the speed was limited. Instead of taking 65,536 averages

in a half of a second, we took 230 averages in about 30 seconds. However, if this system

were connected directly to the detector as the original DAQ system was, it would have

an equivalent sampling rate and measurement time.

In the temperature experiment, we took data with the original NP Photonics

system to get the frequency shift and intensity, and then we acquired data with the

new system to measure the linewidth. The new system takes a Fast Fourier Transform

(FFT) of the signal to get the frequency spectrum for a particular region. Due to

the speed of data acquisition, we decided to do 230 averages on a single 30 meter

section of the fiber. On the first day (for temperatures 4 K - 85 K), we recorded only

30 m of the gold section of the fiber, due to the lack of signal in the copper coated

fiber. On the second day (for temperatures 77 K - 300 K), we recorded a sample

for the gold coated fiber and a sample for the copper coated fiber. Each of these

measurements was done using an 80 ns pulse, a 100 ns pulse, and a 200 ns pulse to

determine whether the pulse width affects the linewidth.

Figure 4-14: FFT of 100 ns pulses at different temperatures gives linewidth, frequency
shift, and intensity. The left plot shows temperatures from 4 K to 50 K, and the right
plot includes temperatures up to room temperature.
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Figure 4-14 shows the raw FFT data for 230 averages of a 30 meter section of the

gold coated fiber at different temperatures. From this data, we can get the linewidth,

frequency shift, and intensity of the section of the fiber we are measuring. Just from

a quick glance, one can tell that the frequency shifts and intensities follow the same

trends as were recorded using the original NP Photonics system.

Although this data is qualitatively what we were expecting, the signal to noise

ratio for many of the data points is not good. In the range of 30 K to 50 K, the raw

data is similar to that shown in Figure 4-15. The intensity of the background noise

is close to the intensity of the signal spectrum, and subtracting out the background

noise changes the linewidth significantly. Due to the small number of averages, the

data is very rough, so a smoothing function was used to analyze the data. When the

DAQ system is upgraded, the number of averages per measurement will be increased

significantly, so that smoothing the data should be unnecessary, and subtracting the

background noise will not have such a large effect on the linewidth.
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Figure 4-15: Raw FFT data does not have a good signal to noise ratio in the 30 K -
50 K region, and smoothing functions only help a little.
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For the FFT linewidth data analysis, we used the smoothed data to calculate the

FWHM from 4 K to 300 K, and compared it to the linewidth of stimulated Brillouin

scattering that Thévenaz measured, as shown in Figure 4-16.
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Figure 4-16: Linewidth as a function of temperature is qualitatively the same as
Thévenaz’s.

Again, our data does not exactly match Thévenaz’s data. But this would not be

expected since our experiments used a different type of fiber and measured sponta-

neous, rather than stimulated scattering. One very interesting aspect of Figure 4-16

is the dependence on the pulse length. This could also be an effect of the low signal to

noise ratio and the smoothing technique. When we have a system that will average

thousands of pulses, we should be able to tell if there is a difference in linewidth

based on the pulse length, or whether this is an artifact of the low signal to noise

ratio. Theoretically the dependence on pulse length does not matter, as long as we

calibrate each pulse length we use.

I mentioned earlier that all three of the interesting parameters (frequency shift,

linewidth, and intensity) can be taken from this one data-set in frequency space. In
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order to compare the two systems, we need to take the negative value of the frequency

shift from the FFT data and add 250 MHz to compensate for optical components that

differ for the two systems. Figure 4-17 shows that the frequency shifts from the two

systems are almost exactly the same, and that they both agree with Thévenaz’s data.
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Figure 4-17: The frequency shift from the FFT and original system are the same and
in good agreement with the literature.

The frequency shift is almost exactly the same for both systems, but the intensities

are slightly different. The intensity measurements are on an arbitrary scale in each

DAQ system, so in order to get them to be the same order of magnitude, the FFT

intensity data of the lower one was multiplied by 5 × 106. The data from the two

DAQ systems can then be compared, as shown in Figure 4-18. They follow the same

general trend of higher intensity at high temperatures. But the minimum intensity

from the FFT data is around 40 K, whereas the minimum is around 10 K for the

original NP DAQ system. Again, these differences may come from the low signal to

noise ratio data of the FFT system, which will be corrected with DAQ upgrades to

the system.
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Figure 4-18: The intensity measurements from the two systems are not exactly the
same.

Comprehensive error calculations were not performed for the linewidth data. As

seen in Figure 4-15, the raw signal has a very bad signal to noise ratio and depending

on the data manipulation and processing, the data has large errors. After system

upgrades, when more averages and better data have been obtained, meaningful error

calculations can be carried out. For this experiment, the error ranges are very large,

but we are just looking for qualitative agreement with the expected data, which is

apparent in Figure 4-17 and 4-18.
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4.3 Strain Experiment

The main goal of the strain experiment was to characterize the effect of strain on the

spontaneous Brillouin scattering parameters (intensity, linewidth, and frequency shift)

in our fibers at cryogenic temperatures. Prior to this experiment, there was no data

available on the effects of strain on Brillouin scattering at cryogenic temperatures.

Measuring the effect of strain on these parameters is difficult due to the low spatial

resolution of ODTR Brillouin scattering systems. Since the best theoretical spatial

resolution is on the order of meters, the experiment needs to uniformly strain a few

times that length of a fiber. Uniformly straining tens of meters of fiber is not too

difficult at room temperature, but when it has to be done in liquid helium most of

the commonly used straining systems are no longer feasible.

Since we wanted to map the effect of strain on the Brillouin scattering parameters

as a function of temperature as well, the probe also had to be able to control the

temperature of the sample fiber. The following section will describe the probe design,

and how it uniformly strained about 50 meters of fiber at a controlled temperature.

In the experiment, the temperature controller was used to heat the fibers to a de-

sired temperature and then the fibers were strained to around 3000 µε, taking data

throughout the strain run. This was done at many different temperatures from 4 K

to room temperature to get a good sample of temperature-strain space data points.

The temperature was not exactly constant through a strain run, but the temperature

was recorded every time the frequency shift, intensity, and linewidth were measured.

By making these measurements throughout a range of temperatures and strains, this

experiment allowed the mapping of the frequency shift, intensity, and linewidth as a

function of temperature and strain.

4.3.1 Experimental Probe Design

The most difficult part of the strain experiment was designing a probe that would

uniformly strain 50 meters of fiber. Since the expected strain range for ITER magnets

is around 2000 µε, and fibers can survive about 10,000 µε at room temperature,
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we decided to strain our fibers to around 4000 µε. While this is a relatively small

strain, it is higher than the yield strain in most metals, especially in liquid helium.

Several probe designs were discussed and rejected due to a number of complications,

as discussed in Appendix D.

The probe design that we decided to use is similar to the probe on the cover of

Ekin’s book on cryogenic experimental technique [64]. When two cone-shaped disks

are pressed together, their overall diameters will increase slightly, as seen in Figure

4-19.

D1

D2

h1 h2

Figure 4-19: Cross section of two disks being pressed together. As the disks are
pushed together, their diameter increases.

Although the concept is conceptually simple, the constraint of working in a cryo-

genic environment made the design more difficult. For example, below 10 K, most

steels become brittle. Fortunately, some metals, like titanium, become stronger and

more ductile at cryogenic temperatures. We used a titanium-aluminum-vanadium al-

loy, Ti-6Al-4V, which had the best cryogenic properties for our experiment [65]. Not

only did we need to find a material that is ductile at 4 K, but we also had to design

the probe so that it would not buckle under the forces, as discussed in Appendix E.

Since we needed to strain 50 meters of fiber, we could not have the two disks

simply pushing on each other, because we needed a large area to wrap the fibers.

In order for the experiment to be carried out in a six-inch dewar (for shipping and

cryogen costs), the sample wrapping diameter of the probe could be at most four

inches. Wrapping 50 meters of fiber around a cylinder with a diameter of four inches

means that the fiber will be wrapped about 150 laps. Since the fibers are about 160

µm in diameter, 150 laps of fiber will cover about one inch of the cylinder vertically.
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Including space for temperature and strain sensors on the probe, we made the fiber

wrapping area 3.5 inches, as shown in Figure 4-20.

Figure 4-20: Strain probe with a few sections removed to see the disks.

The probe uses a threaded push-pull rod combination to force the two disks to-

gether in order to radially expand the cylindrical fiber holder. Using a threaded rod

with 40 threads per inch, the two disks can be forced together in a very controlled

fashion. However, knowing the actual strain applied is much more complicated. Due

to the thermal expansions of the different types of materials used, as well as the chang-
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ing level of liquid helium throughout the experiment, an exact correlation between

the number of turns and strain applied is not possible. Many strain experiments use

an extensometer to very precisely measure displacement, but there was not enough

room in and around our probe for an extensometer. A fiber strain gage was utilized

in order to measure the exact strains felt by the sample fiber. FBGs are commonly

used as strain gages, but they are not calibrated at cryogenic temperatures. In order

to use FBGs as strain gages at the cryogenic temperatures in our experiments, we

needed to first calibrate the FBGs at these temperatures, as described in Appendix

A.

Figure 4-21 shows the final view of the sample fibers epoxied to the probe before

the experiment. For more photos, see Appendix F.
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Figure 4-21: Final view of the strain probe.
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4.3.2 Results

The sample fiber wrapped around the probe was made up of three fiber sections, be-

cause the gold coated fiber broke while removing it from the temperature experiment

probe. The gold coated fiber samples were about 10 and 15 meters long, and the

copper coated fiber was about 30 meters. Each of these sample fibers had leads that

went in and out of the probe from room temperature. The fiber path from the laser

started with 100 meters of standard single mode fiber (SMF) at room temperature

as a reference fiber. This fiber was fusion spliced to the copper coated fiber, which

descended and wrapped around the probe and came back out to room temperature.

The end emerging from the probe was fusion spliced to 20 meters of SMF at room

temperature, followed by the 15 meter gold coated fiber sample, another 20 meters of

SMF at room temperature, and finally the other 10 meter gold coated sample fiber

with a 7 degree cleave to minimize Fresnel reflection.

Cryogenic Results

One of the most difficult parts of the design of this experiment was uniformly straining

50 meters of fiber at a constant temperature. Since the frequency shift, intensity and

linewidth are all functions of temperature and strain, in order to measure the effect

of strain, the fiber has to be at a uniform temperature. In any system there are

temperature gradients, but the probe design must ensure that these gradients are

negligible. On the inside of the probe, a silicon diode was epoxied using Stycast 2850

epoxy which has high thermal conductivity throughout the temperature range of our

experiment. Also, on the outside of the probe, two gold-chromega thermocouples

were soldered to the surface. As seen in Figure 4-22, the thermocouples are above

and below the copper coated and gold coated fibers, and the silicon diode is positioned

at the mid-plane on the inside.

As seen in Figure 4-23, the temperatures recorded by the silicon diode are within

a degree or two of the two thermocouples. The top thermocouple (green line), and

the bottom thermocouple (blue line) are also extremely close together, which proves
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Figure 4-22: Locations of the silicon diode (on the inner surface) and thermocouples
(on the outer surface).

that the temperatures at the top and the bottom of the fiber samples were very close.

The gold-chromega thermocouples and the silicon diode are the same as those

used in the temperature experiment. The DAQ system is also the same, meaning the

errors are less than 1 K for the thermocouples and ± 0.5-3 K for the silicon diode at

all temperatures.
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Figure 4-23: The temperatures of the silicon diode and thermocouples are within a
few degrees or less.
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FBG Strain Gage Results

In order to determine the actual strain applied in the sample fiber, we decided to

use Fiber Bragg Gratings as the strain gage. The strain comes from the disk fingers

pushing out the steel fiber holder, which increases the gaps between them. It is

assumed that the fibers slide on the steel surface to distribute the strain as uniformly

as possible. Regular strain gages cannot be used across the gaps, and the apparatus is

too small to use an extensometer. Furthermore, standard laser-to-point measurement

systems do not work while submersed in liquids.

Since the FBGs can be wrapped on the same surface as the sample fiber and mea-

sure the exact strain a fiber feels, they are ideal for use as a strain gage. However,

the FBGs had not been calibrated for use at cryogenic temperatures. Therefore, a

preliminary experiment was conducted to calibrate the FBGs at cryogenic tempera-

tures, see Appendix A, and the data from that experiment was used to determine the

actual strain in the sample fiber.

Three FBGs were used in this experiment: one at the top, one at the bottom, and

one in the middle as seen in Figure 4-24. By comparing the strain experienced by

these fibers, we could verify that the cylinder expanded uniformly. An optical switch

was used to switch between the three FBGs during the experiment, and the separated

data is shown in Figure 4-25. The optical spectrum analyzer had an accuracy of ±

0.005 nm, which converts to ± 3 to 8 µε depending on the temperature.

As previously mentioned, the strain measured in the three FBGs was used to verify

that the cylinder is expanding the same amount at the top and bottom, proving that

the top of the fiber sample is being strained the same amount as the bottom of the

sample fiber. Figure 4-26 also shows the associated Brillouin frequency shift vs. strain

plot, which has three lines depending on which FBG is used. For the rest of the fiber

data analysis, an average of the top (red) and middle (green) FBG is used since the

copper alloy coated fiber is between them.
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Figure 4-24: Location of the Fiber Bragg Grating strain gages.
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Figure 4-25: Strain measured by the three FBGs.
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Figure 4-26: The strains measured by the three FBGs are very similar, especially the
top and middle FBGs which surround the copper coated fiber. Depending on which
FBG is used, the Brillouin frequency shift as a function of strain is also plotted.
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Brillouin Frequency Shift Results

The frequency shift as a function of temperature at zero strain was measured from 4

K to room temperature in our first experiment and by Thévenaz. Before each strain

run, data was recorded as a baseline zero-strain reference point. Plotting these points

as a function of temperature gives us a figure that is qualitatively the same as the

measured results from the temperature experiment. It is not quantitatively the same,

since the first experiment’s data was generated by the gold coated fiber, and the data

reported here is from the copper alloy coated fiber. This second experiment confirms

the results from the temperature experiment and adds strain as a third dimension.

Since the data was generated from the copper alloy coated sample fiber, located

between the top two FBGs, we used the average strain recorded by FBGs 1 and 2.

Figure 4-27 shows the frequency shift, relative to the Brillouin laser local oscillator,

at 15 different temperatures as a function of strain. These measurements were made

using both 53 ns and 80 ns pulses, corresponding to approximately 5 m and 8 m

spatial resolution, respectively.

Figure 4-27: Relative frequency shift at different temperatures as a function of strain.

