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The propagation of waves of a given frequency in one-dimensional njon-uniform
media (coordinate x) with general local dispersion functions, e.g. D(k, x) (such as
those from the Vlasov eqLarion), and not expressible as a polynomial in wavevec-
tor k has not previously been solved due to the difficulty of treating mode cou-
pling regions where k values come together rapidly, and the eikonal approxima-
tion must fail. Providing the modes couple only two at a time, a general method
is given for generating appropriate and unambiguous second-order differential
equations for each coupling. The differential equation requiring solUtion is essen-
tially the Schrodinger equation with potential -2(D(k)/O 2D/Ok2)k=;(x), where
kc(x) satisfies3D(k, x)/3k = 0, x real.

Lower-hybrid heating of plasmas relies on the mode-conversion of incident electromagnetic power to a
i ormal plasma mode which is more readily absorbed via non-collisional damping processes. The usual mode-
coupling theory' based on the fourth- or sixth-order differential equations corresponding to the warm-plasma
approximation of the Vlasov dispersion relation is inapplicable in tile presence of kinetic damping. Specifically,
tMe appearance, due to damping, of terms which are not powers of the wavenumber k breaks down the pos-
sibility of direct representation of the dispersion relation by a differential equation. Nevertheless, the concept
can be recovered, and we present here a method of analysis resulting in a system of coupled-mode differential
equations, representing any dispersion relation which is an entire analytic function of k. We are dealing here
with "local" dispersion relations, valid for waves in a non--uniform medium (along x) satisfying the eikonal
approximation.

Consider a plasma which is weakly nonuniform in one spatial dimension x, supporting waves excited at
a'fixed frequency u). The local dispersion relation D(k, z; w) = 0 representing these waves as they propagate
under the influence of nonuniformities, defines a many valued mapping of the complex spatial variable z =
x + iy onto the complex wavenumber plane k = k,. + iki. We have defined k = k,, and we have suppressed
the explicit dependence on parameters such as the other two components of the wavevector, etc.; y and z are
not to be confused with spatial dimensions. We will assume that the inverse mapping k -+ z is single-valued.
It poses no principal difficulty to relax this assumption, and it is useful to do so on occasion, since the case of
many valued z is frequently encountered in practice. An arbitrary contour C in the z-plane thus maps onto n
branches, n > 1, k = f(z), and with such a mapping there are associated saddle and branch points, k, and
zD, respectively. The branch points z13 are those for which 1 diverges, and they are, by definition, the only
ones which map onto a single point k, in the k-plane, the latter being the saddle points of the inverse mapping
z = f~1(k).

The general procedure of mapping z --* k through the dispersion relation involves two steps. The first is
to determine the saddle points k, and branch points zB. The second is to specify the branch lines. The saddle
and branch points are inherent to the mapping. Each saddle point defines a distinct coupling event between the
branches- we will assume throughout that the branches couple pair-wise, which occurs when
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The crucial step in the analysis of the dispersion relation regards the construction of branch cuts. On the
one hand, the branch cuts define the process of mode coupling and the process of analytic continuation of a
branch. but on the other, the dispersion rel ition alone does not provide any ready-made in formation on how to
:pcCify the branch lines. This is, of course, 1 source of major concern since mode coupling occurs, by definition,
O'vcry time the wa\e-propagation contour C (the real axis x = Re z) crosses a branch cut. The intuitive reaction
in this situation would be to trace the bratich cuts in some arbitrary manner away from the real axis, to avoid
crossings other than through the branch points themselves. But what if all branch points lie away from the
real axis? Does this imply that now no niode coupling takes place? The answer to these questions lies in the
I roper definition of mode-coupling and of a mode itself. The relevant question to ask is which are the physical
L onditions for coupling and find their anal tical counterparts. Branches couple, by definition, whenever the real
;,-axis crosses a branch cut (Fig. 1). The asual definition of a mode, in terms of a branch of the dispersion
relation, is thus not complete without associating with it a properly cut Riemann sheet. The Riemann sheet then
maps onto a simply connected region of th- k-plane, whose boundaries (given by the maps of the branch cuts)
limit the extent of wavenumbers accessilble to the branch under deformations of the x-axis. The required branch
cuts CQ and the mode-boundaries k, arc given by the mappings2

D(ke, C) =- 0, OD(k,, z) = 0, z E C, (2)

where C is required to pass through the branch points and, therefore, might occasionally deviate from the real
r-axis (Fig. 2). The only coupling events which materialize under these conditions are those defined by the
branch (and saddle) points of the dispersion relation. We emphasize that it is actually through the mapping

