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requirements for the degree of
Doctor of Philosophy in Applied Plasma Physics

Abstract

The three-dimensional interaction of a magnetized, collisionless flowing plasma with
a non-emitting conducting sphere is solved in the entire range of physically allowed
parameters, in the ion-collecting regime. This can be considered as the “spherical
Mach probe” problem, establishing how the ion flux to the surface varies with orien-
tation and external velocity; the study is however of broader interest, as the sphere
can also be seen as a dust particle or any ionospheric body. The core tool developed
for this study is the fully parallelized (particle + field solver) Particle-In-Cell code
SCEPTIC3D, three-dimensional evolution of SCEPTIC, accounting for the full ion
distribution function and Boltzmann electrons.

Investigations are first carried out in the quasineutral limit. Results include a
report of ion current dependence on the external plasma parameters, as well as a
theoretical calibration for transverse Mach probes with four electrodes oriented at
45o to the magnetic field in a plane of flow and magnetic field, valid for arbitrary
temperature and ion magnetization. The analysis is preceded by an independent
semi-analytic treatment of strongly magnetized ion collection by oblique surfaces,
successfully validating SCEPTIC3D’s behaviour.

The finite shielding length regime is more complex, and an important transition
in plasma structure occurs when the Debye length goes over the average ion Larmor
radius. Studies of ion collection show that the ion current can exceed the (unmag-
netized) OML limit at weak magnetization, and the Mach probe calibration method
proposed in the context of quasineutral plasmas holds up to Debye lengths equal to
about 10% of the probe radius.

A further analysis consists in calculating the force exerted by the flow on spherical
dust. In short Debye length plasmas a strong drag component antiparallel to the
convective electric field forms, causing the dust to spin faster than what predicted
by its Larmor frequency. At intermediate and large Debye length the ion-drag in the
direction of transverse flow is found to reverse in subsonic conditions, but the internal
Laplace force appears to be positive, and larger in magnitude than the negative ion-
drag.
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Chapter I

Thesis outline

I.1 Background

Interest in the physics of plasma interaction with ion-absorbing bodies has not faded

since the almost century-old work of Mott-Smith and Langmuir [1, 2], to whom the

technique of flux-sensing (or electric) probes is due. The concept of electric probes

is simple: from the insertion of one or more small electrodes in a discharge and the

measure of collected currents, one seeks to infer local plasma properties such as the

electron temperature (Langmuir probes) or the plasma drift velocity (Mach probes).

Because biased (usually negatively), probes modify the neighbouring electrostatic

potential and particle distribution functions. The challenge is therefore not so much

the experimental operation itself, rather the development of reliable theories relating

the collected fluxes to the unperturbed plasma properties [3, 4].

To develop such theories, it is customary to consider bodies with spherical ge-

ometry. Of course this simplification greatly eases the analysis, but perhaps more

important broadens the applicability of the developed results to the more recent field

of dusty plasmas [5]. Because electron mobility is much higher than the ions’, dust

particles usually tend to charge until they acquire a potential negative enough to repel

the excess electrons and collect a zero net current. Calculating the charging rate, as

well as quantities such as the drag force exerted on the particles by drifting plasmas,

involves the same physics as the interpretation of probe measurements, albeit dust

15



grains are usually two to three orders of magnitude smaller than probes.

The motivation for this thesis is to improve our understanding of ion collection by

negatively charged electrodes in flowing magnetized plasmas, in the entire range of

ion magnetization βi and electron Debye length over electrode radius λDe. In order

to concentrate on basic plasma phenomena, the complexity of non-plasma physics is

reduced as follows. It is first assumed that the probe is ideal (we refer to “probe”,

“electrode” or “dust” regardless of the physical nature of the collector), that is to say it

absorbs every particle striking it and releases neutral atoms or molecules at a rate that

balances the incoming flux of ions. Deviations from ideality come from different solid

state physics reactions resulting in electron emission at the surface; those phenomena

will be disregarded bearing in mind that they might not be negligible in situations

involving for instance ionospheric plasmas, where UV radiation can cause strong

enough photoemission to positively charge orbiting bodies. It is further assumed that

the probe bias is negative enough for a Debye sheath to form; in this regime, the

electron density and the electrostatic potential around the probe are simply related

by a Boltzmann exponential.

Despite the unfortunate insufficiency of communication between laboratory-plasma

and space-physics communities, the interaction of spacecraft with their environment

shares many properties with the above mentioned probes or dust particulates. How-

ever because the quantity of interest is usually the attracted electron rather than ion

current, no Boltzmann electron treatment is possible and more specific calculations

are required. Examples of plasmas where the average ion Larmor radius RL compares

to the size of relevant perturbing objects are proposed in table (I.1).

A convenient way to treat the problem is to follow the Particle-In-Cell (PIC)

approach [8]: instead of directly solving the continuity equation for the ion distribu-

tion function coupled to Poisson equation for the potential, a large set of computa-

tional particles are advanced according to the equations of motion. Using the 2D/3v

(two-dimensional physical space, three-dimensional velocity space) PIC code SCEP-

TIC [9, 10, 11, 12], the problem has been comprehensively solved in unmagnetized

plasmas. The main challenge in the presence of a background magnetic field is the
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Te∞ Ti∞ B N∞ RLe RL ΛDe RL com-
(eV) (eV) (T) (m−3) (µm) (µm) (µm) pares to

Mid-plane SOL 10 30 5 1018 1.9 200 23 dust
Divertor region 5 5 5 1020 1.3 81 1.7 dust

Magnetron 3 0.025 2.4 · 10−2 2.5 · 1016 210 5.3 · 103 81 probe
F-layer 0.1 0.1 5 · 10−5 1011 1.9 · 104 3.2 · 106 7.4 · 103 satellite

Table I.1: Examples of plasmas where the average ion Larmor radius RL compares
to the size of dust particles (Rp ∼ 1− 200µm), flux-sensing probes (Rp ∼ 1-5mm), or
man-made satellites (Rp ∼ 1m). The first two examples are typical DD (D+ plasma)
Tokamak plasmas. Experimental parameters for the Magnetron (Ar+ discharge) are
taken from Ref. [6], and atmospheric data for the F-layer (0+ plasma) is from Ref. [7].

requirement for cross-field transport in the collector’s magnetic shadow in order for

the presheath to merge with the plasma at infinity. When no such effect is accounted

for, only the Large Debye length plasmas when the potential distribution around the

collector adopts a Coulomb form [13], or weakly magnetized plasmas where the ratio

of sphere radius over mean ion Larmor radius βi<∼ 1 [14] can be treated.

I.2 Nomenclature

In this thesis, special care has been taken to ensure notation consistency. The key

parameters and variables are referenced in table (I.2).

Dimensional plasma parameters

Ti,e Ion (electron) temperature

Ti∞ Ion temperature at infinity

N∞ External electron density

Ni,e Ion (electron) charge-density

ΛDe Electron Debye length Eq. (II.1)

Z Ion charge-number

e Elementary charge
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m Ion mass

vd (Total) external drift velocity

v∞, v⊥ Parallel and perpendicular external drift velocities

B Magnetic field

ωc Ion Larmor angular frequency

δ Angle of vd to B

csI Isothermal ion sound speed Eq. (II.20)

vti,e Ion (electron) thermal speed Eq. (II.31)

Γ0
i,e Ion (electron) thermal charge flux-density Eq. (II.3)

cs Bohm ion sound speed Eq. (II.9)

γi Ion adiabatic index Eq. (II.10)

cs0 Cold ion sound speed Eq. (II.13)

RL Mean ion Larmor radius Eq. (II.19)

Ecnv Convective electric field

Φ Probe-induced electrostatic potential distribution

ν̄ei Averaged e-i momentum transfer Coulomb collision frequency Eq. (II.34)

Dimensional probe parameters

Rp Spherical probe radius

Φp Probe mean potential (external bias)

Φf Probe mean floating potential

Γi,e Ion (electron) charge flux-density to the probe

Ii,e Ion (electron) total current to the probe

I Net current to the probe e (Ii − Ie)

Γi,es Ion (electron) saturation charge flux-density to the probe

Ii,es Ion (electron) saturation current to the probe

j Net current-density circulating in the probe
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Dimensionless parameters

τ External ion to electron temperature ratio Eq. (II.5)

ni,e Ion (electron) charge density normalized to N∞

n Charge density normalized to N∞ in quasineutral plasmas

φ Electrostatic potential normalized to Te/e

χ Electrostatic potential normalized to −Ti∞/Ze
λDe Electron Debye length normalized to Rp

βi Probe radius over mean ion Larmor radius Eq. (IV.1)

M∞,M⊥ Parallel and perpendicular external isothermal Mach numbers

wd (Total) external drift velocity normalized to vti

w∞, w⊥ Parallel and perpendicular external drift velocities normalized to vti

Table I.2: Key parameters and definitions used troughout

this thesis.

I.3 Structure

Including the present outline, this thesis is structured in 7 chapters placed in logical

order such as to progressively cover the βi − λDe parameter map in figure I-1.

Chapter 2

The kinetic equation governing a strongly magnetized quasineutral transverse plasma

flow past a convex ion-collecting object is solved numerically for arbitrary ion to

electron temperature ratio τ . The approximation of isothermal ions adopted in a

recent fluid treatment of the same plasma model [15] is shown to have no more than

a small quantitative effect on the solution. In particular, the ion flux-density to an

elementary portion of the object still only depends on the local surface orientation. We

rigorously show that the solution can be condensed in a single “calibration factor”Mc,
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Figure I-1: βi − λDe (ion magnetization - electron Debye length) parameter-space
that we propose to explore in this thesis. “SCEPTIC2D” refers to previous two-
dimensional investigations by Hutchinson [9, 10, 11, 12].

function of τ only, enabling Mach probe measurements of parallel and perpendicular

flows by probing flux ratios at two different angles in the plane of flow and magnetic

field.

Chapter 3

The two-dimensional parallel Particle-In-Cell (PIC) code SCEPTIC [9, 10, 11, 12],

designed to solve the axi-symmetric interaction of a collisionless flowing plasma with

a negatively charged ion-collecting sphere, is extensively modified to resolve the third,

azimuthal dimension. The new code version SCEPTIC3D can therefore operate in the

inherently three-dimensional configuration where background orthogonal magnetic

and electric fields drive a cross-field flow. While the particle advance is distributed as

in the 2D version, a new parallelized 3D Poisson solver based on the linear minimum

residual algorithm has been developed.

Chapter 4

The ion saturation current (i.e. at zero Debye length) to a spherical probe in the entire

range of ion magnetization is computed with SCEPTIC3D. Results are compared
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with prior SCEPTIC calculations valid in the magnetic-free regime, and with the

semi-analytic solutions of chapter 2. At intermediate magnetization (ion Larmor

radius close to the probe radius) the plasma density profiles show a complex three-

dimensional structure that SCEPTIC3D can fully resolve, and contrary to intuition

the ion current can exceed the unmagnetized limit provided the ion temperature is

low enough. Our results are conveniently condensed in a single factor Mc, function

of ion temperature and magnetic field only, providing the theoretical calibration for

a transverse Mach probe with four electrodes placed at 45o to the magnetic field in a

plane of flow and magnetic field.

Chapter 5

First, the kinetic equation governing a strongly magnetized transverse plasma flow

past a sphere in the vacuum limit (large Debye length) is solved numerically for

a selection of plasma parameters. It is observed that contrary to the quasineutral

strongly magnetized regime discussed in chapter 2, the ion current continuously tends

towards the no-drift limit as the cross-field flow is reduced, with a sensitivity much

higher than in vacuum unmagnetized conditions (OML [10]). Because the convective

electric field is shielded by the conductor however, the ions only have a parallel velocity

when collected and no “Mach probe”-like calibration is possible. The same problem is

then solved with SCEPTIC3D accounting for finite ion magnetization, showing that

the ion current to dust particles in tokamak-edge relevant conditions can exceed the

litterature-assumed OML value by a significant amount.

Chapter 6

We here take advantage of SCEPTIC3D’s full capabilities, by bridging the gap be-

tween the quasineutral (chapter 4) and vacuum (chapter 5) regimes through the ac-

countancy of finite Debye length. An important transition in plasma structure is

found to occur when the Debye length goes over the average ion Larmor radius,

hence the Debye sheath and magnetic presheath merge, in particular opening the

possibility for weakly damped cyclotron wakefields. Studies of ion collection show
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that exceeding of the OML current limit at weak magnetization also occurs in inter-

mediate Debye length conditions, and the Mach probe calibration method proposed

in the context of quasineutral plasmas holds up to Debye lengths equal to about 10%

of the probe radius.

Chapter 7

A further analysis of interest in the finite Debye length regime is to compute the

ion-drag force exerted by the plasma on the sphere, typically a dust particle. In short

Debye length plasmas a strong drag component antiparallel to the convective electric

field forms, causing the dust to spin much faster than what predicted by its Larmor

frequency. At intermediate and large Debye length the ion-drag component in the

direction of transverse flow is found to reverse in subsonic conditions, but estimates

of currents circulating inside the dust suggest that the resulting Laplace force is in

the positive direction, and larger in magnitude than the ion-drag.
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Chapter II

Probes in zero Debye length,

strongly magnetized plasmas

II.1 Foreword on Langmuir probes

II.1.1 Unmagnetized probes

The Langmuir probe

The development of models describing the contact between plasmas and solid surfaces,

initiated by Langmuir and Mott-Smith in the 1920s [1, 2], is amongst the oldest ongo-

ing endeavours of plasma physics. Original investigations were mainly motivated by

the prospect of diagnosing discharge properties with a small electrode, the Langmuir

probe. The method is essentially based upon interpreting the net current collected by

the probe from the plasma, as a function of the applied bias voltage.

Let us consider a probe plunged in a uniform, Maxwellian plasma consisting of

a single species of monoionized ions, with charge-number Z. Because the ion to

electron mass ratio m/me is large and thermalization is driven by Coulomb collisions,

ions and electrons equilibrate among themselves much faster than with each other.

We therefore describe the ion and electron unperturbed distribution functions by

Maxwellians with different temperatures Ti∞ and Te, but equal charge density N∞

and drift velocity vd.

23



When the probe bias Φp is lower than space potential, Φ0 = 0 by convention,

ions are attracted and collected at a rate in general dependent on Φp. If however the

electron Debye length

ΛDe =

√

ǫ0Te
N∞e2

(II.1)

is much shorter than the probe size, the electrons neutralize the ions down to a thin

layer at its surface called Debye sheath, and the probe is strongly shielded. In this

regime it is observed that in the limit Φp ≪ −Te/e, the ion current Ii saturates to a

value Iis independent of Φp. Most electrons are on the contrary repelled, hence their

current is governed by a Boltzmann factor; for collisionless unmagnetized electrons [4]:

Ie = AΓ0
e exp

(

eΦp

Te

)

, (II.2)

where

Γ0
e = N∞

(

Te
2πme

)1/2

(II.3)

is the electron thermal flux density, and A the probe area.

If we exclude surface electron emission effects, important in so-called “emissive

probe” measurements, the total current I = e (Ii − Ie) as a function of Φp can be cast

in the form [4, 3]

I = Iis

{

1 − exp

[

e (Φp − Φf )

Te

]}

, (II.4)

where Φf is the a priori unknown floating potential, bias at which the probe current

vanishes. The discharge electron temperature Te can then be measured by fitting Iis,

Φf and Te in Eq. (II.4) to experimental Current-Voltage (C-V) characteristics I(Φp).

The Bohm Condition

Because the probe acts as a particle sink and is furthermore biased, it collects ions

from a perturbed plasma. Relating the ion saturation current to physical plasma

properties “at infinity”, such as N∞ or the ion to electron temperature ratio

τ =
Ti∞
ZTe

, (II.5)
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therefore requires an understanding of the self-consistent interaction between the

probe and the plasma. The exact solution depends on the probe shape, and is in

general obtained through a numerical treatment. This is usually done by assuming

that (a) outside the Debye sheath the plasma is quasineutral, i.e. the ion and elec-

tron charge densities are quasi-equal : Ni ≃ Ne and (b) the repelled electrons are

Boltzmann distributed in the entire perturbed plasma:

Ne(Φ) = N∞ exp

(

eΦ

Te

)

. (II.6)

The perturbed plasma region outside the Debye sheath, where quasineutrality holds,

is usually called presheath. More details on the Boltzmann electron distribution and

current are given in appendix A.

Because the Debye sheath is assumed to be thin compared to the probe size, hence

its local curvature radius, one can describe the presupposed collisionless ion dynamics

at the sheath edge by the following one-dimensional continuity

〈v〉∂N
∂ξ

+N
∂〈v〉
∂ξ

= 0 (II.7)

and momentum

mN〈v〉∂〈v〉
∂ξ

= −∂(NTi)
∂ξ

− Ze
∂Φ

∂ξ
(II.8)

equations, where in ξ is distance from the Debye sheath edge, 〈v〉 is the ion fluid

velocity towards the probe, and N = Ni = Ne. Defining the Bohm sound speed by

cs =

(

ZTe + γiTi
m

)1/2

, (II.9)

where γi is the effective adiabatic index

γi =
1

Ti

d(NiTi)

dNi
, (II.10)
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and taking advantage of quasineutrality, we can rewrite Eq. (II.8) as

c2s
∂N

∂ξ
+N〈v〉∂〈v〉

∂ξ
= 0. (II.11)

It immediately appears that the system composed by Eqs (II.7,II.11) has a non con-

stant solution if and only if
∣

∣

∣

∣

∣

∣

〈v〉 N

c2s N〈v〉

∣

∣

∣

∣

∣

∣

= 0. (II.12)

This is the Bohm condition, stating that the ion fluid velocity at the sheath edge

equals the Bohm sound speed (〈v〉 = vis = cs). Eqs (II.7,II.11) only apply at the

exact sheath edge; if ξ < 0 (sheath) quasineutrality does not apply, and if ξ > 0

(presheath) the physics is either multi-dimensional, or requires additional ingredients

such as collisions, ionization/recombination, ...

Spherical probe in a cold plasma

Dimensionally, in a collisionless plasma the ion saturation current is of the order

AN∞cs0, where

cs0 =

(

ZTe
m

)1/2

(II.13)

is the cold ion sound speed. In the specific case of stationary cold ions (vd = 0 and

τ ≪ 1), analytic solutions can be found for highly symmetric probe geometries, such

as spherical or cylindrical with circular cross-section.

Indeed in a cold ion plasma the Bohm condition states that at the sheath edge

vis = cs0. Furthermore the problem for a spherical probe in a stationary plasma

is spherically symmetric, and ion energy conservation implies that the sheath edge

potential Φs satisfies vis = (−2ZeΦs/m)1/2, i.e.

Φs = −1

2

Te
e
. (II.14)

Since at the sheath edge quasineutrality still holds, the ion density there is Nis =

N∞ exp(eΦs/Te) = exp(−1/2), yielding the ion flux-density upon multiplication by

26



vis.

The probe ion current is therefore [4]

Iis = A exp

(

−1

2

)

N∞cs0, (II.15)

where A = 4πR2
p and Rp is the spherical probe radius. By definition, Iis is equal to

the electron current (Eq. (II.2)) at floating potential

Φf =
1

2

Te
e

[

ln

(

2π
Zme

m

)

− 1

]

. (II.16)

Eq. (II.4) is typically fitted for Te in the range Φp ∈ [≪ Φf :∼ Φf ]. For example, in

a fully ionized helium plasma (Z = 2 and m ≃ 7350me): Φf ≃ −3.7Te/e.

Finite sheath thickness

Once the above results for the sheath entrance potential (Eq. (II.14)) and the ion

current (Eq. (II.15)) are obtained in the infinitesimal Debye length regime, it is pos-

sible to a posteriori estimate the sheath thickness ∆. One simple idea is to treat the

electron density in the sheath as negligible, and solve Poisson equation between Φp

and Φs.

The calculation is discussed in Ref. [4], and the result approximately given by:

∆ ≃ 1.02ΛDe

[

(−φp)1/2 − 1√
2

]1/2
[

(−φp)1/2 +
√

2
]

, (II.17)

where

φp =
eΦp

Te
(II.18)

is the normalized probe potential. The important points to notice in Eq. (II.17) is

that ∆ ∝ ΛDe and ∆ increases with |φp|. For example if the probe is at floating

potential (Eq. (II.16)) in a pure helium plasma: ∆ ≃ 4ΛDe.

A first correction to the ion current when ΛDe
<∼ Rp can then be obtained by

replacing A by A (1 + ∆/Rp)
2 in Eq. (II.15). In the opposite limit ΛDe ≫ Rp, so-
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called Orbit Motion Limited (OML) calculations presented in section V.1.3 apply. In

this thesis chapter, we concentrate on situations where ∆ ≪ Rp.

II.1.2 Magnetized probes

Magnetic field effects on C-V characteristics

The presence of a background magnetic field B introduces considerable complexity

to the previous picture. In particular, the ion saturation current also depends on the

magnetic field strength, as well as the probe surface orientation with respect to the

field lines.

Figure (II-1a) shows a schematic diagram of the tilting Langmuir probe array

experiment of Matthews and coauthors [16], designed to investigate the influence of

magnetic field angle on the C-V characteristics. Experiments were performed at the

boundary of the DITE (Divertor Injection Tokamak Experiment) tokamak, operating

with toroidal magnetic field B = 1.55T and helium plasma. The results, compiled in

Fig. (II-1b), show that the the ion saturation current decreases as the angle of probe

normal to magnetic field θ approaches 90o.

This can be interpreted as follows. Except for θ = 90o, fitting Eq. (II.4) to

the ion saturation portion of the C-V characteristics yields an electron temperature

Te ∼ 25eV , that we here assume equal to Ti∞. The average ion Larmor radius at

infinity for a Maxwellian plasma (RL = (2vti
∫∞

0
w2dw)/ωc with ωc = ZeB/m and vti

later defined by Eq. (II.31))

RL =
1

ZeB

(

πTi∞m

2

)1/2

(II.19)

is therefore RL ≃ 0.4mm, much smaller than the probe (40mm × 60mm). As a

consequence the ions are tied to the field lines, and only see the projection of the

probe on the plane perpendicular to B.

The tokamak line-integrated electron density is 3 ·1019m−3. Arbitrarily assuming,

as a magnitude estimate, that the boundary density where measurements are per-

28



(a) (b)

Figure II-1: (a) Tilting Langmuir probe array described in Ref. [16]. (b) Compilation
of Langmuir probe characteristics from the P1 electrodes for angles in the range
θ ∈ [60o : 90o].
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formed is 30 times smaller, the Langmuir probe operates with N∞ = 1018m−3 and

ΛDe = 37µm. This justifies the thin sheath assumptions, confirmed by the ion current

in Fig. (II-1b) indeed saturating in the limit of strongly negative bias.

When θ = 90o, the probe surface is at grazing angle with the magnetic field, yet

the ion saturation current does not vanish. It is unclear what the reason is in this

particular experiment, and several hypothesis are advanced in Ref. [16]. What is sure

is that there must be cross-field ion transport in the vicinity of the electrodes, which

in general occurs through one of the following mechanisms:

• Convective cross-field transport due to a transverse convective electric field Ecnv;

• Classical transport, due to ion-electron Coulomb collisions or charge-exchange

with background neutrals for instance;

• Anomalous transport due to plasma fluctuations on a scale >∼ RL;

• Ionization and recombination.

In fact cross-field transport must occur along the entire probe presheath, regardless

of the surface tilt angle. If this were not the case, the plasma perturbation would

extend indefinitely along the field lines up to the discharge walls, and no current would

be collected. Figure (II-2) illustrates how the probe presheath elongates along the

magnetic shadow in the strong magnetization limit, when cross-field flux is modeled

as diffusive [4].

The magnetized Bohm condition

In addition to the sheath and presheath sketched in Fig. (II-2), an intermediate

clearly distinct quasineutral region called “magnetic presheath” forms in the regime

ΛDe ≪ RL ≪ Rp
1. As shown by the 1D expansion of Fig. (II-3), the magnetic

presheath sets the transition between the presheath where the ions are tied to the

magnetic field lines, and the sheath where the ions flow towards the probe.

1Note that the space physics community tends to use the term “magnetic presheath” for
“presheath”
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Figure II-2: Probe sheath and presheath when the ions are strongly magnetized, and
cross-field transport modeled as diffusive. In this case no cross-field convective drift
exists, hence the plasma at infinity is either stationary, or drifting along the magnetic
field lines (from Ref. [4]).

Solid Surface Debye Sheath

Magnetic Presheath

k
B

v

θ

Figure II-3: Magnetized ion collection by a solid surface in the regime ΛDe ≪ RL ≪
Rp. The ion Larmor motion is broken in the so-called “magnetic presheath”, whose
thickness is ∼ RL. In the absence of convective electric field, the ions enter the
magnetic presheath with a parallel fluid velocity 〈v‖〉 = cs, and the Debye sheath
with a normal fluid velocity |〈v〉 · k| = cs. Note a difference π/2 in the definition of
θ with respect to Fig. (II-1a) (from Ref. [4]).
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The Bohm condition at the Debye sheath edge (|〈v〉 · k| = cs) still holds here.

Upon considering the variable ξ in Eqs (II.7,II.11) as the position along the field lines

in the presheath taken from the magnetic presheath edge, it is straightforward to see

that the ions enter the magnetic presheath with 〈v‖〉 = cs. This is the magnetized

Bohm condition in the absence of convective electric field. As for the unmagnetized

case, most of the challenge is to solve the presheath equations. The next section

discusses the well established isothermal fluid approach to do so, in the context of

transverse Mach probe calibration, before proceeding with new kinetic results.

II.2 Foreword on magnetized, transverse Mach probes

II.2.1 The Mach probe concept

Transverse Mach probes [4] are an essential tool to measure plasma fluid velocities

close to tokamak separatrix and Scrape-Off Layers (SOL) [17, 18], where ions drift

towards the diverter plates at a substantial fraction of the sound speed. The effort

is in particular motivated by the need to understand edge sheared flows, thought to

reduce turbulence in tokamaks and facilitate the transition from L to H confinement

mode [19, 20].

Magnetized Mach probe operation is simple in concept: by comparing the ion

saturation current at different angles in the plane of flow and magnetic field, one

seeks to measure the external, or unperturbed (intended as in the absence of probe)

plasma Mach number M, decomposed into a cross-field component M⊥ and a free

parallel component M∞: M = M⊥e⊥ + M∞e‖. In this thesis, Mach numbers are

defined as the drift velocity divided by the isothermal ion sound speed: M = vd/csI ,

where

csI =

(

ZTe + Ti∞
m

)1/2

. (II.20)

The most promising probe design is perhaps the so-called Gundestrup [21], character-

ized by a set of (at least 3) different electrodes spanning the tip of a single insulating

head (see Fig. (II-4)).
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(a) (b)

Figure II-4: (a) Drawing of the probe on which the term Gundestrup has been
coined [21]; twelve tungsten pins span the tip of a cylindrical head. (b) CAD view
of the WASP (Wall Actuated Scanning Probe), a four-electrode Gundestrup probe
installed in the inner wall of the Alcator C-Mod tokamak [22].

Mach Probe heads perturb the magnetized plasma in a similar way as the flat

Langmuir probe shown in Fig. (II-1a), and in order to find a theoretical calibration re-

lating the ion saturation flux to the different electrodes to the external Mach number,

we need to solve the plasma equations in the probe presheath. This requires taking

into account one of the cross-field transport effects introduced in paragraph II.1.1.

Upon describing the anomalous cross-field flux as diffusive and in the absence

of convective transport, an isothermal fluid formulation of the presheath equations

can be solved in the limit of infinite magnetization [23, 24], when the ion motion is

one-dimensional because it is constrained by the magnetic field. This provides the

theoretical calibration for a Mach probe with electrodes facing parallel and antiparallel

to the field, when the flow is field-aligned. This approach, heuristically based on an

unknown diffusion rate, proved fruitful because the ion current solution only depends

on the ratio of particle to momentum diffusion rates, which was argued to be close to

one [25]; the absolute value of the diffusivity only affecting the presheath length. The

result is usually expressed by a calibration factor Mc, such that the ratio of upstream

to downstream ion flux density to the probe for a plasma flowing at isothermal parallel
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Mach number M∞, is

R ≃ exp

(

M∞

Mc

)

. (II.21)

For equal particle and momentum diffusivities the model yields Mc ≃ 0.41, in agree-

ment with Laser Induced Fluorescence (LIF) measurements [26] to within experimen-

tal uncertainty. The kinetic formulation of the same model [27], accounting for the

ion thermal dynamics, yields similar calibration factors with slight dependence on the

ion to electron temperature ratio at infinity.

In situations where the plasma has a transverse flow component M⊥, due to strong

radial electric fields in tokamaks’ edge for instance, diffusion is not required and

purely convective equations are more appropriate. The recently solved isothermal

fluid formulation of this model [15] predicts for subsonic flows a flux ratio

R = exp

(

M∞ −M⊥ cot ηp
Mc

)

, (II.22)

where ηp ∈ [0 : π] is the angle of downfield probe surface to magnetic field in the

plane of flow and magnetic field (see Fig. (II-5)). Mc = 1/2 exactly as anticipated in

Ref. [25] for the particular case of a semi-infinite probe, but the treatment in Ref. [15]

has the remarkable property of being applicable to finite-sized probes of arbitrary

convex shape.

Because it can also operate as an array of Langmuir probes and measure basic

quantities such as temperature, density and potential, the transverse Mach probe is

becoming a quasi-routine diagnostic, now starting to be installed in difficult-to-access

regions such as the high-field side of the Alcator C-Mod tokamak [22].

II.2.2 General isothermal formulation

It is instructive to discuss the isothermal formulation of the 1D magnetized presheath

model, by first including several transport terms, and discussing their relative weight

afterwards.

Let us consider a planar probe, tilted by an angle ηp in the plane of magnetic field
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B ‖ ez and ion cross-field velocity v⊥ ‖ ey. In the limit of infinite magnetization

considered here, v⊥ is constant and constrained by its external driver, taken to be a

uniform convective electric field in the −ex direction:

v⊥ = Ecnv ×
B

B2
. (II.23)

We further impose the probe to be negatively biased enough for the electrons to be

isothermal and Boltzmann distributed (Eq. (II.6)); in dimensionless form;

Ne = N∞ expφ. (II.24)

We only model the quasineutral presheath region where Ni = Ne = N (recall that Ni

is the ion charge-density, equal to Z times the ion density), assuming that it extends

down to a thin magnetic presheath at the probe surface [4].

We account for cross-field transport through random ion exchange between the

perturbed region (or presheath) and the outer plasma, taking place exclusively in the

ex direction at a volumetric rate Ω [24]. We set Ω = Ωc + Ωa, where Ωc and Ωa are

respectively the classical and anomalous contributions. This is admittedly an over-

simplified picture, but models particles and momentum diffusing into and out of the

presheath at equal rate, which is consistent with reasonable physical arguments [25]

as well as experiments [26]. For consistency, we also account for a classical effective

parallel momentum collision frequency νc, arising from the same physics as Ωc.

Ionization and recombination processes are of complex nature, and as a first ap-

proximation we model them by uniform volumetric frequencies νI and νRN∞, such

that the (electron impact) ionization rate is νIN , and the (direct) recombination rate

is νRN
2; recall that in our quasineutral treatment ion and electron charge-densities

are equal. Self-consistency of this simple model requires νI = νRN∞ in order for the

ion fluid to tend towards its unperturbed state at infinity, which is of course incorrect

in SOLs where ionization is balanced by transport rather than recombination. A

second self-consistency prerequisite is that background neutrals and ions flow at the

same speed.
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The ion continuity equation in steady state is therefore

∂

∂z
(N〈v〉) + v⊥

∂N

∂y
=

(

Ω + νI
N

N∞

)

(N∞ −N) , (II.25)

and, upon approximating the ions as isothermal, the parallel ion momentum equation

becomes

Nm〈v〉∂〈v〉
∂z

+Nmv⊥
∂〈v〉
∂y

+m〈v〉
(

Ω + νI
N

N∞

)

(N∞ −N)

= −NZTe
∂φ

∂z
− Ti∞

∂N

∂z
+mΩ (N∞v∞ −N〈v〉) +mνIN

(

v∞ − N

N∞
〈v〉
)

+mNνc (v∞ − 〈v〉) .

(II.26)

The left-hand side “Ω”-term in Eq. (II.26) originates from particle diffusion into

and out of the presheath, while the right-hand side “Ω”-term accounts for viscosity.

Taking advantage of the Boltzmann distribution of the electrons and substituting the

isothermal ion sound speed csI = [(ZTe + Ti∞) /m]1/2 (Eq. (II.20)) in Eq. (II.26), the

momentum equation simplifies to

N〈v〉∂〈v〉
∂z

+Nv⊥
∂〈v〉
∂y

= −c2sI
∂N

∂z
+ [ΩN∞ + (νI + νc)N ] (v∞ − 〈v〉) . (II.27)

Equations (II.25,II.27) are slightly different from what derived in Ref. [28], where

neutrals were assumed stationary, ionization and recombination not in balance, and

classical collisionality omitted.

The problem geometry, a priori two-dimensional, is shown in Fig. (II-5). The

perturbed plasma can be divided into three distinct regions: upfield and downfield

presheaths independent of each other, and a shock which we do not need to analyze.

In order to go further in the analysis, it is convenient to perform the following change

in variables:






z

y
7→







u = z
y

w = Ω
v⊥

[z − yup]
, (II.28)

where u is the cotangent of the angle between the magnetic field and the position

vector (fan angle), and w is a normalized distance to the probe along the parallel
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direction. The probe coordinates are singular, at u = up = cot ηp and w = wp =

0. Further normalizing velocities to the isothermal sound speed (M = 〈v〉/csI and

M⊥ = v⊥/csI), Eqs (II.25,II.27) become

(M −M⊥u)
∂N

∂u
+N

∂M

∂u
= − w

u− up

[

(M −M⊥up)
∂N

∂w
+N

∂M

∂w

]

+
w

u− up
M⊥

(

1 +
νI
Ω

N

N∞

)

(N∞ −N) , (II.29)

∂N

∂u
+N (M −M⊥u)

∂M

∂u
= − w

u− up

[

∂N

∂w
+N (M −M⊥up)

∂M

∂w

]

+
w

u− up
M⊥N∞

(

1 +
νI + νc

Ω

M

N∞

)

(M∞ −M) .

(II.30)

0

η
p

Probe

Iso w

Iso uxx z,v,B

y,v⊥
Unperturbed region
(Upstream)

Shock (Downstream)

Upfield
Downfield

Figure II-5: Illustration of the “planar probe” geometry. B and the parallel veloc-
ity v are in the ez direction, while the cross field drift v⊥ is along ey. ex is the
ignorable axis, but supports the convective electric field. The downfield region can
be parametrized by (z, y) or (u, w), where u measures the fan angle cotangent at the
origin, and w the parallel distance to the probe.

System (II.29,II.30) is the general formulation of the isothermal strongly magne-

tized Mach-probe model, including cross-field transport by classical and anomalous

diffusion, convective motion, and accounting for ionization and recombination. Those
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last effects involving the ion parent neutral can be considered as cross-field transport

mechanisms, since neutrals do not feel the magnetic field hence literally transport

charge and momentum in and out of the presheath.

II.2.3 Relative weight of the different transport mechanisms

Let us now estimate the magnitude of the different transport mechanisms in the

following sample SOL conditions: pure hydrogen plasma with N = 1019m−3, Ti∞ =

Te = 30eV , B = 5T , and probe with transverse size ∆x = 2mm.

The “e− + H → 2e− + H+” ionization cross section at 30eV is σI = 6.2 ·
10−17cm2 [29], hence 〈σIve〉 ∼ σIvte = 2.0 · 10−14m3s−1. Similarly the “H + H+ →
H+ + H” charge exchange cross-section at 30eV is σcx = 260 · 10−17cm2 [29], yield-

ing 〈σcxvi〉 ∼ σcxvti = 2.0 · 10−14m3s−1. The property 〈σIve〉 ∼ 〈σcxvi〉 is typical of

hydrogen-like species in the 10− 200eV range. It is unclear what to choose as ioniza-

tion level, since the neutral dynamics in tokamak edges is not fully understood yet.

For instance, taking the neutral density to be 104 smaller than the electron density

yields νI = N〈σIve〉/104 ∼ νcx ≃ 20s−1.