There were several points in the 4 K data set that were extreme outliers, mostly

at the final position of the strain run. Since the 4 K strain run was the first run,

we originally attributed the outlying data points at the beginning to an initial non-

uniformity in the probe that was eventually fixed. For example if one of the fingers
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was initially not in the groove of a cylinder piece, causing that piece to push out

more than the rest, this could account for the increased strain, until the piece popped

back into place. However, since we know that the temperature was 4.2 K because the

probe was submersed in liquid helium, the frequency-strain curve can be extrapolated,

indicating a strain of over 2 % for the measured frequency shifts. This is beyond the

limit where the fiber would break, so the anomalous frequency shifts must be incorrect.

Three possible explanations are a potential power surge, other electrical abnormality

in the detector, or more likely a cooling effect on the optical equipment caused by the

cryogens. The experiment was run in a laboratory, in which the cryogenic containers

were very close to the optical table and optical equipment. After filling the cryostats,

there were random bursts from the liquid nitrogen dewar as the pressure built up and

relieved itself. If these vibrations disturbed the temperature-controlled frequency

stabilizer of the lasers, it could easily cause a frequency shift in the laser for a second

or two. Since the measurements only take half of a second, this is the most likely

cause of the outlying data points. After the 4 K data was taken, the cryogenic dewars

were moved out of the room, and there were no more gross data abnormalities for the

rest of the experiment.

In order to compare the baseline zero-strain points of the strain experiment to

the literature and to our previous results from the temperature experiment, the zero-

strain points were plotted as a function of relative frequency shift and temperature,

as seen in Figure 4-28.

Figure 4-28 shows the raw data from the 53 ns and 80 ns pulse length measure-

ments, along with their averaged data. A 6th degree polynomial was fitted to the data

because it had the best fit. For later smoothing purposes, the zero-strain point was

changed to the fitted value, which is a change of at most a few MHz. It is apparent

that the curve in Figure 4-28 has the same qualitative shape as Figure 4-8. We do

not expect quantitative agreement, since the data in Figure 4-8 comes from the gold

coated fiber, while the data in Figure 4-28 is from the copper alloy coated fiber.

Each strain run from Figure 4-27 was fitted to a 2nd degree polynomial, since that

gave the best fit to the data. The first data point in the data set, the zero-strain
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Figure 4-28: Zero-strain data as a function of relative frequency shift and temperature
show the expected shape.

data point, was weighted heavier than the rest of the data to anchor that data point.

Several times during the experimental run, data acquisition was repeated several times

at the same temperature and strain. These data points were averaged and counted

as a single data point. Two examples of the data fitting are shown in Figure 4-29.

Not all of the strain runs went to the same maximum strain. At the beginning of

the experiment, during the very low temperature measurements, we were hesitant to

strain the fibers much past 2000 µε, for fear of breakage. Later, at higher tempera-

tures, the fibers were routinely strained past 3000 µε. In order to eventually create

a full three-dimensional plot, we used the fitted curve to extrapolate all of the strain

runs to 3500 µε, as seen in Figure 4-29.

As previously mentioned, the temperature was slowly increasing throughout the

strain runs. This is not a fundamental problem, since the temperature was also

recorded for these data points, but it should be understood that the temperature

was not constant for the data points in Figure 4-29. The temperature increase over

a strain run was recorded, and it was easy to correlate the correct temperature to
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Figure 4-29: Second degree polynomial fit to the data in frequency-strain space.

the data. MATLAB has a function named GRIDDATA, which takes an array of

non-uniformly spaced data and plots the matrix in three-dimensions. GRIDDATA

will interpolate between data points, but always goes through all of the data points.

Using the fitted data from Figure 4-29, as well as the appropriate temperatures for

the data, the relative frequency shift was plotted as a function of temperature and

strain as shown in Figure 4-30.

Raw data is included as circles in Figure 4-30 to show how good the fit is. On the

top left, the 4 K outlying point can be seen; however, as discussed earlier, this point

should be neglected. The data has been fitted in the increasing strain direction, and

then it was also fitted in the increasing temperature direction along a few strains. For

this system to eventually be used as a magnet diagnostic, Figure 4-30 will have to

be measured with many more data points to get a very accurate surface. However, a

detailed calibration curve was not the goal of these experiments. These experiments

were designed to obtain the general shape of the surface, which is apparent in Figure

4-30.

The errors for the frequency shift and temperature in Figure 4-30 are very sim-

ilar to those discussed for the data in Figure 4-8: the frequency shift errors are on

the order of 500 kHz, and the temperature errors are on the order of ± 0.5 - 3 K

depending on the temperature. This experiment is different from the temperature

experiment in that the fibers are wound around the probe and have a vertical span
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Figure 4-30: Relative spontaneous Brillouin frequency shift as a function of temper-
ature and strain (using 80 ns pulse length data).

of about 2 cm, which is more than the channel in the temperature experiment. The

vertical temperature gradients could lead to more temperature error, but the three

temperature measurements, spanning over 8 cm vertically, never differed by more

than a few degrees, which is within their error bars.

The error of the strain measurement is largely dependent on the FBG calibration

experiment. This experiment did not produce as exact of results as we would have

liked; however, the results were good enough to use in the strain experiment. The

general trend of decreasing sensitivity to strain as the temperature decreased form

200 K to 4 K, along with the general value of dλ
dε

is all that was needed to make

Figure 4-30. Since this ratio is really only a scaling factor, the qualitative shape of

the plot would not change even with calibration errors in the ratio of ± 0.3 or even

0.4, which is well within the error bars of the ratio calculations. For example, at 200

K, dλ
dε

= 1.4× 10−3 nm/µε, which lead to the highest strain point being around 2000

µε in Figure 4-30. If the correct value was 1.0 × 10−3 nm/µε or 1.8 × 10−3 nm/µε,

the highest strain point would be located at 1500 µε, or 2500 µε respectively. While
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this would change the surface quantitatively, qualitatively the surface would look the

same.

Another potential contribution to the strain errors is the initial tension in the

fibers from winding them during the setup. We made a conscious effort to wind all

the sample fibers and FBG strain gage fibers the same way, and tape them with the

same tension as the epoxy dried. Still, there may be a slightly different initial tension

in the fibers. If the FBGs and sample fiber had different initial tensions, the FBGs’

wavelengths would begin to shift at a different point in time than the frequency would

begin to shift, which was not observed.

In summary, the frequency shift and temperature errors are relatively small com-

pared to the errors of the applied strain. However, none of these errors would sig-

nificantly change the qualitative shape of Figure 4-30, or any of the figures in the

following sections.
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Brillouin Intensity Results

The intensity as a function of temperature (at zero-strain) was also measured from

4 K to room temperature in the first experiment. Before each strain run in this

experiment, the intensity data was recorded as a baseline zero-strain reference point.

Similar to the zero-strain frequency shift data, plotting the zero-strain intensities

as a function of temperature gives us a figure that is qualitatively the same as the

measured results from the temperature experiment, as seen in Figure 4-31.
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Figure 4-31: Zero-strain data as a function of intensity and temperature match the
results from the temperature experiment.

Figure 4-31 shows the raw data from the 53 ns and 80 ns pulse length measure-

ments, as well as their averaged data. The zero-strain point of each strain run was

changed to the fitted value to improve smoothing. Figure 4-31 shows that the zero-

strain intensity data points as a function of temperature are similar to those plotted

in Figure 4-13, especially the green line, which is the 80 ns data. The intensity de-

creases above 250 K, as it did in the temperature experiment. However, this is not

seen in either the FFT intensity measurements of the temperature experiment or in
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this experiment. Again, we do not expect the same quantitative curve as in the tem-

perature experiment since the data in Figure 4-13 is from the gold coated fiber, and

the data in Figure 4-31 is from the copper alloy coated fiber.

Each strain run was linearly fitted and extrapolated to 3500 µε. The first data

point in the data set, the zero-strain data point, was weighted more heavily than the

rest of the data to anchor that data point. As mentioned above, data was collected

several times at the same temperature and strain, and these data points were averaged

and counted as a single data point. Two examples of the data fitting are shown in

Figure 4-32.

Figure 4-32: Linear fit to the data in intensity-strain space.

A plot of intensity vs. strain and temperature was generated using MATLAB’s

GRIDDATA function, as had been done for the frequency shift, as shown in Figure

4-33. The fitted data from Figure 4-32, as well as the appropriate temperatures for

those data points were used as the input data.

The raw data was also plotted in Figure 4-33 and fit the curved surface very well

at low temperatures. As in Figure 4-13, there was a lot of variation at the higher

temperatures; however, this experiment was not designed to get exact values for a

calibration. The generally monotonically decreasing intensity as a function of strain

throughout the temperature range was the main result that we were seeking to prove,

as is shown in Figure 4-33.

The errors for strain and temperature are the same as described in the previous
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Figure 4-33: Spontaneous Brillouin intensity as a function of temperature and strain
(using 80 ns pulse length data).

section. Similar to the intensity error calculations in Section 4.2.2, we would expect

the errors on the intensity measurements to be on the order of a few percent of the

measured quantity.
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FFT Frequency Shift Results

As part of the SBIR grant, we added a new DAQ system to the prototype spontaneous

Brillouin scattering system. By splitting and routing the signal through a GPIB to

the new DAQ system, we were able to use a MATLAB program to take the FFT of the

signal data. As previously mentioned, since the data was run through a GPIB cable,

the acquisition rate was very slow. Instead of being able to take 65,000 samples in less

than a second, we were only able to take 230 samples in approximately 30 seconds.

This gave our FFT data a very low signal to noise ratio, leading to very large errors.

In the future, this DAQ system will be upgraded, increasing the sampling rate until it

is comparable to that of the original system with about a 17,000 times higher sampling

rate. Although the data was not ideal, we were able to map out the frequency shift,

intensity, and linewidth in temperature-strain space from 4 K to room temperature.

By examining the raw time-domain data, the locations of the different fibers can

easily be deduced. Figure 4-34 shows the raw time-domain data for a single measure-

ment, as well as a magnified view to see the divisions more easily, composed of the

sum of the absolute values of the data from 230 measurements.

A                      B      C  D  E   F

A                      B      C  D  E   F

Figure 4-34: Raw signal and a magnified version of the signal showing where the
different fibers are located (on the x-axis 10 points equals about 1 meter of fiber).

In Figure 4-34 section A is about 140 meters of standard single mode (SMF)

spooled on the optical table at room temperature, which was used as a reference

fiber. Section B is the 30 meter copper alloy coated fiber, section C is 20 meters of
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SMF at room temperature, section D is the shorter gold coated sample fiber, section

E is another 20 meters of SMF at room temperature, and section F is the longer

sample of gold coated fiber. According to the locations of these sections, the copper

coated fiber data, used for the rest of this section, is the data from section B. Since

the copper coated fiber spanned from about 1450 to 1750, data from 1500 to 1700

was used to exclude any data from the few meters going in and out of the probe.

Since this was part of a separate DAQ system, the absolute time at which the files

were saved was used to correlate them to the temperatures and strains, measured at

the same time with the other DAQ system. The FFT of the data in the 1500-1700

range was taken for each of the 230 measurements, and then the data was averaged

in the frequency domain to get the final frequency domain data, as plotted in Figure

4-35.
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Figure 4-35: FFT of the signal showing several smoothing techniques.

Using the smoothing methods shown in Figure 4-35, the rough FWHM and fre-

quency shift was calculated. A sub-dataset, centered on the frequency shift and

extending 1.5 times the FWHM in each direction, was then fit to a Gaussian distri-
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bution and used to calculate the FWHM, frequency shift, and intensity. Ideally the

data would look like the green Gaussian fit, and hopefully with the planned DAQ

upgrades, the unfit FFT will look similar in the future. However, using the available

data, this method seemed like the most consistent way to calculate the parameters of

interest.

The spontaneous Brillouin frequency shift from the FFT measurements was fitted

with the same method used on the prototype system data, as described in Section

4.3.2. Using the frequency shift calculated from the Gaussian fit shown in Figure

4-35, the zero-strain points were plotted in Figure 4-36. These red points were then

fitted and changed to the values associated with the new fitted line to help with later

smoothing. Considering the noisiness of data shown in Figure 4-35, the frequency

shift data in Figure 4-36 follows the expected shape extremely well.
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Figure 4-36: Zero-strain frequency shift data from the FFT calculations have the
expected shape.

Similar to the way the frequency shift was fitted in Figure 4-29, the FFT frequency

shift data was fit to second degree polynomials, as shown in Figure 4-37.

How good the fit is to the data is described by the R-squared value of the fit,
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Figure 4-37: Second degree polynomial fit of frequency shift from the FFT data.

which is also called the coefficient of determination [66]. Assuming that ŷ is the value

of y predicted by the fit at the initial data points, as shown in Equation 4.2.

ŷi = c1xi + c2 (4.2)

We can calculate the residual, ri, of each fitted data point by subtracting the fitted

data point from the initial data point, as shown in Equation 4.3.

ri = yi − ŷi (4.3)

The coefficient of determination is then defined in Equation 4.4.

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2 (4.4)

Equation 4.4, ȳ is the average value of the data, given by Equation 4.5.

ȳ =
1

m

m∑
i=1

yi (4.5)

Performing some algebra transforms the coefficient of determination, or R-squared

value, to the form shown in Equation 4.6.

R2 = 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2 (4.6)
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The fits shown in Figure 4-37 are not as good as the fits in Figure 4-29, but

their R-squared values are mostly in the 90s with a few exceptions in the high 80s.

However, looking at the raw data in Figure 4-35, it is amazing that the R-squared

values are not much lower.

Using the same GRIDDATA function in MATLAB, a three-dimensional plot of the

spontaneous Brillouin frequency shift from the FFT data as a function of temperature

and strain was created, as seen in Figure 4-38.

Figure 4-38: Spontaneous Brillouin scattering frequency shift from the FFT data as
a function of temperature and strain.

The unfitted data is included in Figure 4-38 to show that even though the quality

of the data is less than ideal, a reasonably good fit is still possible.
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FFT Intensity Results

The Brillouin intensity from the FFT measurements was analyzed in the same way

as described in the previous sections. Figure 4-39 shows the zero-strain fit of the

intensity measurements of the Gaussian fit.
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Figure 4-39: Zero-strain intensity from the FFT data.

As expected, Figure 4-39 has the general trend of increasing intensity with increas-

ing temperature. Again there is a discrepancy with the intensity at temperatures

above 250 K. The prototype system for both the temperature experiment and the

strain experiment showed the intensity decreasing from 250 K to 300 K. However, the

FFT intensity data from the temperature experiment and the strain experiment both

show increasing intensities form 250 K to 300 K. The reason for this discrepancy is

not known; however, the new DAQ system will provide more reliable data that should

clear this up.