= 0 that we make contact with the physical requirements for mode-conversion. The argument goes as
follows. Consider a wave A(x) exp [-iwt + ikr(x)x propagating along the x-direction, and characterized by a
slowly varying amplitude A (incorporating the effect ofki(x)) and wavenumnber kr(x). The wave has associated
with it an averaged energy flux proportional to vAA*, where A* is the conjugate to A, and v. is die local group
velocity

dw 
(3)

evaluated implicitly from the dispersion relation D(k, z; w) 0. h'lie energy flux thus defined depends on
position not only through the amplitude A, but also via vg. Under these conditions, energy ceases to flow in
the form of a particular mode where either A -+ 0 or v. -+ 0. h'le former case is indicative of dissipative
processes and A vanishes gradually. We are concerned with tie latter case as that is the one which is indicative
of mode-conversion, at least as far as the coupling of energy between different wave-types is concerned. This
is because when vg -+ 0 without A vanishing simultaneously, the global conservation of energy flux requires
that tie energy be either transformed into a different wave form, or the amplitude diverges and we have a
resonance. The branch points and branch cuts are instrumental in obtaining a representation of the dispersion
relation in tie form of a system of sccond-order differential equations. To proceed let us define the function
3(k) = D(k, z) of the independent variable k, with z as a parameter. To obtain an approximation for the two
roots k of the dispersion relation which couple at k = k,, we expand !(k) around the corresponding mode-
boundary ke,(z) to second-order in k: 9(k) = 9(k.) + 1 (k - kc)29"(k).
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This approximation for U(k) is excellent near the coupling points k, and zB, by virtue of the definition of kc(z),
providing that 9"(k,) = 0. Moreover, it is a good approximation away from k, and zt, as long as G"(ke) does
not vanish in the region of interest. The latter condition is particularly important when the branch point is not
real, since then the approximation must be extended all the way from zjj to the rea' axis, which is where the
waves actually propagate. It follows that the particular path in the z-plane must avoid passing through a branch
point of the mapping OU = 0, since G"(k,,) vanishes there and kj(z)joins onto a dilferent branch. Except for
this restriction, the path can be quite arbitrary, and the transition to the real axis can be therefore performed
by substituting - for z and making sure that kc(x) belongs to the correct branch as specified by the appropriate
saddle point k.(zn) = ks. The dispersion rc lation '(k) = 0 on the real axis Re z is thvn approximated by

k' - 2kc(x)k + k (x) - Q(x) = 0, (4)

where

Q(r) = -2 6(k)/9"(k)k (x). (5)

is the scattering potential. We now note thai Eq. (4) contains the ambiguous combination kek which permits the
interpretations (k -+ i-I) ike 3L) , i d(cF)/dx, or a linear combination thereof, where (D is the wave-potential.

The criterion for deciding the existence of a unique combination of these terms is that the resulting equa-
tion must have regular turning points wher Q = 0, as this is where, by definition, th, inapping represented by
the dispersion relation has branch points. Such a combination does indeed exist, and te differential equation is

4," + ikcV' + i(kcf)' + (Q - ke)( - 0, (6)

where the prime now denotes differentiation with respect to x. To prove that Eq. (6) has the desired turning
points it suffices to write (D = p exp (-i f kc(x) dx) = (pF, giving finally

P" + Q(X)p = 0. (7)

The system, composed of the elementary local dispersion relations (4), together with their corresponding
differential equations (7) can be appropriately termed as the "coupling approximation" of the dispersion rela-
tion. An application of the method pertaining to the mode-conversion of lower-hybrid waves in the presence of
ion-cyclotron damping is given in a companion paper of these Proceedings.
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Figure 1. For a contour C not crossing the branch cut. Q, the branches f(C) lie, unconnected, on either side of
the map. f(C,). Of the cut. A branch cut itnclf maps onto the k-plane as extending from the saddle point k, into
two directions, and represenms the boundary between the maps of the two Riemann sheets it connects. In the
other case, of C' crossing th- branch cut, the branches connect through the boundary f(Cb) signifying a mode-
coupling event.
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Fipmre 2. The assumption of pairwise cotIpling reduces

he problem of an n-valued mapping into a series of

IO wvalued maps. If the branch point lies away from' the

reai x-axs. the branches appear uncoupled in both the

k, versus kr, as well as in the inore farniliaki, k, versus

r, representations.
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