In the above discussion we introduced the ion thermal speed

vti =

(

2Ti∞
m

)1/2

, (II.31)

defined as the most probable ion velocity in the plasma rest frame. The electron-ion

momentum transfer Coulomb collision frequency for an electron with velocity ve and

stationary ion target is

νei = N

(

Ze2

4πǫ0

)2
4π

m2
ev

3
e

ln Λ, (II.32)

where lnΛ ∼ 15 is the Coulomb logarithm2, yielding an approximate Maxwellian

averaged collision frequency upon replacing ve by vte:

ν̄ei ∼ N

√
2

16πǫ20

Z2e4

m
1/2
e T

3/2
e

ln Λ, (II.33)

2ln Λ is the usual notation for the Coulomb logarithm (∼ ln (λD/p90)), not to be confused with
the Debye length ΛD.
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or upon proper averaging over the Maxwellian electron distribution [29]:

ν̄ei = N

√
2

12π3/2ǫ20

Z2e4

m
1/2
e T

3/2
e

ln Λ. (II.34)

Momentum conservation then readily yields the ion-electron average momentum

transfer collision frequency ν̄ie = ν̄eime/m ≃ 1500s−1 for our specific parameters.

The classical ion diffusion tensor in a coordinate system where B is oriented along

the ez axis is

¯̄D =











D⊥ D× 0

−D× D⊥ 0

0 0 D‖











, (II.35)

where

D‖ =
Ti
mνc

, (II.36)

and upon defining the Hall term

β =
ωc
νc

=
ZeB

mνc
(II.37)

the transverse terms can be written

D⊥ = D‖
1

1 + β2
, D× = D‖

β

1 + β2
. (II.38)

Here νc is the sum of the different classical momentum exchange collision frequency

contributions. In our specific example νc = νcx + ν̄ie ≃ ν̄ie, yielding D⊥c ≃ 2.4 ·
10−5m2s−1. The classical cross-field volumetric exchange rate is therefore Ωc ∼
D⊥c/∆x

2 ≃ 6s−1. Estimating the anomalous cross-field diffusivity as given by the

Bohm value D⊥a = Te/(16eB) ≃ 0.375m2s−1, the anomalous volumetric exchange

rate is Ωa ≃ 6.3 · 104s−1.

We therefore have the following scaling:

νcx ∼ νI ∼ Ωc ≪ ν̄ie ≪ Ωa, (II.39)
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and the appropriate general set of fluid presheath equations to consider reduces to

(M −M⊥u)
∂N

∂u
+N

∂M

∂u
= − w

u − up

[

(M −M⊥up)
∂N

∂w
+N

∂M

∂w

]

+
w

u− up
M⊥ (N∞ −N) ,

(II.40)

∂N

∂u
+N (M −M⊥u)

∂M

∂u
= − w

u − up

[

∂N

∂w
+N (M −M⊥up)

∂M

∂w

]

+
w

u− up
M⊥N∞ (M∞ −M) .

(II.41)

The term
u− up
w

=
v⊥
Ωy

(II.42)

measures the relative weight of convection to cross-field diffusion, and suggests defin-

ing the Reynolds number

Re =
v⊥

Ω∆y
, (II.43)

where ∆y is the probe extent in the transverse flow direction. Solving Eqs (II.40,II.41)

in the limit Re → 0 yields the flux ratio (II.21), and in the limit Re → ∞ the flux

ratio (II.22).

A summary of the numeric parameters considered here is given in table (II.1)

External ion/electron temperatures Ti∞,e 30eV
External charge-density N 1019m−3

Magnetic field B 5T
Probe transverse dimension ∆x 2mm
Ion c.x. frequency νcx 20s−1

Ionization frequency νI 20s−1

Ion-electron Coulomb mom. ex. frequency ν̄ie 1500s−1

Electron-ion Coulomb mom. ex. frequency ν̄ei 2.6 · 106s−1

Classical cross-field volumetric exchange rate Ωc 6s−1

Anomalous cross-field volumetric exchange rate Ωa 6.3 · 104s−1

Table II.1: Sample plasma parameters for typical Alcator C-Mod SOL conditions,
for which the 1D strongly magnetized Mach probe presheath equations (II.40,II.41)
apply.
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II.2.4 The question of ion recycling

In deriving Sys (II.40,II.41), we assumed the probe surface to behave as an ideal

ion and electron sink, i.e. we neglected surface electron emission effects. The probe

however releases neutral atoms and/or molecules at a rate that balances the incoming

flux of ions, which for strongly negative biases has been neutralized by electrons

supplied by the external circuit. As a consequence the neutral density near the surface

can be of the order the ion density, opening the possibility for ionization-induced ion

recycling, the importance of which depends on the ionization mean-free-path lion and

the probe geometry.

Let us consider an oversimplified picture where neutrals leave the surface with

pure radial velocity and ionize at a distance lion. Presumably the neutrals most likely

to be recycled are those ionizing in the probe magnetic shadow, hence the fraction of

collected ion current due to recycling can be expressed in the form η = ǫ/(1−ǫ), where

ǫ is the ratio of neutral-front surface over probe magnetic shadow perpendicular (to

B) cross-section. For spherical or cylindrical probes with radius Rp, ǫ ∼ (Rp/lion)
2

and ǫ ∼ Rp/lion, respectively. For pyramidal probes, neutral are mostly emitted out

of the collection tube, hence ǫ might be negligible as suggested by Gangadhara and

LaBombard (see for instance Fig. (11) in Ref. [30]).

For Deuterium, D2 molecules form on the probe surface and enter the plasma

where they immediately dissociate, resulting in D atoms with energy Ed ∼ 3eV

from molecular dissociation. Using the sample parameters of table II.1, we obtain

lion ∼
√

2Ed/m/ (N〈σIve〉) ∼ 85mm, indicating that recycling should not signifi-

cantly alter the presheath equations for millimeter-sized probes. It is however impor-

tant to recognize that as we approach the separatrix where plasma densities reach

N ∼ 1020m−3, lion becomes comparable to typical probe dimensions and measure-

ments could indeed be corrupted by recycling. We will not address this possibility in

this thesis.
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II.3 The quasi-collisionless convective model

System (II.40,II.41) is the set of isothermal fluid equations describing the presheath

of strongly magnetized mach probes at ion saturation. Although all the physical

ingredients are included, it is a priori difficult to estimate the error arising from

the isothermal approximation. The purpose of this thesis chapter is to solve the

kinetic formulation of the same convective, strongly magnetized Mach probe model.

This approach naturally provides information about the ion distribution function

in the presheath, and is not based on approximate fluid closures. After deriving

the appropriate ion kinetic equation and discussing our solution method, we show

that the findings of Ref. [15] are not a consequence of the isothermal approximation,

and apply for arbitrary ion to electron temperature ratios. In particular, (a) flux

ratios for subsonic flows are still given by R = exp [(M∞ −M⊥ cot ηp) /Mc], where

Mc varies with temperature between 1/2 and 1/
√

2π, and (b) the solution applies to

arbitrary-shaped convex probes. This straightforwardly allows simple calibration of

four-electrode Gundestrup-like Mach probes.

II.3.1 Presheath equations

We still account for anomalous cross-field transport through random ion exchange

between the perturbed region (or presheath) and the outer plasma, taking place

exclusively in the ex direction at a volumetric rate Ω [24]. The key requirement

of the so-called “quasi-collisionless” model is that Ω be much larger than the ion-

electron momentum transfer Coulomb collision frequency ν̄ie, in order for the parallel

ion dynamics to be collisionless.

The problem geometry is still well described by Fig. (II-5). In each region (upfield,

downfield, and the non analyzed shock), we write the ion kinetic equation in steady

state as

v
∂f

∂z
+ v⊥

∂f

∂y
− ZTe

m

∂φ

∂z

∂f

∂v
= Ω (f∞ − f) , (II.44)

where f(y, z, v) is the normalized ion distribution function in the parallel direction, m

the ion mass, and v refers to the parallel velocity variable. In the unperturbed region,
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the ions are Maxwellian with parallel drift velocity v∞ and temperature Ti∞. Drift

velocities will usually be given in terms of isothermal Mach numbers M⊥ = v⊥/csI

and M∞ = v∞/csI , with the isothermal ion sound speed defined by Eq. (II.20).

We here discuss the downfield equations, the upfield physics being recovered upon

replacing (ηp, v) by (π − ηp,−v). It is therefore convenient to make the change of

variables proposed in Eq. (II.28), repeted here for convenience.







z

y
7→







u = z
y

w = Ω
v⊥

[z − yup]
, (II.45)

where u = cot η is the cotangent of the angle between the magnetic field and the

position vector (fan angle), and w is a normalized distance to the probe along the

parallel direction. The probe coordinates are singular, at up = cot ηp and wp =

0. Recalling the cold ion sound speed definition cs0 = (ZTe/m)1/2 (Eq. (II.13)),

Eq. (II.44) can be rewritten as follows:

(v − v⊥u)
∂f

∂u
−c2s0

∂φ

∂u

∂f

∂v
= − w

u− up

[

(v − v⊥up)
∂f

∂w
− c2s0

∂φ

∂w

∂f

∂v

]

+
w

u− up
v⊥ (f∞ − f) .

(II.46)

Eq. (II.46) is the general formulation of the strongly magnetized Mach-probe

model, including cross-field transport by both diffusion and convective motion. It

is the kinetic analog of the fluid equations (II.40,II.41), hence not surprisingly the

relative weight of the two transport effects is still measured by the Reynolds number

Re(y) =
v⊥
Ωy

=
u− up
w

. (II.47)

II.3.2 Discussion of the diffusive limit

Initial investigations of the present model by Hutchinson [23, 24] in its isothermal

fluid formulation, and later by Chung and Hutchinson [27] in the kinetic formalism,

considered parallel flows (v⊥ = 0) only, hence Re = 0 and the cross-field transport

required to repopulate the probe magnetic shadow was purely diffusive. In the case
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Re ≪ 1, Eq. (II.46) reduces to

(v − v⊥up)
∂f

∂w
− c2s0

∂φ

∂w

∂f

∂v
= v⊥ (f∞ − f) . (II.48)

Van Goubergen and coauthors [31] considered non zero convective velocity, but still

solved the diffusive limit implicitly assuming Re ≪ 1 as well.

The ion distribution function at the magnetic presheath entrance (hence the col-

lected ion current), solution of Eq. (II.48) at w = 0, is clearly independent of Ω: our

model is therefore not based on any estimate of this heuristic parameter. In fact

Ω does not even need to be spatially uniform, rather could be function of z − yup

(parallel distance from the probe surface) provided the definition of w in Eq. (II.28)

is replaced by w = Ω/v⊥
∫

(dz − updy). The numeric value of Ω nevertheless affects

the diffusive presheath length, scaling as ∆w ∼ csI/v⊥ i.e. Ld ∼ csI/Ω in physical

units.

II.3.3 Convective limit

The question is, can we really use the diffusive equation when the cross-field ve-

locity is not negligible ? Let us consider again an equithermal plasma (ZTe =

Ti∞), and anomalous cross-field transport described by the Bohm diffusivity D⊥ =

Te/16eB ≃ Ω∆x2. Substituting the ion isothermal sound Larmor radius ρsI =
√

(ZTe + Ti∞)m/eB, the characteristic Reynolds number Re(∆y) is:

Re(∆y) =
v⊥

Ω∆y
≃ 32M⊥

∆x

∆y

∆x

ρsI
. (II.49)

The strong ion magnetization condition requires ∆x≫ ρsI , let us say ∆x>∼ 20ρsI (10

Larmor diameters in ∆x). If we are interested in measuring non negligible perpen-

dicular velocities, such as M⊥
>∼ 0.1, Re(∆y) ≪ 1 implies ∆y/∆x≫ 64. Mach probes

are of course not built with such an high aspect ratio, therefore Eq. (II.48) is only

suitable to situations with M⊥ ≪ 1.

For finite values of M⊥, we should rather consider the opposite limit Re(∆y) ≫ 1,

44



when the second term in the right-hand side of Eq. (II.46) can be eliminated and the

physics becomes purely convective (Ω cancels in w∂/∂w). The problem boundary

conditions are that the plasma be unperturbed when u → ∞ and w ≤ w∗(u), where

w∗ is defined by w∗(u) = (u−up)/Re(∆y). w > w∗(u) corresponds to the shock region

(y > ∆y), hence not to a boundary in physical space. Provided w ≤ w∗(u), the above

boundary conditions only depend on u; the equation being furthermore hyperbolic

in u, ∂/∂w = 0 and the solutions only depend on u. This argument self-consistently

holds with φ being a function of u only, since in the quasineutral regime the potential

is unambiguously determined by the local density. Of course if we were to consider

a finite Debye length plasma, whose potential is governed by the three-dimensional

elliptic Poisson equation, φ (hence f) would a priori depend on u, w, and presumably

also the transverse position in the ex direction.

The appropriate kinetic equation that we need to solve is therefore

(v − v⊥u)
∂f

∂u
− c2s0

∂φ

∂u

∂f

∂v
= 0, (II.50)

coupled with quasineutrality φ = ln
[∫

f(v)dv
]

. The corresponding convective presheath

length scales as Lc ∼ ∆ycsI/v⊥.

II.4 Convective solution

II.4.1 Solution method

Equation (II.50) shows that f is conserved along (u, v) orbits that satisfy

dv

du |Orbit
= −c2s0

∂φ/∂u

v − v⊥u
. (II.51)

These orbits are not energy-conserving, but consistent with the ions only feeling the

parallel gradient of the electrostatic potential while moving across the field lines. The

work originating from the ey part of the potential gradient is exactly canceled by

the work of the convective field Ecnv = −v⊥ × B, as the ions slowly drift in the ex
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direction with velocity vx = −mc2s0/(Ze)∇φ×B/B2.

Equation (II.51) is invariant upon making the changes v 7→ v − v∞ and v⊥u 7→
v⊥u − v∞. We can therefore solve Eq. (II.50) as illustrated in Fig. (II-6), using the

notation

µ = v⊥u− v∞ (II.52)

for compactness. We start at infinity (µ ≫ 1), where the normalized parallel ion

distribution function is Maxwellian with drift velocity v∞ and thermal speed vti =

(2Ti∞/m)1/2, f∞(v) = fM(v − v∞):

f∞(v) =
1

vti
√
π

exp

[

−(v − v∞)2

v2
ti

]

. (II.53)

There a set of orbits, typically originating in the range v0 ∈ [v∞ − 4vti, v∞ + 4vti],

is integrated according to Eq. (II.51) using an explicit fourth order Runge Kutta

scheme. The ion distribution function at position µ and velocity v is then obtained

by tracing the orbit back to its starting velocity v0:

f(µ, v) = fM [v0(µ, v − v∞)] . (II.54)

As we do not know the potential gradient a priori, we start with the initial guess

∂φ/∂u = M⊥ and iterate the orbit integration with the self-consistent potential φ =

ln(n) up to convergence, where the ion (electron) charge-density is given by

n(µ) =

∫

f(µ, v)dv =

∫

fM [v0(µ, ξ)] dξ, (II.55)

where ξ = v − v∞. Similarly, the parallel charge flux-density in the frame moving

with velocity v∞ and ion temperature are

n(µ) (〈v〉 − v∞) =

∫

ξfM [v0(µ, ξ)] dξ, (II.56)

Ti(µ) =
n∞

n(µ)

∫

[ξ − (〈v〉 − v∞)]2 fM [v0(µ, ξ)] dξ. (II.57)
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Figure II-6: Ion orbits in µ−v space for an ion to electron temperature ratio τ = 1, at
convergence of the numerical iteration. Phase space density at position µ (Eq. (II.52))
is obtained by tracing the orbit back to infinity, where the parallel ion distribution
function is known to be Maxwellian with drift velocity v∞.

The main quantity of interest, the (positively defined) ion saturation flux-density

to the probe expressed in charge per unit time per unit surface perpendicular to the

magnetic field, is then given by Γi‖ = [−npv(up) sin ηp + npM⊥csI cos ηp] / sin ηp:

Γi‖ = np [M⊥up −Mp] csI , (II.58)

where np = n(up) and Mp = 〈v〉(up)/csI . If the probe normal is in the {ey, ez}-plane

(for example on a purely two-dimensional probe, or on the major cross-section of a

sphere), the ion saturation flux-density per unit probe surface is

Γi = Γi‖| sin ηp|. (II.59)
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II.4.2 Isothermal fluid solution

The fluid equations (continuity and momentum) equivalent to Eq. (II.50) are

1

cs
(〈v〉 − v⊥u)

∂n

∂u
+
n

cs

∂〈v〉
∂u

= 0

∂n

∂u
+
n

c2s
(〈v〉 − v⊥u)

∂〈v〉
∂u

= 0

, (II.60)

where cs is the Bohm ion sound speed (Eq. (II.9)), and γi the ion adiabatic index

(Eq. (II.10)). cs is not the speed at which sound waves would propagate in the

presheath, as it arises from steady-state equations, rather the speed at which infor-

mation travels in the parallel direction.

System (II.60) cannot be solved because it lacks closure (cs is unknown), thus

motivating our kinetic treatment. It is however clear that for the density and fluid

velocity to be non uniform, the determinant must vanish. In other words either

n = n∞ and 〈v〉 = v∞, or v⊥u − 〈v〉 = cs. This can be considered as the magnetized

Bohm condition, valid at the probe edge regardless of the presheath model if the

probe is infinite in the ey direction [32], but here derived in the convective regime for

the entire plasma, without the ey-invariance requirement.

System (II.60) can be solved analytically when considering isothermal ions [15]:

n = n∞ exp (M −M∞) , (II.61)

M −M∞ = min (0,M⊥u−M∞ − 1) , (II.62)

where M = 〈v〉/csI . The isothermal approximation is exact in the limit of small ion

to electron temperature ratio at infinity

τ =
Ti∞
ZTe

, (II.63)

since the ion pressure becomes negligible compared to the electrostatic force.
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II.4.3 Analogy with the plasma expansion into a vacuum

Equation (II.44) with Ω = 0 is mathematically equivalent to the one-dimensional,

quasineutral plasma expansion into a vacuum considered by Gurevich and Pitaevskii

(Eq. (7) in Ref. [33])

v
∂f

∂z
+
∂f

∂t
− ZTe

m

∂φ

∂z

∂f

∂v
= 0, (II.64)

upon replacing time t by the transverse flight time y/v⊥. Not surprisingly there-

fore, the solution method described in the paragraph II.4.1 essentially follows their

approach. By analogy, we refer to the region µ→ −∞ as the vacuum.

An interesting point demonstrated in Ref. [33] is that in the limit τ ≪ 1, the ion

temperature evolution is given from the isothermal solution by Ti/Ti∞ = (N/N∞)2.

This property has a clear physical explanation: if we assume thermal conductivity

in a cold ion plasma to be negligible, f is Maxwellian at each point in space, and

phase-space conservation imposes invariance to max(f) = n/(
√

2πTi).

II.4.4 Free-flight solution

The kinetic equation (II.50) can be solved analytically in the free-flight regime, when

the potential gradient effects on the ion motion are neglected. The orbits in µ−v space

are then vertical lines ending at µ = v− v∞, and the ion distribution moments given

by Eqs (II.55,II.56,II.57) have closed form expressions. Using the notation µI = µ/csI

and ω = −csI/vti = − [(1 + 1/τ)/2]1/2:

n =
n∞

2
erfc(ωµI) (II.65)

n (〈v〉 − v∞) = n∞
csI/ω

2
√
π

exp
(

−ω2µ2
I

)

(II.66)

Ti
Ti∞

= 1 +
2ωµI

√
π exp (−ω2µ2

I) erfc(ωµI) − 2 exp (−2ω2µ2
I)

πerfc(ωµI)2
. (II.67)

After tedious but straightforward algebra, the Bohm sound speed given by Eq. (II.9)

can be calculated analytically and reduces to cs = v⊥u − 〈v〉. In other words, the
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magnetized Bohm condition discussed in paragraph II.4.2 is marginally satisfied in

the entire presheath.

Free-flight calculations are justified in the limit τ ≫ 1 (i.e. ω = −1/
√

2), since

the electrostatic force becomes negligible compared to the ion pressure. We refer to

this limit as the extended free-flight solution.

II.5 Results and physical discussion

II.5.1 Plasma profiles

We start the discussion of our numerical results with the plasma profiles. Figure (II-7)

shows the evolution of the normalized ion distribution function f with position in the

presheath, for originally equithermal ions and electrons (τ = 1). The ions cool down

as they are accelerated, and f has a sharp cutoff corresponding to the probe shadowing

ions streaming away from it. The sheath edge, degenerate with the probe surface in

our quasineutral model, is located at µ = µp.
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Figure II-7: Normalized ion distribution function at different positions µ (Eq. (II.52))
along the presheath, for originally equithermal ions and electrons (τ = 1).

After computing the evolution of f for different temperature ratios τ , it is straight-
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forward to take the moments (II.55,II.56,II.57). Density and temperature are shown

in Fig. (II-8), with the fluid (Eq. (II.61) with Ti/Ti∞ = (N/N∞)2) and the extended

free-flight curves (Eqs (II.65,II.67)).

A first noticeable result is that those analytic solutions, valid respectively at τ ≪ 1

and τ ≫ 1, are envelopes for the profiles at arbitrary τ ; in other words the plasma

properties vary monotonically with temperature ratio, which is not obvious a priori.

(a) Electron density
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(b) Temperature
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Figure II-8: Evolution of the electron density and ion temperature along the presheath
parametrized by µI = M⊥u−M∞, for different temperature ratios. “Fluid” refers to
Hutchinson’s fluid solution, and “eFF” to the extended free-flight solution described
in Paragraph II.4.4.

Figure (II-8) shows that except when τ = 0 and the fluid solution has a slope

discontinuity at M⊥u−M∞ = 1, the temperature perturbation extends much farther

than the density perturbation. High order moments are indeed more sensitive to the

cutoff experienced by the ion distribution function on its positive velocity tail. Except

for the singular case τ = 0, the ion adiabatic index (II.10) therefore goes to infinity

as we approach the unperturbed plasma; this is required in order for the magnetic

Bohm condition to be marginally satisfied in the entire presheath.

A further point of interest in Fig. (II-8a) is that the density (hence potential) pro-

files are monotonic. In particular there is no localized region where the electrons are

attracted, strengthening a posteriori our Boltzmann-electron assumption. This is a
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consequence of the parallel ion motion being collisionless, and the probe being at ion

saturation. The situation would be fundamentally different if the probe were biased

close to space potential, i.e. operating in the collisional electron collection regime

yet far from electron saturation. Indeed the potential would then overshoot at ap-

proximately one electron mean-free-path from the probe sheath edge, in order for the

collected electrons to overcome Coulomb friction with the ions. Such effect, reported

in kinetic [34] and fluid [35] treatments, as well as experimentally observed [36], is

absent for our purposes.

II.5.2 Ion flux-density to a flat probe

The ion flux-density to the probe (Eq. (II.58)) can be rewritten

Γi‖ = [−np(Mp −M∞) + np(M⊥up −M∞)] csI , (II.68)

where n(M−M∞)csI corresponds to the parallel ion flux-density in the frame moving

with velocity v∞. This term can be computed from our kinetic simulations using

Eq. (II.56), and is plotted for different values of τ in Fig. (II-9).

Provided the flow Mach number is moderate and the probe surface is not grazing

the magnetic field, the interesting physics lies around µI = 0, recalling the definition

µI = M⊥u−M∞. It can be derived directly from the ion kinetic equation that

n(M −M∞) = −Γ0

csI
+O(µI)

2, (II.69)

n = n0 +O(µI), (II.70)

where we defined n0 = n(µI = 0) and Γ0 = n0 (v∞ − v(µI = 0)); recall that our

calculations are performed in the downfield region of the probe, hence n(〈v〉−v∞) ≤ 0.

We can therefore define α and β such that Eq. (II.68) expanded to third order in

µIp = M⊥up −M∞ is

Γi‖ =
[

Γ0(1 + αµ2
Ip) + n0µIp(1 + βµ2

Ip)csI
]

+O(µIp)
4. (II.71)
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Figure II-9: Evolution of the parallel ion flux-density in the frame moving with veloc-
ity v∞ (Eq. (II.56)), normalized to the isothermal sound speed csI . “Fluid” refers to
Hutchinson’s fluid solution (Eqs (II.61,II.62)), and “eFF” to the extended free-flight
solution (Eq. (II.66)).

The upfield physics is recovered upon replacing (ηp, v) by (π − ηp,−v), enabling

evaluation of the upstream to downstream ion current ratio R = ΓUp

i‖ /Γ
Do
i‖

R =
Γ0(1 + αµ2

Ip) − n0µIp(1 + βµ2
Ip)csI

Γ0(1 + αµ2
Ip) + n0µIp(1 + βµ2

Ip)csI
+O(µIp)

4. (II.72)

With the notation

Mc =
1

2

Γ0

n0csI
(II.73)

and ǫ = 1/2 + 6(β − α)M2
c , Eq. (II.72) simplifies to

R = 1 − µIp
Mc

+
1

2

µ2
Ip

M2
c

− 1 + ǫ

6

µ3
Ip

M3
c

+O

(

µIp
Mc

)4

. (II.74)

ǫ can be calculated numerically from our kinetic code, but this will not prove necessary

as ǫ is extremely small, of the percent order. The analytic limits are ǫ = 0 at τ ≪ 1

and ǫ = (1 − 3/π)/2 ≃ 0.02 at τ ≫ 1.
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In other words,

R =
ΓUp

i‖

ΓDo
i‖

= exp

(

M∞ −M⊥up
Mc

)

(II.75)

to second order in µIp exactly, and almost to third order, with all the physics included

in Mc.

Calculation ofMc requires the temperature dependence of Γ0 and n0 corresponding

to the slice µI = M⊥u − M∞ = 0 in Figs (II-8a,II-9). Figure (II-10) shows our

numerical solution, interpolated between the fluid and extended free-flight limits as

follows:

Mc(τ) = κMc|τ=0 + (1 − κ)Mc|τ=∞, (II.76)

where analytic limits are

Mc|τ=0 = 1/2, and Mc|τ=∞ = 1/
√

2π. (II.77)

The interpolating coefficient is fitted to the numerical solution by

κ(τ) =
1

2
erfc (0.12 + 0.40 ln τ) . (II.78)

Figure (II-11) shows the upstream to downstream ion flux ratio against M∞ −
M⊥up ∈ [0, 3]. For supersonic flows Eq. (II.75) is in theory not valid, the error on

lnR at M∞ −M⊥up = 2 is however only ∼ 10%.

II.5.3 Extension to transverse Mach probes

The purpose of a transverse Mach probe is to measure M⊥ and M∞. The two main

competing designs are rotating probes, where a planar electrode such as schematized

in Fig. (II-5) is rotated to measure fluxes at different tilt angles ηp, and Gundestrup-

like probes, where simultaneous measurements at different angles are made by a set

of electrodes spanning a single probe head [26].

Although we derived and solved our governing equations with the assumption that

the probe is flat, the solution is applicable to any convex probe, upon considering η
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Figure II-10: Mach probe calibration factor Mc as a function of temperature ratio τ .
Mc varies from Mc = 1/2 in cold ion plasmas (“Fluid”) to Mc = 1/

√
2π in hot ion

plasmas (“eFF”). “Fitting” refers to the analytic expression (II.76).
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Figure II-11: Upstream to Downstream flux ratio against M∞ −M⊥up ∈ [0, 3], for
different temperature ratios. The tangents of the flux ratio logarithms at the origin
have a slope given by 1/Mc(τ).
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as the angle between the magnetic field and the line passing by the considered point

and tangent to the probe. This configuration is illustrated in Fig. (II-12) for the

case where the probe cross-section is circular. It is here easier to think in terms of

θ = η − π/2, angle between the magnetic field and the normal to the probe surface,

because for circular cross-sections it can be interpreted as the polar angle.

θ

η

Probe

v,B
v⊥

Iso u

Γ
p

Γ
//

Upfield Downfield

Shock (Downstream)

Unperturbed region
(Upstream)

Figure II-12: Schematic view of a convex probe with circular cross-section. Each
point at the probe surface is parametrized by the angle between the magnetic field
and the local probe tangent (η in the downfield region), or by θ = η − π/2. The
plasma solutions are invariant along the lines of constant u, the probe tangents.

This was proved in the isothermal fluid formulation [15], by analyzing the charac-

teristics of the coupled continuity and momentum equations. In the same publication,

a second proof was given by considering the convex envelope of an arbitrarily shaped

two-dimensional probe as the limiting case of a multifaceted polygonal surface. For

this second argument to be valid here, one needs to show that information can not

propagate in the direction of decreasing u. Mathematically, this simply derives from

the kinetic equation (II.50) being hyperbolic in u in the quasineutral regime consid-

ered here. The physical interpretation is that (a) the orbits shown in Fig. (II-6) are

never reflected, in other words the ion trajectories curve towards the probe, and (b)

the magnetic Bohm condition is always marginally satisfied, hence information trav-

56



eling at the Bohm sound speed (in the frame locally moving with the fluid at velocity

〈v〉ez + v⊥ey) is confined to the lines of constant u.

Figure (II-13) shows the angular distribution of ion saturation flux-density for a

drift M∞ = 0.5 and M⊥ = 0.5, calculated from the kinetic equation with τ = 1.

Comparison with the isothermal fluid and extended free-flight solutions shows that

the ion temperature has little quantitative impact on the flux distribution, when

normalized to the isothermal sound speed. The difference is maximal at cos θ = ±1,

and vanishes at cos θ = 0 where the probe either collects the unperturbed flow (θ =

−π/2), or zero flux (θ = π/2).
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Figure II-13: Angular distribution of ion saturation flux-density (Γi, defined in
Eq. (II.59)) for a drift M∞ = 0.5 and M⊥ = 0.5 from our numerical kinetic solutions
with τ = 1, compared with the isothermal fluid and extended free-flight solutions. θ
is the angle between the magnetic field and the normal to the probe surface, in the
plane of flow and magnetic field.

II.5.4 Mach probe calibration

The simplest experimental procedure to find M⊥ and M∞ is to measure the upstream

to downstream flux ratio at two different angles, with either a flat or a convex Gunde-

strup probe: R1 = Γi‖(η1 +π)/Γi‖(η1) and R2 = Γi‖(η2 +π)/Γi‖(η2). It is desirable to

avoid grazing angles with the magnetic field in order for the exponential calibration
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introduced in paragraph II.5.2 to be applicable, while maximizing the tilt spacings to

limit experimental noise. The optimal choice is therefore η1 = 3π/4 and η2 = π/4,

yielding

M⊥ =
Mc

2
(lnR1 − lnR2) , (II.79)

M∞ =
Mc

2
(lnR1 + lnR2) . (II.80)

Equations (II.79,II.80) require four measurements, while physically only three

single measurements should be needed to find the problem’s three unknowns (N∞,

M⊥ and M∞). The temperature ratio τ is indeed treated as an input, supposed to

be known from other diagnostics. Unfortunately Mc would only provide a three-

point calibration valid to first order in the flow Mach number, each additional order

requiring an additional calibration factor. Only probing flux ratios at angles η + π

over η as in Eq. (II.72) takes full advantage of the symmetries in the kinetic equation

solutions, yielding the compact, quasi-third order formula (II.75).

If one is interested in M∞ only, it is in theory possible to measure R on the

magnetic axis (parallel Mach probe configuration), and the calibration is then M∞ =

Mc lnR. We however expect the double measurement (II.79,II.80) to be less sensitive

to finite ion Larmor radius effects. Indeed the choice η1 = 3π/4 and η2 = π/4

has the elegant property of being meaningful to non magnetized Mach probes as

well. Particle In Cell simulations [9] show that the unmagnetized ion flux-density

distribution on a spherical probe’s major cross-section is approximately given by

Γi ∝ exp (−K cos(θ − θd)vd/2), where vd is the total flow velocity, θd the angle of flow

with respect to the ez axis, and K ≃ 1.34/cs0 for τ<∼ 3; the flux ratio at angle θ is

therefore R = Γi(θ + π)/Γi(θ) = exp (K cos(θ − θd)vd). The only possible values of

η such that there exists a scalar Mc such that this flux ratio can be expressed as in

Eq. (II.75) are η = ±π/4 or η = ±3π/4 (yielding Mc = ±
√

2/(KcsI) on the sphere

major cross-section in unmagnetized plasmas).
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II.6 2D analytic free-flight density contours

II.6.1 Strongly magnetized limit

While Eq. (II.50) is valid in the entire plasma, we only discussed it in the upfield and

downfield presheaths where the problem is effectively one-dimensional (in u). The

downstream shock region is two-dimensional, and does not seem to be easily solvable

by the method of orbits except in the free-flight regime.

Indeed in the limit of negligible electron pressure ion orbits are straight lines, hence

the ion density in the shock is simply the sum of the densities from the two merging

counterstreams (equation (II.65) for the downfield side). Defining the downfield µI

and the upfield µ̄I as follows

µI = M⊥u−M∞ and µ̄I = M⊥ū+M∞, (II.81)

where u and ū are the cotangents of the slopes of the two probe tangents passing

from the considered point in the shock region, the density in the entire plasma region

can be written:

N

N∞

=











































1 , y < −1

1

2
erfc (ωµI) , y ∈ [−1 : 1] and z > 0

1

2
erfc (ωµ̄I) , y ∈ [−1 : 1] and z < 0

1

2
[erfc (ωµI) + erfc (ωµ̄I)] , y > 1.

(II.82)

The shock solution clearly depends on the probe shape. For the specific case of

a probe with circular cross-section (normalized radius rp = 1), and thinking in terms

of polar angle θ, we can rewrite u and ū as:

u =
r2 sin θ cos θ −

√
r2 − 1

(r sin θ)2 − 1
, (II.83)

ū = −r
2 sin θ cos θ +

√
r2 − 1

(r sin θ)2 − 1
, (II.84)
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enabling easy plotting of the full density contours. Two examples with purely trans-

verse plasma drift are shown in Fig. (II-14), where w⊥ = v⊥/vti and w∞ = v∞/vti.

(a) w⊥ = 0.3, w∞ = 0
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(b) w⊥ = 1.5, w∞ = 0
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Figure II-14: 2D charge-density contours in a strongly magnetized plasma, in the
free-flight limit. (a) wing-shaped wake: w⊥ = 0.3, w∞ = 0 and (b) bug-shaped wake
w⊥ = 1.5, w∞ = 0.

In the regime of pure transverse flow (w∞ = 0), we can use z = r cos θ and y =

r sin θ to show that ∂n/∂z|z=0 = 0, which is obvious by symmetry. More interesting

is the second derivative

∂2n

∂z2 |z=0
= − exp

(

− w2
⊥

y2 − 1

)

2w⊥√
π (y2 − 1)3/2

(

1 − 2
w2

⊥y
2

y2 − 1

)

. (II.85)

If w⊥ ≥ 1/
√

2, i.e. v⊥ ≥
√

Ti∞/m, ∂2n/∂z2
|z=0 > 0 and the contours are “bug-

shaped” as in Fig. (II-14b). If w⊥ < 1/
√

2, ∂2n/∂z2
|z=0 > 0 for y < (1 − 2w2

⊥)
−1/2

and ∂2n/∂z2
|z=0 < 0 for y > (1 − 2w2

⊥)
−1/2

. In other words, density contours look

“wing-shaped” as in Fig. (II-14a).

Although we can not prove it analytically, it is reasonable to expect the transition

between the two wake shapes for arbitrary temperature ratio τ to occur at M⊥ ≃ 1

(at τ = ∞, M⊥ = 1 is equivalent to w⊥ = 1/
√

2).
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II.6.2 Comparison with the magnetic-free regime

It is interesting to compare the just-discussed free-flight profiles valid in the strongly

magnetized limit with their magnetic-free analog.

In the absence of magnetic field, the solution is rotationally symmetric about the

drift axis. If we define vr as the radial (towards the probe) velocity, v⊥
r its normal

component, and ϕ the orientation of v⊥
r in the plane normal to er, the ion density

distribution is given by

N

N∞
= 1 − 1

(vti
√
π)

3

∫ ∞

0

∫ ∞

0

∫ 2π

0

exp

[

−(v − vd)2

v2
ti

]

H(v)dϕdvrv
⊥
r dv⊥r , (II.86)

where the impact factor H is unity if the ion orbit intersects the probe, and zero

otherwise:

H(v) =







1 , v2 − v⊥2
r r2 ≥ 0

0 , v2 − v⊥2
r r2 < 0.

(II.87)

If χ = θ − θd is the angle between vd and er, Eq. (II.86) can be integrated with the

transform v · vd = vd
(

−vr cosχ + v⊥r sinχ cosϕ
)

, yielding

N

N∞
= 1−exp

[

− (wd sinχ)2
]

∫ ∞

0

exp
(

−ξ2
)

I0 (2wdξ sinχ) erfc
(

ξ
√
r2 − 1 − wd cosχ

)

ξdξ,

(II.88)

where wd = vd/vti and In is the modified Bessel function defined by Eq. (A.7).