The data from each strain run was then linearly fitted as described in Section

4.3.2 and shown in Figure 4-40.

Again, there was a range of R-squared values, but they were mostly in the 90s.
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Figure 4-40: Linear fit of the intensity from the FFT data.

These linear fits for the strain runs were used with GRIDDATA to produce a plot

of the spontaneous Brillouin scattering intensity as a function of temperature and

strain, as shown in Figure 4-41.

It is hard to determine visually whether the surface is a good fit to the data in

Figure 4-41, since the scale is small at low temperatures. However, the surface is a

good fit to the unfitted data, when the noisiness of the unfitted FFT signal data is

considered.
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Figure 4-41: Brillouin intensity from the FFT data as a function of temperature and
strain.
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FFT Linewidth Results

The goal of developing the FFT data analysis system was to be able to measure the

linewidth of the Brillouin scattered light. Unfortunately, calculating the FWHM with

the non-ideal data shown in Figure 4-35 was not easy. Depending on the smooth-

ing technique used, the frequency shift and linewidth do not change much, but the

linewidth changes significantly. As long as the same method of smoothing and cal-

culating the FWHM was used for all of the data analysis, the result should provide

a qualitative description of the effect of temperature and strain on the linewidth of

Brillouin scattered light.

For the linewidth calculations, the data was smoothed and analyzed in the same

way as it was for the frequency shift and intensity calculations. The FWHM from

the fitted Gaussian as seen in Figure 4-35 was used for the data analysis. Figure 4-42

shows the zero-strain linewidth as a function of temperature for a variety of different

smoothing methods.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

7

Temperature (K)

Li
ne

w
id

th
 (

H
z)

Fitted line (4th degree polynomial)

 

 
80ns Data (Gauss Fit)
Average Data
Fitted Line
New 0−Strain
No Smoothing
Smoothed
−Noise
Smoothed −Noise

Figure 4-42: Linewidth calculations showing the effects of different smoothing meth-
ods.
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The fitted line in Figure 4-42 used the red Gaussian fitted data; however, the

general shape is the same as it would be for any of the other smoothing methods.

This indicates that although the smoothing methods do have an effect on the linewidth

result, the general shape is the same. This curve also matches well with the curve from

the temperature experiment, shown in Figure 4-16. The exact quantitative results

shown in the two figures are unimportant because any fiber used in a real diagnostic

would probably not be the same type of fiber used in these experiments and would

have to be independently calibrated.

Although the zero-strain data as a function of temperature had the expected

values, the strain analysis was more difficult than expected. Due to the non-ideal

data, fitting the linewidth as a function of strain was not as easy as it was for the

frequency shift and the intensity. Figure 4-43 shows the linewidth data being fitted

linearly for the 4 K and 298 K strain runs.

Figure 4-43: Linear fits of the linewidth as a function of strain at 4 K and 298 K.

As seen in Figure 4-43, a linear fit looks like the appropriate fit to try; however,

the R-squared values are not nearly as good as those in the previous sections. Also

plotted in Figure 4-43 are the data points from the other smoothing methods. The

Gaussian fitted data was used for the actual fit since this is what was used for the

frequency shift and intensity analysis. But the other data sets also look like a linear

fit would be the most appropriate choice.

The strain runs at different temperatures were all fitted linearly, and used with
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GRIDDATA to produce Figure 4-44.

Figure 4-44: Spontaneous Brillouin scattering linewidth as a function of temperature
and strain.

The surface in Figure 4-44 appears to fit the data reasonably well; however, there

are a few strain runs that do not fit the surface. For all but two of the strain runs,

the linear fit of the linewidth as a function of strain had a positive slope: an increase

in strain increased the linewidth. However, for the 60 K and the 90 K strain runs,

the slope was slightly negative. It is important to note that the R-squared values of

these lines were below 20. An R-squared value this low means that there was not an

acceptable linear fit; but since the rest of the data had been fit linearly, these strain

runs were as well. Once again, the new DAQ upgrades should provide us with much

more reliable data with points much closer to the surface, but Figure 4-44 shows the

general shape of the surface.
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4.4 Temperature and Strain Calculations

The goal of this system is to be able to determine the spatially resolved temper-

ature and strain throughout the length of the fiber sensor. Using OTDR we can

separate measurements and provide spatial resolution. The data from the previous

sections allows us to calculate unique values of temperature and strains, according to

the spatially resolved data. For most of the strain-temperature range we are inter-

ested in for use with superconducting magnets, only the frequency shift and intensity

are needed. However, there are certain times when the linewidth is also needed to

uniquely determine both the temperature and strain.

4.4.1 Using Frequency Shift and Intensity

Determining the temperature and strain from the measured frequency shift and inten-

sity data is possible at room temperature since both of their functions with respect to

temperature and strain are monotonic. Since these functions become non-monotonic

at cryogenic temperatures, there will be some sets of temperature and strain that can

not be distinguished. However, there is a large range over which the temperature and

strain can be determined.

Now that we have both the Brillouin frequency shift and intensity as a function of

temperature and strain, we can take any shift and intensity and look up the tempera-

ture and strain it corresponds to. As an example, assume that we have measured the

relative Brillouin frequency shift of -100 MHz. We can look at the -100 MHz plane

in the 3-D data set for frequency shift and narrow down the possible temperatures

and strains, as shown in Figure 4-45. If we know that the fiber (or superconducting

magnet) was not strained at the time of measurement, we would know that the point

of interest is at zero microstrain, so the temperature would be 135 K, as seen in Figure

4-45.

In an operating magnet we will not know that there is no strain, so we will need

another measurement to determine the temperature and strain. (Also a slightly lower

measured frequency may pass through the zero-strain plane twice). Continuing the
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Figure 4-45: Possible temperatures and strains causing a relative frequency shift of
-100 MHz.

example, if we also measure an intensity of 1000, we get another set of possible

temperatures and strains, as displayed in Figure 4-46.

Figure 4-46: Possible temperatures and strains causing an intensity of 1000.

Now that we have two sets of possible temperatures and strains, we can figure out

what the actual temperature and strain are, corresponding to the measured values

of -100 MHz and an intensity of 1000. By plotting the possible temperatures and

strains from both the frequency and intensity measurements, we can easily see the

intersection point and determine the unique temperature and strain of 95 K and 1800

µε, as seen in Figure 4-47.

Since the frequency shift and intensity are both non-monotonic with respect to

temperature and strain, theoretically we would need another measurement to deter-
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Figure 4-47: Comparing the possible temperatures and strains from the frequency
shift and intensity, we can find the unique temperature and strain.

mine the exact temperature and strain if the two data sets shown in Figure 4-47

crossed more than once. Fortunately, the non-monotonicity of the frequency shift

and the non-linearity of the intensity occur in different regions of strain-temperature

space, as seen in Figure 4-48.

In Figure 4-48 it is clear that although both functions are non-monotonic, they

are non-monotonic in different regions, allowing the unique determination of the tem-

perature and strain over most of the plotted range. This is not the case in the region

of less than 1000 µε and temperatures less than 75 K, where the relative frequency

shift and intensity contours can cross each other in more than one place. Another

potential problem is when the contours are parallel, leading to a set of temperatures

and strains. For example, between 250 K and 300 K and at strains below 2000 µε

the contours are close to parallel. In regions like this, and when the contours cross in

more than one place, the linewidth is needed to uniquely determine the temperature

and strain.
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Figure 4-48: A contour plot of the frequency shift and intensity shows where the
linewidth may be needed to uniquely determine the temperature and strain.
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4.4.2 Using Frequency Shift, Intensity and Linewidth

As mentioned in the previous section, there are certain regions of temperature-strain

space where the frequency shift and intensity alone cannot uniquely determine the

temperature and strain. This is where the linewidth is needed. Now that we have the

Brillouin frequency shift, intensity, and linewidth as a function of temperature and

strain, we can take the measured parameters and look up the corresponding values

of temperature and strain. Although the linewidth data is less than ideal, the fitted

curves are still adequate to specify a single value of temperature and strain, as shown

in Figure 4-49. For example, if we measure a frequency shift of -100 MHz, and an

intensity of 0.0022, the lines are parallel where they cross. By measuring the linewidth

as well, for example 31 MHz, we can determine that correct temperature and strain

is 28 K and 2750 µε, respectively.

The contour lines in Figure 4-49 are clearly different than those in Figure 4-47

and Figure 4-48. This is because the data used for Figure 4-49 is from the FFT

calculations, which is much less accurate due to the poor sampling rate. Although

the actual lines are different, the qualitative idea is the same. Using the updated DAQ

system in the future, the surfaces should come out the same for the FFT and original

methods. Examining the contours of the three parameters from the FFT calculations,

it is clear that in no region are all three contours parallel, which proves that a unique

temperature and strain can be calculated throughout the range of temperature and

strain, as shown in Figure 4-50.

An RGB plot can illustrate how measuring the frequency shift, intensity, and

linewidth will give a unique temperature and strain. Each variable is assigned a color

and is normalized independently. Frequency shift, intensity, and linewidth values

were normalized to a range of 0 to 1 for red, green, and blue respectively. At every

point in temperature-strain space there is a single value for red, green, and blue,

which combine to make a unique color, as shown in Figure 4-51. The human eye

cannot quantify the distinction between the unique colors at each point in Figure

4-51. However, a simple MATLAB program shows that these colors are unique using
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a grid size of less than one degree and around 1 µε.
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Figure 4-49: Using the spontaneous relative Brillouin frequency shift, intensity, and
linewidth from the FFT of the signal data, the temperature and strain can be uniquely
determined.
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Figure 4-50: Contours of the FFT data showing that using all three parameters,
unique determination of temperature and strain is possible throughout the range
plotted.
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Figure 4-51: RGB plot showing uniqueness of temperature and strain measurements
using the frequency shift, intensity, and linewidth.
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Chapter 5

Accuracy Analysis

Like any system, spontaneous Brillouin scattering sensors have many interdependent

variables that determine the system limitations. There are several parameters that

can be changed regarding the timing of the optical system, including the pulse length,

repetition rate, number of averages, and sensing fiber length which will affect other

variables, such as the sampling rate and measurement time. The accuracies of the

measurements are not only a function of the DAQ hardware, but also of the temper-

ature and strain, as will be discussed later in this chapter.

5.1 Overview of Variables

The Brillouin scattering system has several key variables that affect the measurement

time, spatial resolution and signal to noise ratio. The number of averages taken is

an input parameter. Increasing the number of averages increases the signal to noise

ratio; however it also increases the measurement time. For our frequency shift and

intensity measurements we used 65,536 averages, and for the FFT measurements we

used 230 averages, since 230 averages took 30 seconds. The repetition rate and pulse

length are also parameters that are input before recording data. The repetition rate is

the rate at which the acousto-optic modulator (AOM) sends pulses of light down the

fiber. For our experiments we sent a pulse of light every 10 µs. The pulse length is the

time the EOM allows the light to go through in order to form pulses, which directly
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determines the spatial resolution of the system. For the temperature experiments,

pulse lengths from 20 - 200 ns were used, and for the strain experiments, pulse lengths

of 53 and 80 ns were used since they gave the best spatial resolution with acceptable

signal to noise ratio.

5.1.1 Spatial Resolution

The pulse length is directly related to the spatial resolution in that the physical

length of the pulse of light in the fiber is two times the spatial resolution. This can

be calculated according to Equation 5.1.

SpatialResolution = PulseLength[ns]
c

2n
(5.1)

In Equation 5.1 the index of refraction, n, is on the order of 1.5, and the factor

of 2 is needed since the special resolution is one half of the pulse length in the fiber

[50]. This equation reveals that the spatial resolution is approximately 1 meter per

10 ns. According to this relation, decreasing the pulse length will give better spatial

resolution; however, there are limits and consequences of decreasing the pulse length.

First of all, as the pulse length is decreased, the signal is weakened. However, if

the laser power is not already at the limit at which it will induce thermal effects in

the fiber, the signal to noise ratio can be strengthened by increasing the laser power.

Figure 5-1 shows that when the pulse length is shortened from 53 ns to 20 ns, the

signal to noise ratio degrades significantly, as shown by the variation in the 20 ns

data. Another interesting aspect of Figure 5-1 is that the frequency shift is not a

function of the pulse length, except when the signal to noise ratio is unacceptable,

as for the 20 ns data. The independence of the pulse length and the frequency shift

is not the case for intensity and linewidth where the measurement are dependent on

pulse lengths.

There is also a fundamental limit on the minimum pulse length because of the

damping time of the acoustic phonon, expressed in Equation 5.2 [43].
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Au   Cu Au   Cu

Figure 5-1: Frequency shift vs. position using pulse widths of 20, 53, 80, 100, and 200
ns (corresponding to spatial resolutions of 2, 5.3, 8, 10, and 20 meters respectively)
at 175 K.

τp =
1

αAvA
=

1

ν2
BvA

(5.2)

By assuming that the acoustic attenuation coefficient, αA, is proportional to the

acoustic frequency squared, ν2
B, the phonon lifetime of a 1550 nm light source is

approximately 20 ns [67]. When the pulse length gets close to this damping time,

nonlinear effects distort the measured parameters. Reference [50] discusses this in

more detail, but the end result is that pulse lengths less than 50 ns begin to show these

nonlinear effects. Pulse lengths shorter than 50 ns can be used, but the calibration is

much more complicated. Below 20 ns, the nonlinear effects overtake the actual signal,

meaning that the physical limit of a pulse-based system is 20 ns, corresponding to

roughly 2 meter spatial resolution. It should be noted that the spatial resolution can

be improved by modulating the pulses and overlapping the measurements. However,

this will significantly increase the measurement time.

5.1.2 Measurement Time

Calculating the measurement time of the system is relatively straight forward, as

described in Equation 5.3.
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MeasurementT ime = (#ofAverages) · (RepetitionRate) (5.3)

Decreasing the repetition rate will decrease the measurement time, but for long

sensing lengths the repetition rate is limited by the speed of light. The rate has to

be longer than two times the length of the fiber divided by the speed of light in the

fiber. Decreasing the number of averages will obviously decrease the measurement

time, but the accuracies of the measurements are correlated to the number of aver-

ages. The repetition rate was not limited by the length of the sensing fiber in our

experiments, so using a 10 µs repetition rate, and taking 65,536 averages of the data,

our measurements took about 0.655 seconds.

5.1.3 Measurement Length

The maximum length of a sensing fiber depends on the fiber attenuation properties.

Spontaneous Brillouin scattering sensors have been demonstrated in lengths of fibers

up to 100 km [68]. These tests were run around room temperature, where the fiber

attenuation is better than the cryogenic fiber attenuation. Depending on the fiber

type and coating, the sensing length at cryogenic temperatures should be on the

order of kilometers. The attenuation limited sensing length of the sensing fiber for

superconducting magnets for fusion reactors like ITER would not be a problem, since

the magnets are wound in hexapancakes on the order of 700 meters long. Each of these

hexapancakes requires a liquid helium extraction, and therefore a fiber extraction

would also be feasible every 700 meters.

The other factor that limits the length of the sensing fiber is time of flight of

light through the fiber. As discussed in the previous section, the time of flight of

light can limit the repetition rate. For short sections of fiber, on the order of 700

meters, the time of flight is not an important factor, since the time it takes for light

scattered at the far end to reach the detector is only 7 µs compared to a pulse rate of

10 µs, allowing 50,000 averages in 0.5 seconds. If the length of the sensing fiber was

increased to 70 km, then the time of flight would be about 700 µs, which would force
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the pulse repetition rate to be slightly larger than 700 µs, and consequently require

35 seconds for 50,000 averages.

Long lengths will also have other inconveniences, such as the need to account

for attenuation in the intensity measurements as a function of position in the fiber.

Fortunately, the superconducting magnets need to have cryogenic outlets every few

hundred meters, which allows the sensing lengths to be on the same order of magni-

tude.

5.2 Accuracy

The accuracy of a diagnostic measurement is obviously important to understand. In

our system, different variables and conditions lead to different accuracies for the same

measurement. Since our system can be implemented to measure the temperature only

(with zero strain), and also to measure the temperature and strain, the accuracies

of both strain and temperature measurements will be discussed separately in the

following sections.

5.2.1 Temperature Sensor (Zero Strain)

As discussed in the following chapter, the fiber can be implemented into a magnet in

a way that it does not feel any strain. By spiraling the fiber inside a capillary tube,

and also spiraling the capillary tube in the central cooling channel, about 5% excess

fiber can be implemented compared to the length of the CICC. Since the magnet

is only strained a fraction of that amount during operation, the fiber will not be

strained. This way only the temperature is being measured, so only two of the three

Brillouin scattering parameters need to be measured. However, the accuracies of all

three measurements will be discussed.

Relative Frequency Shift

The relative frequency shift is measured using an embedded Field Program Gated

Array (FPGA) which is run through a MATLAB program. Since the laser frequency
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stability is much better than the frequency resolution, the resolution is limited only

by the number of data averages. As discussed previously in this chapter, the more

data averages used, the longer the measurement time. As a frame of reference, using

10,000 averages (in ≈ 0.1 sec) gives 1 MHz resolution, and by increasing to 100,000

data averages (in ≈ 1 sec) a resolution of 100 kHz can be achieved. In our system we

used 65,000 averages, which corresponded to a resolution of slightly better than 500

kHz. For the rest of the frequency shift accuracy analysis, we will assume that the

resolution of our measurements is 500 kHz.

Since the main source of error is due to the finite number of data averages, the

error bars are constant and can be plotted for our measurements. Figure 5-2 shows our

data with red error bars corresponding to the 500 kHz accuracy of our measurements,

as well as 100 kHz error bars which are obtainable with longer measurement times or

a better DAQ system.

Figure 5-2: Error bars of 500 and 100 kHz leading to the accuracy of zero-strain
temperature measurements.

The error bars of the frequency shift measurements are not functions of tem-

perature; however, the accuracies of the temperature measurements are functions of

temperature. Since the slope of the relative frequency shift changes as a function of

temperature, the measurement error will lead to worse accuracy where the slope of

the curve is small, and better accuracy where the slope is steep. By dividing the reso-

lution of the measurement by the slope of the curve, the accuracy of the temperature
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measurement can be expressed as a function of temperature, as seen in Figure 5-2.

Where the slope of the frequency shift is flat as a function of temperature around

60 K, our system would provide ± 14 K, and an upgraded system would have an

accuracy of ± 5 K. This does not seem good, but this is the worst accuracy. Most of

the temperature range would have an accuracy of ± 1 K or less.

Intensity Accuracy

The error bars for the intensity measurements are determined by the number of data

averages, the value of the intensity counts, the laser intensity variation, and the

acoustic wave variation in the modulator. Obviously, the resolution improves with

the number of data averages, as was the case for the frequency shift measurements.

The detector we used had a resolution of 4 % of the measured value; however, better

detectors are available that would give a resolution of 1 % of the measured value. The

lasers are very stable in the short-term (sub-microsecond) timescale, but in the long

term (minute) timescale, the power can fluctuate up to 0.5 % [69]. Also the acoustic

wave variation in the modulator can cause variations in both the width and intensity

of the pulse on the scale of a fraction of a percent. For the rest of the intensity

accuracy analysis, we will assume that the resolution of our measurements was 5 %,

with the potential to improve that to 2 % with a better detector and modulator.

The error bars for our intensity measurements can be plotted with our zero strain

intensity vs. temperature data, as seen in Figure 5-3. Error bars of 5 % corresponding

to our data are plotted in green, and the potential 2 % error bars are plotted in black.

Since the error is a percent of the overall measurement, the error bars are functions

of temperature. Similar to the frequency shift accuracy, the slope of the intensity vs.

temperature will also play a role in determining the temperature’s accuracy. Figure

5-3 also shows the intensity accuracy as a function of temperature for our data and

the potential accuracy of an upgraded system. Due to the curve’s flat part around

275 K, the accuracy of the intensity measurement in that region is not good, but over

the rest of the cryogenic range, the intensity measurement of an upgraded system can

provide an accuracy of plus or minus a few degrees.
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Figure 5-3: Error bars of 2 and 5 % leading to the accuracy of zero-strain intensity
measurements.

Linewidth Accuracy

Similar to the frequency shift measurement, the accuracy of the linewidth measure-

ments are proportional to the number of data averages. For our experiments, we only

used 230 averages, which corresponds to worse than 10 MHz resolution. Improve-

ments to the system will permit the same order of magnitude of data averages as the

frequency shift measurements, which will improve the 10 MHz resolution to the hun-

dreds of kHz range. Due to the data processing, including the FFT and calculating

the linewidth from the data in frequency space, the accuracy of the linewidth data

will be worse than the accuracy of the frequency shift data by roughly a factor of 5.

Plotting the error bars from our experimental data of the linewidth vs. tempera-

ture shows that the error bars basically cover the whole range of linewidth, as seen in

Figure 5-4. Also plotted are the expected error bars of the upgraded system, which

are only 500 kHz, as compared to the original 10 MHz.

While the accuracy of the experimental linewidth data is very poor, the upgraded

system’s linewidth accuracy should be good. Other than flat spots around 60 K and

225 K, the linewidth should give temperature accuracies of a few degrees throughout

the rest of the cryogenic temperature range.

168



Figure 5-4: Error bars of 10 MHz and 500 kHz leading to the accuracy of zero-strain
linewidth measurements.

Zero Strain Temperature Measurement Accuracy

If the system is implemented as a temperature sensor only, it will be able to achieve

extremely good accuracy. In fact, at every temperature, the achievable accuracy will

be the best accuracy of the three measurements. Depending on the temperature, the

parameter that gives the best accuracy will vary. Referring back to a contour plot

of the frequency shift, intensity, and linewidth from Chapter 4, all three contours

will cross in temperature-strain space at the location of the appropriate temperature

and strain. In this case, the strain is zero, so all three lines will meet at the correct

temperature on the zero strain line. One way to illustrate the accuracy of the dif-

ferent parameters is to give their actual contour line the width of their temperature

accuracy. By plotting these “weighted” contour lines at a specific temperature, it is

apparent that the accuracy of the temperature measurement will be determined by

the parameter with the best accuracy, as seen in Figure 5-5.

By plotting the accuracy of all three parameters over the temperature range of

interest, we can determine the zero strain temperature accuracy, as seen in Figure

5-6.

Two important conclusions can be drawn from Figure 5-6: 1) The accuracy of

the temperature measurement is less than ± 1 degree over all but 20 degrees, where

it is still less than ± 3 degrees and 2) Only the frequency shift and intensity are
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Figure 5-5: For the zero-strain case, the parameter with the best accuracy determines
the accuracy of the temperature measurement.

used to get these accuracies. This means that for the zero-strain case, the linewidth

parameter is not only not needed, but also not useful in determining the temperature.

However, if the accuracy of the linewidth system is improved to a resolution of 100

kHz as opposed to the 500 kHz used for Figure 5-6, the linewidth measurement will

provide the best accuracy for the 4 - 25 K range.
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Figure 5-6: Zero-strain accuracy of a temperature measurement as a function of
temperature.
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5.2.2 Temperature and Strain Sensor

One of the most exciting benefits of this spontaneous Brillouin scattering system is

that it can simultaneously measure both the temperature and strain. If a sensing fiber

is implemented in a way in which it will sense both the temperature and the strain, we

will need to know the accuracies of both measurements. The following calculations are

done assuming that the frequency shift, intensity, and linewidth calibration surfaces in

temperature and strain space are exactly correct. Obviously, these surfaces will have

some error as well, but this error will be determined by the calibration experiments.

Since the calibration experiments do not need to be real-time, orders of magnitude

more averages can be taken, which will make the calibration error contribution to the

total error insignificant compared to the measurement errors discussed in the following

sections. The following sections also use the ideal measurement experimental errors,

the black lines in Figure 5-2, Figure 5-3, and Figure 5-4, which are the projected

experimental errors for the future system.

Relative Frequency Shift Accuracy

As seen in Figure 5-2, the relative frequency shift has a flat spot around 60 K, which

causes the worst temperature accuracy to be in that region. Including strain in

the measurement, and looking in temperature-strain space, the flat spot shifts to

around 50 K for higher strains. The accuracy of the temperature measurement can

be calculated and plotted in the same way it was done for Figure 5-2, using the

gradient of the surface in the temperature direction and the 100 kHz resolution, as

seen in Figure 5-7.

Similarly, the accuracy of the strain measurement can be calculated based on the

gradient of the surface in the strain direction and the 100 kHz resolution, as also seen

in Figure 5-7. It is apparent from these figures that the accuracy of the temperature

measurement due to the frequency shift is less than ± 1 degree over almost all of the

temperature-strain space. There is a region in the temperature range between 50 K

and 60 K for which the frequency shift measurement can have accuracies no better
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Figure 5-7: Accuracies of temperature and strain measurements due to the frequency
shift.

than ± 10 K, but as we will see later, the other parameters have decent accuracies

there. Similarly, there is a small area where the accuracy of the strain measurement

due to the frequency shift reaches 150 µε, but over most of the temperature-strain

space the strain accuracy is less than 20 µε.
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Intensity Accuracy

The accuracies of the temperature and strain due to the intensity measurement can

also be calculated in a similar way. Taking the gradient of the intensity surface in

temperature-strain space and using the intensity error of 2 % of the measured value,

the accuracies due to the intensity measurement are plotted in Figure 5-8.

Figure 5-8: Accuracies of temperature and strain measurements due to the intensity.

Figure 5-8 shows that the accuracy of the temperature due to the intensity mea-

surement is less than ± 5 degrees (looking in more detail it is mostly around ± 2.5

degrees) over most of the temperature-strain space, with worse accuracy around 250

K. Fortunately this is a temperature region that is of no great interest for supercon-

ducting magnet applications. The intensity is not a very strong function of strain,

which leads to worse strain accuracy. Also, since the intensity is inversely propor-

tional to strain, the worst accuracies are at the lowest strains. Fortunately, both

the frequency shift and linewidth functions increase with increasing strains, which

provides better strain accuracies at low strains.
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Linewidth Accuracy

Assuming a linewidth accuracy of 500 kHz, as was done for Figure 5-4, the temper-

ature and strain accuracies due to the linewidth measurement can be determined, as

shown in Figure 5-9.

Figure 5-9: Accuracies of temperature and strain measurements due to the linewidth.

Figure 5-9 shows that the accuracy of the temperature due to the linewidth mea-

surement is less than ± 6 degrees (looking in more detail it is mostly around ± 3

degrees) over most of the region of interest. At high strains and temperatures from 50

- 100 K, as well as at low strains and temperatures around 225 K, the accuracy of the

temperature measurement is as bad as ± 20 degrees. Again, we are fortunate that

the other parameters have good accuracies in those regions. Since the linewidth is

not a strong function of strain, the accuracy of the strain derived from the linewidth

measurement is not good. Using the upgraded system, a better calibration surface

can be created, and it may be a stronger function of strain, but using the data from

these first experiments, the strain accuracies are mainly on the order of ± 100 µε or

more.
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Total Temperature and Strain Measurement Accuracy

As discussed in Chapter 4, most of the time the temperature and strain can be

determined by measuring two of the three parameters. There are two cases when the

third parameter is needed: 1) When parameters cross more than once, and 2) When

parameters are parallel at some point. Depending on which scenario causes the need

for the third parameter, the overall accuracy is different, as shown in Figure 5-10.
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Figure 5-10: Three possible scenarios when all three Brillouin scattering parameters
are needed to uniquely determine the temperature and strain. The dashed lines are
the accuracies for the temperature and strain.

In the case of two intersections, the worst case overall accuracy can be approxi-

mated by the parameter with the second worst accuracy. On the other hand, when

the contours are parallel, the overall accuracy can be determined by the parameter

with the worst, or the second worst accuracy, depending on which contours are paral-

lel, as seen in Figure 5-10. Figure 5-11 shows the contours of the frequency shift and

intensity from the initial Brillouin scattering system, and the newer measurements of

linewidth contours.

Figure 5-11 is split into zones where all three parameters are needed to uniquely

determine the temperature and strain. In zone “A”, the frequency shift and linewidth

contours cross in more than one place, so the intensity is needed to determine which

position is correct. In this region, the accuracy is determined by the second worst

accuracy of the three parameters. In zone “B”, the intensity and linewidth contours

are parallel in certain regions, which means that the frequency shift is needed to

determine the accuracy. The total accuracy is determined by first determining the
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Figure 5-11: Contour plot separated into regions of double crossing frequency shift
and linewidth contours (A), parallel intensity and linewidth contours (B), double
crossing intensity and linewidth contours (C), and parallel frequency shift and inten-
sity contours (D).

best accuracy between the intensity and linewidth at each point. Comparing this

accuracy with the accuracy of the frequency shift and taking the worse of the two gives

the final accuracy of the measurements at that point. In zone “C”, the intensity and

linewidth contours cross in more than one place. Similar to zone “A”, the accuracy

is determined by the second worse accuracy of the three parameters. In zone “D”,

the frequency shift and intensity contours are parallel, so the linewidth must be

used as well. Taking the best accuracy between the frequency shift and intensity at

each point, comparing it to the linewidth accuracy, and taking the worse of those

accuracies gives the final accuracy at each point. This has been done at all points

in temperature-strain space, and the final temperature accuracies, taking all three
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measurements into account, are shown in Figure 5-12.