Figure (II-15) compares the free-flight charge-density distribution on the probe

major cross-section (x = 0) given by Eq. (II.82) and Eq. (II.88) for the case wd = w⊥ =

0.5 and w∞ = 0. An important point to notice is that information can propagate

upstream in the absence of magnetic field, hence the density perturbation extends

in the negative-y region. Also because the downstream region can be replenished

three-dimensionally, the unmagnetized wake is more localized than its magnetized

counterpart.
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Figure II-15: Analytic free-flight charge-density contours at infinite (Eq. (II.82)) and
zero (Eq. (II.88)) ion magnetization, for the case wd = w⊥ = 0.5 and w∞ = 0.
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Chapter III

SCEPTIC3D

The previous chapter developed a semi-analytic kinetic solution to the problem of ion

collection by arbitrarily-shaped bodies, in the limit of zero Debye length and infinite

magnetic field. In the rest of this thesis, we wish to relax those assumptions in order

to investigate finite Larmor radius and finite shielding effects.

To do so is a body-shape dependent problem of considerable complexity, for which

the three dimensional hybrid Particle-In-Cell (PIC) code SCEPTIC3D has been de-

veloped. The code, specifically designed to solve the problem of ion flow past a nega-

tively biased sphere in the presence of a uniform background magnetic field, is derived

from the 2D/3v code SCEPTIC originally written by Hutchinson [9, 10, 11, 12]. The

purpose of this thesis chapter is to detail the physical model, solution method, and

operational regimes offered by SCEPTIC3D.

III.1 Model and computational method

III.1.1 Problem formulation

The plasma

A spherical collector of radius Rp, referred to as “probe”, “electrode”, “dust” or

“sphere” regardless of its physical nature, is placed at the origin of the infinite, col-

lisionless Maxwellian plasma described in paragraph II.1.1. We recall that the ion
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charge-number is Z, the unperturbed ion and electron temperatures are Ti∞ and

Te, and the charge density is N∞. A uniform background magnetic field B and an

orthogonal convective electric field Ecnv induce an external “E ×B” drift

v⊥ = Ecnv ×
B

B2
, (III.1)

adding to the free parallel drift v∞ = v∞B/B. The total plasma drift velocity is

therefore

vd = v⊥ + v∞, (III.2)

and the unperturbed ion-charge distribution function

f∞
i (v) =

N∞

(vti
√
π)

3
exp

[

−(v − vd)2

v2
ti

]

, (III.3)

where we recall the ion thermal speed definition vti = (2Ti∞/m)1/2 (Eq. (II.31)).

The probe attracts ions and repels electrons, therefore perturbing their respective

charge densities Ni,e and charge flux densities Γi,e, that need to be self-consistently

resolved with Maxwell’s equations. In the static approximation, those reduce to Gauss

and Ampere laws:

∇ · E = e
Ni −Ne

ǫ0
, (III.4)

∇×B = eµ0(Γi − Γe). (III.5)

The perturbed part of the electric field originates from a scalar electrostatic po-

tential Φ, such that

E = Ecnv −∇Φ. (III.6)

By normalizing the potential to the electron temperature

φ =
eΦ

Te
, (III.7)
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the charge densities to N∞

ne =
Ne

N∞
and ni =

Ni

N∞
, (III.8)

and recalling the definition of the unperturbed electron Debye length ΛDe =
√

ǫ0Te/N∞e2

(Eq. (II.1)), Eq. (III.4) can conveniently be rewritten as a dimensionless electrostatic

Poisson equation:

∇2φ =
ne − ni

Λ2
De

. (III.9)

The magnetic field originates from a vector potential A such that B = ∇ × A

and ∇ ·A = 0 (Coulomb gauge). The dimensionless magnetostatic Poisson equation

corresponding to Eq. (III.5) is then

∇2α =
c2s0
c2

〈vq〉
cs0

ne − ni
Λ2
De

, (III.10)

where c is the speed of light, 〈vq〉 = (ni〈vi〉 − ne〈ve〉)/(ni − ne) is of order cs0, and

α is the vector potential normalized to the ratio of magnetic field to cold-ion sound

Larmor radius α = eA/
√
Tem.

The scale length of self-consistent potential and vector potential variations are

therefore LΦ ∼ ΛDe and LA ∼ ΛDec/cs0, respectively.

Ideal, negatively biased conducting sphere

The sphere radius Rp can take any value with respect to LΦ, but is much smaller than

LA so that the magnetic field distribution in the plasma is of vacuum-type. Further

assuming that the probe conductivity σ is small enough for the magnetic diffusion

time

tB = πµ0σR
2
p (III.11)

to be negligible, the magnetic field is not affected by the probe and remains equal to

its uniform, unperturbed value B. We therefore do not need to solve Eq. (III.10).

The probe surface behaves as an ideal ion and electron sink. It releases neutral

atoms and/or molecules at a rate that balances the incoming flux of ions, which has
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been neutralized by the incoming electrons and possibly by electrons supplied by

an external bias circuit. Global charge conservation in the system “plasma+probe”

therefore imposes internal current densities of the order eN∞cs0. Neglecting the Hall

term, Ohm’s law gives the electric field magnitude in the probe as Eint ∼ eN∞cs0/σ,

which we assume is negligible by taking σ large enough. The probe is therefore an

equipotential, and its surface perturbed potential satisfies Ecnv −∇Φ(Rp, θ, ψ) = 0:

Φ(Rp, θ, ψ) = Φp + [EcnvRp] sin θ cosψ. (III.12)

Ecnv is the (negative, since Ecnv is oriented along −ex) convective field, and Φp the

probe bias, assumed negative enough for |EcnvRp| + Φp to be more negative than a

few Tes, typically |EcnvRp|+ Φp
<∼ − 2Te/e. The entire probe surface is then strongly

electron-repelling.

In Eq. (III.12), the position is parametrized in spherical coordinates, where R is the

radial distance measured from the probe center, θ ∈ [0 : π] the polar angle measured

from the probe magnetic axis, and ψ ∈ [0 : 2π] the azimuthal angle measured from

the plane of convective and magnetic fields. We also define the Cartesian coordinate

system (x, y, z) such that B = Bez, v∞ = v∞ez, v⊥ = v⊥ey, and Ecnv = −|Ecnv|ex.

A first illustration of the problem geometry is proposed in Fig. (III-1).

III.1.2 Code mesh

The probe is embedded in a spherical computational domain of radius rb, subdivided

in cells parametrized by spherical coordinates (r, θ, ψ), and uniformly spaced in r,

cos θ and ψ. The first and last radial centers are located at r = 1 and r = rb, and

the first and last polar centers at cos θ = ±1; the corresponding cells are hence “half

cells”. The domain is sketched in Fig. (III-2).

At each time-step, the ion charge-density and subsequent moments (velocities

and cross square velocities) are linearly extrapolated to the cell centers from a set

of computational ions spanning the domain (Cloud-In-Cell (CIC) approach [8]), and
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advanced according to Newton’s equation

m

Ze

dv

dt
= Ecnv −∇Φ + v × B, (III.13)

completed by dx/dt = v. The particle mover uses ∇Φ calculated by differentiating the

potential at the previous time-step on the grid and interpolating it back to each ion.

The updated potential Φ at the cell centers is then obtained from the discretized ion

density either by quasineutrality (quasineutral operation described in section III.2), or

by solving Poisson’s equation (finite Debye length operation described in section III.3),

effectively completing the time-step.

Density extrapolation

Let us now examine in more detail the extrapolation and interpolation processes

in order to estimate their formal accuracy. The analysis is presented on the one-

dimensional grid schematized in Fig. (III-3), where ξ can represent r, cos θ or ψ.

According to the CIC approach, to each ion is associated a triangular shape-function

enabling linear extrapolation of density and higher order moments to the grid centers,

located at ξi with i ∈ [1 : n].

The extrapolated value of a smooth moment h(ξ) at an inner node i is

hi =
1

∆ξ

∫ ξi+1

ξi−1

h(ξ)

[

1 − |ξ − ξi|
∆ξ

]

dξ, (III.14)

where ∆ξ = ξi+1 − ξi is the uniform cell volume. If we take h to be a quadratic

test function h(ξ) = α + β (ξ − ξi) + γ (ξ − ξi)
2 around ξi, Eq. (III.14) yields hi =

α+ γ∆ξ2/6 while h(ξi) = α. The extrapolation error is therefore second order in ∆ξ.

On the right (equivalently on the left) boundary, the extrapolated value of h(ξ) is

hn =
1

∆ξ/2

∫ ξn

ξn−1

h(ξ)

[

1 − |ξ − ξn|
∆ξ

]

dξ, (III.15)

where the cell volume is only ∆ξ/2. Because we are on a boundary there is no

differentiability requirement, hence we consider the more general test function h(ξ) =

68



////

ξi i+1i−1 n−1 n

Cell centersCell boundaries

Ions

Figure III-3: One-dimensional representation of a computational grid uniformly
spaced in ξ. Ion positions are extrapolated to the cell centers using a triangular
shape function (CIC approach).

α+ σ
√
−ξ + ξn + β (ξ − ξn) + γ (ξ − ξn)

2 yielding hn = α+ 8 (∆ξ)1/2 /15− β∆ξ/3 +

γ∆ξ2/6. The extrapolation error is therefore only half order in ∆ξ. The three-

dimensional grid has an inner boundary (r = 1), an outer boundary (r = rb), and

the axis boundaries (cos θ = ±1). The outer boundary is not a concern, because the

plasma tends to its unperturbed condition hence the profile derivatives are small and

finite (σ = 0).

The inner boundary requires more attention, in particular in the quasineutral

regime where the ion density has a physical square root dependence [9] that needs to

be resolved to more than order one half. Our solution is to average the radial velocity

〈vr〉 at which the ions cross the boundary during a given number of previous steps

(typically 40), which dividing the flux density Γi = N〈vr〉 known from simple particle

count yields the boundary density without spacial approximation or extrapolation.

In the two-dimensional version of SCEPTIC, the axis boundary was a physical

axis of symmetry, hence any moment of the distribution function could be expanded

in powers of cos θ; the axis extrapolation was therefore first order accurate in ∆ξ

(σ = 0). In SCEPTIC3D however, expanding a smooth function of θ about the axis

69



requires odd terms in sin θ = ±
√

1 − (cos θ)2 as well, implying that σ 6= 0 hence the

extrapolation (III.15) is only half order accurate in ∆ξ. Our solution is to average the

axis density over the azimuthal angle ψ, effectively canceling the odd terms, which

allows to recover first order accuracy in ∆ξ = ∆ cos θ. Operating the extrapolation

linearly in θ rather than cos θ would give an order ∆θ2, but because the grid is evenly

spaced in cos θ the effective accuracy would still be first order (halving ∆θ on axis

requires quadrupling the number of θ-cells).

In summary, the extrapolation is second order accurate to the inner nodes, first

order accurate on axis and at the outer boundary, and non necessary on the inner

boundary.

Potential gradient interpolation

When using a uniform Cartesian mesh, it is well established that in order to avoid

self-forces (i.e ensure momentum conservation), the potential gradient should be pre-

calculated on each cell center, and interpolated back to the ions using the same inter-

polation scheme as was used to perform the charge extrapolation [8]. Using the same

interpolation and extrapolation schemes on a spherical mesh is however ambiguous,

in particular because gradients involve position as well as derivatives:

∇rφ =
∂φ

∂r
, (III.16)

∇θφ =
1

r

∂φ

∂θ
, (III.17)

∇ψφ =
1

r sin θ

∂φ

∂ψ
. (III.18)

Fortunately this thesis does not investigate plasma waves, and most ions do not un-

dego more than a few fly-bys around the probe. Momentum conservation is therefore

easily ensured regardless of the interpolation choice, as will be confirmed in chapter VI

when discussing the ion drag-force.

∇ψφ is the most straightforward term to calculate. We first linearly interpolate

the potential in θ (not cos θ) and r, in order to consider the one dimensional grid of
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Fig. (III-3) with ξ = ψ. The process for an ion located in cell i (neighborhood of ξi)

is to calculate the potential gradient at ξi and on the closest cell boundary, say ξi+1/2:

∂φ

∂ξ |i

=
φi+1 − φi−1

2∆ξ
, (III.19)

∂φ

∂ξ |i+1/2

=
φi+1 − φi

∆ξ
, (III.20)

and proceed by linear interpolation of ∂φ/∂ξ to the ion. ∇ψφ is then obtained from

Eq. (III.18) upon dividing by r sin θ at the exact ion location. The calculation is

second order accurate in ∆ξ.

Calculation of the term ∇θφ starts similarly, by linearly interpolating the potential

in ψ and r. However because the cells are equally spaced in cos θ, the finite-difference

potential gradient (III.20) with ξ = θ does not correspond to the cell boundary

gradient. To calculate the gradient on the axis boundary, we create shadow cells at

ξn+1 and ξ0 to which we associate the potential φ(ξn−1, ψ + π) and φ(ξ2, ψ + π). The

calculation is second order accurate in ∆ξ, except on axis where it is first order.

The radial term ∇rφ is obtained differently, in order to capture the square root

potential dependence at the sheath edge appearing in the quasineutral regime. The

idea is, after linearly interpolating the potential in θ and ψ, to set ξ =
√

2(r − 1).

The potential gradient is then calculated on the left and right cell boundaries, and

linearly (in ξ) interpolated back to the ion. As for the ∇θφ calculation, the cell

boundary in Fig. (III-3) does therefore not correspond to the real cell boundary. In

the quasineutral regime, the radial potential derivatives are calculated using

∂φ

∂r |i−1/2
=

1

ξ

φi − φi−1

∆ξ
, (III.21)

∂φ

∂ξ |i+1/2

=
1

ξ

φi+1 − φi
∆ξ

, (III.22)

after creating the shadow cell at ξ0 to which we associate the potential 2φ(ξ1)−φ(ξ2).

The potential gradient in the quasineutral regime tends to infinity at the sheath edge

(“r = 1”) because ∂φ/∂ξ is finite. In the finite Debye length regime however, ∂φ/∂ξ
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tends to zero at the probe surface (the physical potential dependence is linear, not

square-root), creating a “0/0” singularity that needs to be resolved. Therefore the

potential derivatives are simply calculated by

∂φ

∂r |i−1/2
=
φi − φi−1

∆r
(III.23)

∂φ

∂r |i+1/2
=
φi+1 − φi

∆r
, (III.24)

although the interpolation is still done linearly in ξ for consistency. The procedure is

then first order accurate at the sheath edge in both the quasineutral and finite Debye

length regime, and second order accurate in the rest of the domain.

The three spherical components of the acceleration are eventually transformed to

Cartesian coordinates, to be used by the particle mover.

III.1.3 Orbit integration

The npart particles representing ions are advanced in Cartesian coordinates using ei-

ther the newly developed Cyclotronic integration scheme [37] (by default), or the

standard Boris integrator [8], in the frame moving with velocity v⊥ where Ecnv van-

ishes. This enables us to use longer time-steps far from the probe, as the strong

convective acceleration need not be resolved.

Of course, because the conducting probe shields the convective electric field out,

in a frame where Ecnv vanishes the ions see a strong electric field of the order −Ecnv

within about a Debye length from the probe surface, killing the purpose of the frame

change. In order to avoid this problem, as well as to increase the accuracy with which

orbit-probe intersections are computed, integration is subcycled in the probe vicinity.

This procedure breaks the time-reversibility of the Boris and the Cyclotronic schemes,

but because no orbit is periodic or quasi-periodic we shall not be concerned about

this minor effect.
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III.2 Quasineutral operation

III.2.1 Boundary conditions

The total number of computational ions npart in the domain is fixed, so when an ion

leaves the domain (by colliding with the probe or by crossing the outer boundary) it

is randomly reinjected at the outer boundary. The probability distribution of position

and velocity is chosen consistent with the ions being Maxwellian with temperature

Ti∞ and drift velocity vd.

Of course the downstream region is perturbed by the probe, and the ion distribu-

tion function there is far from Maxwellian. Unless we run the code with an excessively

large computational domain, plasma profiles close to the downstream outer boundary

are therefore biased by our reinjection scheme. Because information can not prop-

agate against the cross-field drift (at least on a scale longer than the average ion

Larmor radius), a moderate uncertainty on the downstream potential distribution

will however not affect the upstream dynamics. The saturation current will there-

fore be correct provided each ion collected by the probe entered the computational

domain from an unperturbed plasma region. This condition is met for large enough

computational domains, qualitatively:

rb>∼
2

M⊥
. (III.25)

A key part of the PIC methodology is to attribute a weight to each computational

ion, which can be seen as a measure of the inverse of the number of physical ions it

represents. Several options are possible, in particular each weight can be fixed for the

entire life-time of the particle it is attached to, or be dynamically updated at each

time-step. SCEPTIC and SCEPTIC3D simulations follow the second paradigm, and

at each time step each computational ion is given equal weight such that the upstream

normalized charge density is unity.

The inner boundary in our quasineutral formulation is really the Debye sheath

entrance rather than the probe surface, although geometrically the two are degenerate.
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The potential at r = 1 is therefore still given by quasineutrality and the probe bias

voltage is irrelevant. Because the potential gradient at the sheath edge has a square

root singularity, it is not possible to correctly extrapolate the density there from the

grid, and in Ref. [9] the sheath entrance potential was self-consistently adjusted so

as to enforce the Bohm condition. In SCEPTIC3D we adopt a different approach,

where the sheath entrance density (hence potential) is calculated by dividing the

dimensional probe flux-density by the average radial velocity of the ions crossing the

inner boundary, as discussed in paragraph III.1.2.

III.2.2 Accuracy

The code is “embarrassingly” parallelized by assigning a subset of npart to each of

nproc processors, typically nproc = 128 and npart/nproc = 400k. The simulation starts

with uniform ion density, and runs past convergence. Code outputs such as charge-

density or current densities are then averaged over the last 25% of the steps, yielding

smooth solutions suitable for further postprocessing and analysis. Regardless of the

number of time-steps over which the averaging is performed, we must ensure that the

“raw” outputs are unaffected by the discretization of phase-space.

Due to the usage of a finite number of computational particles, the ion charge

in each cell will fluctuate around its equilibrium value. Upon defining ni/cell as the

number of particles in the considered cell, the error scales as δni/cell ∼
√
ncell. This

corresponds, in the quasineutral regime, to a fluctuation in cell-center potential δΦ ∼
1/
√
ni/cell responsible for spurious scattering, hence noise in the simulation. We now

propose to treat this scattering similarly to Coulomb collisions in the weak-deflection

limit.

For simplicity, let us assume the background (i.e. without noise) potential distri-

bution to be flat. Because SCEPTIC follows the Cloud In Cell approach, the electric

field created by the potential fluctuation has a uniform magnitude E ∼ δΦ/Ω1/3

throughout the volume defined by the six neighboring cell centers, and zero outside;

we call this volume Ω.

The flight-time of an ion passing the perturbed volume (one “collision”) with ve-
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locity v is t ∼ Ω1/3/v, which upon multiplication by the force eE yields a perpendic-

ular deflection ∆v⊥ ∼ eEt/m ∼ eδΦ/(mv). Provided ∆v⊥ ≪ v, energy conservation

for the ion yields ∆v/v ∼ e2δΦ2/m2v4. Defining the cell density ncell (number of

computational cells per unit volume), the ion momentum loss mean free path l due

to multiple collisions with the computational cells is then easily obtained by usual

integration over the collision impact parameter p: 1/l ∼ ncell

∫

(∆v/v)pdp. Contrary

to Coulomb collisions however, ∆v/v is not proportional to 1/p2, but approximately

constant in the perturbed volume and zero outside.

Inner cells being the smallest, noise will first affect the region close to the probe

where ions mostly have a radial motion, hence
∫

pdp ∼ r2/(nθnψ). Further substi-

tuting the local cell density ncell = nrnθnψ/(4πr
2rb) and the local number of com-

putational particles per cell ni/cell ∼ npartr
2/(r2

bnrnθnψ), the effective dimensionless

computational mean-free-path at r = rp = 1 scales as

l =
npartr

2
p

nθnψn2
rrb

. (III.26)

Figure (III-4) shows the total ion saturation current Ii to the probe as a function

of 1/l (varied by changing the number of particles and modifying the grid), for the

plasma parameters τ = 0.1, vd = 0.5cs0, δ = π/4, and βi = 1. It can be seen that

if we aim at noise levels of the order 1%, we need to operate with l>∼ 1; this is a

rather general observation, holding not only for the selected case but for most plasma

parameters. In fact the higher the ion temperature, the lower the effect of potential

fluctuations.

The impression that the output does not depend on the grid coarseness when

l>∼ 1 is however misleading. First we are looking at Ii, an integral quantity, hence

not requiring an accurate radial resolution of the potential. Obtaining the correct

angular current distribution typically requires rb/nr<∼ 0.1. Second the chosen example

is at moderate magnetization; when βi>∼ 2 the presheath tends to elongate along the

magnetic axis, hence accurate angular resolution is essential. Usually nθ = nψ = 30

proves satisfactory.
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Figure III-4: Ion saturation current as a function of 1/l. Each point corresponds to
a different SCEPTIC3D run, where l is varied by changing the number of operating
processors nproc (400k particles per processor) and the grid. (12): nproc = 512,
rb = 8, nr = 120, nθ,ψ = 30. (2◦): nproc = 512, rb = 8, nr = 120, nθ,ψ ≤ 30. (3△):
nproc = 128, rb = 8, nr ≥ 80, nθ,ψ ≥ 30. (4⋄): nproc = 128, rb = 8, nr ≥ 80, nθ,ψ ≤ 30.
(5∇): nproc = 128, rb = 12, nr ≥ 80, nθ,ψ ≥ 30. (6⋆): nproc = 128, rb = 8, nr = 40,
nθ,ψ ≤ 15. (7×): nproc = 32, rb = 8, nr = 80, nθ,ψ = 30.

For production runs, we therefore set nθ = nψ = 30 and nr ≃ 10rb, the domain

radius rb being chosen according to the plasma drift velocity to oversatisfy Eq. (III.25).

The minimal number of particles such that noise levels be of no concern is then

npart ∼ nθnψn
2
rrb at τ = 0.1 (l ∼ 1), and we allow without further optimization

npart ∼ 0.5nθnψn
2
rrb at higher ion temperature.

In our quasineutral simulations, the Debye length is much smaller than any com-

putational cell.

III.2.3 Axisymmetry resolution

SCEPTIC3D has the particularity of being built on a non isotropic grid with uniform

cos θ spacing. This choice was motivated by the convenience to have, at a given

radial position, a computational cell volume independent of θ. The drawback of

course is that extrapolating the particle positions to the grid, as well as interpolating

the potential gradient back to the particles, requires special care to ensure second
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order accuracy. In fact only first order accuracy is reached on axis because when nθ

is doubled, ∆θ is only divided by
√

2.

A stringent test of the grid implementation consists in checking that an axisym-

metric case yields the same solution regardless of the physical axis orientation. Fig-

ure (III-5) shows the average ion saturation flux-density Γis, as well as the average

sheath entrance potential Φs, for the case τ = 0.1, vd = cs0, βi = 0 (magnetic-free).

The solution is plotted as a function of the position projected on the drift axis (cosχ),

which is here the physical symmetry axis. It can be seen that the solutions at different

drift angles are almost indistinguishable, except perhaps around cosχ>∼ 0.7 on the Φs

plot, which gives us strong confidence that the code performs properly.
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Figure III-5: (a) Ion saturation flux and (b) sheath entrance potential as a function
of the position projected on the drift axis (cosχ), for the case τ = 0.1, vd = cs0,
βi = 0 and a selection of δs. The points labeled “SCEPTIC(2D)” correspond to the
solution from the appendix in Ref. [9]. SCEPTIC3D runs have been performed with
rb = 8, nr = 120, nθ = nψ = 30, and npart = 51.2M .

Figure (III-5a) also shows the ion flux calculated by the two-dimensional code

SCEPTIC(2D), from the appendix in Ref. [9]. The excellent agreement between the

2D and 3D calculations, despite drastic evolutions between the two code versions, is

a further benchmark of SCEPTIC3D. More important, it suggests that there is no

spontaneous breaking of symmetry in axisymmetric cases, which could jeopardize the
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validity of prior 2D treatments.

The example shown here has been selected as one of the most computationally

challenging, due to the collection “bump” in the downstream region arising from ion

focussing. More details on this feature will be given in paragraph IV.2.2.

III.3 Finite Debye length operation

III.3.1 Parallelized Poisson solver

Inner boundary condition

Upon normalizing ∇ to 1/Rp, Poisson equation (III.9) accounting for the Boltzmann

electron distribution can be rewritten as

∇2φ =
exp(φ) − n

λ2
De

, (III.27)

where we refer to the ion charge density as “n” rather than “ni”, to avoid possible

confusions with the soon to be defined radial index i. In the absence of ion response

Eq. (III.27) reduces to the well-known Poisson-Boltzmann equation, but we here need

to include both the ion and electron charge distributions. Solution of Eq. (III.27)

requires two boundary conditions.

The inner condition is straightforwardly imposed by the probe potential distribu-

tion, that we recall can be decomposed in a monopole term Φp and a dipole term

|EcnvRp| oriented in the ex direction1 (Eq. (III.12)).

Outer boundary condition

In the unmagnetized regime, Hutchinson [10] obtained the outer boundary condition

on the potential from an approximate analytic solution of the shielding equations for

the region beyond the computational boundary. The method is based upon assum-

1The mathematical definition of the potential dipole moment would be pcnv =

−
∫ Rp

−Rp

Ecnvx
2dxex/Rp = (2/3) |EcnvRp|Rpex. In this thesis we simply refer to the “dipole term”

as the potential [EcnvRp].
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ing that the computational domain is large enough for (a) the outer potential to be

spherically symmetric regardless of the plasma drift velocity, (b) the outer dimen-

sionless ion charge-density to be given by n = 1 − φ/τ − aλ2
De/r

2, where the term

“1 − φ/τ” corresponds to the untrapped density in a 3D potential well and “−a/r2”

to the a priori unknown ion depletion due to probe collection, and (c) the outer po-

tential to be small enough to warrant linearization of the Boltzmann electron density.

Equation (III.27) then becomes in the outer region:

∇2φ− φ

λ2
D

=
a

r2
, (III.28)

where λD =
(

λ−2
De + λ−2

Di

)−2
is the linearized Debye length. The solution of Eq. (III.28)

can be cast in the form [10]

∂φ

∂r
= −

(

1

λD
+

1

r

)

φ− a

r
exp

(

r

λD

)

E1

(

r

λD

)

, (III.29)

which is adopted as Robin (“Dirichlet+Newmann”) boundary condition on the po-

tential at the outer boundary rb. Here, E1 is the exponential integral function defined

by E1(x) =
∫∞

x
exp(−s2)/sds. Because the outer potential distribution is not exactly

spherically symmetric, Eq. (III.29) is imposed to each outer computational cell-center

with a local value of “a” self-consistently calculated by SCEPTIC as

a(θ, ψ) =
r2
b

λ2
De

[

1 − φ(rb, θ, ψ)

τ
− n(rb, θ, ψ)

]

. (III.30)

In magnetized plasmas, Eq. (III.28) is incorrect because (a) the potential distribu-

tion cannot be approximated as spherically symmetric, except at infinity where φ = 0,

and (b) the ion density cannot be cast in the form “n = 1 − φ/τ − aλ2
De/r

2”. Unless

otherwise specified, we nevertheless adopt the same outer boundary condition (III.29)

in SCEPTIC3D regardless of the magnetic field. This choice is of course subject to

discussion, but can be motivated as follows. As explained in paragraph III.2.1, the

ions are reinjected from an unperturbed drifting Maxwellian distribution, therefore

the computational domain needs to be large enough for the plasma to be unperturbed
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in the upstream region. This requirement involves rb ≫ λD, hence Eq. (III.28) be-

comes φ ≃ −aλ2
D/r

2, which upon substituting a from Eq. (III.30) yields 1+φ = n. In

other words, for typical SCEPTIC3D magnetized runs, using the unmagnetized outer

boundary condition amounts to imposing quasineutrality (n = 1 + φ ∼ expφ = ne),

which is physically sound.

Discretization

Solving a discretized formulation of the non linear equation (III.27) would require

an iterative process such as a Newton inversion, each Newton step itself involving a

(presumably iterative) matrix inversion.

To avoid this complication, we assume that the potential changes only slightly

between two PIC time-steps. If φ∗ is the known potential distribution at time-step t

and φ the unknown distribution at time-step t+ 1, it is then appropriate to linearize

Eq. (III.27) about φ∗:

∇2φ =
exp(φ∗) [1 + (φ− φ∗)] − n

λ2
De

. (III.31)

Our goal is now to find a linear operator A (differential operator and Newmann part

of the outer boundary condition), a Dirichlet boundary condition vector ω, and an

effective source vector σ such that

Aφ+ ω = σ. (III.32)

Equation (III.31) can be seen as a conservation equation, where “−∇φ” is the flux

and “{exp(φ∗) [1 + (φ− φ∗)] − n} /λ2
De” the source. We therefore discretize it by the

method of finite volumes, according to which we look for a potential distribution φ

such that the integral equality

∫

Cell boundary

∇φ · dS =
1

λ2
De

∫

Cell

{exp(φ∗) [1 + (φ− φ∗)] − n} dΩ (III.33)

is verified in each computational cell.
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To grid accuracy, i.e. second order except on axis where only first order is achieved,

the charge density at each cell center is equal to the average cell density. To be precise,

only first order accuracy would be achieved on the first and last radial cells as well,

but this is not a concern because potential boundary conditions will be applied there.

Labeling the cell center positions by ri, cos θj and ψk, the cell-integrated linearized

charge density for i ∈ [2 : nr − 1], j ∈ [2 : nθ − 1] and k ∈ [1 : nψ] is

Qi,j,k =
{

exp(φ∗
i,j,k)

[

1 +
(

φi,j,k − φ∗
i,j,k

)]

− ni,j,k
}

r2
i,j,k∆r∆ cos θ∆ψ. (III.34)

We then discretize the left hand side of Eq. (III.33) with the assumption that ∇φ is

constant on each of the 6 cell boundaries:

∫

i,j,k

∇φ · dS =

(

∂φ

∂r |i+1/2,j,k
r2
i+1/2 −

∂φ

∂r |i−1/2,j,k
r2
i−1/2

)

∆ cos θ∆ψ

+
1

ri

(

∂φ

∂θ |i,j+1/2,k
sin θj+1/2 −

∂φ

∂θ |i,j−1/2,k
sin θj−1/2

)

ri∆r∆ψ

+
1

ri sin θj

(

∂φ

∂ψ |i,j,k+1/2

− ∂φ

∂ψ |i,j,k−1/2

)

ri∆r∆θj . (III.35)

The potential derivatives are straightforwardly obtained by finite differences, yield-

ing a centered method with 7-point stencil. Using the second order approximation

∆ cos θ = − sin θ∆θ, the previous expression can be rewritten in the more convenient

form:

∫

i,j,k

∇φ · dS =

(

∂φ

∂r |i+1/2,j,k
r2
i+1/2 −

∂φ

∂r |i−1/2,j,k
r2
i−1/2

)

∆ cos θ∆ψ

−
(

∂φ

∂ cos θ |i,j+1/2,k
sin θ2

j+1/2 −
∂φ

∂ cos θ |i,j−1/2,k
sin θ2

j−1/2

)

∆r∆ψ

− 1

sin θ2
j

(

∂φ

∂ψ |i,j,k+1/2

− ∂φ

∂ψ |i,j,k−1/2

)

∆r∆ cos θ. (III.36)

We therefore define the linear operator A in Eq. (III.32) such that it operates on
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φ as follows for i ∈ [2 : nr − 1], j ∈ [2 : nθ − 1] and k ∈ [1 : nψ]:

(Aφ)i,j,k = aiφi+1,j,k − biφi−1,j,k + ci,jφi,j+1,k − di,jφi,j−1,k

+ ei,j (φi,j,k+1 − φi,j,k−1) −
[

fi,j + exp
(

φ∗
i,j,k

)]

φi,j,k,
(III.37)

with

ai = λ2
De

r2
i+1/2

r2
i∆r

2
, bi = λ2

De

r2
i−1/2

r2
i∆r

2
,

ci,j = λ2
De

sin θ2
j+1/2

r2
i (∆ cos θ)2

, di,j = λ2
De

sin θ2
j−1/2

r2
i (∆ cos θ)2

,

ei,j = λ2
De

1

r2
i sin θ2

j∆ψ
2
, fi,j = ai + bi + ci,j + di,j + 2ei,j.

(III.38)

The effective source vector is

σi,j,k = exp
(

φ∗
i,j,k

) [

1 − φ∗
i,j,k

]

− ni,j,k, (III.39)

and the Dirichlet boundary condition vector is

ω2,j,k = b2φ1,j,k, Inner BC, (III.40)

ωnr,j,k = anr
gj,k, Outer BD, (III.41)

ωi,j,k = 0, Otherwise, (III.42)

where the inner boundary condition is Dirichlet (imposed probe potential), and the

outer boundary condition is Robin (i.e. a combination of potential and potential

gradient is specified) with arbitrary coefficient g.

On axis, i.e. when j = 1 or j = nθ, computational cells are prism-shaped rather

than cubic, and their volume is (to 2d order) 1/2r2
i∆r∆ cos θ∆ψ. ai and bi are unaf-
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fected, but the coefficients ci,j, di,j, and ei,j become

ci,1 = 2λ2
De

sin θ2
1+1/2

r2
i (∆ cos θ)2

, ci,nθ
= 0,

di,1 = 0, di,nθ
= 2λ2

De

sin θ2
nθ−1/2

r2
i (∆ cos θ)2

,

ei,1 = λ2
De

1

r2
i sin θ2

1+1/4∆ψ
2
, ei,nθ

= λ2
De

1

r2
i sin θ2

nθ−1/4∆ψ
2
.

(III.43)

Minimum residual algorithm implementation

Our purpose is now to solve the linear equation (III.32) for φ, that we rewrite

Aφ = y (III.44)

with y = σ−ω for compactness. Writing A in matrix form involves (nrnθnψ)2 terms,

it is therefore not reasonable to directly invert it. Instead we take advantage of A

being sparse, and look for an iterative method where only the action of A is required.

A being symmetric but not definite positive, we opt for a variant of the well known

conjugate gradient algorithm called the minimum residual method.

The algorithm implementation, completed by Jacobi preconditioning, is mostly

adapted from chapter 2.7 in Ref. [38]. The idea is to start with an initial guess for the

potential, typically φ0 = φ∗ (potential at the previous PIC time-step), and iteratively

update φl along search directions pl with minimizer βl: φl+1 = φl + βlpl.

Finding the search directions and minimizers only requires matrix multiplications

by A, which is an easily parallelizable step.

III.3.2 Electrostatic Maxwell stress tensor

Code implementation

The potential distribution around the probe in the presence of plasma flow or external

fields is anisotropic, causing a non-zero electrostatic stress on the probe. Writing the
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electrostatic Maxwell stress tensor as

¯̄σE = ǫ0

(

EE− 1

2
E2 ¯̄δ

)

, (III.45)

the differential force on a portion of probe surface dS with normal er is given by

dF = ¯̄σE · er = ǫ0

[

1

2

(

+E2
r −E2

θ − E2
ψ

)

er + ErEθeθ + ErEψeψ

]

dS, (III.46)

where Er, Eθ and Eψ are the radial, polar and azimuthal electric field components at

the considered position. Cartesian elementary forces at (θ, ψ) are therefore

dFz = ǫ0

[

1

2

(

+E2
r −E2

θ − E2
ψ

)

cos θ − ErEθ sin θ

]

dS, (III.47)

dFx = ǫ0

[

1

2

(

+E2
r −E2

θ − E2
ψ

)

sin θ cosψ + ErEθ cos θ cosψ −ErEψ sinψ

]

dS,

(III.48)

dFy = ǫ0

[

1

2

(

+E2
r −E2

θ − E2
ψ

)

sin θ sinψ + ErEθ cos θ cosψ + ErEψ cosψ

]

dS.

(III.49)

Equations (III.47,III.48,III.49) are calculated at each PIC time-step by differentiating

the potential distribution calculated by SCEPTIC3D at r = 1 on each computational

cell center, yielding the total stress

FE =

∫

S

dF. (III.50)

SCEPTIC3D only considers the self-consistent electric field −∇Φ to compute the

Maxwell stress, since the force directly arising from the external convective field Ecnv

can be obtained independently from the relation

FQ = QEcnv, (III.51)
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the total probe charge being Q = CΦp where C is the probe capacitance

C = ǫ0
1

Φp

∫

S

ErdS. (III.52)

Linearized Poisson-Boltzmann shielding

In order to benchmark both the Poisson solver and the Maxwell stress tensor inte-

gration, we need a regime where the potential distribution can be calculated in a

reasonably simple way.

Predicting the ion density distribution analytically is not as simple as obtaining

the electron Boltzmann factor, hence we solve Poisson equation (III.9) by neglecting

the ion response. Furthermore we limit ourselves to situations where ΛDe ≫ Rp,

implying that the potential variation close to the probe is governed by the electron

density at a distance where it is almost unperturbed. Equation (A.2) can therefore

be linearized about space potential Φ0 = 0.