Figure 5-12: The ideal accuracy of temperature measurements.

Except for a small sliver in temperature-strain space, the cryogenic temperature

accuracy is ± 2 or 3 degrees. By editing the color-map and zooming in, it is evident

that over the measured strain range, from 4 to 25 K the temperature accuracy is

actually ± 1 degree or less.

Using the same guidelines for the zones used to make Figure 5-12, the accuracy

of the strain measurements can also be plotted, as shown in Figure 5-13.

Over most of the cryogenic region of interest, the strain accuracy is ± 100 µε or

less. There is a small sliver in the low strain range where the accuracy gets up to ±

150 µε, but the rest of the cryogenic range is much better. Above 250 K, the accuracy

is much worse, and is dominated by the accuracy due to the linewidth. This region is

the worst case scenario, where the two parameters with good accuracy have parallel

contours and the parameter with the worst accuracy decides the accuracy as seen in
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Figure 5-13: The ideal accuracy of strain measurements.

Figure 5-10. The sharp line occurs because the intensity changes slope at around 250

K, and the contours suddenly become parallel to the frequency shift contours. The

accuracy of ± 100 µε can potentially be improved by better DAQ hardware and more

averages, but it is ultimately limited by the weak effect of low strain on the three

Brillouin scattering parameters. On the other hand a distributed strain measurement

of ± 100 µε is a huge improvement over no strain measurement at all.
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Chapter 6

Engineering Issues

All state of the art technologies have engineering issues that have to be solved before

the system can be implemented. Our spontaneous Brillouin scattering system is no

exception. The previous chapters have proved, both theoretically and experimentally,

that our system will work as expected; however, a lot of engineering issues still need

to be ironed out. Most of the remaining issues deal with fiber positioning and survival

throughout the manufacturing and operation of the magnet. All of the theoretical

and experimental results from the previous chapters assume that the fiber is in place

and operational in the magnet, but even getting to that point requires engineering

solutions to several problems.

The location of the fiber in the cable was briefly discussed in Chapter 2, but has

not yet been resolved. Fiber survival through the manufacturing of the magnet is

also a big issue that will be discussed later in this chapter. During magnet operation,

the fiber has to survive both thermal and strain cycles without modification to the

spontaneous Brillouin scattering parameters. Many of the fiber survival issues can be

solved by placing the sensing fiber in a steel capillary tube; however, this introduces

new issues associated with thermal transport times from the conductor to the sensing

fiber. The last, and potentially most difficult engineering issue, is the extraction of

the fiber from the pressurized supercritical helium inside the conduit to the room

temperature optical components and lasers.
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6.1 Fiber Location

As mentioned in Chapter 2, the placement of a fiber sensor in a CICC depends on

the mechanical integrity of the fiber as well as the thermal diffusion time from the

superconducting strands to the fiber. There are several potential locations where the

fiber could be positioned, as seen in Figure 6-1.

A

DC

B

Figure 6-1: The fiber can be placed in the valleys due to the winding, in the central
cooling channel, or co-wound with the superconducting wires.

Wherever the fiber is placed, the most important consideration is that it should

not be crushed during the magnet fabrication or due to Lorentz loads during a magnet

pulse. Location “A” is in the outer channel formed by the final cable winding. This

location will experience minimal forces from Lorentz loads since the six stages of

cabling are individually wrapped, which holds the conductors in place and forms

the channel. However, since the location is on the wall between the conductors and

conduit, the time it takes for the temperature to diffuse from the inside, or far side,

to the sensor is the longest diffusion time of all sensor positions.

Position “B” is similar to position “A” mechanically, since it is also located in a

channel formed by the final stage of conductor winding. The major difference between

positions “A” and “B” is that position “B” is closer to the center of the conduit, so
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the thermal diffusion time for a quench to reach the sensing fiber is less than for

position “A”. One disadvantage of position “B” is that the central cooling channel’s

spiral has sharper edges than the inner conduit wall, so there is a better chance that

the fiber breaks if it is pushed against the central cooling channel.

Position “C” is located in the central helium cooling channel. This is the safest

spot for the fiber mechanically, since there will be no forces on the fiber during man-

ufacture and no Lorentz forces during magnet pulses. It is also the most centrally

located position, so the average thermal diffusion time should be less than the other

positions. One disadvantage is that the fiber will be up against the sharp spiral edges

since it is impossible to center the fiber in the channel. The use of a protective capil-

lary tube should eliminate this concern. Since the central cooling channel is usually

formed by a spiraled wire to increase thermal exchange by inducing turbulent flow,

the heated liquid helium due to a quench will appear in the central cooling channel in

a relatively short time. That being said, placing a fiber in turbulent flow will cause

the fiber to vibrate, and also lead to the need for stronger fibers. Theoretically, vibra-

tions should not affect any of the important parameters we measure of spontaneous

Brillouin scattering; however, this would need to be verified experimentally.

The last location, position “D”, requires including the fiber in one of the initial

triplets in the winding pattern. Since the fiber is about 165 microns, and the standard

superconducting wire is on the order of 800 microns, the fiber would have to be put

into a capillary tube about the size of the wires in order for the triplet to wind

properly. This is also a location of intense Lorentz loads, so the capillary tube would

need to provide structural support for the fiber. The benefit of including the fiber in

an initial conductor triplet is that it would be in the middle of the conductors, and

therefore show a more realistic measurement of temperature and strain.

Taking all of these factors into consideration, we would elect to put the fiber in

position “C”, as the favored design option. This location would still require the use

of a capillary tube around the fiber for fiber protection, and to contain the vaporized

acrylate coating if the standard single mode fiber is used.
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6.2 Fiber Survival

Since our system is based on the signal from a fiber, the most important component

of the system is the actual fiber. Problems with other optical components can be

addressed and fixed outside of the magnet, but once the fiber is put into the magnet,

it cannot be easily changed. Several fibers can be included in the conductor, but

depending on the type of fiber and coating, redundant fibers can be prohibitively

expensive. The three main threats to the survival of a fiber are the manufacturing

processes, the temperature ranges and thermal cycles, and the maximum strain on

the fiber.

6.2.1 Manufacture

The manufacture of a CICC is extremely involved. Complex machines are used to

twist the conductors into the specific winding patterns, and also to compact the

conductors to achieve the desired dimensions and void fractions. A loose fiber lead will

complicate these processes, but the end benefits of an internal distributed temperature

and strain sensor may be worth the added complication during the fabrication.

Assuming that the fiber will be in located in position “C”, the fiber will either

have to be pulled into the central cooling channel spiral, or the channel will have to

be formed around the fiber, as seen in Figure 6-2. Each central solenoid hex and quad

winding is less than 1 km, and it has been shown that 1 km of cable can be pulled

through 1 km of conduit. This means that most likely 1 km of fiber can be pulled

into the central cooling channel as well. The rest of the cabling process will remain

unchanged, except for the need to be careful with the fiber optic leads at both ends

of the channel.

6.2.2 Temperature

As mentioned in Chapter 2, the coating for the fiber also has to be chosen carefully,

since the fiber will have to survive several thermal cycles from room temperature

down to cryogenic temperatures. Also, depending on the superconducting alloy used,
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Figure 6-2: CICC layout showing the central tube where the fiber would be.

the fiber may have to survive a heat treatment of from tens to hundreds of hours

at temperatures up to 700 C. While there are many different coatings that can be

applied to a fiber, this discussion can be broken down into two categories: standard

acrylate coated fibers, and specially coated fibers.

Normal fibers will potentially encounter problems both at high temperatures and

cryogenic temperatures. At 200 C, the acrylate coating will be vaporized, leaving

a bare fiber. Depending on how the fiber is protected, this may or may not be a

problem. The principal purpose of the coating is to protect the glass from water

and oxidation. The heat treatment must be performed in a vacuum or inert gas

environment, so exposed glass may be able to survive, if it is never exposed again

to atmospheric conditions. A bare fiber is much more fragile than a coated fiber,

but this may not be a problem if the fiber is in its final position when the coating

is vaporized, which is basically the case for the magnet when it is heat treated. If

the fiber is wrapped in a fiberglass braid or is positioned in a capillary tube, or both,

the bare fiber should be relatively safe (the vaporized acrylate coating will have to be

contained in something so that it is not distributed throughout the magnet). Using

a bare fiber is much riskier than a coated fiber; and if the fiber breaks, the sensor

is rendered useless. In the case of alloys that do not have to be heat treated, the

acrylate coating would still be intact when the magnet is cooled. This could lead to
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micro-bending losses in the fiber, and potentially cause a break in the fiber, due to

the coating freezing unevenly and cracking. Whether the fiber would actually break

or not is uncertain, but micro-bending will lead to an increased attenuation of the

signal in the fiber.

Although micro-bending will lead to losses in the fiber, specialty coatings on fibers

tend to increase the losses in the fibers as well. Specialty coatings can be applied to

fibers either during the fiber drawing, or after the fiber is made. Usually, once the

fiber is formed, only small lengths are coated, but if the coating is applied during

the fiber formation, kilometers of continuous coated fiber can be produced. There

are a number of different types of coatings for different applications, as discussed in

Chapter 2. For our application we want a coating that will add further protection for

the fiber, and for this there are a number of choices, such as copper, gold, aluminum,

graphite, polyimide, as seen in Figure 6-3.

Depending on the superconducting alloy, which governs the needed heat treat-

ment, certain coatings are ruled out due to their survivable temperature ranges, as

seen in Table 6.1.

Table 6.1: Temperature limits for coated fibers, and their associated prices.
Temperature Limit (C) Cost ($/meter)

Standard SMF 200 $0.45
Polyimide Coated SMF 300 $5.50
Aluminum Coated SMF 400 $22.00
Copper Alloy Coated SMF 700 $22.00
Gold Coated SMF 700 $35.00

Table 6.1 also shows the approximate prices for the coated fibers. Obviously,

it would be desirable to demonstrate the integrity of standard fiber, since it is far

and away the least expensive. For example, the ITER central solenoid is made of

a little over 36 kilometers of conduit length. Standard single mode fiber for the

central solenoid would cost about $16,000 whereas the gold and copper coated fibers

would cost $1,260,000 and $792,000 respectively. Fiber survival experiments need to

be designed and run to determine if the standard acrylate coated fiber can be used

without a high probability of fiber failure.
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Figure 6-3: Different single mode fiber (SMF) coatings and their dimensions.
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6.2.3 Strain

When the magnet is operating, it will experience normal operating strains of around

0.15 % [70]. It must also go through a complex history, including the possibility of

tensioning, winding, thermal contraction, and transverse loads, so care must be taken

to limit fiber strains at all times. A fiber at room temperature can take up to 2

% strain without breaking; however, this is decreased at cryogenic temperatures to

about 1 % strain. If everything is calculated correctly, and there are no pre-strains

in the fiber before the magnet is turned on, the pulsing strain of 0.15 % should not

be a problem. However, if the fiber is loose in the CICC, then it will not be capable

of giving accurate strain measurements of the magnet, as would be the case if the

fiber is put in the central cooling channel. There is an obvious trade off between

fiber safety and accuracy of the strain measurements that has to be considered in the

system design.

If the fiber is to be used for thermometry alone, several modifications can be made.

First of all, the capillary tube can be spiraled in the central cooling channel so that

when the CICC is strained, the spiraled capillary tube straightens before the fiber

experiences any strain. The fiber can also be spiraled in the capillary tube, adding

up to 2 % to the length of the fiber compared to the length of the capillary tube.

Using both of these spiraling techniques, the fiber can actually be 5 % longer than

the length of the central cooling channel. Further, a fiberglass braid can be wrapped

around the fiber to further decouple the strain experienced by the capillary tube and

the strain felt by the fiber, as seen in Figure 6-4. Using these techniques, the fiber

should be nearly strain-free, and can be used solely as a temperature sensor.

Capillary 
tube

Fiberglass 
braid

Fiber 
optic

Figure 6-4: Capillary tube with fiber wrapped in fiberglass braid inside.
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Although the protection of the fiber is a major issue, there are solutions that

can provide a reliable sensor system. The most important decision is determining

what exactly the goals of the system are. There will be trade-offs in price, system

capabilities, and failure probability that need to be considered in the final system

design, but a distributed temperature and strain system is definitely possible.

6.3 Extraction

One of the major benefits of spontaneous Brillouin scattering over stimulated Brillouin

scattering is that for spontaneous systems, access to only one end of the fiber is needed

for the laser signal and data acquisition. While this is the case for our system, having

access to both ends of the sensing fiber would allow the sensing fiber to still be able

to sense the entire magnet, even if it breaks somewhere along the path. During the

lifetime of a superconducting magnet, it will experience many thermal cycles from

room temperature to cryogenic temperatures. Every part of a magnet has to be leak

tight to hold the helium throughout these thermal cycles, as well as during magnet

operation and quenching. If the magnet leaks anywhere, the liquid helium coolant

will leak out, which would cause the magnet to quench, as well as lead to a significant

amount of down-time until the leak is located and repaired.

6.3.1 Potential Problems

One obvious cause for a leak would be a plug in the conduit that is made of a different

material than the conduit and that has different thermal expansion properties. At a

fiber extraction point, the fiber is basically a plug in a hole through the conduit. Since

the thermal expansion coefficient for the glass fiber is significantly smaller than that

of the conduit material, the fiber can either be crushed if the conduit contracts more

than the fiber during the cool-down, or a leak can form if the conduit hole increases

much more than the fiber during the heat treatment. Obviously, both of these cases

are unacceptable. It turns out that the coefficient of expansion for the fused silica

goes through zero at around 200 K, meaning that the fiber shrinks with decreasing
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temperature down to 200 K and then begins increasing with decreasing temperature

below 200 K. This can be seen in a normalized plot of change in length relative to

the initial length, as shown in Figure 6-5 [71].
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Figure 6-5: Thermal expansion of fused silica (fiber optics) at cryogenic temperatures.
The slope of the curve is the coefficient of thermal expansion.

Another engineering issue with the fiber extraction is the pressure swings that

it will have to survive. As a magnet quenches, the temperature increase causes a

significant increase in pressure in the CICC. Pressure sensors that were tested on the

QUELL experiments recorded pressure increases of 0.6 bars up to 14.5 bars during

a quench [24]. High differential pressure across an extraction plug can easily lead to

leaks. A stycast plug has been shown by Pourrahimi to be leak free at 70 atm, but

no plug has been qualified for cyclic pressure loads [20].

The location of the extraction point can be very important in its ability to survive.

When strong magnets are energized, their outer surface geometry changes slightly due

to the magnetic forces. If the fiber extraction point is in a region where the conduit
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is expanding or contracting, it will be stressed, which could again lead to the fiber

breaking or a leak forming.

6.3.2 Potential Solutions

One of the easiest ways to seal a hole or crack is by using epoxy. Epoxies are made

with a full range of thermal expansion coefficients that are designed to match different

types of materials. Many epoxies do not survive cryogenic temperatures, but STY-

CAST epoxies have very good cryogenic properties. STYCAST epoxies are thermally

conductive with low thermal expansion, and they are designed to have low stress on

embedded components [72]. Table 6.2 shows some of the potential candidate materials

for fiber extraction [64].

Table 6.2: Thermal expansion of materials that could be used in an extraction.
Thermal Expansion

Material Use at 293 K
x 10−6K−1

Fused Silica Fiber Optic 0.4
Copper Fiber Coating 16.7
Gold Fiber Coating 14.1
Standard Epoxy Extraction Seal 660
STYCAST 2850 FT Extraction Seal 28
STYCAST 2850 FT-FR Extraction Seal 21
50-50 Pb-Sn Solder Extraction Seal 23.4
Inconel Conduit Jacket 13.0
316 Steel Conduit Jacket 15.2

If epoxies are not strong enough, or too brittle when strained at cryogenic tem-

peratures, another potential solution is solder. The fibers we used in our experiments

can be soldered into place due to their metal coatings [73]. Similar to epoxies, there

are many different types of solders to choose from depending on the desired specifica-

tions. For our application, we would want a solder that is ductile in liquid helium so

it would flex and not break. The solder would ideally have a coefficient of expansion

that is close to both that of the conduit and the fiber optic cable. As long as the

solder forms a good seal with the conduit and the metal coated fiber, without having
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to heat it to a temperature high enough to damage the fiber or its coating, filling a

fiber extraction hole in a conduit may work.

If the above ideal solder does not exist, another solution is to solder, weld or braze

the steel capillary tube into the hole in the conduit. Since the capillary tube is thicker

than the coating on the fiber, and it is not directly attached to the fiber, a higher

temperature can be used to solder or weld the capillary tube into place. The most

difficult part would be solved if the seal between the capillary tube and conduit can

be made leak tight and remain intact through thermal cycling. The capillary tube

and fiber can go through the conduit, and the fiber-capillary tube interface can be

addressed at room temperature. Most likely the inside of the capillary tube will be

under vacuum, or maybe filled with some type of heat conducting gel. Either way,

closing the end of the capillary tube and extracting the fiber is an easy process at

room temperature, with many potential solutions.

Although many extraction methods may be leak tight for a small number of pres-

surizations, they may not last through thousands of thermal cycles. A fiber optic

interferometer for quench detection was included in the design for the Korean Su-

perconducting Tokamak Advanced Reactor (KSTAR), but was not included in the

final design and construction. They ran an extensive program to solve the extraction

issue, and were able to create a seal that survived 10,000 thermal cycles, but the seal

around the fiber extraction would not last past 20,000 cycles [74]. Similar to this

KSTAR example, no superconducting magnet design team will approve the use of a

fiber optic sensor unless the extraction can be experimentally proven not to leak.
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Chapter 7

Conclusions and Future Work

7.1 Summary

The main goal of my thesis research was to show a “proof of concept” that a spon-

taneous Brillouin scattering system can work as theoretically described over lengths

of superconductor with good spatial resolution and short integration times. For the

first time, the spontaneous Brillouin frequency shift, intensity, and linewidth as a

function of strain and temperature have been measured down to 4 K. Using a copper

alloy coated fiber, we obtained a spatial resolution of 5 meters at 4 K, and were able

to map out the important Brillouin scattering parameters in temperature and strain

space as shown in Figures 7-1, 7-2, and 7-3.
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Figure 7-1: Relative frequency shift of spontaneous Brillouin scattered light as a
function of temperature and strain.

Figure 7-2: Intensity of spontaneous Brillouin scattered light as a function of tem-
perature and strain.
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Figure 7-3: Linewidth of spontaneous Brillouin scattered light as a function of tem-
perature and strain.

195



These surfaces proved that a unique temperature and strain can be calculated

simply using the frequency shift and intensity for most of the region of interest for

superconducting magnets (4-200 K, and 0 - 3500 µε). The linewidth measurement

can be used as a check, and is sometimes needed in regions where the frequency shift

and intensity measurements provide more than one possible solution. Using all three

parameters will uniquely determine the temperature and strain throughout the entire

range of interest, as shown in Figure 7-4.

The accuracies of the temperature and strain measurements, as a function of

temperature and strain, are shown in Figures 7-5 and 7-6.

The measurement time is on the order of 0.5 seconds, which allows this system to

be used as a quench detection system for large superconducting magnets. The spatial

resolution allows the systems not only to locate the origin of the quench, but also to

track the temperature changes as the quench spreads. During the heat treatment of a

magnet, this system can monitor the temperature throughout the magnet to measure

the spatial uniformity of the heat treatment, which has previously been done only

from the outer surface. Depending on the positioning of the fiber in the winding, this

system will also be able to provide the first ever spatially resolved strain measurement

in an operating magnet.
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Figure 7-4: Contour plots of the three spontaneous Brillouin scattering parameters
in the range of interest. Since there are no areas where all three contours are parallel,
these three parameters can be used to uniquely determine the temperature and strain.
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Figure 7-5: The ideal accuracy of temperature measurements.

Figure 7-6: The ideal accuracy of strain measurements.
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7.2 Future Work

In order for this system to be used reliably in an actual magnet, a more precise

calibration experiment needs to be run with an upgraded data acquisition system

for the FFT data. There are also several engineering issues that need to be solved,

including leak-tight extraction of the fiber from pressurized, supercritical helium to

a room temperature fiber going to the lasers and DAQ systems.

7.2.1 Theory and Analytical Tool Development

Since this is a new system, additional analytical tool development needs to be done.

Existing simulation codes, such as SOLXPT3D, simulate the development of tem-

perature, pressure losses, and thermal diffusion in cable-in-conduit superconductors.

These codes can also model the quench signal and voltage noise on voltage tap and co-

wound internal voltage sensors. These codes must be upgraded to predict the output

signals, including intensity, frequency shift, and linewidth, from a Brillouin scattering

sensor. Used as a SOLXPT3D subroutine, this would be the main tool for predicting

fiber optic measurements, and analyzing fundamental limitations in resolution and

strain rejection.

Figures of merit that evaluate the spatial resolution, analysis time, and accuracy

of the measurements also need to be developed. There are many variables in the

system that will affect these figures of merit, and their effects on each other need to

be theoretically analyzed in detail. Also, comparison parameters need to be developed

to compare our Brillouin system to other options currently used for quench detection

and magnet diagnostics, in particular advanced voltage sensors.

7.2.2 Engineering Experiments

As discussed in Chapter 6, there are several engineering problems that need to be

solved before our system is implemented in a magnet. The location of the fiber

in the CICC needs to be analyzed theoretically based on thermal diffusion times

and projected stresses and strains. If the fiber goes in the central cooling channel,
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vibration tests with the fiber in some sort of turbulent flow need to be designed and

run. Fiber survival experiments also have to be run to determine whether standard

plastic coated fibers can survive the heat treatment and cryogenic thermal cycles, as

well as the strain cycles. Based on these results, the ideal fiber coating has to be

selected. The size and material of the protective capillary tube must be determined,

as well as whether or not to use a fiberglass sleeve between the fiber and capillary

tube for added protection and strain decoupling.

The most difficult engineering problem facing our system is the reliable extrac-

tion of the fiber from a cable-in-conduit, filled with pressurized cryogenic helium,

to vacuum, and ultimately to room temperature air. The fiber extraction must re-

main leak-tight and vacuum-tight over hundreds of thermal cycles and thousands of

pressure cycles. A variety of sealant concepts need to be implemented and cycled in

order to determine the best extraction design. This problem must be solved before

implementation of internal fiber optics in an actual CICC magnet.

7.2.3 Model Superconducting Magnet Experiments

Another important goal is to show that our system works in a more realistic experi-

ment. For this, a superconducting coil needs to be designed and built with the fiber

optic sensing cable installed as determined by the results of the other engineering ex-

periments previously described. This magnet also needs to be outfitted with standard

voltage taps, thermocouples, and strain gages to be able to compare our measure-

ments with conventional measurements. The coil should have heaters in different

areas of the coil in order to be able to quench the magnet at different locations to

demonstrate the spatial resolution and quench propagation capabilities of our system.
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Appendix A

Fiber Bragg Grating Strain Gage

Calibration

Fiber Bragg Gratings are used routinely to measure either temperature or strain

in experiments operating at room temperature. Special FBGs known as Long Pe-

riod Gratings, or LPGs, can be used together with regular FBGs to simultaneously

determine temperature and strain since LPGs can be designed to be insensitive to

temperature [75]. However, these also are commonly used at room temperature. In

our experiments, it is necessary to know the strain in the sample fiber at all temper-

atures from 4 K to room temperature, but standard FBGs are not calibrated very far

below 0 C.

The change in the reflected wavelength of an FBG is dependent on both the change

in temperature and the change in strain, as seen in Equations A.1 - A.3.

∆λFBG = ∆λε + ∆λT (A.1)

∆λT = λFBG(α + ξ)∆T (A.2)

∆λε = λFBG(1− Pe)∆ε (A.3)
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The temperature dependence of α, the thermal expansion coefficient, and ξ, the

thermo-optic coefficient have been measured down to cryogenic temperature, and are

non-linear. Since we plan to use the FBGs as strain gages at constant temperatures,

we are not interested in the temperature dependence of the thermo-optic coefficient.

On the other hand Pe, the photo-elastic “constant”, has not been studied extensively

at cryogenic temperatures.

In order to effectively use FBGs as strain gages, we needed first to develop a

calibration experiment to determine the cryogenic temperature dependence of the

photo-elastic “constant”. A few years ago, an experiment was run to look at the

response of FBGs to temperature and strain down to 2.2 K, using a cantilever to strain

the fibers [76]. The FBG response to temperature was as expected, with relatively

no wavelength shift below 100 K. In fact, the response to strain up to 350 µε showed

that dλε
dε

was independent of temperature [76]. However, another experiment, which

strained the fibers past 5000 µε, showed that dλε
dε

is dependent on the temperature

[77]. Although the two experiments contradict each other, they both agree that the

temperature dependence is very small for small strains. The second experiment only

tested down to 123 K, so we needed to perform another experiment to verify this

result down to 4 K.

Figure A-1: Fiber holder that slides apart to strain the fibers. The section of the
fiber between the blue Stycast epoxy will be strained.

Our FBG calibration experiment compared the wavelength shifts of two FBGs:

one that was strained and one that was unstrained at the same temperature. To do

this we made an aluminum guide with two channels that was pulled apart to strain

the fibers. One fiber was epoxied to both sliding pieces so it was strained when they

were pulled apart as seen in Figure A-1. One end of the aluminum holder was bolted
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to a pull rod, and the other end was bolted to a base that did not move relative to

the other end.

The other fiber was in a wider channel, and not epoxied, so it experienced the

same temperature as the strained fiber, but was not strained. It was held in place

using gummy vacuum tape in two locations on the same sliding piece so the movement

of the second slider did not affect this fiber. Figure A-2 also shows that this fiber

had some slack, so that even if the moving piece pulled on this fiber, it would not be

strained.

Figure A-2: View of the Stycast epoxy holding the FBG to be strained in the top
channel and unstrained fiber in the lower channel with some slack.

Since we wanted to calibrate the FBG’s response to strain at several different

temperatures, the aluminum sliding guides were made to fit onto another piece that

enclosed the FBGs, as seen in Figure A-3. This other piece had a silicon diode (Lake

Shore DT 470-DS-12A) that worked with a thermostat and heater to control the

temperature of the FBGs. The cryogenic wires coming from the silicon diode are

loosely wrapped in the channel in order to thermally anchor the silicon diode.

In Figure A-4, the grooved plates with the FBGs are mounted to the base and

the pull rod. On the right, the box has been closed with the FBGs and silicon diode

inside, and constantin heater wire has been wrapped around the box. The Lake

Shore temperature controller is made to use a 25 Ω heater, so 2.4 meters of 0.01 inch

diameter constantin wire, totaling 25 Ω was used. The wires and aluminum box were

covered with Apiezon grease to improve the thermal conductance, and then wrapped
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Figure A-3: Aluminum enclosure for the FBGs with a mounted silicon diode to
measure the temperature.

in aluminum foil.

It had been intended to use a cryogenic Instron tensometer to move the pull rod

the desired amount with very good accuracy, but it was broken at the time of the

test. Instead of using an Instron, a threaded rod with 40 threads per inch was used

to strain the fiber. The pull rod had a thin bar through it that also went through

the brown G-10 push rod, so that the pull rod would not spin, as seen in Figure A-5.

Above the thin bar was a stationary steel bar with a through hole for the pull rod.

Two threaded steel bars were above the stationary bar, so by turning the middle bar

with respect to the stationary bar, the pull rod was raised up. The top threaded steel

bar was designed to be used as a lock nut; however, the static friction was enough to

hold the pull rod in place. As seen in Figure A-5, there were washers between the

bars so that they could be turned more easily.

Since there was thermal contraction when the probe was cooled down, as well as

a temperature gradient from 4 K to room temperature during the experiment, we

needed to be able to measure the actual relative movement of the two fiber holders.

To do this we used a Linear Variable Differential Transformer (LVDT). A brace held

the LVDT stationary with respect to the support cylinder, as shown in Figure A-5.

A thin bar went from the middle of the LVDT down to the aluminum fiber holder

where it was attached to the top moving guide.

At the beginning of the experiment, the limits of the tensile strain measurements

were approached cautiously. At first, the FBG was only strained at 4 K up to about

2000 µε. The first strain pull was also performed slowly, but the level of the liquid
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Figure A-4: Sliding aluminum FBG holders are mounted to the base and the pull
rod (left), enclosed by the silicon diode holder, wrapped with 25 ohms of constantin
heater wire (right top), and then wrapped in aluminum foil (right bottom).
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Figure A-5: View of the top of the probe showing the 3
8
− 40 steel threaded pull

rod, and the brown G-10 push cylinder. The LVDT is attached to the brown G-10
cylinder, and a thin rod goes from the LVDT down to the sliding part of the FBG
holder.

helium changed about 2 inches during the time it took to do the strain run. The

probe remained completely under the liquid helium the whole time, so the sample

temperature was constant at 4 K, but the change in level may have had other effects

on the measurements. The thermal contractions of the metal rod attached to the

LVDT, and the G-10 push rod are different, so a change in the temperature over a few

inches of these materials would look like relative motion due to the relative thermal

contractions. To avoid this in future strain runs, we waited for the temperature to

equilibrate so that the liquid helium level would be as steady as possible. The strain

pulls themselves from then on were performed in as little time as possible.