Equation (III.9) expressed in spherical coordinates

∇2φ =
1

R2

∂

∂R

(

R2 ∂φ

∂R

)

+
1

R2 sin θ

∂

∂θ

(

sin θ
∂φ

∂θ

)

+
1

R2 sin2 θ

∂2φ

∂ψ2
=

φ

Λ2
De

(III.53)

can be solved by separation of variables, upon defining φ(R, θ, ψ) = Ξ(R)Yθ(θ)Yψ(ψ).

The angular potential dependence is then given by the Legendre polynomials Yθ(θ)Yψ(ψ) =

Pm
l (θ, ψ), with l positive integer and m ∈ [−l : l], and the radial dependence by the

solution of
1

Ξ

∂

∂R

(

R2 ∂Ξ

∂R

)

− R

Λ2
De

= l(l + 1), (III.54)

which can be expanded in modified Bessel functions:

Ξl(R) =
1√
R

[

AlIl+1/2

(

R

ΛDe

)

+BlKl+1/2

(

R

ΛDe

)]

. (III.55)

The solution of Eq. (III.53) satisfying the inner boundary condition Eq. (III.12)
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and decaying at infinity is

Φ =

[

Φp
Rp

R
+ [EcnvRp]

(

Rp

R

)2
R+ ΛDe

Rp + ΛDe
sin θ cosψ

]

exp

(

−R − Rp

ΛDe

)

, (III.56)

showing that the perturbed electrostatic potential distribution has a dipole term in

addition to the well-known Debye-Hückel potential

Φ(R) = Φp
Rp

R
exp

(

−R − Rp

ΛDe

)

. (III.57)

The probe monople and dipole are equally shielded by the Boltzmann electrons (ex-

ponential factor ∝ exp(−R/ΛDe)), we must therefore account for both. In particular,

treatments where the potential distribution is approximated as spherically symmetric

will not be possible in the presence of “E× B” drifts.

Linearization of the electron density is not justified when ΛDe
<∼ Rp, in which

case the right-hand-side of Eq. (III.53) should account for the full exponential term

(exp φ− 1)/ΛDe and no analytic solution exists. More development on this question

is pointless since the ion response has been neglected in the first place.

The sphere-integrated electrostatic force (Eq. (III.50)) on the probe is then

FE =
4

3
πǫ0

R2
p

Λ2
De

RpΦpEcnv, (III.58)

The probe capacitance (Eq. (III.52)) is

C = 4πǫ0

(

1 +
Rp

ΛDe

)

Rp, (III.59)

yielding the external force (Eq. (III.51))

FQ = 4πǫ0

(

1 +
Rp

ΛDe

)

RpΦpEcnv. (III.60)

Daugherty and coauthors [39] performed very similar calculations, when consid-

ering the electrostatic force on an isolated particulate in a magnetic-free low-pressure
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(i.e. collisional) discharge, in the presence of an ion drift induced by a parallel electric

field whose role is to compensate ion-neutral friction. Although the physical condi-

tions are different, the final formal expression for the forces is the same (Eq. (13) in

Ref. [39] corresponds to FE + FQ in our treatment).

Code Benchmark

The Poisson solver accounts for the full exponential term in the electron density,

while the analytic solution (III.56) has been derived with a linearized electron density.

This analytic potential distribution should therefore be reproduced by SCEPTIC3D

provided we bypass the charge assign subroutine, and artificially impose an ion dis-

tribution ni = exp φ− φ. Of course the Poisson solver is not implicit in ni, while this

proposed benchmark takes ni to be function of φ. It is therefore necessary, just for

this benchmark, to iterate the Poisson solver step a few times up to convergence.

Figure (III-6) shows, in log-space, how the relative difference between the probe

charge calculated by SCEPTIC3D and the analytic solution CΦp (where C is given by

Eq. (III.52)) evolves upon refining the mesh. It can be seen that the fractional error

(Err = 0.5 |(Qth −QSC3D) / (Qth +QSC3D)|) is second order in the number of radial

cells, which confirms the second-order accuracy of both the Poisson solver and the

probe surface integration of the radial electric field. The error is almost independent

of the number of angular cells, since the charge does not require calculations of Eθ or

Eψ.

Figure (III-7) shows the relative error on the probe-integrated Maxwell stress

tensor, for which calculations of Eθ or Eψ at the probe surface are necessary. Fig-

ure (III-7a) shows that provided the number of angular cells is large enough (here

nθ = nψ = 35), the accuracy in nr is second order as expected. Figure (III-7b) shows

the rather surprising result that for high enough a radial resolution, the accuracy in

nθ,ψ appears to be third order. We do not really know how to explain this fact.
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Figure III-6: Relative error on the probe charge computed by SCEPTIC3D in the
“artificial” linear Poisson-Boltzmann regime, with rb = 6, λDe = 0.5, |EcnvRp| = Te/e.
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λDe = 0.5, |EcnvRp| = Te/e. (a) Fixed angular resolutions, and (b) Fixed radial
resolution.
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III.3.3 Magnetostatic Maxwell stress tensor

Our treatment is purely electrostatic, i.e. we only consider the background magnetic

field when advancing the ions. Those ions, the plasma electrons as well as the electrons

moving in the conducting sphere, nevertheless carry currents inducing a first order

correction to the background magnetic field.

Fortunately we do not need to solve Ampere’s equation to obtain the resulting

stress. Using the notation B = B0ez + δB, where δB ≪ B0, the magnetostatic

Maxwell stress tensor

¯̄σB =
1

µ0

(

BB − 1

2
B2 ¯̄δ

)

(III.61)

writes to first order in δB:

¯̄σB =
1

2µ0











−B2
0 0 0

0 −B2
0 0

0 0 +B2
0











+
B0

µ0











−δBz 0 δBx

0 −δBz δBy

δBx δBy δBz











. (III.62)

Using Gauss law FM =
∫

¯̄σBdS =
∫

∇ · ¯̄σBdΩ and taking advantage of ∇ · δB = 0,

we can write

FM =
B0

µ0

∫











−∂δBz

∂x
+ ∂δBx

∂z

−∂δBz

∂y
+ ∂δBy

∂z

0











dΩ =

∫ ∇× δB

µ0

×B0dΩ. (III.63)

If we define the net current density in the probe by j = ∇× δB/µ0, we see from

Eq. (III.63) that the magnetic stress on the probe surface is merely the usual Lorentz

force integrated over its volume, that we rewrite to the only relevant order as

Fj =

(
∫

Sphere

jdΩ

)

× B. (III.64)
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Chapter IV

Spheres in zero Debye length,

arbitrarily magnetized plasmas

IV.1 Plasma profiles

IV.1.1 Infinite ion magnetization

Because flow and magnetic field are not aligned, plasma profiles are inherently three-

dimensional unless βi is large enough for the flow to be constrained in planes perpen-

dicular to the convective electric field, as illustrated in Fig. (IV-1). Here and in the

rest of this thesis, the ion magnetization is defined as the ratio of the probe radius to

the mean ion Larmor radius at infinity βi = Rp/RL:

βi = ZeBRp

(

2

πmTi∞

)1/2

. (IV.1)

Density

Figure (IV-2) shows a selection of density contour-plots computed by SCEPTIC3D in

the {0, ey, ez}-plane for βi = 20, in other words an average ion Larmor radius equal to

a twentieth of probe radius. In each case the upstream region is clearly unperturbed,

and the fluid stream-lines indicate that the collection flow tube originates from the
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(a) Three-dimensional view
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Figure IV-1: (a) Geometry of the spherical Mach probe problem in the ΛDe ≪ RL ≪
Rp scaling, considering a purely convective drift. (b) A “typical” collected ion starts
in the upstream unperturbed plasma, drifting with cross-field velocity v⊥. It first
sees the probe when entering the presheath, where it is accelerated along B over a
length ∼ Rp(csI − v∞)/v⊥ (for subsonic flows) while still drifting in the cross-field
direction. This one-dimensional dynamics breaks in the magnetic presheath as the
ion accelerates radially towards the non neutral Debye sheath.
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unperturbed region. Of course kinetic effects cause individual ions to move across

the stream-lines, but intuitively the computational domain is large enough for the

saturation current to be accurately computed. The simulation with δ = π/2 shown

in Fig. (IV-2b) allows easy comparison with the magnetic-free case, which has rota-

tional symmetry about the drift axis. Because magnetized ion motion is constrained

along the field lines, the downstream depleted region can only be replenished one-

dimensionally and therefore extends much further than in the magnetic-free regime.

The same observation was made in the free-flight regime in paragraph II.6.2.

The density contours can be compared directly with the independent one-dimensional

calculations of chapter II, valid in the probe magnetic shadow defined by x2 + y2 ≤ 1

when βi ≫ 1. It was shown that the plasma density only depends on the angle η,

defined in Fig. (IV-1) as the angle between magnetic field and probe tangent in the

plane of field and drift.

When τ<∼ 0.1, the isothermal fluid treatment of Ref. [15] according to which

n = min {1, exp [−1 − (M∞ −M⊥ cot η)]} (IV.2)

rigorously applies. A semi-analytic kinetic treatment such as in chapter II is required

when the ion temperature is higher, although Eq. (IV.2) remains a good approxi-

mation; recall that Mach numbers are normalized to csI (Eq. (II.20)). Figure (IV-3)

compares SCEPTIC3D profiles with those one-dimensional calculations when βi = 20

and δ = π/2, for (a) τ = 0.1, vd = 0.5cs0 and (b) τ = 1, vd = cs0. It can be seen that

the profiles agree extremely well (less than 1% error on the isodensity lines angles),

thus providing a second successful benchmark of SCEPTIC3D. Contour-lines close

behind the probe, but this effect is not captured by the 1D treatments.

Careful examination of Fig. (IV-3) shows that there is a residual region on the

probe leading edge where the one-dimensional calculations overestimate the density.

This is due to an essential difference between the two approaches. SCEPTIC3D

assumes the Debye sheath to be infinitesimally thin, but fully resolves the magnetic

presheath where the ion Larmor motion is broken. Ref. [15] and chapter II on the
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(a) τ = 1, vd = 0.5cs0, δ = π/4
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(c) τ = 0.1, vd = 0.5cs0, δ = π/4
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(b) τ = 1, vd = 1.5cs0, δ = π/2
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(d) τ = 0.1, vd = 0.5cs0, δ = π/8
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Figure IV-2: Selection of charge-density contour-plots in the {0, ey, ez}-plane,
with strongly magnetized ions βi = 20 (except in (b) where a comparison
with the magnetic-free regime is provided). Iso-density contours for n =
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 are full black, while fluid stream lines are dashed blue.
The external velocity is indicated by a blue arrow on the figures’ lower left corners.
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Figure IV-3: Comparison of charge-density contour-lines computed by SCEPTIC3D
in the {0, ey, ez}-plane (dashed black) with independent one-dimensional calculations
(solid coloured) valid in the probe magnetic shadow when βi ≫ 1. Contours are for
n = 0.8, 0.6, 0.5, 0.4, 0.3. SCEPTIC3D runs are performed with βi = 20, δ = π/2, and
(a) τ = 0.1, vd = 0.5cs0 and (b) τ = 1, vd = cs0. One-dimensional calculations refer
to (a) the isothermal formulation [15] and (b) the kinetic formulation (chapter II).

contrary assume the magnetic presheath to be infinitesimal as well, hence the density

difference between SCEPTIC3D and those analytic theories is effectively the change

across the magnetic presheath.

Ion temperature

SCEPTIC3D calculates the ion temperature symmetric tensor ¯̄Ti in spherical coordi-

nates, which upon rotation yields the Cartesian components Ti,ab = m (〈vavb〉 − 〈va〉〈vb〉).
The magnetic moment of gyrating particles is an adiabatic invariant in the strong

magnetization limit, at least outside the magnetic presheath. In the bulk plasma

therefore, ¯̄Ti expressed in the coordinates (x, y, z) is diagonal, and only Ti,zz can

depart from the external temperature Ti∞.

Figure (IV-4) shows contour-plots of Ti,zz normalized to Ti∞ for the physical pa-

rameters of Fig. (IV-2a,b), in the {0, ey, ez}-plane. Ti,zz drops in the magnetic shadow

as the ions are accelerated along the field, with straight isolines tangent to the probe

surface. The temperature drop exactly follows the law Ti,zz/Ti∞ = (N/N∞)2 in the
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limit τ ≪ 1, and approximately otherwise (chapter II). In other words, the tempera-

ture perturbation extends along the magnetic shadow much further than the density

perturbation, as can be seen in Fig. (IV-4a) where the tube Ti,zz ≤ 0.9Ti∞ is almost

parallel to the magnetic axis.

Ti,zz sharply increases where the two counterstreaming ion populations present

in the right and left magnetic shadows merge (in theory Ti,zz → ∞ at y = 1+ and

z = 0). Figure (IV-4b) shows, as in Fig. (IV-2b), that the perturbation is much more

localized in the absence of magnetic field.

(a) τ = 1, vd = 0.5cs0, δ = π/4
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Figure IV-4: Contour-plots of Ti,zz/Ti∞ in the {0, ey, ez}-plane, with strongly mag-
netized ions βi = 20 (except in (b) where a comparison with the magnetic-free regime
is provided). (a) τ = 1, vd = 0.5cs0, δ = π/4 and (b) τ = 1, vd = 1.5cs0, δ = π/2.

IV.1.2 Intermediate ion magnetization

In our quasineutral treatment, radial density gradients in the infinitesimal Debye

sheath are infinite on the presheath length scale. Therefore regardless of the ion

magnetization, density contour-surfaces are tangent to the sheath entrance. Those

surfaces need however not be straight lines in {ey, ez} cross-sections, and show in fact

a fully three-dimensional structure.

Figure (IV-5) shows charge density contour-plots in (a) the {0, ey, ez} and (b)
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the {0, ex, ey}-planes for a run with intermediate ion magnetization βi = 0.5. Fig-

ure (IV-5a) is qualitatively different from, say, Fig. (IV-2c), because the magnetic

presheath is thicker hence the upstream density does not seem to sharply drop at the

probe surface. More interesting is Fig. (IV-5b), reporting a significant anisotropy of

density and fluid streamlines in the major cross-field cross-section {0, ex, ey} arising

from two combined finite Larmor radius effects.

The first effect is the so-called magnetic presheath displacement, most noticeable

where the probe surface is parallel to the convective electric field. For our sphere the

corresponding region is x ∼ 0, but for an infinite cylinder (regardless of the cross-

section shape) whose axis is parallel to Ecnv the entire probe would be affected. The

magnetic presheath displacement corresponds to the ion flow being diverted in the

direction of the convective electric field by an “E × B” drift arising from the radial

sheath-edge potential gradient. A schematic view of the phenomenon is proposed in

Fig. (7) from Ref. [40], for a semi-infinite cylindrical probe with quadrilateral cross-

section1.

The second effect is strongest where the probe surface is normal to the convective

electric field, corresponding for our sphere to x ∼ ±1. At y ∼ 0 and positive x, the

probe induced field adds to Ecnv and increases the “E×B” drift in the ey direction,

while at negative x the fields tend to cancel out, reducing vy. This vy modulation in

turns affects the relative weight of the probe-induced polarization drift, creating an

anisotropy in ion collection (Increased collection at x < 0 and decreased collection at

x > 0).

IV.2 Ion saturation current

IV.2.1 Free-flight current

While numerically-computed plasma profiles are an important tool to understand

the physics of plasma-object interaction, the most useful quantity to be compared

1Notice that the axis are oriented differently in Ref. [40]: Ecnv ‖ ez and B ‖ ex.

97



(a)

−10 −5 0 5 10

−10

−5

0

5

10

z

y

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

−10 −5 0 5 10

−10

−5

0

5

10

x

y

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure IV-5: Charge density contour-plots in the (a) {0, ey, ez}-plane and (b)
{0, ex, ey}-plane, with plasma parameters τ = 0.1, vd = 0.2cs0, δ = π/4, βi = 0.5.
The asymmetry in (b) is due to finite Larmor radius effects. Iso-density contours are
full black, while fluid stream lines are dashed blue.

with experimental measurements is the total ion saturation current, and possibly its

angular distribution. We start the discussion in the free-flight regime, corresponding

to the neglect of probe-induced electric fields on the ions while still accounting for

Ecnv. This treatment is appropriate in the limit τ ≫ 1, because the electron pressure

is then strongly outweighed by the ion pressure.

When the ions are strongly magnetized, the total saturation current can be ob-

tained by summing the flux density to “slices” in the plane of flow and magnetic field

such as shown in Fig. (IV-1a):

I
|βi=∞
i = R2

p

∫ 1

−1

∫ 2π

0

Γ
|βi=∞
i‖ (η)

(

1 − x2
)1/2 | sin η|dηdx =

π

2
R2
p

∫ 2π

0

Γ
|βi=∞
i‖ (η)| sin η|dη,

(IV.3)

where Rp (1 − x2)
1/2

is the cross-section radius at position x along ex. I
|βi=∞
i can then

be calculated, although not in closed form, with the free-flight strongly magnetized

ion flux distribution (Eq. (II.66)):

Γ
|βi=∞
i‖ (η) = Γ0

i

{

exp
(

−µ2
ti

)

+
√
πµti [±1 + erf (µti)]

}

, (IV.4)

98



where

µti =
v⊥ cot η − v∞

vti
, (IV.5)

and “±” stands for “+” downstream, and “−” upstream. To first order in 1/βi, the

effect of finite ion magnetization on the total ion current can be accounted for by

changing R2
p to R2

p(1 + 2/βi) in Eq. (IV.3). Such substitution is equivalent to saying

that to first order in 1/βi, the ions see a probe with effective radius Rp + RL; recall

that βi = Rp/RL, where RL is the average ion Larmor radius. The ion current is then

Ii(βi) = I
|βi=∞
i

(

1 +
2

βi

)

+O

(

1

βi

)2

. (IV.6)

In the particular case δ = 0, or v⊥ = 0, the problem is rotationally symmetric

around the probe magnetic axis, and semi-analytic calculations can be performed

(see paragraph V.3.2 for an overview, and Ref. [14] for detailed calculations). To first

order in βi:

Ii(βi) = I0
i

{[

1

2
exp

(

−w2
∞

)

+

√
π

2

(

w∞ +
1

2w∞

)

erf (w∞)

]

− exp
(

−w2
∞

) βi
3π

}

+O(βi)
2,

(IV.7)

with w∞ = v∞/vti.

Figure (IV-6) shows the free-flight current dependence on βi for different drift

angles δ, when (a) vd = 0.25vti and (b) vd = vti. It can be seen that Ii is a decreasing

function of βi regardless of δ, and an increasing function of δ (for δ ∈ [0 : π/2]) regard-

less of βi. The solution exactly matches the independent semi-analytic calculation of

Refs [41, 14] at δ = 0, as well as the expansion (IV.6) at large βi, which is a good

benchmark of the magnetized particle mover implementation in SCEPTIC3D.

IV.2.2 Self-consistent ion current

When the ion temperature is finite and the self-consistent potential distribution

around the probe needs to be accounted for, Eq. (IV.3) should be used with Γ
|βi=∞
i‖

from the semi-analytic kinetic solution of chapter II. The high field expansion (IV.6)

is then incorrect, but we can argue, at least heuristically by physical continuity, that
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Figure IV-6: Total ion saturation current normalized to I0
i = 4πR2

pN∞vti/2
√
π as a

function of ion magnetization βi in the free-flight regime (i.e. disregarding probe-
induced electric field effects on the ions), computed by SCEPTIC3D for different
angles of flow and magnetic field δ. “An. δ = 0” refers to the semi-analytic treatment
of Refs [41, 14] for which the weak field limit is given by Eq. (IV.7). “An. βi → ∞”
refers to the high field expansion (IV.6). (a) vd = 0.25vti and (b) vd = vti.

Ii(βi) still has a 1/βi term at high βi. This property is essential because it allows

us to connect the current computed by SCEPTIC3D at reasonably high βi, typically

βi<∼ 50, to Eq. (IV.3) at βi = ∞.

Figure (IV-7) shows the ion saturation current as a function of βi for different

plasma conditions. (a) τ = 0.1, vd = 0.2cs0, (b) τ = 1, vd = 0.5cs0 and (d) τ = 1,

vd = 1.5cs0 are qualitatively similar, although the latter corresponds to a supersonic

flow. The current slope at βi = 0 seems to be zero, but there is always a linear term

be it smaller than what the code can resolve. The dashed portions of curves at high

βi connect the last point from SCEPTIC3D calculations to I
|βi=∞
i (Eq. (IV.3) with

Γ
|βi=∞
i‖ from chapter II); because there is no slope discontinuity at the connection, we

can a posteriori confirm that the ion current has indeed a 1/βi dependence at high

βi.

When the ion temperature is small and the drift velocity approximately sonic, the

ion current has the unexpected property of peaking at intermediate magnetization.

An example of such behaviour is shown in Fig. (IV-7c), for the case τ = 0.1 and
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vd = cs0. The peak is maximum for δ = π/2, and decreases with δ. We have not

run self-consistent cases with δ = 0, as a rigorous treatment would involve modeling

anomalous cross-field transport in the elongated presheath [23, 27]. However approx-

imate collisionless solutions for βi ≤ 1 [41] suggest that the current does not peak

when the flow is field aligned. Further discussion on this current peak at intermedi-

ate magnetization, in the context of finite Debye length plasmas, will be proposed in

chapters V,VI.

Figure (IV-8) shows the ion-charge flux-density to the probe major cross-section

in the plane of flow and magnetic field {0, ey, ez}, as a function of cos θ; the curves

are therefore closed on themselves, the upper portions corresponding to sin θ ≤ 0 and

the lower portions to sin θ ≥ 0. As expected, both solutions (a) τ = 1, vd = cs0,

δ = π/4 and (b) τ = 0.1, vd = cs0, δ = 3π/8 tend to the prediction of chapter II

when βi → ∞. If it were plotted as a function of cos(θ − δ), the curve βi = 0 in

Fig. (IV-8b) would perfectly match the curves in Fig. (III-5a). Both figures indeed

correspond to the same plasma conditions, and χ = θ − δ on the probe major cross-

section. The difference is that Fig. (III-5a) has been created with current data from

the entire probe surface, while Fig. (IV-8b) with current data from the probe major

cross-section only.

Figure (IV-8b) also helps understand the ion saturation current peak at βi ∼
1. When βi = 0, the probe focusses the ions downstream, creating the “bump”

first seen in Fig. (III-5a). As βi increases, part of the ions that would miss the

probe in the absence of magnetic field are collected downstream while the upstream

current is unaffected. Eventually when βi increases further, the dynamics becomes

one-dimensional and focussing is suppressed.

IV.3 Transverse Mach probe calibration

Transverse Mach probes seek to measure the external plasma drift velocity by com-

paring the ion saturation flux-density Γi at different angles in a given plane of flow

and magnetic field. The two main competing designs are rotating planar probes, and
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(d) τ = 1, vd = 1.5cs0
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Figure IV-7: Total ion saturation current normalized to I0
i = 4πR2

pN∞vti/2
√
π as a

function of ion magnetization βi, self-consistently calculated with SCEPTIC3D. (a)
τ = 0.1, vd = 0.2cs0. (b) τ = 1, vd = 0.5cs0. (c) τ = 0.1, vd = cs0. (d) τ = 1,
vd = 1.5cs0. The dashed portions of curves at high βi connect our simulations at
finite magnetization to I

|βi=∞
i (Eq. (IV.3) with Γ

|βi=∞
i‖ from chapter II).
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Figure IV-8: Angular ion-charge flux-density distribution to the probe major cross-
section in the plane of flow and magnetic field {0, ey, ez} normalized to N∞csI , self-
consistently calculated with SCEPTIC3D for different ion magnetizations βi. “1D
Kinetic” refers to the semi-analytic solution of chapter II. (a) τ = 1, vd = cs0 and
δ = π/4. (b) τ = 0.1, vd = cs0 and δ = 3π/8.

Gundestrup probes, operating simultaneous measurements at different angles with a

set of electrodes spanning a single probe head [26]. It is here convenient to think in

terms of M∞ and M⊥ rather than vd and δ, where we recall that Mach numbers “M”

are intended as velocity normalized to the isothermal ion sound speed csI .

It was argued in chapter II that the only transverse spherical Mach probe cali-

bration method valid at moderate drift for infinite and negligible ion magnetization,

yet involving a single calibration factor Mc, consists in measuring the two flux ratios

R3π/4 = Γi(η = −π/4)/Γi(η = 3π/4) and Rπ/4 = Γi(η = −3π/4)/Γi(η = π/4), and

relating them to the external flow by

M⊥ =
Mc

2

(

lnR3π/4 − lnRπ/4

)

(IV.8)

M∞ =
Mc

2

(

lnR3π/4 + lnRπ/4

)

. (IV.9)

Measures can in theory be made in any plane of flow and magnetic field, although

it is best to avoid grazing planes located at x ∼ ±1. Figure (IV-9) shows a three-

dimensional view of the probe surface, color-plotted according to the local ion flux
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density for the example τ = 0.3, vd = 0.5cs0, δ = π/4 and βi = 2. The most

obvious possible plane of measurement is indicated by a dotted circle corresponding

to the major cross-section (x = 0), best mocking an infinite cylindrical probe. Two

more options are a solid and dashed circles, corresponding to quarter cross-sections

at x = ±1/
√

3, whose particularity is to cut the sphere at points with x = ±y = ±z
exactly where Mach probe measurements are to be made (i.e. tan η = ±1). Those

configurations therefore best mock the pyramidal probe of Smick and LaBombard [22],

where measures are taken on planar electrodes at 45o angle with the three coordinate

planes.
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Figure IV-9: Three-dimensional view of the probe surface, color-plotted according
to the normalized ion-charge saturation flux Γi/(N∞csI) for the plasma parameters
τ = 0.3, vd = 0.5cs0, δ = π/4 and βi = 2. The dotted, solid and dashed circles
respectively correspond to cross sections located at x = 0, 1/

√
3,−1/

√
3, and the thick

dots to the points where Mach probe measurements are to be made (i.e. tan η = ±1).

In the limit βi = ∞, Mc does not depend on the measurement cross-section and

is given by (see Eq. (II.78))

M |βi=∞
c =

1

2
κ+

1√
2π

(1 − κ) , with κ(τ) ≃ 1

2
erfc (0.12 + 0.40 ln τ) . (IV.10)

In the opposite limit βi = 0, early simulations with SCEPTIC(2D) [9] have shown
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that the ion saturation flux distribution to a spherical probe is approximately given

by Γi ∝ exp (−K(cosχ)vd/2), where again cosχ is the position projected on the drift

axis, and K ≃ 1.34/cs0 for τ<∼ 3. The flux ratio at angle η + π over η is therefore

R = exp (K| cos(χ)|vd), yielding for measurements with tan η = ±1 at azimuthal

position ψ:

M |βi=0
c =

2

KcsI

| sinψ|
√

1 + (sinψ)2
. (IV.11)

On the major cross-section, | sinψ| = 1, hence M
|βi=0
c =

√
2/(KcsI). In particular at

τ = 1 where K = 1.34/cs0: M
|βi=0
c ≃ 0.75 (and M

|βi=∞
c ≃ 0.44). ψ is not constant

on the quarter cross-sections since on the sphere surface x = sin θ cosψ. However at

the points where tan η = ±1, tanψ = ±1 as well, therefore at τ = 1 on the quarter

cross-sections: M
|βi=0
c = 0.91 (and still M

|βi=∞
c ≃ 0.44).

At intermediate magnetization, there is no a priori reason to believe that Eqs (IV.8,IV.9)

still hold. Perhaps the most important result of this chapter is that they actually do,

to well within experimental uncertainty. This can easily be seen on Fig. (IV-10),

where R3π/4 and 1/Rπ/4 on the major cross section {0, ey, ez} from SCEPTIC3D sim-

ulations are plotted in log-space against M⊥ +M∞ and M⊥ −M∞, for the particular

case τ = 1. The points with vd<∼ csI can be fitted to a line with slope 1/Mc, identical

for R3π/4 and R−π/4, and function of βi only.

The calibration factors Mc in the entire range of ion magnetization and for τ ∈
[0.1 : 10], computed by fitting SCEPTIC3D’s solutions with vd<∼ csI and δ ∈ [π/8 :

π/2], are plotted in Fig. (IV-11) on (a) on the major cross-section and (b) the quarter

cross-sections. The fitting error bars, shown in Fig. (IV-11a), are thinner at low and

large βi, where the error mostly arises from numerical noise, and thicker at βi ≃ 0

where part of the error is due to Eqs (II.79,II.80) being approximate. Because there

never seems to be more than ∼ 10% uncertainty, Eqs (II.79,II.80) can be assumed to

be “correct” for experimental purposes.

Error bars have not been plotted on Fig. (IV-11b) to increase readability, but are

qualitatively similar to those in Fig. (IV-11a). The noticeable result is here that at

intermediate magnetization, Mach probes with electrodes whose normal is not on the
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Figure IV-10: Upstream to downstream flux ratio on the probe major cross-section
at (a) η = 3π/4 and (b) η = π/4, versus respectively M⊥ +M∞ and M⊥ −M∞, from
a large set of SCEPTIC3D runs spanning vd ∈ [0 : 2]cs0 and δ ∈ [π/8 : π/2], for a
temperature ratio τ = 1. Also shown are the corresponding fitting lines, whose slopes
1/Mc are taken from Fig. (IV-11a).
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(b) Quarter cross-sections
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Figure IV-11: Transverse Mach probe calibration factor Mc as a function of magne-
tization βi and temperature ratio τ computed with SCEPTIC3D for measurements
made (a) on the major cross-section and (b) the quarter cross-sections. (a) also shows
the fitting error bars, arising from numerical noise and from Eqs (II.79,II.80) being
only approximate. On (b), solid lines refer to measurements at x = 1/

√
3, and dashed

lines to measurements at x = −1/
√

3. The points at βi = ∞ are given by Eq. (II.78).
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plane of flow and magnetic field are sensitive to the magnetic field orientation. This is

a consequence of the finite Larmor radius effects observed in Fig. (IV-5); in particular

the flow deflection towards the region x<∼ 0 seen in Fig. (IV-5b) causes the flux ratios

to be lower at x = −1/
√

3 than x = 1/
√

3.
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Chapter V

Spheres in infinite Debye length,

arbitrarily magnetized plasmas

The results of chapter IV, obtained with SCEPTIC3D in the quasineutral operation

mode, apply when the plasma Debye length is much shorter than the sphere radius.

This condition is usually well satisfied when modeling flux-sensing probes in tokamak

edge conditions, but accounting for finite shielding is essential to the treatment of

smaller collectors such as probes in lower density plasmas [42], or dust particulates.

SCEPTIC3D can treat arbitrary electron Debye length to probe radius ratios, and

such capability will be extensively used in chapter VI. This unfortunately requires

specification of φp and λDe, in addition to the four quasineutral parameters vd, δ, τ

and βi. The total of six parameters is a severe complication in attempting to acquire

physical insight into the ion collection physics.

We propose to start with a discussion of the vacuum limit, when the electron

Debye length ΛDe ∝ 1/
√
N∞ is much larger than the sphere radius Rp and the ion to

electron temperature τ will prove to be irrelevant.

After a brief introduction on dusty plasmas and a review of ion collection in large

Debye length, unmagnetized conditions (Orbit Motion Limited), we solve the op-

posite limit of strong ion magnetization, yet large Debye length, using an original

1D-kinetic/2D-drift model. The scaling RL ≪ Rp ≪ ΛDe rarely occurs in experimen-

tal settings, but its understanding is helpful to interpret SCEPTIC3D’s results in the
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more interesting scaling RL ∼ Rp
<∼ ΛDe.

V.1 Foreword on dust charging in the unmagne-

tized regime

V.1.1 Dusty plasmas

A dusty plasma is an ensemble of dust particles immersed in a plasma containing

electrons, ions, and parent neutrals. Those occur quite often in astrophysical contexts,

such as in planetary rings, comet tails, interplanetary and interstellar clouds [43], and

also in industrial or laboratory plasmas.

Industrial plasma processes usually involve chemically active gases at moderate

temperatures, where nano-particles consisting of several hundreds of atoms form

through gas-phase nucleation. Those particles can rapidly grow by coagulation up

to the 100nm range, and then by vapor deposition to reach micrometer sizes [44].

Because such “dust particles” represent an unacceptable source of contamination in

semiconductor processing, active research is ongoing to mitigate their effect.

Dust particles are isolated, hence their steady-state potential floats to balance

the net incoming flux of ions and electrons. Depending on the experimental condi-

tions, solid state physics reactions resulting in electron emission at the dust surface

such as photoemission, secondary emission, and thermionic emission, might be im-

portant [45]. In some cases ion-induced secondary emission is present as well; in

this thesis however we do only consider bulk current collection. The ion thermal

speed being much smaller than the electron’s, the floating potential Φf must be neg-

ative enough to repel the excess electrons, dimensionally Φf ∼ O(−Te/e), of the

same order as the floating potential of Langmuir probes introduced in section II.1.

The surface of a micron-sized particle therefore carries several thousands elementary

charges, opening the possibility for the formation of ordered dust structures, called

plasma crystals [5]. Those formations are today studied in a variety of conditions,

typically using spherically-shaped artificial particles such as shown in Fig. (V-1a).
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(a) (b)

Figure V-1: (a) From http : //www.mpe.mpg.de/pke/PKE/images/Emr −
08 m.jpg. Micrometer sized melamine-formaldehyde spheres used for dusty plasma
crystallization experiments. (b) Dust found in the divertor region of the TEXTOR
tokamak [46].

Dust is also commonly found in magnetic confinement fusion devices, where dis-

ruptions, ELMs and other violent events can erode micrometer or even millimeter-

sized chips from the Plasma Facing Components (PCF). Studies performed on the

DIII-D tokamak show that a single disruption can produce up to 10000 dust parti-

cles [47]. Those then penetrate in the core plasma, leading to potentially dangerous

contamination and degraded performance. Perhaps of major concern to future ma-

chines is that dust may be a radiological hazard by retaining tritium; dust inventory

in ITER will therefore be strictly regulated. Small quantities of dust are in fact

always produced in fusion experiments, in particular on shadowed surfaces such as

underneath the wall tiles, although the exact formation mechanisms and rates are not

well understood [48]. Figure (V-1b) shows a microscopic view of dust found in the

diverter region of the TEXTOR tokamak [46]. Tokamak dust composition includes

• Molybdenum: Used in the diverter, inboard wall and limiters in Alcator C-mod.

• Tungsten: Used in Alcator C-mod’s diverter.

• Titanium: Was used in Alcator C-mod’s lower-hybrid waveguides for its small

thermal expansion properties. Titanium can be tritiated.
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• Carbon: Used on most other tokamaks. Carbon can be tritiated as well.

• Boron: Used in Alcator C-mod as a low-Z first-wall coating. Contrary to the

previous materials, Boron is a semiconductor, insulating at low temperatures.

Dust radiates in the 1000oK range before melting, hence can be tracked in visible

light. Figure (V-2a) shows metallic dust particles (red dots) spewed in the Alcator

C-mod tokamak, after the titanium lower hybrid launcher experienced corrosion by

hydrogen/deuterium during the 2005 campaign. Figure (V-2b) shows the thick dust

layer deposited on the launcher.

(a) (b)

Figure V-2: In the 2005 Alcator C-mod tokamak campaign, the lower hybrid launcher
experienced corrosion by hydrogen and deuterium, spewing titanium dust across the
machine. (a) Dust particles in visible light (red dots), as they radiate before eventually
melting. (b) Dust deposited on the launcher after plasma operation.

Most situations of interest, in particular when considering tokamak edge, involve

plasmas whose electron Debye length is larger than the dust radius, yet smaller than

the ion Larmor radius; relevant sample parameters are summarized in table (V.1).
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Te Ti∞ B N∞ RLe RL ΛDe

(eV) (eV) (T) (m−3) (µm) (µm) (µm)
Mid-plane SOL 10 30 5 1018 1.9 200 23
Diverter region 5 5 5 1020 1.3 81 1.7

Table V.1: Sample edge parameters for a typical Alcator C-Mod discharge, for which
the average ion Larmor radius rL compares to the size of dust particles (rp ∼ 1 −
200µm), and the electron Debye length ΛDe can not be neglected (ΛDe

>∼ 0.01Rp);
when ΛDe ≪ Rp the results of chapter IV apply. The figures are calculated for a DD
(Deuterium) discharge.

V.1.2 Orbit Motion Limited shielding

Electrons

In the absence of magnetic field and drift velocity (B = 0 and vd = 0), the problem

is spherically symmetric and the electrostatic potential Φ only depends on the radial

coordinate R. Further assuming that Φ varies monotonically between Φp and 0, there

is a one-to-one relationship between Φ and R and it is possible to calculate the exact

electron distribution as follows.