The results were not as linear as desired, but they were the best that could be
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achieved with the available equipment (and also good enough for the calibration

needed for the strain experiment). Nine strain pulls were performed at 4 K, followed

by two or three strain pulls at each temperature, as the probe was incrementally

heated.

For the strain pulls at 250 K, the raw data is plotted in Figure A-6. As in other

literature, there is a slight difference between loading and unloading, but the slopes

are nearly identical.
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Figure A-6: Raw data showing 2 strain runs at 250 K. The loading (solid lines)
and unloading (dotted lines) are slightly different; however, they both have the same
overall slope.

In order to calculate dλε
dε

, we first had to determine the voltage where the straining

began, and disregard the data points before that. Knowing that our calibrated LVDT

(SE-750-500) produces 20.092 ± 0.0005 volts/inch, and that the length of the sample

fiber under strain was 2.318 ± 0.0005 inches long, the voltage was converted to strain

and plotted in Figure A-7.

After obtaining data points for dλε
dε

at different temperatures, dλε
dε

was plotted as

a function of temperature in Figure A-8. Each of the “Raw data” points is the linear

fit to the data from a strain run at a specific temperature. A weighted average of
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Figure A-7: The loading data for the 2 strain runs at 250 K (solid lines) and the
linear fit (dotted lines) of the data provide the slope dλε

dε
.

these data points was taken, based on the R-squared values of each fit. The better

the linear fit for a strain run, the more weight that point received in the averaging.

From this data, we can clearly see that as the temperature decreases from 300

K to around 200 K, the strain-sensitivity of the FBGs increases. For decreasing

temperatures below 200 K, the strain-sensitivity of the FBGs decreases.

From our data we can calculate the photo-elastic “constant”, Pe, as a function of

temperature, according to Equation A.4.

Pe = 1− 1

λFBG

dλε
dε

(A.4)

Using Equation A.4 and our measured values of dλε
dε

, we can plot the photo-elastic

“constant”, Pe, as a function of temperature, as shown in Figure A-9. Our photo-

elastic data agrees well with the room temperature value of 0.22 [47].

The photo-elastic coefficient can be used to calculate the strain coefficient using

Equation A.5.
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Figure A-8: dλε
dε

increases as the temperature drops from 300 K to 200 K, but as the
temperature drops below 200 K, dλε

dε
decreases.

Kε =
1

λFBG

dλFBG
dε

= 1− Pe (A.5)

A plot of the strain coefficient as a function of temperature is plotted in Figure

A-10. Our strain coefficient also agrees well with the theoretical value of 0.78 at room

temperature.
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Figure A-9: The photo-elastic “constant” is not constant as a function of temperature.
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Figure A-10: The strain coefficient is not constant as a function of temperature.
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Appendix B

Twisting Cable Diagnostic

As described in the Introduction, the cabling pattern in a CICC is very intricate.

Figure B-1 shows the 3×3×4×5×6 cabling pattern used to make this superconducting

cable

Figure B-1: Partially untwisted CICC showing the cabling pattern.

During operation, the transverse Lorentz loads on the superconducting cable cre-

ates bending strain in the strands and pinching strains, where the conductors cross

over each other due to the cabling pattern. This causes reversible strains that degrade

performance of the strain-sensitive superconductor, as well as irreversible degradation,

due to breakage of individual filaments by local tensile strain. By sensing the strain

in the wires, a better understanding of these loads can be achieved. Due to the
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intricate winding pattern, theoretical calculations of the loads are complex. Actual

measurements of the loads on the wires are impossible, due to the geometry. However,

using an optical fiber sensor to measure the strains could give detailed information,

adequate to calibrate numerical models of the strain distribution in the CICC. There

are several different sensing methods and several different configurations that can be

used to get this information.

B.1 Fiber Optic Sizing

Since a normal fiber optic cable has a diameter of 0.125 mm, and an ITER strand is

approximately 0.8 mm in diameter, we need to increase the size of the fiber optic to

be closer to that of the other wires. Several options are discussed below.

   A                        B                C         D

Figure B-2: Several choices of cladding, coating, and protection.

- If the strain tests are using only a bundle of fibers and no superconductor, a

regular fiber with a 0.9 mm plastic coating is a standard product. This would be the

cheapest and easiest way to put a couple of fibers distributed in the bundle, but it

would not protect against lateral stresses, which may break the fiber. Figure B-2A.

- If the strain tests are using only a bundle of fibers and no superconductor, the

fibers need to be either bare fibers or metal coated. These fibers need to be protected

inside a capillary tube. The fiber can be pulled into a copper tube with an OD of 0.8

mm and filled with an epoxy to hold it in place (Or a steel capillary tube to avoid
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any lateral stresses. The Young’s modulus of the steel tube can be matched to that

of a solid copper strand.). Figure B-2B.

- Coating a fiber with copper will increase the diameter to 0.165 mm. It is physi-

cally possible to coat the fiber with enough copper to increase the diameter to 0.8 mm,

but since the different coefficient of expansion between the copper and silica glass is

very different, a large temperature change may crack the coating Figure B-2C.

- The cladding of the fiber can be increased to 0.2 mm without any harmful side

effects. Coating this fiber with the appropriate amount of copper would increase the

diameter to 0.26 mm. This would be expensive, since it would require a custom fiber

to be designed and drawn. Figure B-2D.

B.2 Fiber Optic Positioning

There are also several different positioning schemes that can be used based on the

desired measurement, as shown in Figure B-3.

A                          B                        C
Figure B-3: Several choices of fiber positioning.

- If this is strictly a geometry based strain measurement, a bundle with only metal

coated fibers can be used. This would allow standard metal coated fibers to be used

and the strain in every fiber can be measured; however, it will be using fibers with

much smaller diameters than ITER strands. Figure B-3A.

- If this is a geometry strain measurement that cannot be scaled down, a bundle

of copper capillary tubes with the correct OD (or an OD scaled to match the Young’s
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modulus of an ITER strand) can be used. The fiber optic can be epoxied in the

capillary tube and strain can be measured for each strand. Figure B-3B.

- If we want to change as little as possible in the strand bundle, we could use the

actual ITER strands and replace a couple with a sensing fiber (either 0.9 mm plastic

coated fiber, or a fiber in a copper capillary tube). This would give the most realistic

data, but only in a few positions. Figure B-3C.

B.3 Strain Measurement Method

The actual strain measurement can also be done in several ways. The LUNA Rayleigh

scattering system described in Chapter 2 could be used to measure the strain induced

in the sensor. A measurement time on the order of 10 seconds is not a problem, since

this would be a steady-state measurement. Using this system, 2 cm spatial resolution

and 1 µε strain resolution is possible.

A Brillouin scattering measurement that uses a correlation-based continuous-wave

technique, instead of a time-based technique, could also be used. In this system the

two counter-propagating waves are modulated by a sine wave, which generates a cor-

relation peak [78]. Instead of using OTDR to achieve spatial resolution, the Brillouin

scattering measurement is taking place only at the position where the frequencies of

the two waves are changing synchronously and the frequency difference between the

two sources is constant. Everywhere else the two waves are changing continuously,

which results in suppression of the gain and therefore no signal. This size of the

correlated region (spatial resolution) can be changed by changing the modulation of

the two lasers. This system has been shown to work with as low as 1 cm spatial

resolution at a 57 Hz sampling rate [79].

A system using Fiber Bragg Gratings may be the easiest system to implement.

“Distributed measurements” that the LUNA and Brillouin scattering systems measure

are only as good as their spatial resolution. For this experiment, systems being able

to measure several closely spaced points are more “distributed” than the LUNA and

Brillouin scattering systems. Since the FBGs are a few mm long, this means we can
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get a spatial resolution of a few mm using FBGs. This system would use wave division

multiplexing (WDM) of FBGs where each grating reflects a different wavelength of a

broadband light source.

Table B.1: Three potential measurement systems, including their best spatial resolu-
tion and a short list of pros and cons.

Res Pros Cons
LUNA 2 cm · Commercial product · Spatial resolution not as good

(Rayleigh) · Expensive
Brillouin 1 cm · Good resolution · Expensive components

Scattering · Inexpensive fibers · Development needed
Fiber Bragg Few · Very good resolution · Expensive custom fibers

Grating mm · Inexpensive laser · Need protective Cu tube

As in discussed in Table B.1, there are many different ways to use fiber optics

in sensor systems. Depending on the desired parameters to be measured, the actual

fiber properties and the layout of the fiber sensors, including the optical system, need

to be optimized.
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Appendix C

Temperature Experiment Pictures

Figure C-1 is a picture of the probe used in the temperature experiment. The square

black G-10 plate sat on top of the cryostat, while the rest of the probe hung in the

central reservoir. The top 24 inches of the probe in the cryostat have Styrofoam

wrapped in the yellow tape to provide a thermal barrier between the cryogenic and

room temperatures.

The brown G-10 cylinder is attached to the fiber holder at the bottom, and can

be raised and lowered by pulling the cylinder through the top plate and locking it

into place with three set screws, which can be seen better in Figure C-2.

The copper wires seen in Figure C-2 are the lead wires for the thermocouples and

heaters. The liquid helium transfer line penetrated the brass and steel connectors

located to the right of the central cylinder in Figure C-2. During the experiment, the

fiber optic cable traveled through the small copper tube and then through the brown

G-10 tube to the sample holder, which also was insulated with Styrofoam as seen in

Figure C-3.

At the bottom of the probe, there is a base holding the copper blocks used for the

differential thermocouple connections, as shown in Figure C-4. This part of the probe

was submersed in the reference cryogen, either liquid helium or liquid nitrogen. Nine

copper block pairs were made to allow the use of nine thermocouples. Seven were

used in the initial tests at MIT, but only two were used in the actual temperature

experiment.
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Figure C-1: Photo of the experimental probe used in the temperature experiment.
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Figure C-2: View of the top of the probe.

Also seen in Figure C-4 is the bottom of the liquid helium level sensor inside the

tube on the left with the holes. The gold-colored sensor also has holes to permit

filling with liquid helium. Inside the level sensor is a superconducting wire that

is partially cooled by the liquid helium. Based on the level of the liquid helium,

only the fraction of the superconducting wire submersed in the liquid helium will be

superconducting. The measured resistive voltage is used to determine the fraction of

the superconducting wire that is in the superconducting state, which is then correlated

to the level of the liquid helium in the cryostat.
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Figure C-3: Sample fiber holder with its Styrofoam insulation.

Figure C-4: Base of probe with the differential thermocouple blocks and a view of
the liquid helium level sensor.
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Appendix D

Other Strain Probe Ideas

Many ideas were considered and four strain probe designs were considered seriously

for the uniform strain apparatus, and the “disks in a cylinder” concept was chosen

as the best system. Other designs included pulleys, a tapered pull-rod to expand a

split disk, and using radial expansion of compression springs. These designs, and why

they were not chosen, will be discussed further in this appendix.

One of the first methods considered to strain the sample fiber was using a pul-

ley system, as shown in Figure D-1. At room temperature, all Brillouin scattering

strain experiments have been done using pulleys. However, in these experiments,

the tens of meters of fibers were part of a multi-pulley system the size of a table.

Although this works well at room temperature, cooling an area that large would be

prohibitively expensive. Also, trying to uniformly change the temperature would be

almost impossible for a system that large.

In order to cryogenically cool, and provide a uniform temperature throughout the

range from 4 K to room temperature, the whole probe needs to be small. Vertical

temperature gradients are a common problem in trying to obtain a uniform tempera-

ture in a cryogenic environment, which means that the pulley system either needs to

be horizontal, or short if it is in the vertical direction. The shorter the pulley system,

the higher the effect of pulley friction on the results. In the room temperature test,

where there were several meters of fiber between pulleys, followed by a few centimeters

rounding the pulley, the non-uniformity caused by the friction between the fiber and
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Figure D-1: Probe design using a pulley to strain the fiber.

the pulley was very small relative to the total length of the sample fiber. However,

when this ratio is closer to unity, the non-uniformity from the friction significantly

impacts the measurement. A compromise could not be found between the need for a

large ratio of straight section to pulley diameter and that of a small overall vertical

height. Using a horizontal pulley system also will not work, since the overall length

cannot be very large without increasing the size of the cryostat, which would lead to

prohibitively high helium costs.

Since a vertical fiber loop had been ruled out by the vertical temperature gradients,

the next obvious thought was to wrap the fibers horizontally. By wrapping the fibers
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around a split disk, and then radially expanding the pieces of the disk using a tapered

pull-rod, the fiber would be strained much more uniformly than by using a pulley

system, as seen in Figure D-2.

Figure D-2: Split disk which would use a tapered pull-rod.

There would still be friction between the outer edge of the disk and the fibers,

but it would be more uniform than the pulley system. The friction will cause a strain

distribution along each piece of the disk. However, increasing the number of pieces

that the disk is cut into decreases the non-uniformity. Although this design elimi-

nated the vertical temperature gradient, the calculations showed that the machining

tolerances were too tight, making this design prohibitively expensive.

Retaining the idea of horizontally wrapping the sample fiber around a split cylin-

der and radially expanding it somehow, we realized that the radial expansion of a
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compression spring is nearly equal to the amount of expansion needed for the exper-

iment. When a spring’s ends are fixed and not allowed to rotate during compression

from its free length to its solid length, the change in diameter is given by Equation

D.1 [80].

∆D

D
= 0.05 · p

2 − d2

D2
(D.1)

In Equation D.1, D is the mean coil diameter, d is the diameter of the wire, and

p is the pitch, which is the distance between the middle of a wire to the middle of the

adjacent wire. The pitch can also be calculated using Equation D.2, where N is the

number of active coils [81].

p =
FullLength− 2d

N
(D.2)

We want to maximize ∆D
D

, so we have several options. Increasing the pitch would

work, but if the system is about 5 to 10 inches tall, the pitch can not be much more

than 1 inch. The wire diameter can be decreased, but it still has to be strong enough

to expand a cylinder. The diameter can be decreased, but it still needs to be at least

3 inches to avoid bending losses in the fiber.