The three-dimensional electron Vlasov equation can be rewritten dfe/dt = 0,

where d/dt is the convective derivative along particle orbits. The stationary Maxwellian

being function of the kinetic energy only, and the total electron-orbit energy W =

mev
2/2 − eΦ being conserved, the electron distribution function is

fe(R,v) = f∞
e

(

v2 − 2eΦ(R)

me

)

(V.1)

if the electron orbit (R,v) can be traced back to infinity, and fe(R,v) = 0 if it

originates from the probe. Because the probe is electron-repelling and the potential

variation monotonic, no orbits are bounded or closed on the probe. Conservation of

energy (W0) and angular momentum (J0) for a given electron reads

W0 =
1

2
meṘ

2 +Weff (R), (V.2)
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where

Weff (R) =
1

2

J2
0

meR2
− eΦ(R) (V.3)

is the effective potential of the radial motion. An electron orbit characterized by

(W0, J0) can be traced back to infinity if Ṙ < 0 (directed towards the probe) or

W0 < Weff(Rp) (directed outwards, i.e. reflected by the repulsive effective potential):

De :=

{

vr ≤ 0 or v2 − v⊥2
r

(

R

Rp

)2

<
2e

me
(Φ − Φp)

}

, (V.4)

where the velocity variable has been decomposed in v = vrer + v⊥r er
⊥. Defining

w = v/vte and r = R/Rp, the electron density distribution is then in dimensionless

variables

Ne(φ, r) = N∞ exp (φ)
1

π3/2

∫

w∈De

exp
(

−w2
)

d3w, (V.5)

yielding after integration [49]:

Ne(φ, r) =
N∞ exp (φ)

2

{

1 + erf
(

√

φ− φp

)

+

√
r2 − 1

r
exp

(

φ− φp
r2 − 1

)

[

1 − erf

(

r

√

φ− φp
r2 − 1

)]}

.

(V.6)

In the limit r − 1 ≪ 1, Eq. (V.6) reads

Ne(φ) ≃ N∞ exp (φ)

2

[

1 + erf
(

√

φ− φp

)]

; (V.7)

in other words at the probe surface the electron density is 50% of the Boltzmann

value, but quickly rises to 85% when φ − φp = 1 and 95% when φ − φp = 2. In the

opposite limit r ≫ 1, Eq. (V.6) reads

Ne(φ) ≃ N∞ exp (φ)

{

1 −
[

1 − erf
(

√

φ− φp

)]

[1 − 2 (φ− φp)]
1

4r2

}

. (V.8)

The “1/r2”-term corresponds to the geometric shadowing of electrons by the probe,

and is negligible when φ− φp>∼ 2.

This short analysis confirms kinetically, on the particular case B = 0 and vd = 0,

that provided Φp
<∼ − 2Te/e the electron density follows Eq. (A.2) wherever not
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negligible.

Ions

In the unmagnetized regime with zero ion drift, we can follow the same argument as

for the electrons and write the ion-charge distribution function as

f(R,v) = f∞

(

v2 +
2ZeΦ(R)

m

)

(V.9)

if the ion orbit (R,v) can be traced back to infinity, and f(R,v) = 0 if it originates

from the probe. Conservation of energy (W0) and angular momentum (J0) for a given

ion reads

W0 =
1

2
mṘ2 +Weff(R), (V.10)

where

Weff(R) =
1

2

J2
0

mR2
+ ZeΦ(R) (V.11)

is the effective potential of the radial motion. Contrary to the electron case where

Weff decreases monotonously between Weff (Rp) and Weff(∞), there might here be

intermediate potential barriers. In the absence of such barriers, the ion orbit charac-

terized by (W0, J0) can be traced back to infinity if W0 ≥ 0 (non trapped ion), and if

either Ṙ ≤ 0 (directed towards the probe) and/or W0 < Weff(Rp) (reflected by the

repulsive effective potential):

Di :=

{

v2 +
2ZeΦ

m
≥ 0, and vr ≤ 0 or v2 − v⊥2

r

(

R

Rp

)2

< −2Ze

m
(Φ − Φp)

}

.

(V.12)

Bernstein and Rabinowitz [50] have shown that the absence of intermediate potential

barriers corresponds to the following inequality (when the potential distribution is

spherically symmetric):

∀R > Rp,
d

dR

[

R3 dΦ

dR

]

≥ 0. (V.13)
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Equation (V.13), referred to as the Orbit Motion Limited (OML) condition, requires

the potential to decrease everywhere slower than 1/R2. The OML condition is never

satisfied at R ≫ ΛDe [51], but approached in the limit ΛDe ≫ Rp, where the unper-

turbed density goes to zero and the potential distribution tends to a Coulomb form

(Φ ∝ 1/R).

In that case the OML ion-charge density distribution in dimensionless variables is

Ni(φ, r) = N∞ exp (φ)
1

π3/2

∫

w∈Di

exp
(

−w2
)

d3w, (V.14)

where w = v/vti, yielding after integration Eq. (23) in Ref. [51]. Recalling the

definition of the ion to electron temperature ratio at infinity τ = Ti∞/ZTe (Eq. (II.5)),

the density far from the probe where r ≫ 1 and φ ≃ 0 is given by Eq. (31) in Ref. [51]:

Ni(φ, r) = N∞

(

1 − φ

τ
− 1 − 2φp/τ

4r2

)

. (V.15)

Contrary to the electron case (Eq. (V.8)), the geometric shadowing term in Eq. (V.15)

cannot be neglected for the only reason that φ − φp>∼ 2, hence has to be accounted

for. Upon linearizing Eq. (V.8) about φ = 0 (and neglecting the electron shadowing

term), the electrostatic Poisson equation valid asymptotically in r = R/Rp ≫ 1 is

therefore
1

r2

∂

∂r

(

r2∂φ

∂r

)

=
1

λ2
D

(

φ− 1 − 2φp/τ

4(1 + 1/τ)r2

)

. (V.16)

Equation (V.16) shows that the plasma can schematically be divided in two re-

gions. A presheath where Λ2
De∇2φ ≪ (Ni, Ne)/N∞, hence the physics is purely ge-

ometrical and the potential distribution obtained by setting the right-hand-side of

Eq. (V.16) to zero. This is the quasineutral region (Ni ∼ Ne):

φ(r) =
1 − 2φp/τ

4(1 + 1/τ)r2
. (V.17)

When φ = −O(1) still r ≫ 1, the shadowing term can be neglected and Eq. (V.16)

116



simplifies to
1

r2

∂

∂r

(

r2∂φ

∂r

)

=
φ

λ2
D

. (V.18)

This is the sheath, whose solution is a Debye-Hückel potential as anticipated in para-

graph III.3.2:

φ(r) =
φp
r

exp

(

−r − 1

λD

)

, (V.19)

but whose shielding length is the linearized Debye length λD, defined by

λD =
λDe

(1 + 1/τ)1/2
. (V.20)

As mentioned earlier, the OML approach is valid when λD ≫ 1. The linearization

yielding Eq. (V.18) further requires λD ≫ −φp/τ , in order for the potential distribu-

tion close to the probe to be governed by physics occurring where the density is only

weakly perturbed.

V.1.3 Orbit Motion Limited charging

Because dust particles are typically smaller than the plasma Debye length, the sharp

distinction between Debye sheath and quasineutral presheath operated in the study

of electrostatic probes is not appropriate here. As a result the ion current does not

saturate to a value of the order AN∞cs0, and orbital ion effects must be taken into

account to study dust charging. This can be done analytically for spherical (or infinite

circular cross-section cylindrical) dust particles with radius Rp and potential Φp, when

Rp ≪ ΛDe and no magnetic field is present.

In the absence of intermediate potential barrier (OML regime), energy and angular

momentum conservation imply that each ion with impact parameter p and energy W0

such that

p ≤ Rp

(

1 − ZeΦp

W0

)1/2

(V.21)

is collected. If the ion-charge distribution function far from the probe is Maxwellian

117



with thermal speed vti = (2Ti∞/m)1/2 (Eq. (II.31)) and drift velocity vd:

f∞(v) =
N∞

(vti
√
π)

3
exp

[

−(v − vd)2

v2
ti

]

, (V.22)

the OML ion current to the probe is simply

Ii =

∫ 2π

ψ=0

∫ ∞

vz=−∞

∫ ∞

vρ=0

f(v)|v|πR2
p

(

1 − ZeΦp

W0

)

dvzvρdvρdψ, (V.23)

yielding after integration

Ii = 4πR2
pΓ

0
i

[

1

2
exp

(

−w2
d

)

+

√
π

2

(

wd +
1

2wd
+
χp
wd

)

erf (wd)

]

, (V.24)

where wd = vd/vti. This solution, first derived by Whipple [52], depends on the ion

drift velocity, the ion thermal speed, and the probe potential normalized to the ion

temperature

χp = −ZeΦp

Ti∞
. (V.25)

By setting wd = 0 we recover the well-known Langmuir formula [2]:

Ii = I0
i (1 + χp) . (V.26)

Figure (V-3) plots the OML ion current as a function of wd for different probe

potentials. Also shown for comparison is the Langmuir limit (Eq. (V.26)), and the

ballistic limit given by Ii = πR2
pN∞wdvti.

V.2 Ion collection in the drift approximation

While the just-reviewed large-RL OML collection is well understood, little literature

in the scaling RL ≪ Rp ≪ ΛDe is available. In this section, we investigate this regime

with a 1D-kinetic/2D-drift model, similar in principle to the quasineutral kinetic

approach followed in chapter II.
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Figure V-3: Attracted ion current to a sphere of radius Rp as function of the drift
velocity in OML conditions (Eq. (V.24)), normalized to I0

i = 4πR2
pN∞vti/2

√
π for

different biases χp = −ZeΦp/Ti∞. The thick dash-dot lines correspond to Eq. (V.26),
and the thick dashed line to the ballistic limit (Ii = πR2

pN∞wdvti).

V.2.1 1D-kinetic/2D-drift model

Equations and solution method

Let us consider as usual an ion attracting spherical probe, in the conditions B ‖ ez

and external ion cross-field velocity v⊥ ‖ ey. In the limit of infinite magnetization,

the motion of a given ion across the magnetic field lines can be treated in the drift

approximation, i.e. (vx, vy)
T = E × B/B2. Following the approach of chapter II, we

can therefore write the parallel ion-charge distribution function f as solution of the

1D kinetic equation

v
∂f

∂z
+ vx

∂f

∂x
+ vy

∂f

∂y
− Ze

m

∂Φ

∂z

∂f

∂v
= 0, (V.27)
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showing that f is conserved along (x, y, z, v) orbits that satisfy

d

dt



































x

y

z

v

=







































vx

vy

v

− Ze

m

∂Φ

∂z
.

(V.28)

The ion flux-density to a specific elementary portion of the probe surface is then

calculated from the local parallel ion distribution function, obtained by tracing back

to infinity each orbit having an inward velocity. The orbit integration is performed

with the Matlab built-in function “ode45”, using an adaptive fourth or fifth order

Runge Kutta scheme.

Contrary to the quasineutral regime, it is incorrect to assume vx = 0 and uniform

vy = v⊥. In the vacuum limit considered here, the probe-induced potential distri-

bution is exactly given by Eq. (III.56) with λDe → ∞, i.e. is the sum of a vacuum

monopole and dipole:

Φ =
Φp

r
+ [EcnvRp]

x

r3
, (V.29)

where (x, y, z) is the Cartesion position normalized to Rp, and we recall the notation

r = R/Rp. The potential gradient therefore has the following components:

∂Φ

∂x
= −Φp

x

r3
− 3 [EcnvRp]

x2

r5
+ [EcnvRp]

1

r3
, (V.30)

∂Φ

∂y
= −Φp

y

r3
− 3 [EcnvRp]

xy

r5
, (V.31)

∂Φ

∂z
= −Φp

z

r3
− 3 [EcnvRp]

xz

r5
, (V.32)

and the total drift required to integrate the orbits (V.28), given by vy = v⊥ +
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(∂Φ/∂x) /B and vx = − (∂Φ/∂y) /B:

vy = v⊥

(

1 − 1

r3
+

Φp

[EcnvRp]

x

r3
+ 3

x2

r5

)

, (V.33)

vx = −v⊥
(

Φp

[EcnvRp]

y

r3
+ 3

xy

r5

)

, (V.34)

tends to a limit different from (v⊥, 0)T as B tends to infinity. It is easy to verify

from Eqs (V.33,V.34) that the drift vector (vx, vy)
T at R = Rp is tangent to the

probe surface, which is the physical translation of the probe being equipotential. As

a result, if the parallel ion-charge distribution f at the probe surface is known, the

parallel ion-charge flux-density (ion-charge collection per unit time per unit surface

perpendicular to B) is given by

Γi‖ =















−
∫

v<0

vf(v)dv if z ≥ 0,

∫

v>0

vf(v)dv if z ≤ 0.

(V.35)

In order to maximize notation consistency within this thesis, the orbit equa-

tion (V.28) was written in terms of “Φ”. However because in the vacuum limit

the electrons do not interact with the ions, the ion to electron temperature ratio τ

is physically irrelevant: collected ion flux-densities normalized to Γ0
i = N∞vti/(2

√
π)

will only depend on the dimensionless parameters w⊥, w∞, χp = −ZeΦp/Ti∞ and βi.

Ion orbits

Figure (V-4) shows a selection of ion orbits integrated backwards from different po-

sitions on the sphere surface, using the parameters χp = 10, βi = 50, and w⊥ = 0.5.

The parallel external drift w∞ does not enter the orbit equation, but governs the

phase space-density associated to each orbit, hence the collected ion current.

Rewriting the convective electric field in ion thermal units

Ecnv

Ti∞/Ze
=

√
πw⊥βi
Rp

(V.36)
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shows that part of the sphere becomes ion-repelling when
√
πw⊥βi ≥ χp, which is the

case with our choice of parameters: χ(Rp) ∈ [χp−
√
πw⊥βi : χp+

√
πw⊥βi] ≃ [−34.3 :

54.3] · χp. Although not a realistic situation (the dust particle’s floating potential

will adjust to a value negative enough such that electrons are repelled on its entire

surface), it helps introduce important concepts.

The orbits on Figs (V-4a,b) “end” at (x = −1, z = 0+) and (x = 1, z = 0+),

i.e. symmetrically with respect to the {0, ey, ez}-plane, but behave quite differently.

Orbits whose end-origin is on the repelling side (a) simply trace back to infinity, while

orbits originating on side (b) can either trace back to infinity if their initial velocity

w0 = v0/vti is inwards enough, or reintersect the probe otherwise, in which case they

do not contribute to the ion current. For this particular example, the orbit starting

with w0 = −0.52 is a limiting case since it closely follows the probe surface until it

reaches the repelling probe side, and then picks up the cross-field velocity w⊥. Orbits

with smaller |w0| would close on the sphere.

Accounting for finite βi is necessary when the full potential distribution is consid-

ered in order to keep Ecnv finite, not to capture finite Larmor radius effects absent

from the drift model.

Investigation of the dipole effect

Ion collection in the strongly magnetized vacuum limit differs from its strongly mag-

netized quasineutral counterpart (chapter II) in two ways:

• The long-range vacuum potential starts deflecting the ion orbits through parallel

acceleration (−c2s0∂φ/∂z) at y ≪ −1, while no quasineutral potential perturba-

tion permeates in the region y ≤ −1.

• In the drift approximation considered here, the ions are collected with purely

parallel velocity due to the sphere shielding out the external convective electric

field. Furthermore, the sphere’s effective potential spanning the range χ(Rp) ∈
[χp −

√
πw⊥βi : χp +

√
πw⊥βi], taking the limit βi = ∞ does not seem possible

in the presence of cross-field drift (w⊥ 6= 0). Because in the quasineutral limit
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Figure V-4: Selection of 3D ion orbits, solutions of Sys. (V.28), traced backwards
from the probe surface at (a) x = −1, z = 0+, (b) x = 1, z = 0+ and (c) x = 0,
y = 0, z = 1. w0 = v0/vti is the “initial” backwards parallel velocity of the considered
orbit. The simulation parameters for this example plots are χp = 10, βi = 50, and
w⊥ = 0.5.
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the probe-induced potential is shielded by a thin layer assumed much smaller

than the ion Larmor radius, those effects were not observed.

In order to isolate those two effects, hence increase physical insight, we need to

suppress the probe shielding of the convective electric field (effective “dipole”). For

this purpose, we need to integrate the orbits in a pure Coulomb field, i.e replace

Eq. (V.29) by Φ = Φp/r, Eqs (V.34,V.33) by vy = v⊥ and vx = 0, and Eq. (V.35) by

Γi‖ =















∫

vr<0

(−v + v⊥ cot η) f(v)dv if z ≥ 0,

∫

vr<0

(v − v⊥ cot η) f(v)dv if z ≤ 0,

(V.37)

where as usual η is the angle of probe surface to magnetic field in any {ey, ez}-plane.

The solution without dipole is not really physical, although it could model a

thought experiment where the convective electric field is replaced by gravity, or a

cumbersome multifaceted spherical probe where each facet is biased to an appro-

priately chosen different potential such as to approximately support the convective

electric field. It is of course independent of βi, as for the quasineutral limit of chap-

ter II.

V.2.2 Results and physical discussion

Total ion current

The first important physical quantity to compute is the total ion current Ii, obtained

after sphere-integration of Γi‖ (Eq. (V.35) or Eq. (V.37)). For convenience, we recall

the formula (IV.3):

Ii =
π

2
R2
p

∫ 2π

0

Γi‖(η)| sin η|dη, (V.38)

The solution is plotted in Fig. (V-5) as a function of cross-field drift w⊥ for a selection

of probe potentials χp, in the absence of external parallel drift (w∞ = 0).

Let us start with the analysis of Fig. (V-5b), only accounting for the probe

monopole. In the limit w⊥ → 0, the ion current tends to the geometric value Ii = I0
i /2
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regardless of χp; for strongly attractive probes however, the current quickly rises to a

local maximum located around w⊥ = 0(1), before progressively reaching the ballistic

asymptote given by Ii = πR2
pN∞wdvti. Figure (V-5a) accounting for the full potential

distribution at βi = 100 is qualitatively similar, although at equal bias and velocity,

the current is lower. This difference is due to the reduction in cross-field velocity

experienced by the ions as they approach the conductor. It can be seen, for instance,

that in the limit w⊥ ≫ 1 the ion current falls below the ballistic limit.

(a) Full potential distribution
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Figure V-5: Total ion current normalized to I0
i = 4πR2

pN∞vti/2
√
π, solution of the

1D-kinetic/2D-drift model in the absence of external parallel drift (w∞ = 0). (a)
Accounting for the dipole term, with βi = 100. (b) Omitting the dipole term. The
thick dashed lines correspond to the ballistic asymptote given by Ii = πR2

pN∞wdvti.

Figures (V-5a,b) are the counterpart of Fig. (V-3) in the strong magnetization

limit. The ion current evolution with increasing drift velocity is a trade-off between

a decrease in the number of collected orbits and an increase in the (initial, i.e. at

infinity) orbit velocities. The balance of those two effects appears to invert with ion

magnetization, since in the absence of magnetic field the (OML) current has a local

minimum rather than maximum for high enough χp (Fig. (V-3)).
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Flux ratios

Flux-sensing probes rarely operate in the simultaneous limit ΛDe ≫ Rp and βi ≫ 1.

It is nevertheless instructive to verify if there is a simple relationship between the

plasma drift velocity and the flux ratios R3π/4 = Γi(η = −π/4)/Γi(η = 3π/4) and

Rπ/4 = Γi(η = −3π/4)/Γi(η = π/4), as in the quasineutral regime (chapters II,IV).

Figures (V-6a,b) show the flux ratio dependence on w⊥ at w∞ = 0, i.e. when

R3π/4 = Rπ/4, for a selection of probe biases. When only accounting for the probe

monopole, the flux ratios increase monotonically with w⊥, as intuition would sug-

gest; in the limit w⊥ = 0, ion collection becomes purely geometrical: Γi‖(η =

±π/4,±3π/4) → Γ0
i , hence Rπ/4,3π/4 → 1.

Figure (V-6a), showing flux ratios when the full potential distribution is accounted

for, is quite different. The ratios still tend to unity at w⊥ = 0, but do not increase

exponentially with w⊥. The physical explanation is that regardless of w⊥, ion collec-

tion always occurs with zero transverse volocity and the current is only due to the

parallel component of the distribution function. For strong enough cross-field drift,

the angular flux distribution is seen to reverse, which is reminescent of a similar effect

observed in the magnetic-free regime by Hutchinson [10]. Because there is no one-

to-one relationship between flux ratios and drift velocity, it appears quite difficult to

propose a Mach-probe calibration method.

V.2.3 The question of stationary magnetoplasmas

Figure (V-7) is the counterpart of Fig. (V-5) in the collisionless quasineutral limit.

Although a direct quantitative comparison is not possible, since the quasineutral and

vacuum ion currents depend on different plasma parameters, it clearly appears that

the quasineutral current does not tend to the geometric limit Ii = I0
i /2 at zero drift,

except in the limit τ ≫ 1 (free-flight).

As explained in chapter II, no self-consistent solution to the collisionless magne-

tized plasma equations exists in the absence of convective drift. My Master thesis [14]

was focussed on collisionless ion collection by spherical probes in stationary magne-
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(a) Full potential distribution
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Figure V-6: Flux ratios R3π/4 = Rπ/4 as a function of w⊥ with w∞ = 0, obtained
with the 1D-kinetic/2D-drift orbit integration. (a) Accounting for the dipole term,
with βi = 100. (b) Omitting the dipole term.
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Figure V-7: Total (i.e. sphere-integrated) ion current normalized to I0
i =

4πR2
pN∞vti/2

√
π, solution of the collisionless quasineutral 1D-kinetic model of chap-

ter II (kinetic equation (II.50), valid when βi → ∞ and ΛDe ≪ RL) with v∞ = 0.
Except in the limit τ ≫ 1, the ion current at v⊥ = 0 is higher than the geometric
limit I0

i /2.

127



toplasmas, and only weak enough magnetic fields βi<∼ 1 could be considered in order

to ensure physically meaningful results. Even accounting for cross-field transport in

Fig. (V-7) would not drive the zero-drift current towards I0
i /2.

Only the free-flight and the vacuum limits allow a collisionless treatment of the

stationary magnetized probe problem, because ions and electrons are decoupled. The

problem in the vacuum limit, where the potential naturally adopts a Coulomb form,

was first solved by Sonmor and Laframboise [13] by direct orbit integration. The

next section briefly reviews concepts pertaining to the stationary (or parallel-drifting)

plasma regime, accounting for finite Larmor radius effects.

V.3 Review of collection in stationary, large Debye

length magnetoplasmas

V.3.1 Parker-Murphy upper bound current

Let us consider a magnetized plasma in the absence of convective electric field (i.e.

the plasma-drift is along the magnetic field lines). Each particle (ion or electron) has

then two conserved quantities; for the ions in cylindrical coordinates (z, ρ, ψ), those

are the energy

W0 =
m

2

(

v2
ρ + v2

z + v2
ψ

)

+ ZeΦ, (V.39)

and the canonical angular momentum about the magnetic axis

Jz = mρ2 dψ

dt
+

1

2
ZeBρ2. (V.40)

Combination of Eq. (V.39) and Eq. (V.40) gives:

W0 =
m

2

(

ρ̇2 + ż2
)

+ ZeΦ(z, ρ) +
m

2
ρ2

(

Jz
mρ2

− ZeB

2m

)2

. (V.41)
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Because ρ̇2 + ż2 ≥ 0, the ion is confined in a “magnetic bottle”, defined by the

following implicit equation:

I(z, ρ) = W0 − ZeΦ(z, ρ) − m

2
ρ2

(

Jz
mρ2

− ZeB

2m

)2

≤ 0. (V.42)

One can easily solve Eq. (V.42) for ρ∞ in the case of a cold plasma with drift

velocity vd ‖ B. The conserved quantities are W0 = mv2
d/2 and Jz = ZeBρ2

∞/2,

therefore:

ρ∞ ≤ ρ

{

1 +
2m

ZeB

[

2

mρ2

(

1

2
mv2

d − ZeΦ(ρ, z)

)]1/2
}1/2

. (V.43)

The maximum impact parameter for a particle to be collected is hence given by

Eq. (V.43) by setting Φ = Φp and ρ = Rp. This has first been done by Parker and

Murphy [53] for a cold stationary plasma:

RPM = Rp

[

1 +
2m

ZeB

(−2ZeΦp

mR2
p

)1/2
]1/2

. (V.44)

They then calculated an upper bound to the collected current by assuming that at

infinity the plasma still has a small thermal motion, thus obtaining:

Ii ≤ IPMi = 2N∞

[

vti
2
√
π

(πR2
PM)

]

= I0
i

[

1

2
+

2√
π

√
χp

βi

]

(V.45)

Figure (V-8) shows the critical magnetic bottles for the case W0 = 0 (stationary

cold ion at infinity), and a Coulomb potential distribution Φ(ρ, z) = Φp/
√

ρ2 + z2

with 8mΦp/ZeB
2R2

p = −5. Those are obtained from Eq. (V.42) with ρ∞ = RPM

using the Matlab implicit plotting capabilities.

Later, Rubinstein and Laframboise [54] extended Parker’s result to a station-

ary Maxwellian plasma with arbitrary temperature. Their expression, given by

Eqs (30,33,35) from the previous reference, is quite complicated and not reported

here. We will refer to it as the canonical upper bound ICan
i .
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Figure V-8: Magnetic bottles for an ion starting at ρ = RPM (Eq. (V.44)) with zero
velocity, using example plasma parameters such that 8mΦp/ZeB

2R2
p = −5 and an

assumed Coulomb potential distribution. The Parker-Murphy upper bound current
is calculated by assuming that each ion starting at ρ ≤ RPM is collected.

V.3.2 Free-flight magnetized current

Zero drift

In the intermediate magnetic field regime (0 < βi < ∞), the current to a spher-

ical electrode of radius unity at space potential can be evaluated by summing the

contribution of helices of radius s, wave length 2πt, guiding center distance to the

magnetic axis of the probe u, and phase ϕ ∈ [0 : 2π] distributed according to a drift-

ing Maxwellian (only four variables are necessary to describe the helices because we

have azimuthal symmetry about the magnetic axis). Figure (V-9) is a schematic of

the problem.

The calculation was first done in the stationary case (vd = 0) by Whipple [55],

whose expression can be recovered by setting D = 0 in Eq. (9) from Ref. [54].

Ii
I0
i

=
1

4
π2β4

i

∫ ∞

s=0

∫ ∞

t=0

f̃(βi, s, t)

[

1

2
θ(1 − s)(1 − s)2 +

∫ s+1

u=|s−1|

1

2π

∫ 2π

ϕ=0

H(u, s, t, ϕ)udu

]

stdsdt (V.46)

130



u

s

2̟t

Magnetic and drift axis

1

2

3

Figure V-9: Schematic of three different kind of orbits. Solid portions of orbits are
visible, dashed portions are behind the sphere, and dotted portions are inside the
probe. Orbit no1 has s1 + u1 > 1 and |s1 − u1| < 1. The phase ϕ1 is such that the
orbit crosses the sphere, but because the wavelength is “long” (t1 > t∗1(s1, t1, u1), see
Appendix A in Ref. [14]), there are phases ϕ̃ such that H(u1, s1, t1, ϕ̃) = 0. Orbit
no2, for which the geometrical meaning of s, t and u is shown, has s2 + u1 > 1
and |s2 − u2| < 1. It is a critical orbit because H(u2, s2, t2, ϕ2) = 1 regardless of ϕ2

(t2 = t∗2(s2, t2, u2)). Orbit no3 has u3 + s3 < 1, hence H(u3, s3, t3, ϕ3) = 1 regardless
of ϕ3.
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with:

f̃(βi, s, t) = exp
[

−π
4
β2
i (s

2 + t2)
]

. (V.47)

Ii/I
0
i (Eqs (V.46,V.47)) can be seen as the current reduction factor from the value

in an unmagnetized plasma. f̃ is a form of the Boltzmann exponential appearing in

the Maxwellian distribution function. The term 1
2
θ(1 − s)(1 − s)2 counts the orbits

with s + u < 1, that we know for sure are collection orbits (θ is the Heaviside step

function). The term
∫ s+1

u=|s−1|
1
2π

∫ 2π

ϕ=0
H(u, s, t, ϕ)udu counts the current collected from

the orbits with s+ u ≥ 1 and |u− s| ≤ 1. That is to say helixes part in the magnetic

shadow and part outside. The impact factor H(u, s, t, ϕ) (equal to 1 if the orbit

characterized by (u, s, t, ϕ) intersects the sphere at least once and 0 otherwise) has

been calculated by Rubinstein and Laframboise in Ref. [54]. Orbits characterized by

u > s+ 1 do not intersect the sphere.

This integral is expensive to evaluate as βi → 0 and was performed in Ref. [14]

using a second order trapezoidal rule with adaptive step-size down to βi = 0.002. The

result is shown in Fig. (I-4) of Ref. [14].

It was shown (see Appendix A, Ref. [14]) by expansion starting from the integral

expression of Eq. (V.46) that the slope of the current reduction at βi = 0 is C = 1/3π:

Ii
I0
i

(βi) = 1 − 1

3π
βi +O(β2

i ). (V.48)

Equation (V.48) is in contradiction to the statement of Rubinstein and Lafram-

boise (“Results and discussions” [54]) that the dependence on βi is quadratic. The

physical origin of this linear dependence can be understood as follows. We can choose

a given point on the sphere surface, and consider the orbits there. Under the hypoth-

esis of small βi, the majority of those orbits can be traced back to infinity, while a

small fraction re-intersect the probe at least once. Orbits that reintersect the sphere

are unpopulated. It is this effect that entirely accounts for flux reduction. In order of

magnitude, the reintersecting orbits require |vz|<∼ Rpωc/π, which delimits a solid angle

proportional to |vz| (not v2
z as erroneously argued by Rubinstein and Laframboise).

Since at small velocity the Maxwellian distribution is independent of v, doubling βi
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will simply double the fraction of such orbits, therefore doubling the depletion due to

the magnetic field.

Extension to parallel drifts

Extension of Eq. (V.48) to plasmas drifting parallel to the magnetic field is discussed

in Ref. [14]. Because the problem is still axisymmetric with respect to the magnetic

axis, Eq. (V.46) still applies provided f̃ is replaced by the average of the Boltzmann

exponential appearing in the drifting Maxwellian with drift velocities wd = vd/vti and

−wd:

f̃(βi, s, t, wd) =
1

2
exp

{

−π
4
β2
i

[

s2 +

(

t− wd
2

βi
√
π

)2
]}

−1

2
exp

{

−π
4
β2
i

[

s2 +

(

t+ wd
2

βi
√
π

)2
]}

.

(V.49)

The corresponding current solution expanded at low βi was given by Eq. (IV.7).

V.3.3 Helical upper bound current

The ion current to a stationary spherical probe in a collisionless, stationary magne-

toplasma is framed by its value at βi = 0 and βi = ∞. The first bound is simply

Eq. (V.26), while the second is independent of the probe potential by virtue of flux

conservation, and is given by

I
|βi=∞
i =

1

2
I0
i . (V.50)

In order to improve this framing, the idea developed by Rubinstein and Lafram-

boise [54] is to assume that the effects of orbit depletion due to multiple intersections

with the probe occur in a neighborhood of the probe where the ions have already been

accelerated by χp. An upper bound, called “Helical” in order to avoid a confusion

with the “Canonical” bound, is obtained taking this portion of distribution function

to be given by f 3D:

f 3D(v) =















N∞

(vti
√
π)

3
exp

(

− v2

v2
ti

+ χp

)

if v2/v2
ti − χp ≥ 0,

0 if v2/v2
ti − χp < 0.

(V.51)
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The normalized current can therefore be written as:

Ii
I0
i

=
exp(χp)

4
π2β4

i

∫ ∞

s=0

∫ ∞

t=0

θ̃(βi, χ, s, t)f̃(βi, s, t)

[

1

2
θ(1 − s)(1 − s)2 +

∫ s+1

u=|s−1|

1

2π

∫ 2π

ϕ=0

H(u, s, t, ϕ)udu

]

stdsdt (V.52)

with f̃ given by Eq. (V.47), θ̃(βi, χ, s, t) = θ(s2 + t2 −D2), and D defined by :

D =
2

βi

√

χp
π
. (V.53)

It is demonstrated in Appendix A from Ref. [14] that:

IHel
i

I0
i

= (1 + χp) −
[

1

3π
erfc(

√
χp) exp(χp) +

2

3

√
χp

π3/2

]

βi +O(β2
i ) (V.54)

In the limit χp → 0, the upper bound becomes exact as it tends towards the

free-flight current (V.48). For high enough potentials, IHel
i is higher than ICan

i . The

optimum upper bound is therefore

IUp
i = min

(

IHel
i , ICan

i

)

. (V.55)

V.3.4 Ion current calculations

SCEPTIC(2D) has built in a sophisticated ion reinjection scheme based on energy

and angular momentum conservation [10], whose operation in the absence of magnetic

field is equivalent to injecting ions at the outer boundary accounting for the potential

drop existing between the reinjection point and infinity. This feature is particularly

convenient in large Debye length plasmas, as it mitigates the need for a large compu-

tational domain. Of course individual ions’ angular momentum with respect to the

probe center is not conserved in magnetized plasmas, and we have in this thesis no

choice but taking a computational domain large enough for the electrostatic potential

to be negligible at the outer boundary (or at least at the upstream outer boundary

in flowing cases), and reinject a Maxwellian there.
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The question is, what does “negligible potential” mean ? The problem of ion

current collection by a Coulomb sphere in a stationary magnetoplasma (Φ(R) =

ΦpRp/R) has been solved by Sonmor and Laframboise [13] by direct orbit integration.

Numerical experimentation shows that in general SCEPTIC calculations in an exact

Coulomb potential approach Sonmor and Laframboise’s results to ∼ 10% when using

the domain size Rb = 100Rp. A highly unreasonable domain size of the order Rb ∼
1000Rp would presumably be required to reduce the discrepancy to less than 1%.

We therefore abandon the hope of simulating infinite Debye length magnetized

plasmas, and consider instead a plasma with large but finite Debye length. Here we

bypass SCEPTIC3D’s Poisson solver and impose the potential distribution

Φ(R) = Φp
Rp

R





exp
(

−R−Rp

Λs

)

1 − exp
(

−2Rb−Rp

Λs

) +
exp

(

R−Rp

Λs

)

1 − exp
(

2Rb−Rp

Λs

)



 . (V.56)

Equation (V.56) is the solution of the spherically symmetric Debye-Hückel equa-

tion (V.18) with shielding length Λs, vanishing at the domain boundary Rb rather

than infinity. By choosing Λs = Rb = 70Rp, we hope to be close enough to the

Coulomb form, yet have a zero outer potential and a manageable domain size.

Figure (V-10) shows the ion current dependence on magnetization βi in the ab-

sence of plasma drift, computed with SCEPTIC(2D) by direct orbit integration in the

“quasi” Coulomb potential (V.56) for two probe biases (χp = 5 and χp = 15). It can

be seen that the current tends to the OML value predicted by Eq. (V.26) at βi = 0,

and to I0
i /2 at βi = ∞ (geometric collection). The curves labeled “Sonmor” refer to

table I from Ref. [13], hence valid in an exact Coulomb potential. We conclude that

our ad hoc potential (V.56) with Λs = Rb = 70Rp successfully mocks the Coulomb

potential for βi>∼ 1 (perfect match between SCEPTIC and Sonmor’s calculations), as

well as for βi ∼ 0 (perfect match with the OML solution). A discrepancy of order

10% exists at βi ∼ 0.3, that would presumably disappear by increasing Rb and Λs.

The ion current to a stationary sphere is a monotonically decreasing function of

βi; this current reduction is exclusively due to the geometric effects reducing the
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(a) χp = 5
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(b) χp = 15
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Figure V-10: Total ion current normalized to I0
i = 4πR2

pN∞vti/2
√
π as a function of

ion magnetization βi, calculated by direct orbit integration with SCEPTIC3D using
the potential distribution (V.56). The external plasma is stationary (vd = 0). Curves
labeled “Sonmor” refer to table I from Ref. [13], IUp

i to the upper bound, and IPMi to
the Parker-Murphy upper bound (Eq. (V.45)). (a) Probe potential χp = −φp/τ = 5;
(b) χp = 15.

“apparent” cross-sectional area of the collector as shown in Fig. (V-8). The figure

also shows the upper bound IUp
i (Eq. (V.55)), and the Parker-Murphy’s upper bound

(Eq. (V.45)). The high-field portion of IUp
i , corresponding to ICan

i , slightly exceeds

IPMi because the latter does not take into account thermal effects. We refer to Ref. [13]

for more discussion on how the exact current approaches the bounds.

V.4 Ion collection in arbitrarily magnetized flow-

ing plasmas

V.4.1 Total ion current

The natural extension of sections V.2,V.3 is to consider a flowing plasma at finite ion

magnetization, still in the vacuum limit. SCEPTIC3D can easily model this problem,

using an imposed potential distribution given by the monopole term (V.56) plus the

appropriate additional vacuum dipole term.
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Figure (V-11) shows the total ion current as a function of βi for two probe biases

(a) χp = 1 and (b) χp = 50, in the drift conditions w⊥ = 0.5, w∞ = 0. At moderate

magnetization, the qualitative behaviour of the ion current is similar to what was

observed in the quasineutral regime in the presence of strong cross-field flow (e.g.

Fig. (IV-7c)). The ion current first increases starting from the unmagnetized limit

(here given by the OML solution (V.24)), before peaking and decreasing.

The vertical dotted lines in Fig. (V-11) separate the physically relevant parameter

regime where the entire probe surface is ion-attracting (|EcnvRp| < |Φp|, left) from

the regime where part of the probe is ion-repelling. Indefinitely increasing βi at fixed

w⊥ causes the attracting part of the sphere to be more and more attracting, while

the repulsive part can’t compensate more than collecting no ions. This effect can be

seen in Fig. (V-11a), where the total ion current increases when βi>∼ 20.
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Figure V-11: Total ion current normalized to I0
i = 4πR2

pN∞vti/2
√
π as a function

of ion magnetization βi, calculated by direct orbit integration with SCEPTIC3D, for
probe biases (a) χp = 1 and (b) χp = 50, in a pure cross-field drift w⊥ = 0.5. In
(a) and (b), SCEPTIC3D calculations accounting for the full potential distribution
(“Monopole+dipole”) are compared with the solutions of the 1D-kinetic/2D-drift
model of paragraph V.2 (“Drift”).

Also shown in Fig. (V-11) is a successful comparison with the 1D-kinetic/2D-drift

calculations at strong magnetization, validating both methods. It must be recalled

that the 1D-kinetic/2D-drift solution dependence on βi is solely due to the effec-
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tive probe dipole affecting the transverse ion drifts and the parallel dynamics; finite

Larmor radius effects are not taken into account, explaining why agreement with

SCEPTIC3D is only reached at extremely strong magnetic field (βi>∼ 100).

V.4.2 Angular ion flux-density distribution

Figure (V-12) shows the ion flux-density to the probe major cross-section in the

plane of flow and magnetic field {0, ey, ez} as a function of cos θ (recall that θ is the

angle of position to magnetic field in spherical coordinates, as defined for instance

in Fig. (III-2a)); the curves are therefore closed on themselves, the upper portions

corresponding to sin θ ≤ 0 and the lower portions to sin θ ≥ 0. The conditions are

w⊥ = 0.5, w∞ = 0, and χp = 50.

The dotted curve, referring to the 1D-kinetic/2D-drift solution, vanishes on the

probe leading edge (θ = −π/2) in addition to vanishing on the wake edge (θ = π/2),

which is different from what was observed in the quasineutral regime. Of course finite

ion magnetization tends to smooth discontinuities, causing SCEPTIC3D’s computed

current never to vanish.
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Figure V-12: Angular ion flux-density distribution to the probe major cross-section
in the plane of flow and magnetic field {0, ey, ez} normalized to Γ0

i = N∞vti/(2
√
π).

Calculations have been performed in with SCEPTIC3D in a prespecified vacuum
potential for βi = 10 and βi = 100. “drift” refers to the 1D-kinetic/2D-drift solution.
The probe bias is χp = 50.
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The observation that in the limit of vanishing Larmor radius no current is collected

on the {0, ex, ey}-plane was already made in Ref. [56] in the context of electron

collection by positively charged spacecraft.

V.4.3 Plasma profiles

Figure (V-13) shows two density contour-plots computed by SCEPTIC3D in the

{0, ey, ez}-plane for βi = 5 (transition between intermediate and strong magnetiza-

tion), w⊥ = 0.5 and w∞ = 0, with (a) χp = 15 and (b) χp = 50.

A quick comparison with Fig. (IV-2) shows that the plasma responds quite dif-

ferently to the probe depending on the Debye length. In the quasineutral limit, no

information could propagate against the cross-field drift and the fluid stream-lines

started to curve at y ∼ −1. Here, we see that the stronger the probe bias, the wider

the collection flux-tube (critical streamlines, in red). In the presence of non neg-

ligible cross-field drift then, the current increase with increasing probe bias can be

explained by the parallel ion dynamics only. The situation was different in the sta-

tionary case (Fig. (V.3)), where current increase with increasing probe bias was due

to ion demagnetization (polarization drift), hence directly dependent on the Larmor

radius.

The initial current increase with βi at weak magnetization observed in Fig. (V-11)

has the same physical origin as in the quasineutral regime. When βi = 0, the probe

focusses the ions downstream; as βi increases, part of the ions that would miss the

probe in the absence of magnetic field are collected downstream while the upstream

current is unaffected. Perhaps an easier way to understand this phenomenon is to

look at the critical streamlines in the {0, ey, ez}-plane at βi = 0 and βi = 0.1, shown

in Fig. (V-14) for χp = 15, w⊥ = 0.5 and w∞ = 0. The collection flux-tube is broader

for weak but non-zero magnetic field. In the absence of drift (or if the drift is parallel

to the probe), this phenomenon cannot happen, and the current must decrease with

increasing βi as observed in Fig. (V-10).
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Figure V-13: Normalized ion charge-density contour-plots in the {0, ey, ez}-plane
with ion magnetization βi = 5. (a) Probe bias χp = 15, and (b) χp = 50. Also shown
as dashed blue lines are a selection of fluid streamlines, and as thick red lines the
critical streamlines delimiting the collection flux-tube. The external drift velocity is
w⊥ = 0.5 and w∞ = 0.
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Figure V-14: Normalized ion charge-density contour-plots in the {0, ey, ez}-plane
with (left) zero and (right) weak magnetization βi = 0.1. The probe bias is χp = 15,
and the external drift velocity is w⊥ = 0.5 and w∞ = 0. The thick black lines are the
critical stream-lines delimiting the collection flux-tube.
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Chapter VI

Spheres in finite Debye length,

arbitrarily magnetized plasmas

In chapter V, the problem of collisionless ion collection by a spherical object under

magnetized conditions was solved in the limiting regime of electron Debye length

much greater than the sphere radius (ΛDe ≫ Rp). Because space-charge effects were

neglected, the potential distribution around the sphere approached a vacuum form

and the task was reduced to integrating particle orbits in a prespecified potential. In

chapter IV, the Particle in Cell code SCEPTIC3D was used to investigate the problem

in the opposite limit of negligible shielding length, where quasineutrality holds down

to an infinitesimally thin sheath layer at the sphere surface.

We here propose to perform the calculation in the general situation where the

shielding length can neither be approximated by zero or infinity, requiring us to re-

solve the ion motion self-consistently with the electrostatic Poisson’s equation. The

problem has therefore two additional degrees of freedom with respect to the quasineu-

tral limit (the electron Debye length ΛDe =
√

ǫ0Te/e2N∞ and the probe potential Φp),

and two with respect to the vacuum limit (ΛDe and the ion to electron thermal energy

ratio τ = Ti∞/ZTe).
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VI.1 Foreword on electron-collecting space tethers

The purpose of this thesis being to investigate probes in the ion collection regime,

it would be beside the point to give a comprehensive review of electron collection

by positively charged electrodes. It is nevertheless instructive to briefly review some

results of positively charged space tether experiments, as the corresponding physics

of attracted electrons is similar to the physics of attracted ions discussed so far.

VI.1.1 Electrodynamic tethers

The idea of using electrodynamic tethers (EDT) as power generator or thruster for

satellites in Low Earth Orbit (LEO) has been proposed since the early days of space

exploration. An EDT is, to simplify, a long shielded electric wire drawn from the

satellite across the earth magnetic field lines. It is connected to an electron gun on

the satellite side, and to an electron collector on its opposite end (see Fig. (VI-1) for

an artist view of the concept). We also mention the existence of an alternative design

where the wire is naked and the end collector absent, but will not discuss it further.

The operating principle of an EDT is to circulate a current I, closed in the ambient

plasma via the electron collector and gun. If the tether has a length L, a Lorentz

force F = ILB normal to both the tether and the magnetic field will then thrust or

slow down the satellite, depending on the relative orientation of the current, satellite

orbital velocity vd and Earth magnetic field B.

The tether being built in conducting material, it is (almost) an equipotential in

its own frame. It however sees an effective gradient in the external space potential

∇Φ0 = vd ×B, due to the convective electric field generated by the satellite motion

−vd across the Earth magnetic field B. Omitting resistive dissipation, the total circuit

load (Collector-gun potential) is therefore ∆Φ = ±L|vd×B|+Φc−Φg, where Φc is the

(positive) collector bias with respect to its neighboring plasma, and Φg the (negative)

gun bias with respect to its neighboring plasma. When a current I circulates in the

tether, part of the electric power is lost in plasma heating (eI (Φc − Φg)), and part

goes into the satellite thrust or slow-down through the Lorentz force (±ILBvd).
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Figure VI-1: Artist view of the Electro Dynamic Tether concept (From
http://www.tethers.com/EDTethers.html).

VI.1.2 Electron collection by the TSS subsatellite

Experimental observations

One of the most important question regarding space tethers is the relationship be-

tween the subsatellite (or electron collector) bias with respect to the local plasma, and

the collected electron current. One of the major goals of the first Tethered Satellite

System flight (TSS-1, 1992) and reflight (TSS-1R, 1996) was to study this question [7].

The experiment used a spherical electron collector of radius Rp = 80cm, and

operated in plasma conditions approximately given by N∞ ≃ 1011m−3, Te∞ ≃ Ti∞ ≃
0.1eV , B ≃ 3 · 10−5T and v⊥ ≃ 8km · s−1. From those conditions we infer an average

electron Larmor radius RLe ≃ 3cm and an electron Debye length ΛDe ≃ 0.75cm. The

electron-ion momentum exchange collision mean free path, easily calculated from

Eq. (II.34), is lei ≃ 1km, while the magnetic presheath extent is of the order ∼
2Rpvte/v⊥ ≃ 40m. The electron dynamics around the positively biased spherical

subsatellite is therefore collisionless, and verifies the scaling ΛDe ≪ RLe ≪ Rp: one

could therefore think that it should follow the same ion collection equations discussed

in chapter II.

Figure (VI-2) shows a compilation of current-voltage characteristics from the TSS-
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1R mission, for positive subsatellite voltages up to about 1kV . It can be seen that

the electron current does not saturate, despite the extremely strong bias compared

to the plasma temperature. The situation is therefore clearly different from what

observed in Matthew’s experiment (Fig. (II-1)) where the electron current reached

approximate saturation at Φp
>∼ 4Te/e.

� �

Figure VI-2: Compilation of Current-Voltage characteristics from the TSS-1R exper-
iment (colour version of Fig. (2) in Ref. [57]). The points correspond to different volt-
age sweeps, and the thick red line to the Parker-Murphy upper bound (Eq. (V.44)).

For completeness, we mention that the physics of laboratory probes at electron

saturation is very different. The electron-ion Coulomb collision frequency for the

sample SOL parameters considered in section II.2 is ν̄ei = 2.6 · 106s−1 (Eq. (II.34)),

while Ωc and Ωa for the electrons are as for the ions (Table II.1) since cross-field

diffusion is assumed to be ambipolar. In other words ν̄ei ≫ Ω, and the parallel electron

dynamics is diffusive rather than collisionless when the electrons are attracted. Several

authors have treated this regime, with either a kinetic [34] or a fluid [35, 36] approach,

but we will not discuss this problem further.

144



Usual physical interpretation

In magnetic-free plasmas, the straightforward interpretation of non saturating char-

acteristics is that the sheath cannot be assumed infinitesimal, and thickens as the

probe bias increases (see for instance Eq. (II.17)). In the presence of a magnetic field,

to this effect must be added the demagnetization of gyrating particles induced by the

probe bias. This effectively increases the attracted particles’ Larmor radius in the

probe neighborhood (here the electrons, but generally the ions in this thesis), hence

the probe apparent transverse cross-sectional area.

Let us assume that an estimate of the apparent probe radius for an hypothetic

collisionless stationary plasma (recall that this situation is physically impossible in

the presence of a magnetic field, unless the Debye length is infinite) is given by the

canonical Parker-Murphy upper bound RPM , discussed in paragraph V.3.1 for the

case of attracted ions. An upper bound to the collected current is then obtained by

considering that the probe magnetic shadow, of radius RPM , extends to infinity where

the plasma thermal flux-density in the parallel (to the magnetic field) direction is Γ0
e:

IPMe = 2Γ0
e

(

πR2
PM

)

= I0
e

(

1

2
+

2√
π

√

Φp/Te∞
βe

)

. (VI.1)

The C-V characteristics of Fig. (VI-2) are about 3 to 4 times larger than the Parker

and Murphy upper bound, which must be a consequence of the transverse plasma flow

past the satellite. Singh and Chaganti [58] proposed the following very simple picture.

They assume the presheath to be a cylinder of radius RPM and length L, repopulated

not from its ends but from its leading edge where transverse plasma inflow occurs; the

probe electron current is therefore Ie ∼ 4LRPMN∞v⊥. A straightforward estimate

for the convective presheath length is L ∼ 2RPMvte/v⊥, yielding Ie ∼ 8R2
PMN∞vte.

This is of course an over-estimate since it assumes that each electron entering the

presheath is collected, while in fact part of them are only deflected. We will see in

paragraph VI.3.2 to what extent SCEPTIC3D computations help asses the validity

of this picture.

145



VI.2 Plasma profiles

In the finite Debye length regime, the three important scale lengths are the probe

radius Rp, the external electron Debye length ΛDe and the external average ion Larmor

radius RL. We here propose to start by analyzing the plasma profiles, first in the

limit of strong ion magnetization still intended as βi = Rp/RL ≫ 1.

VI.2.1 Strong ion magnetization

Because running SCEPTIC3D with λDe<∼ 0.03 is hardly practical due to the excessive

number of radial cells required, yet we would like to explore the regime 0 6= ΛDe ≪ RL,

we select βi = 5 (i.e. an average external ion Larmor radius equal to a fifth of probe

radius), recognizing that we are just entering the strong magnetization zone and using

βi ≥ 20 would be better.

Ion density

Figure (VI-3) shows a selection of density contour-plots computed by SCEPTIC3D in

the {0, ey, ez}-plane for βi = 5; the electron Debye length is increased from λDe = 0.03

to λDe = 1 while the other parameters are kept fixed (τ = 1, vd = cs0, δ = π/4 and

φp = −8).

Figures (VI-3a,b), computed with λDe = 0.03 and λDe = 0.1, are qualitatively

similar to each other and to the quasineutral contour-plots discussed in chapter IV (see

Fig. (IV-2)). The property demonstrated in the quasineutral, strongly magnetized

regime stating that density contour-lines in the probe magnetic shadow are straight

and tangent to the probe surface still approximately holds, although the leading edge

perturbation front extends further with finite Debye length.

Profiles in Fig. (VI-3c,d), computed with λDe = 0.3 and λDe = 1, are significantly

different. In particular the contour-lines do not appear tangent to the collector, and

an ion accumulation point forms at the probe leading edge. The transition occurs

between λDe = 0.1 and λDe = 0.3, i.e. when the electron Debye length approximately

equals the external average ion Larmor radius. The reason for the accumulation point
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−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z

y

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) λDe = 0.3

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

z

y

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) λDe = 0.1

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

z
y

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) λDe = 1

−10 −5 0 5 10

−10

−5

0

5

10

z

y

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure VI-3: Selection of ion charge-density contour-plots in the {0, ey, ez}-plane,
with magnetization βi = 5 for τ = 1, vd = cs0, δ = π/4, φp = −8, and different
electron Debye lengths. Iso-density contours for n = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.1
are full black, while fluid stream lines are dashed blue. The external velocity is
indicated by a blue arrow on the figures’ lower left corners.
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is that as the ion Larmor radius becomes smaller than the Debye length, the ions can

approach the probe surface close enough to feel the convective electric field shielding,

hence their cross-field velocity v⊥ is reduced.

The regime transition at ΛDe ≃ RL is perhaps even clearer in Fig. (VI-4), where

ion charge-density contour-plots for the same parameters (βi = 5, τ = 1, vd = cs0,

δ = π/4, φp = −8) are plotted in the {0, ex, ey}-plane for (a) λDe = 0.1 and (b)

λDe = 0.3. While RL
<∼ ΛDe (and of course RL ≪ Rp), the ion cross-field velocity

is approximately constant and given by v⊥; the physical picture given in Fig. (IV-1)

according to which each slice in the plane of flow and magnetic field is independent

of each other still (approximately) holds. When RL
>∼ ΛDe on the contrary, the probe

negative bias permeates far enough in the plasma region for an effect similar to the

magnetic presheath displacement to occur.
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Figure VI-4: Selection of ion charge-density contour-plots in the {0, ex, ey}-plane,
with magnetization βi = 5 for τ = 1, vd = cs0, δ = π/4, φp = −8 and (a) λDe = 0.1,
(b) λDe = 0.3. Iso-density contours for n = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.1 are full
black, while fluid stream lines are dashed blue.

Electrostatic potential

Figure (VI-5) shows electrostatic potential (φ) contour-lines at λDe = 0.1 and λDe = 3,

using the same parameters as in Figs (VI-3,VI-4).

148



It can be seen that when ΛDe ≪ Rp, the potential contours are well coupled to the

ion density distribution (compare Figs (VI-5a,b) with Figs (VI-3b,VI-4a)). Because

Poisson equation smooths out density gradients over a scale length ΛDe, the potential

contours when ΛDe
>∼ Rp tend to a more circular form in the {0, ey, ez}-plane. In

the {0, ex, ey}-plane (Fig. (VI-5d)), the potential contours in the probe vicinity are

shifted in the positive x direction, due to the effective probe dipole permeating in the

plasma region.

Ion temperature

Figure (VI-6) shows contour-lines of Ti,zz normalized to Ti∞ for λDe = 0.1 and

λDe = 3, and other parameters set as in Fig. (VI-3). The transition between ΛDe < RL

and ΛDe > RL materializes in two ways. First as an increase in parallel tempera-

ture around the leading edge of the probe, simultaneously with the density increase.

Second as a much stronger symmetrization of the profiles than observed with density.

Also of interest are the transverse temperature contours Ti,xx and Ti,yy, shown

in Fig. (VI-7) for the same runs. Because in the strong magnetization limit the ion

magnetic moment is an adiabatic invariant, the transverse ion temperature should be

uniform, at least out of the magnetic presheath where the Larmor rotation is broken.

In the considered cases βi = 5, and a mild transverse heating in the wake can be

observed. Nevertheless because of the fast ion gyration, at fixed Debye length the

Ti,xx and Ti,yy profiles are almost identical. It can also be observed that contrary to

Ti,zz, increasing the Debye length does not symmetrize the transverse temperature.

VI.2.2 Intermediate ion magnetization

Close density contours

Figure (VI-8) shows ion charge-density contour-plots computed by SCEPTIC3D in

the {0, ey, ez}-plane for βi = 1, τ = 0.1, vd = 0.35cs0, δ = π/2, φp = −8 and (a)

λDe = 0.3, (b) λDe = 3.

Although the contour-lines in Fig. (VI-8a) are not tangent to the probe surface
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Figure VI-5: Potential (φ) contour-lines with magnetization βi = 5 for τ = 1, vd = cs0,
δ = π/4, φp = −8 and (a) {0, ey, ez}-plane and λDe = 0.1, (b) {0, ex, ey}-plane and
λDe = 0.1, (c) {0, ey, ez}-plane and λDe = 3 and (d) {0, ex, ey}-plane and λDe = 3.
The external velocity is indicated by a blue arrow on the figures’ lower left corners.
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Figure VI-6: Contour-lines of Ti,zz/Ti∞ in the {0, ey, ez}-plane, with magnetization
βi = 5, for τ = 1, vd = cs0, δ = π/4, φp = −8 and (a) λDe = 0.1, (b) λDe = 3. The
external velocity is indicated by a blue arrow on the figures’ lower left corners.

due to the non negligible electron Debye length, they are qualitatively similar to

what observed in Figs (VI-3a,b), taking into account the fact that the drift velocity

is different. Figure (VI-8b) on the contrary reminds us of Figs (VI-3c,d), with the

leading-edge accumulation point. The transition occurs between λDe = 0.3 and λDe =

3, i.e. when ΛDe ≃ RL as already noticed at stronger magnetization.

Figure (VI-8b) also shows an accumulation point in the trailing edge, absent in

Figs (VI-3c,d) because the drift velocity was too high. Both the leading and trailing

edge accumulation points correspond to regions where the convective electric field is

shielded enough from the ions to have negligible cross-field velocity, hence the ions

perform a mirror like oscillation along the field lines in the probe-induced potential

well. An interesting investigation that is deferred to future work is to look for trapped

ions there.

Figure (VI-9) shows ion density-contours in the {0, ex, ey}-plane, computed us-

ing the same parameters as in Fig. (VI-8). As first observed in Fig. (VI-4), the

fluid streamlines belonging to the cross-field plane start to encircle the probe when

ΛDe
>∼ RL. Figure (VI-9b) is qualitatively comparable to Fig. (11) in Ref. [56], show-

ing magnetized electron orbits encircling a positively charged probe in the vacuum
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(b) Ti,yy, λDe = 0.1
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(d) Ti,yy, λDe = 3
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Figure VI-7: Contour-lines of Ti,xx/Ti∞ and Ti,yy/Ti∞ in the {0, ey, ez}-plane, with
magnetization βi = 5, for τ = 1, vd = cs0, δ = π/4, φp = −8 and (a,b) λDe = 0.1,
(c,d) λDe = 3. The external velocity is indicated by a blue arrow on the figures’ lower
left corners.
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(a) λDe = 0.3
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Figure VI-8: Ion charge-density contour-plots in the {ey, ez}-plane, for τ = 0.1,
βi = 1, φp = −8, vd = 0.35cs0 and δ = π/2. (a) λDe = 0.3 and (b) λDe = 3. The
computational domain sizes are respectively rb = 10 and rb = 12, but for clarity we
only show the region of interest.
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Figure VI-9: Ion charge-density contour-plots in the {ex, ey}-plane, in the same con-
ditions as in Fig. (VI-8).
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Wakefields

Looking further away from the probe, where the potential is weak and the plasma

dynamics can be modeled linearly, we should in theory observe ion cyclotron wakes

whose wave-length is given by

ΛWake = 2π
v⊥
ωc

= 4
√
πRp

w⊥

βi
. (VI.2)

Figure (VI-10a) shows the ion-density contour plot in the {0, ex, ey}-plane for

τ = 1, φp = 8, vd = cs0, δ = π/2 and βi = 0.5. The cyclotron wake is clearly

visible, and has a wavelength matching the theoretical formula (VI.2) within less

than 2% for the fist two nodes, and 1% afterwards. The wakefield is parallel to v⊥,

but slightly out of axis at about x ≃ −Rp. The Debye length has little influence

on the wake provided it is large enough, approximately λDe>∼ 3, limit below which

cyclotron damping (proportional to the plasma frequency square, hence Λ−2
De) appears

to be too strong. For example in Fig. (VI-9b) the first node of the wakefield is visible

at y ≃ 5.55Rp (λDe = 3), but not in Fig. (VI-9a) where λDe = 0.3.
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Figure VI-10: (a) Ion-density contour-plot in the {0, ex, ey}-plane, for τ = 1, φp = 8,
vd = cs0, δ = π/2, λDe = 10 and βi = 0.5. The depletion nodes of the wakefield
are indicated by thick black contour-lines at Ni/N∞ = 0.95. (b) Ion charge-density
contour-plots at z = 0 and x = −Rp as a function of y, for τ = 0.1, φp = −8, vd = cs0,
δ = π/2, λDe = 20, and different ion magnetization levels.

154



Reducing the ion temperature increases the intensity of the wakefield, since the

probe potential in ion thermal units χp, responsible for the “kick” launching the

wake, increases. Figure (VI-10b) is a plot of wake ion charge-density versus cross-

field position at x = −Rp and z = 0 for τ = 0.1, φp = −8, vd = cs0, δ = π/2,

λDe = 20 and three levels of magnetization multiple of each other (βi = 0.5, 1, 2). In

the considered conditions, Eq. (VI.2) predicts ΛWake = 31.7, 15.6, 7.9Rp (w⊥ ≃ 2.23),

value matching SCEPTIC3D computations to within 1%, i.e. about the uncertainty

in plot reading.

VI.3 Self-consistent ion current

VI.3.1 Current dependence on ion magnetization

We start our analysis of ion collection with Fig. (VI-11), showing the total ion current

dependence on ion magnetization βi for a selection of transverse drift velocities and

electron Debye lengths, with probe potential φp = −8 and temperature ratio τ = 1.

We first see that curves of current versus magnetization at λDe = 0 and λDe = ∞
are envelopes for the curves at intermediate shielding. Although this observation is

intuitive in unmagnetized conditions, because the current increases from the quasineu-

tral saturation value to the OML upper bound (Eq. (V.24)), no a priori argument

can be used to generalize the rule to magnetized conditions. In fact it was shown in

Ref. [59] that in weakly magnetized stationary plasmas, the current would peak at

λDe ∼ 1.

It was shown in chapters IV,V that in the presence of cross-field flow, the total ion

current could exceed the unmagnetized value at low but non-zero magnetic field. We

can see here that the faster the cross-field flow, the lower the Debye length threshold

at which this peak appears. A further observation is that when the peak is present, its

maximum is located at a magnetization level increasing with decreasing Debye length.

Although it is hard to propose a ready-to-use formula predicting the location and

height of those maxima, the location qualitatively scales as Rp/v⊥ ∼ 1/ωc (βi ∼ w⊥),
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i.e. when the transverse ion transit time compares to its Larmor period.
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Figure VI-11: Total ion current normalized to I0
i = 4πN∞R

2
pvti/2

√
π as a function

of ion magnetization βi, self-consistently calculated with SCEPTIC3D with τ = 1,
φp = −8 and δ = π/2. Curves labeled “λDe = 0” refer to quasineutral computations
(chapter IV), and curves labeled “λDe = ∞” to direct orbit integration (chapter V).
(a) vd = 0.2cs0. (b) vd = 0.5cs0. (c) vd = cs0. (d) vd = 1.5cs0.

The ion current in Fig. (VI-11) seems to have a 1/βi dependence at high βi, which

is consistent with observations made in the quasineutral regime (chapter IV). Of

course this is because we limit our simulations to values of βi such that no part of the

probe is ion-repelling (to be rigorous, points at βi = 10 in Figs (VI-11c,d) should be

excluded), otherwise the current would start to increase at very high βi as observed
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for example in Fig. (V-5a).

VI.3.2 Current-Voltage characteristics at low Debye length

SCEPTIC3D computations

We now have all the tools in place to discuss the TSS C-V characteristics shown in

Fig. (VI-2), upon mentally inverting ions and electrons. We have to bear in mind

that the comparison is not perfect, because ionospheric flows are mesosonic (i.e. faster

than the ion thermal speed and slower than the electron thermal speed), hence cannot

be reproduced in the SCEPTIC3D simulation.

Figure (VI-12) shows a selection of C-V characteristics computed by SCEPTIC3D,

for different magnetization levels and flows. If we except the low bias region (say

χp = −φp/τ<∼ 5), the curves look very similar to the experimental data in Fig. (VI-2)

Personal interpretation of the mixed model

Sing and Chaganti’s picture to explain the C-V characteristics in Fig. (VI-2), briefly

reviewed in paragraph VI.1.2, can be adapted to the process of ion collection dis-

cussed in this thesis in a quantitative way to yield what we can call a “mixed model”.

The idea is to consider that the collected ion current is equal to the strongly magne-

tized, quasineutral solution of the kinetic model presented in chapter II, multiplied by

(RPM/Rp)
2. For convenience we here rewrite the Parker-Murphy radius (Eq. (V.44))

as

RPM = Rp

(

1 +
R∗
L

Rp

)1/2

, (VI.3)

where

R∗
L =

(−8mΦp

ZeB2

)1/2

= Rp
4√
π

√
χp

βi
(VI.4)

is a measure of the demagnetized ion Larmor radius; hence the Parker-Murphy current

rewrites

IPMi =
I0
i

2

(

1 +
R∗
L

Rp

)

(VI.5)

Figure (VI-13) shows the same data as Fig. (VI-12), but the ion current is plotted
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(a) τ = 1, λDe = 0.03, vd = 0.35cs0, δ =
π/2
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Figure VI-12: Ion C-V characteristics self-consistently computed by SCEPTIC3D as
a function (a,c,d) of ion magnetization βi and (b) flow to magnetic field angle δ.
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against the Parker-Murphy upper bound. It can be seen that past the low bias region,

the curves (at fixed βi) are linear, confirming the current dependence Ii ∝ √
χp

predicted by Eq. (VI.5). The curves at different βi however are not aligned, which

is an indication that the current dependence on βi is not ∼ 1/βi as predicted by

Eq. (VI.5). In fact the ∼ 1/βi dependence only holds at moderate probe potential

(and large magnetic field), as seen in Fig. (VI-11). On the same figure are plotted the

predictions of the mixed model, which of course cannot be aligned with non aligned

lines.

In summary, although several authors tried to express the C-V voltage charac-

teristics from ionospheric missions (hence in strongly magnetized (for the electrons),

short Debye length, cross-field drifting plasmas) in terms of the Parker-Murphy up-

per bound, the approach is fallacious because only the ∼ √
χp dependence is correct.

Their approach seemed successful only because the magnetic field in the earth iono-

sphere is fixed.

The inappropriateness of the Parker-Murphy upper bound at low Debye

length

It is now instructive to understand why the Parker-Murphy upper bound does not

work in short Debye length plasmas. IPMi was derived with the assumption that each

ion whose energy and canonical angular momentum at infinity is compatible with

collection is collected. Figure (V-8) showed an example of critical magnetic bottle

calculated for a Coulomb potential in a stationary magnetoplasma, in the interior

of which an ion starting at infinity with cylindrical radius ρ = RPM (Eq. (V.44)) is

confined by conservation of energy and canonical angular momentum. The ion will

presumably have a complex helical motion in the bottle, and because it might or

might not be collected, IPMi (Eq. (V.45)) is only an upper bound.

A second reason for which IPMi is only an upper bound, disregarded in several

publications, is that if the Debye length is too small, the critical magnetic bottle does

not connect the probe surface to infinity. Figure (VI-14) shows the critical magnetic

bottles computed for R∗2
L = 5R2

p as in Fig. (V-8), but the Coulomb potential is
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(a) τ = 1, λDe = 0.03, vd = 0.35cs0, δ =
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Figure VI-13: Ion current from the runs of Fig. (VI-12), plotted against the Parker-
Murphy upper bound IPMi . The curves labeled “Mixed model” correspond to the
multiplication of IPMi by the quasineutral, strongly magnetized limit current for the
same parameters computed with the kinetic method of chapter II.
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replaced by a Debye-Hückel distribution with shielding length Λs. It can be seen

that as the shielding length is reduced, the critical magnetic bottle shrinks, until the

plasma part detaches from the probe and a virtual bubble forms inside it.

The critical magnetic bottle’s implicit equation is given by Eq. (V.42) withW0 = 0

(cold plasma assumption of Parker and Murphy) and Jz = ZeBρ∞/2 = ZeBRPM/2

(critical bottle):

I(z, ρ) = −ZeΦ(z, ρ) − (ZeB)2

8m
ρ2

(

R2
PM

ρ2
− 1

)2

≤ 0, (VI.6)

with I(0, Rp) = 0. For this bottle to be connected to infinity, the inequality

∂I

∂ρ |z=0,ρ=Rp

≤ 0 (VI.7)

must be satisfied, corresponding for a Debye-Hückel potential with shielding length

Λs to

λs ≥
R∗
L/Rp

4 +R∗
L/Rp

, (VI.8)

where R∗
L is defined in Eq. (VI.4). For the example of Fig. (VI-14) we have R∗2

L = 5R2
p,

hence the transition occurs at λs ≃ 0.36. In the limit of strong demagnetization, i.e.

R∗
L ≫ Rp, the condition (VI.8) requires λs ≥ R∗

L/Rp, while in the opposite limit

R∗
L ≪ Rp the condition is λs ≥ R∗

L/4Rp.

The physical explanation for this phenomenon is that if the shielding length is too

short, an ion starting at the Parker-Murphy cylindrical radius at infinity will “not

know about the probe potential early enough”. This is quite similar to the formation

of intermediate potential barriers in unmagnetized plasmas explaining why the OML

limit is only reached when λs ≫ 1.

VI.3.3 Transverse Mach probe calibration

It was shown in section IV.3 that in the quasineutral regime, transverse Mach probes

measuring flux-ratios at angles η = π/4 and η = 3π/4 to the magnetic field in a

plane of flow and magnetic field could be calibrated with a single factor Mc using
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Figure VI-14: Critical magnetic bottles for an ion starting at ρ = RPM (Eq. (VI.3))
with zero velocity, using example plasma parameters such that R∗2

L = 5R2
p, and an

assumed Debye-Hückel potential distribution with shielding length Λs.

Eqs (IV.8,IV.9). In the opposite limit of infinite Debye length on the contrary, flux-

ratios have been shown to be hardly relatable to the external flow because of the

conducting probe shielding the convective electric field.

The question therefore arises as to applicability of the form (IV.8,IV.9) to finite

Debye length conditions. Intuitively, we require RL ≥ ΛDe in order for the ions not

to see the probe shielding of the convective electric field, and ΛDe ≪ Rp in order for

orbital effects not to “shuffle” information about the external velocity; for example

the particular choice λDe = 0.1 with βi ≤ 10 should satisfy those conditions. This can

be seen in Fig. (VI-15), where scatter plots of R3π/4 and 1/Rπ/4 on the probe major

cross-section, computed by SCEPTIC3D for τ = 1, φp = −8, λDe = 0.1 and variable

vd and δ, are reasonably well aligned in log-space against M⊥ +M∞ and M⊥ −M∞.

The calibration factors Mc in the ion magnetization range βi ∈ [0 : 10] for τ = 1

and φp = −8, computed by fitting SCEPTIC3D’s solutions with vd<∼ csI and δ ∈
[π/8 : π/2], are plotted in Fig. (VI-16) on (a) on the major cross-section and (b) the

quarter cross-sections. The fitting error bars, shown in Fig. (VI-16a), get thicker as

the Debye length increases, indicating that the fitting (IV.8,IV.9) becomes less and

less appropriate. Error bars for λDe>∼ 0.3 being excessively large, we can qualitatively

say that efficient calibration is limited to λDe<∼ 0.1. At strong magnetization, the

calibration factor is not very sensitive to the Debye length, and using the quasineutral
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Figure VI-15: Upstream to downstream flux ratios on the probe major cross-section
at (a) η = 3π/4 and (b) η = π/4, versus respectively M⊥+M∞ and M⊥−M∞, from a
large set of SCEPTIC3D runs spanning vd ∈ [0 : 1]cs0 and δ ∈ [π/8 : π/2], for τ = 1,
λDe = 0.1, and φp = −8. Also shown are the corresponding fitting lines, whose slopes
1/Mc are taken from Fig. (VI-16a).

strongly magnetized value plotted in Fig. (II-10) should yield an error well below

typical experimental uncertainties.
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Figure VI-16: Transverse Mach probe calibration factor Mc as a function of ion
magnetization βi and electron Debye length λDe for τ = 1 and φp = −8, computed
with SCEPTIC3D for measurements made (a) on the major cross-section and (b) the
quarter cross-sections. (a) also shows the fitting error bars, arising from numerical
noise and from Eqs (II.79,II.80) being only approximate. On (b), solid lines refer
to measurements at x = 1/

√
3, and dashed lines to measurements at x = −1/

√
3.

Curves labeled “λDe = 0” are taken from Fig. (IV-11).
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Chapter VII

Dust grain dynamics

VII.1 Foreword on unmagnetized dust dynamics

A single dust grain embedded in a flowing plasma can experience different forces

depending on the ambient conditions, amongst which the following arise from physics

captured by SCEPTIC3D:

• The external electromagnetic force, caused by the action of external E and B

fields on the dust charge Q. In this thesis we place ourselves in the dust rest

frame and only consider situations where the electric field is purely convective,

hence

FQ = QEcnv (VII.1)

as first discussed in paragraph III.3.2;

• The internal Lorentz force, caused by currents circulating in the dust particle

to balance possible anisotropies in ion and electron collection. Upon defining j

as the net current-density in the dust and Ω as the dust volume:

Fj =

(
∫

Dust

jdΩ

)

× B. (VII.2)

As shown in paragraph III.3.3, this force corresponds to the magnetostatic

Maxwell stress integrated over the dust surface.
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• The ion-drag force Fi, caused by the direct action of the ion flow (and possible

electron pressure) on the dust particle.