Wrapping 50 meters around a cylinder with a 4 inch diameter is about 1 inch

in height of wrapped fiber. A readily available spring from McMaster has an outer

diameter of 3 5
32

inches and a wire diameter of 0.375 inches, leading to a mean diameter

of 2.781 inches. It is 5 inches tall, and the pitch is 0.835 inches. Compressing this

spring from its free to solid lengths should give an expansion calculated in Equation

D.3.

∆D

D
= 0.05

0.8352 − 0.3752

2.781252
= 0.003598 ≈ 0.36% (D.3)

An experiment was run with this spring in which the spring was compressed 1.4

inches and then 1.6 inches (not all the way to its solid length which would be 2.5

inches), and increases in circumference of 0.062 inches (∆D = 0.0197 inches) and

0.071 inches (∆D = 0.0226 inches) respectively were measured. These numbers give
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the strains calculated in Equations D.4 and D.5.

∆C

C
=

0.062

2.781π
= 0.00710 ≈ 0.71% ≈ 7100µε (D.4)

0.071

2.781π
= 0.00813 ≈ 0.81% ≈ 8100µε (D.5)

These values are high enough to measure the strain from 0-4000 µε easily at

room temperature; however, there would be problems if a probe was cooled down to

cryogenic temperatures. One problem is that when the probe is cooled from room

temperature to 4 K, everything will shrink significantly more than the fibers. The

spring is made out of Spring Tempered Steel (ASTM A229), which will noticeably

shrink 0.25 % when cooled from room temperature to 4 K. This will shrink the initial

circumference of the spring, as calculated in Equation D.6.

C|4K = Co − Co · α = 3.15625π − 3.15625π · 0.0025 = 9.94041” (D.6)

The circumference will have to increase 0.0248 inches to get back to the initial

room temperature circumference where the strain in the fiber is zero. The ∆C will

also decrease due to the temperature change as expressed in Equation D.7.

∆C|4K = ∆Co −∆Co · α = 0.071− 0.071 · 0.0025 = 0.0708” (D.7)

Assuming that the spring is compressed 1.6 inches at 4 K, 0.0248 of the 0.0708

inches will go towards getting the circumference back to the initial size, and the

remaining 0.0460 inches will strain the fiber, according to Equation D.8.

∆C|Remaining
C|fiber@0−strain = Co

=
0.0460

3.15625π
= 0.00464 ≈ 0.46% ≈ 4600µε (D.8)

This would barely be enough to do our experiment. Another cryogenic problem

is that below 10 K, steel is brittle, and the spring would break. Using a titanium or

Inconel spring would solve this problem, but these springs would have to be custom

made. Assuming that a custom spring is made with the appropriate dimensions, it
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could be used in a probe, as shown in Figure D-3, to strain the sample fiber.

Figure D-3: Basic design for a spring based fiber straining probe.

In Figure D-3 the blue represents the spring. A steel cylinder would be machined

and sliced to fit right on the spring’s surface, so that the fibers are not affected by the

individual coils of the spring. The flat gray part simply represents the sample area; it

would not be an actual material. While this design looked very promising, and may

have worked as well, we decided to go with the “disks in the cylinder” probe.
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Appendix E

Strain Probe Calculations

Many calculations supported the design of the strain probe in order to guarantee

that it could strain the fibers uniformly to the design limits and that the probe would

retain structural integrity at the design stresses and cryogenic temperatures. It was

necessary to demonstrate that none of the fingers would be over stressed, and that the

probe would not buckle under the applied load. A summary of the calculations, which

will be described in further detail, is given in Figure E-1. (All of the equations from

this appendix come from Roark and Young [82], with a special thanks to discussions

with Peter Titus as to which equations applied.)

The top three sections of Figure E-1 are the main design variables and constants.

Once the equations were set up, several of the parameters were varied until the desired

safety ratios were achieved. These parameters were the disk thickness and average

finger width, as well as the thickness and length of the cylinder’s bending portion. All

calculations are done for one finger, or one piece of the sliced cylinder. The middle

two green sections are the geometrical calculations for the disk and cylinder. The

gray sections are the stress calculations for a single finger, and the orange section

is the buckling calculations for a single finger. The bottom two sections are the

summaries of the stress and buckling calculations, with the ratios of the expected

stresses compared to the allowed stresses. We wanted the ratio, or “safety factor”,

for the stresses on the fingers to be over two vs. ultimate strength, and over five for

the buckling.
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Figure E-1: Summary of calculations for the strain probe.

The stress on a finger of the disk comes from transverse load and axial compression.

Stress from actually bending the finger by the cylinder pushing on the end is the

transverse load, while the axial compression comes from the opposing load of the

fibers and cylinder, as seen in Figure E-2.

Ffiber & cyl

Fbend

Figure E-2: Forces on a finger due to the vertical movement causing bending and the
axial compression from the fibers and cylinder.

First we will look at the stress from the finger deflecting a small amount as the

two disks are pulled together. This can be simplified to a simple cantilever beam

problem, where the load applied to bend a finger of the appropriate dimensions can

be expressed by Equation E.1.
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P =
3δEI

L3
(E.1)

The deflection needed to strain the sample fiber 1 % is given in the “Disk Calcs”

section of Figure E-1, the length of the finger as well as the modulus of the titanium

alloy are also given in Figure E-1. The moment of inertia of the finger is given by

Equation E.2, where the average width of the finger is used.

I =
bavgt

3

12
(E.2)

To calculate the stress, we substitute these values into Equation E.3, where t is

the thickness of the finger and the minimum width is used because that is where the

stress will be the maximum.

σfingers =
6PL

bmint2
(E.3)

Another force on the fingers is the resistive force of the fibers against being

strained. The force needed to strain the fibers is calculated according to Equation

E.4.

Ffiber = EAo
∆L

Lo
(E.4)

The area in Equation E.4 is the area of the cross section of a fiber times the

number of laps around the probe. Using this force, the load on a single finger is

calculated using Equation E.5.

Pfiber =
Ffiber
Rb

2πb

#cuts
(E.5)

Next, the stress on the part of the finger with the minimum width is calculated

according to Equation E.6.

σfiber =
Pfiber
bmint

(E.6)

229



Since the cylinder is held together at the top and bottom, a force is needed to

expand the fiber sample diameter. The bending will be different from that in Figure

E-2, since the cylinder is held both at the top and the bottom, as shown in Figure

E-3.

Ffingers

Figure E-3: The bending of a cylinder section that is held fixed at both ends.

This force is calculated by pretending the cylinder slice is another simple beam,

as shown in Equation E.7. Obviously, there is a slight curvature to the “beam” since

it is cut from a cylinder, but this effect is minimal.

Pcyl =
12δcylEcylIcyl

L3
cyl

(E.7)

The deflection of the cylinder used in Equation E.7 is easily calculated, based on

the assumption that we are expanding the diameter by 1 %. The moment of inertia

in Equation E.7 can be calculated using Equation E.8.

Icyl =
bcylt

3

12
(E.8)

Using Equations E.7 and E.8, we can calculate the stress due to the cylinder

according to Equation E.9.

σcyl =
6PcylLcyl
bcylt2cyl

(E.9)
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Adding the stresses calculated in Equations E.3, E.6, and E.9 gives the total stress

expected in the fingers. According to the parameters used in the probe design, the

total stress expected in the smallest width section of a finger is on the order of 75

ksi. The titanium alloy has an allowable stress of 220 ksi, giving us a safety factor of

almost 3.

Another potential problem is that probe can buckle because of compressive force

on a finger. Although the fingers on the disk are pre-bent and have a lateral force

that will bend them during the experiment, calculating the Euler buckling still gives

an accurate estimate of the buckling strength. A force diagram illustrating the Euler

buckling forces on a finger is shown in Figure E-4.

Ffiber & cyl

Figure E-4: Diagram of Euler buckling with one end fixed and one end pinned.

The Euler equation for buckling is given in Equation E.10.

F =
π2EI

(KL)2
(E.10)

K is a constant that depends on the support conditions at the ends of the fingers.

For our probe, one end is fixed and the other end that fits into the cylinder’s groove

can be thought of as being pinned, giving Equation E.11.

K =
1√
2
≈ 0.7 (E.11)

The moment of inertia in Equation E.10 is the same moment of inertia for the

finger, expressed in Equation E.2. In order to calculate the stress that would cause

the finger to buckle, we divide the force by the area as shown in Equation E.12.

σEuler =
F

A
=

π2Et2

12(KL)2
(E.12)

If the finger experiences a stress more than calculated in Equation E.12, the fin-
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ger will buckle. A design safety factor of five is standard. Since the stresses that

contribute to the potential buckling come from compressive forces on the finger, both

the fiber and cylinder section contributions need to be summed as in Equation E.13.

σfiber + σcyl ≤ 5σEuler (E.13)

Assuming that the fingers will not break due to the bending stress, and that

they will not buckle due to the compressive forces, the next potential problem is the

cylinder pieces bowing, instead of expanding radially. Since the cylinder sections are

held in place at the top and bottom, a radial increase at the center will cause the

cylinder to bow, which would lead to a non-uniform straining of the sample fiber. In

order to make sure that the sample fiber holder area on the cylinder sections does not

bow, the part of the cylinder section between the fiber area and the top was machined

down to 0.05 inches thick, whereas the fiber area was 0.235 inches thick. Since the

stiffness is proportional to the moment of inertia, which is a function of t3, the middle

section is over 100 times stiffer than the upper and lower sections and will bend 100

times less. Since the radial expansion is only 0.02 inches, the curvature of the fiber

holder section is negligible.

A final potential problem is that the fibers may be strong enough to bend the

sample holder. As shown below in Figure E-7, the fibers are wrapped somewhere in

the white area, which is radially expanded by the two disks pushing out where the

red grooves are. This is simplified by looking at a single section of the cylinder and

assuming that it is rectangular, ignoring the slight curvature, as shown in Figure E-5.

Calculating the maximum deflection of the beam shown in Figure E-5 can be done

using Equation E.14.

δy =
1

384

PL4

EI
= 7.5 · 10−4inches (E.14)

The load, P , is the load due to the fibers, as expressed in Equation E.5. The length,

L, is defined as the distance between the two support points, and the moment of

inertia is defined in Equation E.8. As seen in Equation E.14, the maximum deflection
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Ffiber

Ffingers

Figure E-5: The distributed load from the wrapped fibers opposing the two point
forces from the fingers.

is on the order of 0.75 mils, which is negligible. Thus, we can safely assume that the

sample holder remains flat during the straining experiment.

Based on the calculations just described, and summarized in Figure E-1, a 0.63

inch thick Ti-6Al-4V sheet was ordered. This piece was used to machine two disks

according to the dimensions in Figure E-6.

Figure E-6: Dimensions of the titanium disks.

The cylinder was machined according to calculations described in Figure E-1. Af-

ter it was machined to the appropriate dimensions, it was Electric Discharge Machined

(EDM) into twenty equal slices, as shown in Figure E-7.

233



Figure E-7: Dimensions of the cylinder, as along with a view of a single cylinder piece.
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Appendix F

Strain Experiment Pictures

The disks used in the strain gage experiment were machined out of Ti-6Al-4V with

the specifications calculated in Appendix E, and are shown in Figure F-1. The fingers

were then bent to 21 degrees by pushing them through a hole with a smaller diameter

to evenly bend the fingers.

Figure F-1: Machined disk (left), and bent into shape (right).

The cylinder was machined from steel to the specified dimensions. Next, the

cylinder was cut into twenty separate pieces using Electrical Discharge Machining

(EDM), as shown in Figure F-2.

Figure F-3 shows the push rod (top) and the threaded pull rod (bottom) with

the disks attached. The top picture also shows the top disk and some connectors to
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Figure F-2: Machined and EDMed cylinder (left), re-forming the sample holder (mid-
dle), sample holder with a few missing pieces to see disks inside (right).
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a steel cylinder that eventually surrounded the entire probe to provide a thermally

stable environment.

Figure F-3: Push and pull rods with the disks attached.

The temperature of the fiber sample probe was controlled by constantin heater

wire and a thermostat. The wire was run along the back of the sample holder, on the

inside of the cylinder. Apiezon grease was added to improve the thermal conduction

from the heater wire to the sample holder. Finally, the wires were taped into place,
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as seen in Figure F-4.

Figure F-4: Constantin heater wire and Apiezon grease on the inside of the cylinder
before (left) and after (right) being taped into place.

Figure F-5 shows the probe as it is being closed up. The push-pull rods and disks

from Figure F-3 can be seen, as well as several steel foil circles taped into place. These

foils were used to prevent thermal fluctuations due to convection. The bottom photo

in Figure F-5 shows the probe with all but the last piece in place.

Stycast epoxy was used to hold the fibers in place because of its excellent bonding

properties and its good thermal contraction match with glass and steel throughout

the temperature range in the experiment. In order to hold the actual glass fiber, and

not just the metal coating, the metal coatings were removed from the sample fibers.

In order to remove the copper alloy coating from the fiber sample, a 3:1 mixture of

hydrochloric to nitric acid was used. After soaking the fiber in the acid mixture for

15 minutes, the metal had dissolved and the glass fiber was cleaned with alcohol.

The acid mixture could also be used to remove the gold coating; however, heat from

a blow torch was adequate to remove the gold coating. A blow torch was also used

to remove the plastic coating from the FBG fibers in order to be able to epoxy the

glass directly. The fibers were held in place with tape overnight as the Stycast dried,

bonding the glass fibers to the probe, as seen in Figure F-6.
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Figure F-5: View of the inside of the probe with the steel foil thermal shields (top),
and closing up the probe (bottom).
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Figure F-6: Gold coating stripped off fibers where they will be epoxied (left), and the
sample fiber epoxied into place (right).

Figure F-7 shows the top view of the probe. The three bars on the top were

used to raise the threaded pull rod relative to the push rod. The bottom bar had

a through-hole for the threaded rod, and was bolted to the push rod. The second

rod was threaded, and as it was turned relative to the bottom bar, the threaded pull

rod was lifted relative to the push rod. The top bar was designed to be a lock-nut;

however, there was enough friction to hold the push-pull rods stationary relative to

each other. Also seen in this figure are the sample fibers and the strain gage FBG

fibers exiting through a hole at the top of the probe.

Figure F-8 is a picture of the probe cooling down as the liquid helium is transferred

to the bottom of the cryostat. In the left side of the picture, some of the hardware can

be seen including (clockwise from top right) the broadband laser source, the liquid

helium level sensor, the thermostat used with the silicon diode and constantin heater

wire, a power supply for a secondary heater, and an optical switch.

Figure F-9 is a picture of the top of the probe during the experiment.
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Figure F-7: Top view of the probe showing the threaded rod with the pulling mech-
anism.

Figure F-8: Cooling down the probe with liquid helium.
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Figure F-9: Top view during experiment.
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