Of course in experimental configurations other forces such as neutral drag, electron

drag, thermophoretic force, rocket ablation force, radiation pressure ... might be

significant. Because uncorrelated with SCEPTIC3D calculations however, we shall

not discuss them further.

SCEPTIC3D being an ion code, we cannot solve the plasma-probe interaction

with a self-consistent dust floating potential balancing ion and electron collection.

The sphere potential Φp is rather treated as an input, a posteriori related to the

charge Q via the self-consistent sphere capacitance Q = CΦp (Eq. (III.52)).

In this introductory section, we review analytic calculations of the ion-drag force

Fi in the unmagnetized, large Debye length regime.

VII.1.1 Dielectric response approach to the ion-drag force

The ion-drag force itself is usually divided in three parts:

• The ion-impact force Fp

im, equal to the rate of momentum transfer from collected

ions;

• The electrostatic force Fp
E, caused by the action of the ion-flow-induced potential

distribution anisotropy on the dust charge;

• The electron pressure force Fp
e , which must be negligible within our repelling-

electron assumption (see Appendix A).

where the superscripts “p” remind us that the quantities are to be evaluated at the

particle surface: Fi = Fp

i = Fp

im + Fp
E.

The simplest unmagnetized analytic calculations are performed in the so-called

point-like dust approximation, when the linearized plasma shielding length ΛD =
(

Λ−2
Di + Λ−2

De

)−2
is much larger than the Coulomb radius RC = Rpχp. In this regime

Fp

im is negligible compared to Fp

E, and the latter can be calculated using the dielectric

response formalism as follows.
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The linearized potential around a test particle with charge Q embedded in a

plasma flowing at normalized velocity wd = vd/vti is [60]

Φ(R) =
Q

ǫ0

∫

exp (ik · R)

k2ǫ (−k · vd, k)

dk

(2π)3
, (VII.3)

where R is the coordinate with respect to the particle center and ǫ = 1 + χe +

χi is the plasma permittivity. ǫ should be evaluated with the Boltzmann elec-

tron susceptibility χe = (kΛDe)
−2, and the collisionless ion susceptibility χi(ω, k) =

[1 + ξZ(ξ)] (kΛDi)
−2, where ξ = ω/(kvti) and Z is the Fried-Conte dispersion func-

tion. Once the (anisotropic part of the) potential distribution is computed from

Eq. (VII.3), the electrostatic drag straightforwardly arises as Fp
E = −Q∇Φ|R=0. Ivlev

gives (Eq. (8) in Ref. [60] upon setting the collisional parameter K to 0 and changing

the units), to first order in wd:

Fp
E =

8
√
π

3
F 0
i χ

2
pwd ln Λ, (VII.4)

where

F 0
i = N∞R

2
pTi∞/Z (VII.5)

is the unperturbed ion pressure force over a sample surface R2
p (recall that the ion

density at infinity is N∞/Z), and ln Λ = ln (kmax/kmin) is the Coulomb logarithm.

The challenge in evaluating the integral (VII.3) is to choose the appropriate

bounds in |k|, kmin and kmax. Typically one adopts kmin ∼ 1/ΛD (no significant

interaction outside the Debye sphere) and kmax ∼ 1/RC (the interaction is non-

linear within the Coulomb radius). In our point-like particle scaling this yields

kmax/kmin ≫ 1; because of the logarithmic dependence of ln Λ on kmax/kmin, the

exact value of the integration bounds is not required and we are left with

ln Λ ≃ ln

(

ΛD

p90

)

, (VII.6)
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where p90 = RC is the 90o scattering impact parameter for a “typical ion” with

velocity v =
√

Ti∞/m.

VII.1.2 Binary collision approach to the ion-drag force

The dielectric response approach suffers from only being valid when ΛD ≫ p90 ≫ Rp.

In steady-state however, momentum conservation implies that the total ion-drag force

Fi be also equal to the rate of momentum flux through any control surface surrounding

the dust. By taking this surface at infinity, the ion-drag : Fi = F∞
i = F∞

im + F∞
E

can formally be evaluated for arbitrary plasma parameters when the OML conditions

(Large Debye length) are satisfied.

Impact force

In OML conditions, F∞
im is given by Eq. (V.23) with an additional term mv in the

integral. After tedious but straightforward algebra [11]:

F∞
im = F 0

i

{

π

2

[

4w2
d + 4 − 1

w2
d

− 2

w2
d

(

1 − 2w2
d

)

χp

]

erf (wd) +

√
π

wd

(

2w2
d + 1 + 2χp

)

exp
(

−w2
d

)

}

ed,

(VII.7)

where ed is the unit vector in the drift direction (vd = vded); also recall the notation

wd = vd/vti.

Electrostatic force

F∞
E is usually referred to as “orbital force”, as its calculation can be reduced to the

usual Coulomb collision problem. The momentum transfer collision frequency for an

electron with velocity ve on (infinitely massive) stationary ions with charge Z and

charge-density N∞ is

νei =
N∞

Z

4π

m2
ev

3
e

(

Ze2

4πǫ0

)2

lnΛ, (VII.8)

where ln Λ is the Coulomb logarithm given by Eq. (VII.6) with p90 = −e2Z/ (4πǫ0mev
2
e)

and still ΛD =
(

Λ−2
Di + Λ−2

De

)−2
. By virtue of momentum conservation, the ion-electron
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momentum transfer collision frequency is νie = νeime/m, and the force felt by a sta-

tionary ion is the average over the electron distribution function of meνeive = mνieve.

Upon mentally replacing the colliding electrons by ions, and the stationary target

ion by the dust particle, we can therefore write

F∞
E =

4π

m

(

QZe

4πǫ0

)2

ln Λ

∫

v

v3

f(v)

Z
d3v, (VII.9)

where Q is here the dust charge and f the ion-charge distribution function. Trans-

forming the velocity variable in spherical coordinates such that v = |v| and vz = |v|c
(“c = cos θ”), hence d3v = 2πv2dc, Eq. (VII.9) rewrites

F∞
E =

N∞

Z

8π

mv2
ti

√
π

(

QZe

4πǫ0

)2

ln Λ

∫

exp(−w2) exp(1−c2) exp
[

− (wc− wd)
2
]

cdcdwed,

(VII.10)

which upon integration yields the well known form [11]

F∞
E = 8π

(

QZe

4πǫ0

)2
N∞/Z

mv2
ti

G(w) lnΛed, (VII.11)

where

G(w) =
erf(w) − 2w exp (−w2) /

√
π

2w2
(VII.12)

is the Chandrasekhar function. Sometimes only the low argument limit G(w) ∼
2w/(3

√
π) is considered.

In the large Debye length limit where the sphere capacitance is C = 4πǫ0Rp,

Eq. (VII.11) can be rewritten in terms of sphere potential χp = −ZeΦp/Ti∞:

F∞
E = 4πF 0

i χ
2
pG(w) lnΛed. (VII.13)

The Coulomb logarithm

When integrating over the ion distribution function to obtain Eq. (VII.9), the Coulomb

logarithm has implicitly been taken as independent of velocity, which is incorrect. ln Λ

in Eq. (VII.13) must therefore be evaluated for a “characteristic” ion in the distribu-
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tion function at infinity.

The “exact” Coulomb logarithm is given by the integral over impact parameter

p ∈ [pmin, pmax]

ln Λ =

∫ pmax

pmin

pdp

p2
90 + p2

=
1

2
ln

[

p2
90 + p2

max

p2
90 + p2

min

]

; (VII.14)

Khrapak [61] proposed to set pmin to the minimal impact parameter below which the

particle is collected (hence its contribution to the ion-drag already accounted for in

Eq. (VII.7)), and pmax to the impact parameter such that the point of closest approach

is located at a distance Λs from the dust center, where Λs is an appropriate plasma

shielding length. In OML conditions where no intermediate potential barriers occur

and the potential is spherically symmetric, conservation of angular momentum (see

Eq. (V.21)) yields

pmin = Rp

(

1 + 2
p90

Rp

)1/2

, (VII.15)

pmax = Λs

(

1 + 2
p90

Λs

)1/2

, (VII.16)

hence the rather simple and compact formula [61]

ln Λ ≃ ln

(

p90 + Λs

p90 +Rp

)

. (VII.17)

Equation (VII.17) can be considered as “exact” in the OML regime, although

uncertainty remains as to how to evaluate the characteristic parameters p90 and Λs.

In Ref. [12], Hutchinson suggests as a first approximation

p90 =
Rp

2

χp
1 + w2

d

, (VII.18)

Λs = ΛDe

{

1 +
[

τ
(

1 + 2w2
d

)]−1
}−1/2

, (VII.19)

yielding p90 = RC/2 and Λs = ΛD in the limit wd ≪ 1, and p90 = −ZeΦpRp/mv
2
d and

Λs = ΛDe in the limit wd ≫ 1.
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VII.1.3 Force Evaluation with SCEPTIC

In the absence of magnetic field, the ion-drag force can be computed with SCEP-

TIC(2D) at the sphere surface as the sum of

• Integral of the electrostatic Maxwell stress tensor at the dust surface (Fp

E);

• Ion momentum collection averaged over the last 25% of the PIC simulation

time-steps (Fp

im);

• Electron pressure at the sphere surface, which is negligible within the strongly

electron-repelling sphere assumption, and exactly zero for an equipotential col-

lector in the absence of external field.

Figure (VII-1) shows a sample of ion-drag calculations for the case τ = 0.1, φp =

−4, λDe = 20, and increasing drift velocity vd. For this particular set of runs we used

domain size rb = 70 and φ(rb) = 0 as outer boundary condition for the potential. The

solution is plotted in units of R2
pN∞Te rather than F 0

i = R2
pN∞Ti∞/Z, which is more

convenient when running SCEPTIC in self-consistent mode (i.e. not in the free-flight

regime).

Figure (VII-1) also shows a comparison with the low-velocity expansion (wd ≪ 1)

F∞
i = F∞

im + F∞
E =

8
√
π

3
F 0
i

(

2 + χp + χ2
p ln Λ

)

wd +O (wd)
2 , (VII.20)

often used in cold dusty plasmas experiments where typical drift velocities are deeply

subthermal. The agreement between the analytic drag estimates and the “exact”

solution computed by SCEPTIC is good except when the flow is slightly subsonic,

as discussed in detail by Hutchinson [12]. The physical picture of the analytic model

is nevertheless correct, and we shall take advantage of it in our study of magnetized

plasmas. Also an important point to keep in mind is that while indeed Fp

i = Fp

im +

Fp

E = F∞
i = F∞

im + F∞
E , the terms do not individually match, i.e. Fp

im 6= F∞
im and

Fp
E 6= F∞

E
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Figure VII-1: Comparison of ion-drag force computed by SCEPTIC(2D) (Fp

i , decom-
posed in Fp

im and Fp
E) with Khrapak’s analytic solution (sum of F∞

im (Eq. (VII.7)) and
F∞

E (Eq. (VII.13)) with ln Λ given by Eq. (VII.17), and the low velocity limit (VII.20)).
The parameters are τ = 0.1, φp = −4, and λDe = 20.

VII.2 2D calculations in parallel-drifting magne-

toplasmas

VII.2.1 Free-flight calculations

To the best of our knowledge, no analytic theory or model describing the ion-drag in

magnetized plasmas has been published. We start the exploration of magnetic field

effects in the free-flight regime, where no electric field but the convective field driving

the cross-field flow is considered, hence at the dust surface only the ion collection force

Fp

im is non-zero. The free-flight model was already discussed in chapters II,IV, arguing

that it could be seen as the “correct” solution in the limit τ ≫ 1; this property only

holds in zero-Debye length plasmas where the effective probe dipole does not permeate

into the plasma region. In the finite Debye length regime, free-flight calculations can

be related to the physical situation τ ≫ 1 only in the presence of purely parallel drifts,

where ion collection force calculations can be performed analytically. Indeed at fixed

βi and w⊥ 6= 0, the convective electric field in ion thermal units is independent of τ

(given by Eq. (V.36)).
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In magnetic-free plasmas the force is straightforwardly given by Eq. (VII.7) with

χp = 0:

F
|βi=0

im = F 0
i

{

π

2

[

4w2
d + 4 − 1

w2
d

]

erf (wd) +

√
π

wd

(

2w2
d + 1

)

exp
(

−w2
d

)

}

ed. (VII.21)

In the opposite limit βi = ∞, the ions can be seen as flowing one-dimensionally along

the magnetic field lines, hence the parallel collection force to the sphere is equal to

that to a disc with cross-section πR2
p collecting ions from both sides:

F
|βi=∞
im =

N∞/Z

vti
√
π

{

∫ ∞

0

exp

[

−(v − vd)
2

v2
ti

]

v2dv −
∫ 0

−∞

exp

[

−(v − vd)
2

v2
ti

]

v2dv

}

mπR2
ped,

(VII.22)

yielding after integration

F
|βi=∞
im = 2πF 0

i

[

wd exp (−w2
d)√

π
+

(

w2
d +

1

2

)

erf (wd)

]

ed. (VII.23)

At intermediate magnetization, the collection force is given by the triple integral

Fim =F 0
i

{

1

2
π3β2

∫ ∞

s=0

∫ ∞

t=0

f̃(β, s, t)

[

1

2
θ(1 − s)(1 − s)2 +

∫ s+1

u=|s−1|

1

2π

∫ 2π

ψ=0

H(u, s, t, ψ)udu

]

st2dsdt

}

ed,

(VII.24)

where f̃ is still given by Eq. (V.49). Equation (VII.24) corresponds to Eq. (V.46)

with an additional term 2πtβied = 4
√
πw to raise the moment one order. Numeric

integration of Eq. (VII.24) confirms that Fim tends to Eq. (VII.21) when βi → 0, and

to Eq. (VII.23) when βi → ∞.

Figure (VII-2) compares the ion collection force F p
im computed by direct or-

bit integration with SCEPTIC in free-flight conditions, with the semi-analytic for-

mula (VII.24). The agreement is excellent, with a fractional error less or equal to

0.3% that could be improved by refining the orbit integrator time-step. While the

free-flight current to a sphere in parallel-flowing magnetoplasmas was found to de-

crease linearly with βi at low βi (see Eq. (IV.7)), the force dependence is quadratic
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in βi, and almost no magnetic-field effect is felt unless βi>∼ 1.
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Figure VII-2: Ion-drag normalized to F 0
i = N∞R

2
pTi∞/Z as a function of ion mag-

netization βi in the free-flight regime (i.e. disregarding probe-induced electric field
effects on the ions), computed by SCEPTIC3D (SCEPTIC2D would give the same
solution) for a purely parallel drift (a) wd = 0.5 and (b) wd = 1.5. “Analytic” refers
to the semi-analytic solution given by the integral (VII.24).

VII.2.2 Self-consistent calculations

The formal absence of solution in parallel-drifting plasmas

As shown in paragraph VII.1.1, the electrostatic part of the ion-drag is due to the

dust-flow-interaction-induced plasma polarization effect on the dust charge, which

mathematically arises from the Landau damping term in the ion susceptibility. It

might be tempting to perform similar calculations in magnetized plasmas, although

there is little hope of obtaining a closed-form expression for the integral (VII.3) if the

full hot magnetoplasma susceptibility tensor is used. The endeavour would however

be pointless. Indeed tractable calculations have been performed with the cold plasma

equations [62] in the presence of parallel ion flow, and show that the potential distri-

bution around the test charge tends to zero at infinity only when the external Mach

number is higher than unity.
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This observation is a confirmation that no self-consistent solution to the plasma-

probe interaction problem in parallel-flowing magnetoplasmas exists unless ΛDe = ∞
exactly, as discussed in paragraph V.2.3, or if the magnetized Bohm condition is

pre-satisfied in the unperturbed plasma. While current calculations were possible by

artificially imposing a Coulomb potential in the SCEPTIC simulation, this cannot be

done for force-calculations because the integrated Maxwell-stress at the dust surface

would be zero. We therefore have to select a finite electron Debye length, run the code

in self-consistent mode, and impose a zero outer potential to force decay at infinity.

This is not a rigorous treatment, but we briefly discuss it in order to gain insight in

the effect of ion magnetization on the parallel ion-drag.

Adaptation of Fermi’s model

Disregarding all of the above subtleties about the self-consistent problem being ill-

defined, the electrostatic part of the ion-drag can be estimated by the binary collision

method in a Coulomb field accounting for the ion magnetization. This might be

considered as the classical magnetized Rutherford scattering problem, which has no

analytic solution except in the limit of weak deflection (p ≫ p90) and zero original

pitch angle (v‖ ≫ v⊥). The corresponding calculation is due to Fermi, and the

resulting drag can be expressed by Eq. (VII.4) upon replacing ln Λ by

ln Λ =

∫ pmax

pmin

[

ωcp

v‖
K1

(

ωcp

v‖

)]2
dp

p
= F

(

pmin

R
‖
L

)

− F

(

pmax

R
‖
L

)

, (VII.25)

where R
‖
L = v‖/ωc is an ion Larmor radius calculated with the parallel ion velocity

v‖ [63], and the function F can be expressed in terms of modified Bessel functions:

F (x) =
x2

2

[

K1(x)
2 − K0(x)

2
]

− xK0(x)K1(x). (VII.26)

Setting pmin = p90 and pmax = Λs, we see that Eq. (VII.25) yields:
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• At zero magnetization:

lnΛ =

∫ pmax

pmin

dp

p
= ln

(

Λs

p90

)

, (VII.27)

i.e. as expected the weak deflection limit of Eq. (VII.14).

• At strong magnetization: lnΛ = 0. The ions are so tied to the field lines that

they are not deflected by the dust, hence do not loose momentum to it.

• At intermediate magnetization, when p90
<∼ R

‖
L
<∼ Λs: ln Λ ≃ ln

(

R
‖
L/p90

)

. In

other words only ions whose impact parameter is below the Larmor radius are

deflected.

To apply Fermi’s Coulomb logarithm to plasmas with finite ion temperature, we

will use the ad hoc expression R
‖
L =

√

v2
d + v2

ti/ωc, and in order to tend towards the

more general formula (VII.17) at zero magnetization we set:

ln Λ ≃ ln

(

p90 + Λs

p90 +Rp

) F

(

p90

R
‖
L

)

− F

(

Λs

R
‖
L

)

ln (Λs/p90)
. (VII.28)

Sample SCEPTIC solutions

Figure (VII-3) shows the ion-drag force computed by SCEPTIC in parallel-flowing

and large Debye-length conditions. It can be seen, as anticipated in paragraph VII.2.1,

that the ion impact force decreases with increasing magnetic field, although with a

rather weak slope. We can therefore obtain an analytic estimate of the total ion-

drag by summing the zero-magnetic field OML expression for the impact force at

infinity (VII.7), with the electrostatic force at infinity (VII.13) computed using the

ad hoc Fermi Coulomb logarithm (VII.28).

The agreement between the resulting expression (labeled “Fermi”) and the total

ion drag computed by SCEPTIC is very reasonable in view of the several approx-

imations made, and confirms that the picture of an electrostatic interaction radius

equal to the minimum of the plasma shielding length and the ion Larmor radius is

appropriate.
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(c) τ = 1, vd = 1.5cs0, λDe = 20
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(b) τ = 0.1, vd = 0.35cs0, λDe = 20
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(d) τ = 0.1, vd = cs0, λDe = 30
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Figure VII-3: Ion-drag normalized to R2
pN∞Te as a function of ion magnetization

βi self-consistently computed with SCEPTIC(2D) for a purely parallel drift with
φp = −4 and different plasma parameters. Curves labeled “Fermi” correspond to the
sum of the zero-magnetic field OML expression for the impact force at infinity (VII.7),
and the electrostatic force at infinity (VII.13) computed using the ad hoc Fermi
Coulomb logarithm (VII.28). Curves labeled “βi → ∞” connect the last SCEPTIC
point to the analytic limit (VII.23).
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In the strong magnetization limit, when the ions move one-dimensionally along

the field lines, the total ion-drag is still given by the free-flight equation (VII.23), as

shown by the curves labeled “βi → ∞”. The impact force calculated by SCEPTIC at

the dust surface is higher because the ions have been accelerated by its negative charge

before being collected, but the action and reaction rule implies that the electrostatic

stress at the dust surface be negative.

VII.3 Capacitance calculations in E× B fields

The ion dynamics around the dust particle is governed by the dust-induced electro-

static potential perturbation Φ, solution of Poisson’s equation with inner boundary

condition the effective dust potential Φp + Ecnv · x. The dust particle dynamics is

more complicated to model, because it depends on the action of the potential pertur-

bation Φ on its charge Q, the two quantities being related by an a priori unknown

capacitance C (Eq. (III.52)). The purpose here is to investigate the effect of ion mag-

netization on the capacitance, before moving on to the force calculations in E × B

fields in the next section.

In the limit of large Debye length, the capacitance is given by the well-known

vacuum expression C = 4πǫ0Rp, which we used to derive the analytic formula (VII.13)

for the electrostatic ion-drag. The capacitance at short Debye length is larger because

plasma shielding causes the potential gradient at the dust surface to be steeper. The

linearized theory without ion response gave C = 4πǫ0Rp (1 +Rp/ΛDe) (Eq. (III.59)),

which was shown by Hutchinson to be inappropriate whenever ΛDe
<∼ 2Rp [11]. An

improved empirical expression valid in weakly magnetized conditions was given in

Ref. [64] as

C = 4πǫ0Rp

(

1 +
Rp

Λs

)

, (VII.29)

where

Λs ≃
ΛDe

{

1 + [τ (1 + 2w2
d)]

−1
}1/2

+ ΛDe ln

(

1 +
Rp

ΛDe

)

(VII.30)

is an appropriate shielding length averaged over the sphere surface. Equation (VII.30)
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tends to Eq. (VII.19) when ΛDe ≫ Rp, but is more satisfactory in the short Debye

length regime.

Figure (VII-4) shows a selection of plots of effective shielding length Λs versus ion

magnetization, where Λs is defined such that Eq. (VII.29) matches the self-consistent

capacitance computed by SCEPTIC3D. The general trend is a slight increase in shield-

ing length at intermediate magnetization, i.e. a slight decrease in capacitance. An

important point is that solid and dashed lines, corresponding to runs with respectively

δ = π/2 and δ = π/4, are almost identical, indicating that the relative orientation

of flow and magnetic field has only little influence on the capacitance. The dotted

horizontal lines at βi = 0 correspond to the empirical, unmagnetized formula (VII.30).

VII.4 Force calculations in E × B fields

VII.4.1 Free-flight calculations at infinite magnetization

In the presence of cross-field flow, analytic free-flight force calculations do not seem

feasible except at βi = 0 (in which case Eq. (VII.7) still holds) and βi = ∞.

The force at infinite magnetization on an elementary dust surface located at cylin-

drical coordinates η (as usual the angle between sphere surface and magnetic field in

a plane of flow and magnetic field) and x along ex is, in Cartesian coordinates:

dF p
im,z = mNi〈vyv〉 cos η −mNi〈v2〉 sin η, (VII.31)

dF p
im,y = mNi〈v2

y〉 cos η −mNi〈vvy〉 sin η, (VII.32)

dF p
im,x = mNi〈vyvx〉 cos η −mNi〈vvx〉 sin η. (VII.33)

From the kinetic calculations of chapter II, we know that at the entrance of the

magnetic presheath vx = 0, vy = v⊥, and Tix = Tiy = Ti∞; we also have analytic

expressions for and Ni, 〈v〉, and Tiz (Eqs (II.65,II.66,II.67)). Unfortunately, while

current is conserved in the magnetic presheath, momentum is not because of asym-

metries in the Lorentz force acting on orbits intersecting the sphere. Unless accurate
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Figure VII-4: Effective shielding length Λs such that the self-consistent dust capaci-
tance computed by SCEPTIC3D is expressed as (VII.29). Solid lines correspond to
pure cross-field flows (δ = π/2), and dashed lines to δ = π/4. The dotted limits at
βi = 0 are given by Eq. (VII.30).
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analytic orbit-sphere intersection calculations are performed, which is out of the scope

of this thesis (of course SCEPTIC3D does it numerically), only dF p
im,z can be evalu-

ated:

dF p
im,z =

N

N∞
sin η

[

2〈w〉 (w⊥ cot η − 〈w〉) − Tiz
Ti∞

]

(N∞Ti∞) . (VII.34)

The total parallel force is then given by integration over η and x:

Fz =
π

2
R2
p

[
∫ π

0

dF p
im,z|Do

| sin η|dη +

∫ π

0

dF p
im,z|Up

| sin η|dη
]

, (VII.35)

where upfield (z ≤ 0) and downfield (z ≥ 0) calculations must be performed sepa-

rately.

Figure (VII-5) shows the ion collection force F p
im computed by direct orbit inte-

gration with SCEPTIC3D in free-flight conditions, in the presence of cross-field flow

(velocity wd = 0.5 and different drift to magnetic field angles δ). Figure (VII-5a)

shows the force along the magnetic axis, and excellent agreement is found with the

analytic limits at βi = 0 (Eq. (VII.23)) and βi = ∞ (Eq. (VII.35)); at δ = π/2 the

force is zero by symmetry. Figure (VII-5b) shows the force in the cross-field direction,

and Fig. (VII-5c) in the flow direction. We notice that the force in the drift direction

is almost not sensitive to δ, and as for pure parallel flows almost no magnetic field

effect is felt at βi<∼ 1.

Also of interest is Fig. (VII-5d), showing the impact force in (minus) the con-

vective field direction, which for obvious symmetry reasons is zero at βi = 0. As

magnetization increases, the ions, whose macroscopic motion is in the ey direction,

strike the dust preferentially at y < 0 with a phase such that the velocity in the

ex direction is positive. The force seems to peak at βi ∼ 0.8, but does not tend to

zero when βi → ∞. Indeed the Lorentz force experienced by the ions during their

last Larmor gyration before collection is proportional to the magnetic field, while the

period of a Larmor gyration is inversely proportional to that field. It is this effect

that prevented easy evaluation of Eqs (VII.32,VII.33).
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(d) Along ex (i.e. ‖ to −Ecnv)
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Figure VII-5: Ion-drag normalized to F 0
i = N∞R

2
pTi∞/Z as a function of ion mag-

netization βi in the free-flight regime (i.e. disregarding probe-induced electric field
effects on the ions), computed by SCEPTIC3D for wd = 0.5 and different drift to
magnetic field angles δ along different axis. (a) Along the magnetic axis, (b) along
the cross-field axis, (c) along the drift axis (i.e. weighted sum of (a) and (b)), and (d)
along the convective electric field axis. The thick dashed lines indicate the analytic
unmagnetized limit (Eq. (VII.23)), and the thick dash-dotted lines in (a) connect the
last SCEPTIC3D point to the strongly magnetized limit given by Eq. (VII.35).
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VII.4.2 Calculation of the non ion-drag forces

Before discussing in detail the self-consistent ion-drag force physics in E×B fields, it

is necessary to estimate the magnitude of the non ion-drag forces on the dust, namely

the external electrostatic and internal Lorentz forces (Eqs (VII.1,VII.2)).

Electrostatic term

The external electrostatic force FQ is easily computed by SCEPTIC3D, upon multi-

plication of the self-consistently calculated dust capacitance (Eq. (III.52)) with the

dust potential Φp and the convective electric field Ecnv.

Magnetostatic term

The internal Lorentz force on the dust grain is given by Eq. (VII.2), which involves

the net current density j in the dust particle, solution of the conservation equation

∇ · j = 0 with boundary conditions set by the ion and electron flux-densities to the

surface Γi,e.

Fortunately we do not need to compute the precise internal current-density pat-

tern. Instead we write

Fj · ex = e

(

∫ Rp

−Rp

Īiydy −
∫ Rp

−Rp

Īeydy

)

B, (VII.36)

Fj · ey = −e
(

∫ Rp

−Rp

Īixdx−
∫ Rp

−Rp

Īexdx

)

B, (VII.37)

where Ī refers to the total ion or electron current that would flow in the dust particle

through a given cross-section normal to ex or ey if the dust volume were “empty”, and

as usual ex ‖ −Ecnv and ez ‖ B. The “overbar” notation is used to avoid confusion

with the total ion and electron current to the dust surface: Ii,e =
∫

Dust
Γi,edS.
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Ī is only function of the ion and electron flux-densities to the dust surface:

Īi,ex(x) =

∫ x

a=−Rp

∫ 2π

α=0

Γi,edαda, (VII.38)

Īi,ey(y) =

∫ y

a=−Rp

∫ 2π

α=0

Γi,edαda, (VII.39)

where α is the azimuthal angle around the ex or ey-axis. The ion terms Īix and Īix can

easily be computed by a postprocessing routine from SCEPTIC3D’s ion flux-density

solutions. On the contrary, estimating the electron terms requires some hypothesis.

First, we assume steady-state, hence the total ion and electron currents to the

dust are equal: Ii = Ie = Īix(Rp) = Īex(Rp) = Īiy(Rp) = Īey(Rp).

Second, we assume for the electron flux-density to the surface the general form

Γe(x, y, z) = f(x)g(z), where f and g are arbitrary functions. The motivation for

this choice is that the repelled electron flux-density should depend on the local dust

potential (function of x), and the angle of magnetic field to dust normal (function of

z). Of course the dust is a two-dimensional surface, hence Γe is also a function of

y =
√

R2
p − x2 − z2.

Īey can be rewritten

Īey(y) =

∫ y

−Rp

h(a)da, (VII.40)

where h(a) =
∫ 2π

α=0
f(
√

R2
p − a2 cosα)g(

√

R2
p − a2 sinα)dα is the integral of Γe over an

elementary crown normal to ey located on the sphere surface at y = a. We can proceed

further by taking advantage of the current balance hypothesis Ie =
∫ Rp

−Rp
h(a)da = Ii:

Īey(y) =
1

2

[

∫ Rp

−Rp

h(a)da+

∫ y

−y

h(a)da

]

=
Ii
2

+
1

2

∫ y

−y

h(a)da, (VII.41)

and h being symmetric in a to write
∫ Rp

y=−Rp

∫ y

a=−y
h(a)dady = 0. This shows that

the internal Lorentz force along the ex-axis is independent of the precise electron

collection pattern:

Fj · ex = e

[

∫ Rp

−Rp

Īiy(y)dy − IiRp

]

B. (VII.42)
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Unfortunately, no such general calculation can be performed to calculate Īex, that

we rewrite as follows

Īex(x) =

∫ x

a=−Rp

∫ 2π

α=0

f(a)g
(√

R2
p − a2 sinα

)

dαda. (VII.43)

The obvious choice for f is f(x) ∝ exp [e (Φp + Ecnvx) /Te], while g is an a priori

unknown function of βi. In the limit of strongly magnetized electrons, g(z) ∝ |z| as

the electrons only see the projection of the sphere along the magnetic field lines:

Īex(x) ∝
∫ x

a=−Rp

∫ 2π

α=0

exp

(

e
Ecnva

Te

)

√

R2
p − a2| sinα|dαda. (VII.44)

Integration over α is easy to perform, but the integral over a has a closed form

expression only when x = Rp:

Īex(Rp) = Ie ∝
Te

e [EcnvRp]
I1

(

e [EcnvRp]

Te

)

, (VII.45)

where I1 is the modified Bessel function defined by Eq. (A.7). Equation (VII.45)

is proportional to the strongly magnetized electron current derived in Appendix A

(Eq. (A.6)), which is no surprise as the same hypothesis has been used for both

derivations. Because SCEPTIC3D is not run in floating potential mode however, the

proportionality coefficient must here be selected such as to balance the ion current Ii.

The Lorentz force along the ey-axis is then given by

Fj · ey = −e
{

∫ Rp

−Rp

Īix(x)dx

−Ii
e [EcnvRp] /Te

I1 (e [EcnvRp] /Te)

∫ Rp

x=−Rp

∫ x

a=−Rp

exp

(

e
Ecnva

Te

)

√

R2
p − x2dadx

}

B.

(VII.46)

Of course when the electrons are unmagnetized, the choice g(z) ∝ |z| is not appro-

priate and we must take g constant instead. However in the absence of magnetic

field f is uniform over the sphere, in which case Īex is independent of g (for the same
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argument that Īey was found independent of g). Equation (VII.46), although derived

with g(z) ∝ |z|, must therefore still hold; it is a very robust expression.

VII.4.3 Momentum conservation in SCEPTIC3D

In self-consistent steady-state operation, the total flux of momentum to the inner

sphere (the dust particle) must be equal to the net flux of momentum to the outer

sphere (computational domain boundary), which can be broken down into

• Integral of the electrostatic Maxwell stress at the outer surface (Fo
E), only com-

puted from the dust-induced potential perturbation Φ;

• Ion momentum collection averaged over the last 25% of the PIC simulation

time-steps (Fo
im);

• Electron pressure Fo
e , non negligible at the outer boundary where the potential

is non-uniform and the normalized electron density close to unity.

• Integral of the magnetostatic Maxwell stress at the outer surface minus the

inner surface (not accounted for in the ion-drag, but considered as the additional

force Fj discussed in paragraph VII.4.2), which according to Eq. (III.63) is the

integral over the entire computational domain of the Lorentz force acting on

the ions. From this must be subtracted the volumetric momentum flux due to

the convective field action on the ions, resulting in a total contribution

Fo
M = e

∫

Comp. D.

(〈v〉 − vd) dΩ × B, (VII.47)

where 〈v〉 is the ion fluid velocity averaged over the last 25% of the PIC simu-

lation time-steps. As shown in appendix A, the cross-field electron velocity in

the domain is everywhere equal to the background “E×B” velocity (Eq. (A.3)),

hence (〈ve〉 − vd) × B = 0 in the entire simulation volume.

Figure (VII-6) shows the ion-drag force evolution with increasing magnetic field

self-consistently calculated with SCEPTIC3D in the presence of parallel and cross-
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field flow (δ = π/4), along the three coordinate axes using the parameters λDe = 1,

τ = 0.1, vd = 0.35cs0, δ = π/4 and φp = −8. The contributions to the ion-drag force

at the collecting sphere (solid lines) and outer boundary (dashed lines) are different,

but very convincingly add up to the same total.

VII.4.4 Ion-drag solutions at low Debye length

It is convenient to analyze SCEPTIC3D’s solutions from low to large Debye lengths,

starting in this paragraph with λDe = 0.03. Figure (VII-7) shows the ion-drag force

computed at the dust surface in the presence of an equithermal (τ = 1), purely

perpendicular flow (δ = π/2), for drift velocities vd = 0.35cs0 and vd = cs0. The

dust potential is arbitrarily set to φp = −8, and the ion magnetization allowed to

vary from 0 to the maximum value such that no part of the dust particle is positively

charged.

The ion impact force along the ey-axis behaves similarly to what computed from

free-flight calculations (see Fig. (VII-5)), i.e. is only weakly dependent on the mag-

netic field. The electrostatic part of the ion-drag along the same axis is found to

be negative. The explanation is, as first observed for the case of parallel flows at

strong magnetization (see Fig. (VII-3)), that the dust “pulls” on the ions as they are

attracted, and by reaction feels a negative electrostatic drag. At βi = 0, momentum

conservation implies that the total ion-drag be positive, which we observe here. No

such requirement exists in the presence of magnetic field since the external electric

field is allowed to work on the ions, but it appears that regardless of βi the ion-drag

in the flow direction remains positive.

The ion impact force along the ex-axis also behaves similarly to what is computed

from free-flight calculations, i.e. is positive and does not tend to zero at infinite

magnetization. The highest magnetizations considered are βi = 10 for vd = 0.35cs0,

and βi = 5 for vd = cs0, corresponding to [EcnvRp] ≃ −4.4Te/e and −6.26Te/e,

respectively. The dust potential being set to φp = −8, we can hardly go further

without jeopardizing the validity of the repelled-electron assumption.

The electrostatic part of the ion-drag along the ex-axis is positive and increases
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(b) ez-axis
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(d) ex-axis
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Figure VII-6: Example of SCEPTIC3D magnetized calculations for λDe = 1, τ =
0.1, vd = 0.35cs0, δ = π/4, φp = −8, and increasing ion magnetization βi on a
computational domain of radius rb = 8. The contributions to the ion-drag force at
the collecting sphere (solid lines) and outer boundary (dashed lines) are different,
but add up to the same total. “Ffield” refers to the electrostatic Maxwell stress
FE , “Felec” to the electron pressure force Fe, “Fion” to the ion collection force Fim,
“FMag” to the integral over the computational domain volume of the Lorentz force
minus the convective force FM , and “Ftot” to the total ion-drag force Fi.
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with ion magnetization. This force arises from the plasma polarization induced by

the dust effective dipole feeding back on the dust monopole. A crude estimate of

its magnitude is given by the linearized solution (III.58) upon replacing ΛDe by the

“capacitance shielding length” Λs (Eq. (VII.30)). In ion thermal units:

Fp

Ex ∼
4

3
π
√
πF o

i

Λ2
De

Λ2
s

τχpw⊥βiex. (VII.48)

Equation (VII.48) states that Fp

Ex should be approximately proportional to βi and

w⊥, which can easily be verified in Figs (VII-7c,d) although quantitative agreement

is quite poor.

We now need to compare the just-computed ion-drag with the additional forces

felt by the dust particle. Figure (VII-8) shows that regardless of the drift velocity,

the ey component of the internal Lorentz force becomes stronger than the ion-drag

when βi ∼ 2. The positive sign of Fjx is due to the electrons being predominantly

collected at x < 0 (weakly electron-repelling zone), while the ion collection pattern is

more isotropic or shifted towards x > 0 (strongly ion-attracting zone). This results in

the internal dust current flowing predominantly in the −ex direction. For the same

reason |Fjy| > |Fjx|.

Perhaps the most surprising result of Fig. (VII-8) is that the magnitude of Fjx,

Fix and FQ are comparable. In our treatment where the dust is stationary and the

plasma flowing, FQ arises from the convective field action on the dust charge. In

most situations however, the dust is moving in a stationary plasma, and a straight-

forward Lorentz transform shows that in that case FQ corresponds to the “v × B”

force responsible for the dust Larmor rotation. In small Debye length plasmas, a

dust particle’s Larmor angular frequency is therefore significantly faster than what is

predicted by the simple-minded formula QB/mDust.

Figure (VII-9) shows the ion-drag force computed at the dust surface with the

same parameters as Fig. (VII-7), except the angle of flow and magnetic field is now

δ = π/4. The ion-drag dependence on βi along the convective field axis ex follows

the same physics as in Fig. (VII-7), although its magnitude is lower by a factor
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(c) vd = 0.35cs0, ex-axis
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(b) vd = cs0, ey-axis
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(d) vd = cs0, ex-axis
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Figure VII-7: Self-consistent ion-drag computed at the inner boundary (collecting
sphere surface) by SCEPTIC3D for increasing ion magnetization βi using the param-
eters τ = 1, λDe = 0.03, φp = −8, and (a,c) vd = 0.35cs0, (b,d) vd = cs0. The flow
is purely transverse (δ = π/2), hence forces along the magnetic axis ez are zero by
symmetry.
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(a) vd = 0.35cs0
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Figure VII-8: Comparison of the total ion-drag force computed by SCEPTIC3D with
the parameters of Fig. (VII-7), with the non ion-drag forces Fj and FQ. For easy
reading, lines referring to forces acting along ex are solid, and dashed for ey.

∼ sin δ = 1/
√

2.

Contrary to the case of Fig. (VII-7) however, the parallel force is non-zero. Because

at δ = π/4 the drift vector bisects the magnetic and cross-field axis, at βi = 0 we see

that the forces along ey and ez are equal. As the magnetic field increases, the ion-drag

force along ey behaves as in Fig. (VII-7), i.e. the impact part Fp

im is approximately

constant, and the electrostatic part becomes more negative. Also the force along ey

and ez-axis are very similar, hence the ion-drag in the {ey, ez}-plane is approximately

flow-aligned.

VII.4.5 Ion-drag solutions at intermediate and large Debye

length

Figures (VII-10,VII-11) show a gallery of ion-drag force computations at the dust

surface for λDe ∈ [0.3 : 20] and vd ∈ [0.2 : 1.5]cs0, the other parameters being set as

in Fig. (VII-7).

Let us start the analysis with the forces along ey (drift direction, since δ = π/2),

in Fig (VII-10). It can first be seen that in intermediate and large Debye length
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(a) vd = 0.35cs0, ey,ez-axis
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(c) vd = 0.35cs0, ex-axis
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(d) vd = cs0, ex-axis
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Figure VII-9: Self-consistent ion-drag computed at the inner boundary (collecting
sphere surface) by SCEPTIC3D for increasing ion magnetization βi using the param-
eters of Fig. (VII-7) except the angle of flow and magnetic field is set to δ = π/4.
(a,b) simultaneously show the forces along the cross-field (solid lines) and magnetic
(dashed lines) axes.
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conditions, the ion impact force behaves as in the short Debye length regime, i.e. it

slowly decreases with βi but almost no magnetic field effect is felt when βi<∼ 1. A

crude estimate of Fp

im at low field can be obtained by multiplying the ion mass current

to the dust by the characteristic velocity at which the ions are collected, yielding

F p
im ∼ mIi

√

v2
d + v2

tiχp. Therefore as the Debye length increases past λDe ∼ 1, when

the ion current approaches the large Debye length limit (OML at βi = 0 for instance),

the ion impact force is not affected by a further increase in λDe. A second effect of

interest is that Fp

im tends to zero at infinite magnetization, because as extensively

discussed in chapter V the conducting dust shields the convective field out, hence in

the drift limit the ions can only be collected with parallel velocity.

The physics of the electrostatic force Fp

E is more complicated. At βi = 0, it

increases continuously with λDe, from the negative values observed in Fig. (VII-7) at

low Debye length to highly positive values proportional to ln Λ at large Debye length.

Therefore the relative weight of Fp

im and Fp

E inverts at intermediate Debye length.

The most surprising result here is that at intermediate Debye length and low enough

drift velocity, the total ion-drag can reverse. The physical mechanism is that the

dust pulls on the upstream ion flow, which contrary to the short Debye length regime

discussed in Fig. (VII-7) is deflected by the dust and only collected with parallel

momentum.

Figure (VII-11) shows the ion-drag for the same runs as in Fig. (VII-10), but along

the ex-axis. An interesting point is that the electrostatic drag Fp

E reverses between

λDe ≃ 3 and λDe ≃ 10, phenomenon for which we have no concrete explanation.

We now need to compare the just-computed ion-drag with the additional forces

felt by the dust particle. Figure (VII-12) shows that, similarly to what observed

at λDe = 0.03 in Fig. (VII-8), the magnitude of the ey-component of the internal

Lorentz force becomes stronger than the ion-drag when βi ∼ 2. It therefore seems

that although the cross-field ion-drag can reverse, the total force felt by the dust

particle is less likely to do so. In view of our approximate treatment of electron

collection used to calculate Fjy however, no definitive answer on the question can be

given.
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(a) vd = 0.2cs0, λDe = 0.3
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(d) vd = 0.5cs0, λDe = 0.3
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(g) vd = cs0, λDe = 0.3
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(j) vd = 1.5cs0, λDe = 0.3
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(b) vd = 0.2cs0, λDe = 3
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(e) vd = 0.5cs0, λDe = 3
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(h) vd = cs0, λDe = 3
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(k) vd = 1.5cs0, λDe = 3
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(c) vd = 0.2cs0, λDe = 20
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(f) vd = 0.5cs0, λDe = 20
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(i) vd = cs0, λDe = 20
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(l) vd = 1.5cs0, λDe = 20
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Figure VII-10: Self-consistent ion-drag computed at the dust surface by SCEPTIC3D
along ey as a function of βi with τ = 1, φp = −8, δ = π/2, and variable λDe and vd.
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(a) vd = 0.2cs0, λDe = 0.3
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(d) vd = 0.5cs0, λDe = 0.3
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(g) vd = cs0, λDe = 0.3
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(j) vd = 1.5cs0, λDe = 0.3
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(b) vd = 0.2cs0, λDe = 3
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(e) vd = 0.5cs0, λDe = 3
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(h) vd = cs0, λDe = 3
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(k) vd = 1.5cs0, λDe = 3
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(c) vd = 0.2cs0, λDe = 20
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(f) vd = 0.5cs0, λDe = 20
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(i) vd = cs0, λDe = 20
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(l) vd = 1.5cs0, λDe = 20
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Figure VII-11: Self-consistent ion-drag along the convective field axis ex computed
at the inner boundary using the parameters of Fig. (VII-10).
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Analysis in the ex direction is much easier, because as the Debye length increases

the external electrostatic force FQ becomes strongly dominant. Indeed FQ = QEcnv,

and the dust charge Q is almost independent on the plasma Debye length when it is

large enough (the capacitance tends to C = 4πǫ0Rp); in ion thermal units:

Fp

Q ∼ 4π
√
πF 0

i

Λ2
De

R2
p

τ

(

1 +
Rp

Λs

)

χpw⊥βiex. (VII.49)

All the other forces on the contrary are directly dependent on the ion current or the

feedback of plasma polarization on the dust charge, both linearly depending on the

plasma density N∞, hence ∝ 1/Λ2
De in absolute value, or independent of ΛDe when

expressed in units of F 0
i or R2

pN∞Te.
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(a) vd = 0.2cs0, λDe = 0.3
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(d) vd = 0.5cs0, λDe = 0.3
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(g) vd = cs0, λDe = 0.3
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(j) vd = 1.5cs0, λDe = 0.3
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(b) vd = 0.2cs0, λDe = 3
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(e) vd = 0.5cs0, λDe = 3
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(h) vd = cs0, λDe = 3
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(k) vd = 1.5cs0, λDe = 3
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(c) vd = 0.2cs0, λDe = 20
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(f) vd = 0.5cs0, λDe = 20
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Figure VII-12: Comparison of the total ion-drag force computed by SCEPTIC3D
with the parameters of Fig. (VII-10), with the non ion-drag forces Fj and FQ. For
easy reading, lines referring to forces acting along ex are solid, and dashed for ey.
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Chapter VIII

Conclusions

VIII.1 Position of the problem and computational

approach

This thesis presented a comprehensive solution to the equations governing a collision-

less plasma flow past an ion-collecting conducting sphere, in the presence of crossed

electric and magnetic fields. It should be seen as is in line with the never-ending

endeavour of plasma physicists to understand the details of plasma-surface interac-

tion, undergridding the behaviour of systems as diverse as electrostatic probes, dust

particles, and ionospheric spacecraft. The rationale behind our admittedly oversim-

plified model is to limit the number of free parameters to a minimum, in order to

only capture the fundamental physics and gain valuable insight that can possibly be

applied to more complex and realistic situations.

The core tool developed for this investigation is the Particle In Cell code SCEP-

TIC3D, derived from the 2D code SCEPTIC originally written by Hutchinson [9]. The

two key characteristics of the SCEPTIC approach are a Boltzmann treatment of the

repelled electrons, relaxing the necessity to resolve electron-transit time-scales, and

the use of a spherical grid isomorphic to the ion collector, in order to accurately cap-

ture the plasma-surface interface. SCEPTIC3D is fully parallelized (particle advance

+ Poisson solver), and includes arbitrary uniform magnetic field, external velocity
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magnitude and direction, ion temperature and electron Debye length.

A significant number of successful SCEPTIC3D benchmarks have been carried

out, including comparisons with prior SCEPTIC(2D) calculations, comparisons with

analytic or semi-analytic solutions in a selection of limiting regimes (zero ion re-

sponse, zero Debye length and infinite magnetic field, infinite Debye length and infi-

nite magnetic field), and verification that momentum (mechanical + electromagnetic)

is conserved in the simulation.

VIII.2 Summary of physical results

Strong magnetization and zero Debye length

The results derived in this thesis apply when coherent cross-field flow dominates

anomalous transport, hence the physics is purely convective. In the limit of small ion

Larmor radius and negligible Debye length, the problem is therefore two-dimensional

and each plane of flow and magnetic field can be treated independently. We showed

that provided we do not need to analyze the downstream shock, the presheath so-

lution (ion distribution function) only depends on the angle of probe tangent to

magnetic field. This enabled us to solve the ion kinetic equation self-consistently

with the quasineutrality condition by the method of characteristics, without using

SCEPTIC3D.

The key result is that to second and almost third order in the external flow Mach

number, the ion flux-ratio to electrodes whose tangents are oriented at angle η + π

and η with respect to the magnetic field in the plane of flow and magnetic field

is given by R = exp [(M∞ −M⊥ cot η) /Mc] (Eq. (II.75)). Although the model is

not isothermal, Mach numbers are normalized to the isothermal ion sound speed.

Mc is the Mach probe “calibration factor”, function of ion to electron temperature

ratio τ only, found to vary between Mc|τ=0 = 1/2 and Mc|τ=∞ = 1/
√

2π ≃ 0.4

(Eq. (II.76)). As can be seen in Fig. (II-11), the exponential form (II.75) can be used

for supersonic external flows as well, albeit introducing a small error, of the order

∼ 10% at M∞ −M⊥ cot η = 2 for instance. Measuring the flux ratios at angles 3π/4

200



and π/4 then readily gives the external Mach numbers (Eqs (II.79,II.80)). Recalling

the isothermal fluid solution [15] yields Mc = 0.5 regardless of τ , we conclude that

the isothermal approximation induces an error less than ∼ 20% on Mc, which might

not be detectable in today’s Mach probe measurements. Although not a proof, it

is reasonable to expect the more sophisticated isothermal calculations accounting

for diamagnetic and self-consistent convective drifts of Ref. [40] to be valid within

experimental accuracy as well.

Arbitrary magnetization and zero Debye length

At intermediate magnetization yet negligible Debye length, when the ion Larmor

radius compares to the probe radius, the plasma profiles show a complex three-

dimensional structure that SCEPTIC3D can fully resolve. In particular we observe

the effect of magnetic presheath displacement described in Ref. [40], as well as po-

larization drift modulation where the probe surface is grazing the magnetic field. An

unexpected finding in this regime is that for cold ions and close to sonic flows, the

total saturation current peaks here (see Fig. (IV-7c)).

Although the full ion charge-flux distribution to the probe depends on the plasma

parameters in a non-straightforward way, the major result of this study is that flux

ratios at ±45o to the magnetic field in planes of flow and magnetic field can very

easily be related to the external Mach numbers. To within ∼ 10% accuracy (at

least for τ ≥ 0.1), there exists a single factor Mc, function of magnetization βi and

temperature ratio τ only, such that M⊥ and M∞ satisfy Eqs (II.79,II.80). Except

at infinite magnetization, Mc is probe-shape dependent, and sphere solutions on the

major and quarter cross-sections are given in Fig. (IV-11). This provides the theo-

retical calibration for transverse Mach probes with appropriately placed electrodes.

Of course probes are rarely spherical in practice, nevertheless we believe that the

provided solutions should reasonably well apply to infinite cylindrical probes with

circular cross-section, and pyramidal probes such as the Alcator C-mod WASP [22],

respectively.
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Arbitrary magnetization and finite Debye length

The physics at finite Debye length is more complex, because information on the

sphere potential permeates into the plasma region. In particular, when the electron

Debye length goes over the average ion Larmor radius (ΛDe
>∼ RL), the concept of

magnetic presheath breaks down and the ions experience the probe shielding of the

external convective electric field. The ion “E×B” velocity in the probe neighborhood

is then tangent to the surface, as shown in Fig. (VI-9), and information about the

external transverse velocity is lost. In the idealized regime of infinite Debye length

for example, it was shown that flux ratios are not even a monotonic function of

the external cross field drift (see Fig. (V-6a)). The Mach probe calibration method

proposed in the context of quasineutral plasmas (Eqs (II.79,II.80)) is shown to hold up

to Debye lengths equal to about 10% of the probe radius (λDe<∼ 0.1), the corresponding

calibration factors at τ = 1 being plotted against ion magnetization in Fig. (VI-16).

Studies of ion collection show that exceeding of the unmagnetized current limit,

first observed in Fig. (IV-7c), strengthens as the Debye length increases. As can be

seen in Fig. (VI-11), for large enough Debye length and cross-field velocity, the current

is found to significantly exceed the Orbit Motion Limited (OML) limit. This effect,

non present in the absence of cross-field drift, is due to the magnetic field focussing

towards the probe of ions which, in unmagnetized conditions, would just have been

deflected.

Force calculations

SCEPTIC3D has also been used to study the question of forces experienced by the

sphere, that we separate into ion-drag calculated at the surface (ion impact force, elec-

trostatic Maxwell stress accounting only for the sphere-induced potential distribution,

and the typically negligible electron pressure on electron-repelling objects), external

electrostatic force (action of Ecnv on the sphere charge), and internal Lorentz force

(caused by currents circulating in the sphere, whose role is to balance asymmetries

in ion and electron collection).
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It is found that in tokamak-edge conditions the total ion-drag in the direction of

cross-field flow can reverse, mostly at intermediate Debye lengths (ΛDe = O(Rp)), al-

though (approximate) calculations of the net current circulating in the sphere indicate

that the internal Laplace force is in the positive direction and larger in magnitude

than the ion-drag. Also of interest to the study of dust dynamics is the observation

that for short electron Debye lengths (ΛDe
<∼ Rp), the ion-drag and internal Lorentz

force in the direction antiparallel to the convective electric field are in the same di-

rection and have the same magnitude as QEcnv. We therefore predict that in such

conditions, dust particles should have a significantly faster gyromotion than what

predicted by the Larmor formula QB/mDust.

VIII.3 Directions for future work

Several paths could be followed to build on the core capabilities of SCEPTIC3D and

obtain new high impact results.

One route would be to complexify the ion physics. SCEPTIC2D has built in a

Monte Carlo routine treating constant collision-frequency charge exchange events [65,

66], that could easily be ported in SCEPTIC3D in order to investigate the coupled

effect of ion magnetization and collisionality. This is particularly relevant to the

understanding of low temperature dusty plasma experiments where the background

neutral density is significant. There is however much more to be done with collisionless

ions. First, it would be relatively easy, at least computationally speaking, to treat

multiple ion species or multiple charge states; this would allow investigation of basic

plasma physics questions such as the multi-species sheath formation mechanism [67],

as well as obtain more practical results applicable for instance to probe operation in

DT tokamak discharges. Second, it would be interesting to allow reinjection of ions

from a distribution function with transverse temperature or density gradients. Indeed

in this thesis cross-field flow has been taken as purely convective, while transverse

pressure gradients in tokamak edges might drive non-negligible diamagnetic drifts.

Important analytic progress in the understanding of strongly magnetized Mach probes
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in such conditions has recently been made in the isothermal fluid approximation [40].

A valuable contribution would be to validate the isothermal approximation as well as

the extent to which the strongly magnetized limit is valid, by comparison with PIC

simulations as done in this thesis for the convective drift case.

A second, more ambitious direction involves the abandon of the Boltzmann elec-

tron treatment. This would first allow to run the code in the floating potential regime,

and to consider insulating collectors. In Ref. [64] an empirical formula relating the

electron flux to a negatively biased sphere was given, but it requires validation in

cross-field flows, and does not work for supersonic drifts relevant for instance to iono-

spheric satellites. Adding PIC electrons would also allow to model situations where

surface emission (such as thermionic, secondary, or photo-emission) is significant [45].

In those conditions dust particles can charge up positively [68], and most available

treatments of such regime are in the linearized approximation hence need benchmark-

ing.

In addition to probes, dust and spacecraft, a fourth category or physical objects

can be modeled as a sphere embedded in a cross-field plasma flow, namely celestial

objects such as planetary moons [69, 70]. Unfortunately while typical magnetospheric

thermal speeds are well below the speed of light, length scales involved are of the order

of the thousand kilometers, hence the uniform magnetic field approximation breaks

down. Once PIC electrons are added in the code, a third challenging undertaking

would be to implement an Ampere solver, in order to self-consistently treat global

MHD dynamics with finite Larmor radius effects. A key ingredient not to forget

for this studies is Coulomb collisionality between ions and electrons, responsible for

resistivity.

The last direction that I would like to suggest, in parallel or in addition to the

previous, is a change in geometry. Because the philosophy of SCEPTIC is to treat

simplified models, but well, in particular the plasma surface boundary, only shapes

that can easily be mapped to a structured grid seem appropriate. Presumably the

present code structure could be modified to treat ellipsoids, upon appropriate rescal-

ing of the ions’ equations of movement, Poisson solver, and reinjection scheme. A
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second geometry of interest, in particular for the modeling of electric probes, would

be cylindrical.
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Appendix A

Boltzmann electron response

A.1 Electron density distribution

Omitting collisional terms, the steady-state perpendicular and parallel electron mo-

mentum equations are







meNe [(〈ve〉 · ∇) 〈ve〉]⊥ = −eNe (Ecnv −∇⊥Φ + 〈ve〉 × B) −∇⊥Pe,

meNe [(〈ve〉 · ∇) 〈ve〉]‖ = −eNe

(

−∇‖Φ
)

−∇‖Pe,
(A.1)

where 〈ve〉 refers to the electron fluid velocity, Ne to the electron density, Pe = NeTe

to the electron pressure that we immediately assume to be scalar, −e to the electron

charge and Φ to the a priori unknown self-consistent potential distribution around

the probe.

We assume the probe to be strongly electron repellent, implying |∇Te|/Te ≪
|∇Ne|/Ne: this is the ion-collecting probe approximation. Furthermore, typical flow

velocities in the bulk plasma being of the order cs0 ≪ vte (Eq. (II.13)), we can

write meNe| (〈ve〉 · ∇) 〈ve〉| ≪ Te|∇Ne|: this is the massless electron approximation

coupled to the hypothesis of sub-electron-thermal flow conditions.

The electron temperature Te is therefore constant in the bulk plasma and equal

to its value at infinity, justifying the notation Te rather than Te∞ for its unperturbed

value. Furthermore the inertial term me (〈ve〉 · ∇) 〈ve〉 is negligible, hence integra-
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tion of the parallel momentum equation shows that the electrons are Boltzmann

distributed:

Ne = N∞ exp

(

eΦ

Te

)

= N∞ exp φ, (A.2)

while integration of the perpendicular momentum equation shows that the electron

cross-field velocity is given by

〈ve〉⊥ = Ecnv ×
B

B2
(A.3)

regardless of the self-consistent potential gradient.

The above fluid argument is not valid in the immediate probe vicinity, where half

the electron orbits are directed outwards hence unpopulated by probe shadowing.

In particular the electron distribution function there being one-sided, the electron

fluid velocity compares to vte rather than cs0, and me cancels in the inertial term

me| (〈ve〉 · ∇) 〈ve〉|. Because the probe is strongly electron-repellent however, the

electron density at the surface is negligible compared to N∞ and calculating its exact

value is not important.

All calculations in this thesis are therefore performed assuming Boltzmann elec-

trons (A.2) in the entire domain, regardless of the plasma parameters.

A.2 Electron current

Using the constancy of the electron distribution function along electron orbits already

invoked to derive Eq. (V.1), the unmagnetized electron flux density to the probe is

equal to the free-space one-dimensional flux density scaled down by the same factor

as Ne:

Γ|βe=0
e = N∞ exp

(

eΦp

Te

)

vte
2
√
π
, (A.4)

where Φ(Rp, θ, ψ) = Φp is uniform in the unmagnetized regime.

The derivation of Eq. (A.4) assumes that (a) the electron drift velocity is much

smaller than vte, which is always true in our massless electron treatment, and (b)
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that all the orbits striking the probe are connected to infinity, which is again true

if B = 0 (i.e. βe = 0). When a background magnetic field is present however (b)

is no longer a good approximation. The flux is reduced because some helical orbits

intersect the probe several times. Orbit arcs that intersect the sphere at both ends

are unpopulated, as shown in Fig. (A-1).

Orbit connected to infinity

Orbit closed on the sphere

Magnetic axis

Figure A-1: Schematic representation of the two kind of orbits intersecting the probe
in the presence of a background magnetic field. In a collisionless plasma orbits that
close on the sphere are empty.

When the electron Larmor radius is much larger than the sphere radius Rp, that

is in the limit βe = 0, then no such empty orbits exist and one can use Eq. (A.4),

giving for the total current to an equipotential repelling sphere of radius Rp :

I |βe=0
e = 4πR2

pN∞
vte

2
√
π

exp

(

eΦp

Te

)

. (A.5)

In the opposite limit of infinitesimal Larmor radius, the electrons move one-

dimensionally along the field, and encounter only the projection of the probe area

(2πR2
p, where the 2 is due to the electrons coming from both sides of the probe) in

the field direction. Even if |vd| ≪ vte, a cross-field drift originating from a convective

electric field Ecnv strongly affects the electron flux because the probe potential in

that case is not uniform, rather given by Eq. (III.12). Therefore the current instead
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becomes, for βe = ∞ :

I |βe=∞
e = 2R2

pN∞
vte

2
√
π

∫ 1

ρ=0

∫ 2π

ψ=0

exp

(

e (Φp + [EcnvRp] ρ cosψ)

Te

)

ρdρdψ

= 4πR2
pN∞

vte
2
√
π

exp

(

eΦp

Te

)

Te
e [EcnvRp]

I1

(

e [EcnvRp]

Te

)

. (A.6)

where In is the modified Bessel function defined by

In(x) =
1

π

∫ π

0

exp(x cosα) cos(nα)dα. (A.7)

If [EcnvRp] ≪ Te/e, the strongly magnetized electron current given by Eq. (A.6)

is half the unmagnetized one. In this thesis we will not need the exact value of the

electron current. For a discussion of how to bridge the gap between the limits βe = 0

and βe = ∞ the reader is referred to Ref. [64].
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ments with Gundestrup probes. Phys. Plasmas, 8(5):1995–2001, 2001.

212



[27] K.S. Chung and I.H. Hutchinson. Kinetic theory of ion collection by probing
objects in flowing strongly magnetized plasmas. Phys. Rev. A, 38(9):4721, 1988.

[28] K-S. Chung, H-J. Woo, and M-J. Lee. Effect of Recombination and Ionization on
the Deduction of Mach Numbers in Flowing Magnetized Plasmas. In 35th EPS
Conference on Plasma Phys. Hersonissos, number 32D in Proceedings, June
2008.

[29] J-L. Delcroix and A. Bers. Physique des plasmas tomes 1 et 2 (In French). CNRS
Editions, EDP sciences, Paris, 1994.

[30] S. Gangadhara and B. LaBombard. Impurity plume experiments in the edge
plasma of the Alcator C-Mod tokamak. Plasma Phys. Control. Fusion, 46:1617–
1646, 2004.

[31] H. Van Goubergen, R.R Weynants, S. Jachmich, M. Van Schoor, G. Van Oost,
and E. Desoppere. A 1D fluid model for the measurement of perpendicular flow
in strongly magnetized plasmas. Plasma Phys. Control. Fusion, 41(6), 1999.

[32] I.H. Hutchinson. The magnetic presheath boundary condition with E ∧B drifts.
Phys. Plasmas, 3(6), 1996.

[33] A.V. Gurevich and L.P. Pitaevskii. Non-linear dynamics of a rarefied ionized
gas. Prog. Aerospace Sci., 16(3), 1975.

[34] J.R. Sanmartin. Theory of a Probe in a Strong Magnetic Field. Phys. Fluids,
13(1):103–116, 1970.

[35] P.C. Stangeby. Effect of bias on trapping probes and bolometers for tokamak
edge diagnosis. J. Phys. D: Appl. Phys, 15(15):1007, 1982.

[36] R.A. Pitts and P.C. Stangeby. Experimental tests of Langmuir probe theory for
strong magnetic fields. Plasma Phys. Control. Fusion, 32(13):1237–1248, 1990.

[37] L. Patacchini and I.H. Hutchinson. Explicit time-reversible orbit integration in
Particle In Cell codes with static homogeneous magnetic field. J. Comp. Phys.,
228(7):2604–2615, 2009.

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes (3d edition). Cambridge University Press, NY, 2007.

[39] J.E. Daugherty, R.K. Porteous, and D.B. Graves. Electrostatic forces on small
particles in low-pressure discharges. J. Appl. Phys, 73(4):1617–1620, 1993.

[40] I.H. Hutchinson. Oblique ion collection in the drift approximation: How magne-
tized Mach probes really work. Phys. Plasmas, 15:123503, 2008.

[41] L. Patacchini and I.H. Hutchinson. Angular distribution of current to a sphere
in a flowing, weakly magnetized plasma with negligible Debye length. Plasma
Phys. Control. Fusion, 49:1193–1208, 2007.

213



[42] E. Ko and N. Hershkowitz. Asymmetry reversal of ion collection by Mach probes
in flowing unmagnetized plasmas. Plasma Phys. Control. Fusion, 48(5):621–634,
2006.

[43] C.K. Goertz. Dusty plasmas in the solar system. Rev. Geophysics, 27(2):271–292,
1989.

[44] L. Ravi and S.L. Girshick. Coagulation of nanoparticles in a plasma. Phys. Rev.
E, 79:026408, 2009.

[45] G.L. Delzanno, A. Bruno, G. Sorasio, and G. Lapenta. Exact orbital motion the-
ory of the shielding potential around an emitting spherical body. Phys. Plasmas,
12:062102, 2005.

[46] J. Winter. Dust in fusion devices-experimental evidence, possible sources and
consequences. Plasma Phys. Control. Fusion, 40:1201–1210, 1998.

[47] D.L. Rudakov, W.P. West, M. Groth, J.H. Yu, and J.A. Boedo. Dust Studies in
DIII-D Tokamak. Multifacets of dusty plasmas: Conference proceedings, 1041:55–
58, 2008.

[48] A.Yu. Pigarov, S.I. Krasheninnikov, T.K. Soboleva, and T.D. Rognlien. Dust-
particle transport in tokamak edge plasmas. Phys. Plasmas, 12:122508, 2005.

[49] Y.L. Alpert, A.V. Gurevich, and L.P. Pitaevskii. Space Physics with Artificial
Satellites. Consultants Bureau, New York, 1965.

[50] I.B. Bernstein and I.N. Rabinowitz. Theory of electrostatic probes in a low-
density plasma. Phys. Fluids, 2:112–121, 1959.

[51] J.E. Allen, B.M. Annaratone, and U. de Angelis. On the orbital motion limited
theory for a small body at floating potential in a Maxwellian plasma. J. Plasma
Phys., 63:299–309, 2000.

[52] E.C. Whipple. Potential of surfaces in space. Rep. Prog. Physics, 44:1197–1250,
1981.

[53] L.W. Parker and B.L. Murphy. Potential buildup on an electron-emitting iono-
spheric satellite. J. Geophys. Res., 72:1631–1636, 1967.

[54] J. Rubinstein and J.G. Laframboise. Theory of a spherical probe in a collisionless
magnetoplasma. Phys. Fluids, 25:1174–1182, 1982.

[55] E.C. Whipple. The Equilibrium Electric Potential of a Body in the Upper Atmo-
sphere and in Interplanetary Space. PhD Thesis, George Washington University,
1965.

[56] N. Singh, W.C. Leung, and G.M. Singh. Enhanced current collection by a posi-
tively charged spacecraft. J. Geophysical Research, 105(A9):20935–20947, 2000.

214



[57] N.H. Stone, W.J. Raitt, and Jr. K.H. Wright. The TSS-1R electrodynamic tether
experiment: Scientific and technological results. Advances in Space Research,
24(8):1037–1045, 1999.

[58] N. Singh and V.S. Chaganti. Electron collection by a highly positive satellite in
the ionosphere: Test particle simulation. J. Geophysical Research, 99(A1):469–
478, 1994.

[59] L. Patacchini and I.H. Hutchinson. Ion-collecting sphere in a stationary, weakly
magnetized plasma with finite shielding length. Plasma Phys. Control. Fusion,
49:1719–1733, 2007.

[60] A.V. Ivlev, S.A. Khrapak, S.K. Zhdanov, G.E. Morfill, and G. Joyce. Force on
a Charged Test Particle in a Collisional Flowing Plasma. Phys. Rev. Letters,
92:205007, 2004.

[61] S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and H.M. Thomas. Ion drag force in
complex plasmas. Phys. Rev. E, 66:046414, 2002.

[62] H.N. Nitta, N. Nambu, N. Salimullah, and P.K. Shukla. Dynamical potential in
a magnetized plasma. Phys. Letters A, 308:451–454, 2003.

[63] D.K. Geller and J.C. Weisheit. Classical electron-ion scattering in strongly mag-
netized plasmas I. A generalized Coulomb logarithm. Phys. Plasmas, 12(4):4258,
1997.

[64] L. Patacchini, I.H. Hutchinson, and G. Lapenta. Electron collection by a
negatively charged sphere in a collisionless magnetoplasma. Phys. Plasmas,
14:062111, 2007.

[65] I.H. Hutchinson and L. Patacchini. Computation of the effect of neutral colli-
sions on ion current to a floating sphere in a stationary plasma. Phys. Plasmas,
14:013505, 2007.

[66] L. Patacchini and I.H. Hutchinson. Fully Self-Consistent Ion-Drag-Force Calcu-
lations for Dust in Collisional Plasmas with an External Electric Field. Phys.
Rev. Letters, 101:025001, 2008.

[67] D. Lee, L. Oksuz, and N. Hershkowitz. Exact Solution for the Generalized Bohm
Criterion in a Two-Ion-Species Plasma. Phys. Rev. Letters, 99:155004, 2007.

[68] S.A. Khrapak, G.E. Morfill, V.E. Fortov, L.G. D’yachkov, A.G. Khrapak, and
O.F. Petrov. Attraction of Positively Charged Particles in Highly Collisional
Plasmas. Phys. Rev. Letters, 99:055003, 2007.

[69] C.T. Russel. Interaction of the Galilean Moons with their plasma environments.
Planetary Space Science, 53:473–485, 2005.

215



[70] S.H. Brecht, J.G. Luhmann, and D.J. Larson. Simulation of the Saturnian
magnetospheric interaction with Titan. J. Geophys. Res., 105(A6):13119–13130,
2000.

216


	PSFC_Header
	Thesis.pdf
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Thesis outline
	Background
	Nomenclature
	Structure

	Probes in zero Debye length, strongly magnetized plasmas
	Foreword on Langmuir probes
	Unmagnetized probes
	Magnetized probes

	Foreword on magnetized, transverse Mach probes
	The Mach probe concept
	General isothermal formulation
	Relative weight of the different transport mechanisms
	The question of ion recycling

	The quasi-collisionless convective model
	Presheath equations
	Discussion of the diffusive limit
	Convective limit

	Convective solution
	Solution method
	Isothermal fluid solution
	Analogy with the plasma expansion into a vacuum
	Free-flight solution

	Results and physical discussion
	Plasma profiles
	Ion flux-density to a flat probe
	Extension to transverse Mach probes
	Mach probe calibration

	2D analytic free-flight density contours
	Strongly magnetized limit
	Comparison with the magnetic-free regime


	SCEPTIC3D
	Model and computational method
	Problem formulation
	Code mesh
	Orbit integration

	Quasineutral operation
	Boundary conditions
	Accuracy
	Axisymmetry resolution

	Finite Debye length operation
	Parallelized Poisson solver
	Electrostatic Maxwell stress tensor
	Magnetostatic Maxwell stress tensor


	Spheres in zero Debye length, arbitrarily magnetized plasmas
	Plasma profiles
	Infinite ion magnetization
	Intermediate ion magnetization

	Ion saturation current
	Free-flight current
	Self-consistent ion current

	Transverse Mach probe calibration

	Spheres in infinite Debye length, arbitrarily magnetized plasmas
	Foreword on dust charging in the unmagnetized regime
	Dusty plasmas
	Orbit Motion Limited shielding
	Orbit Motion Limited charging

	Ion collection in the drift approximation
	1D-kinetic/2D-drift model
	Results and physical discussion
	The question of stationary magnetoplasmas

	Review of collection in stationary, large Debye length magnetoplasmas
	Parker-Murphy upper bound current
	Free-flight magnetized current
	Helical upper bound current
	Ion current calculations

	Ion collection in arbitrarily magnetized flowing plasmas
	Total ion current
	Angular ion flux-density distribution
	Plasma profiles


	Spheres in finite Debye length, arbitrarily magnetized plasmas
	Foreword on electron-collecting space tethers
	Electrodynamic tethers
	Electron collection by the TSS subsatellite

	Plasma profiles
	Strong ion magnetization
	Intermediate ion magnetization

	Self-consistent ion current
	Current dependence on ion magnetization
	Current-Voltage characteristics at low Debye length
	Transverse Mach probe calibration


	Dust grain dynamics
	Foreword on unmagnetized dust dynamics
	Dielectric response approach to the ion-drag force
	Binary collision approach to the ion-drag force
	Force Evaluation with SCEPTIC

	2D calculations in parallel-drifting magnetoplasmas
	Free-flight calculations
	Self-consistent calculations

	Capacitance calculations in EB fields
	Force calculations in EB fields
	Free-flight calculations at infinite magnetization
	Calculation of the non ion-drag forces
	Momentum conservation in SCEPTIC3D
	Ion-drag solutions at low Debye length
	Ion-drag solutions at intermediate and large Debye length


	Conclusions
	Position of the problem and computational approach
	Summary of physical results
	Directions for future work

	Boltzmann electron response
	Electron density distribution
	Electron current



