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1.0 INTRODUCTION

R.J. Thome

The rapid increase in size, stored energy, and complexity of the mag-

net systems required for advanced energy conversion applications such as

fusion demands a thorough understanding of safety and protection for per-

sonnel and other systems. Toward this end, MIT has been carrying out a

program for INEL oriented toward safety and protection in large scale

superconducting magnet systems. The program involves collection and an-

alysis of information on actual magnet failures, analyses of general pro-

blems associated with safety and protection, and performance of safety

oriented experiments. This report summarizes work performed in FY83.

In December 1982, a massive structural failure occurred in a large

magnet at the Arnold Engineering Development Center (AEDC). The magnet

utilized about 8.4 x 104 kg of copper conductor, 5.4 x 104 kg of aluminum

structure, and 5 x 105 kg of steel in a flux return frame. The failure

occurred at a field level of 4.1 T and led to brittle fractures in most

of the structural components, significant displacements of some portions

of the iron frame, and substantial deformation of the winding with some

conductor fracture. Chapter 2 describes this system before and after

failure and summarizes the structural failure analyses which were per-

formed by MIT in parallel with the investigation by a team from AEDC.

The magnet failure was catastrophic in the sense that most structural

components were fractured and the winding suffered extensive plastic de-

formation. However, operating procedures prevented possible injury to

personnel and the rugged nature of the winding limited deformations to
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large but safe values, and restrained conversion of magnetic to

kinetic energy of failed components. This suggests that it may be de-

sirable to limit operating current densities in magnet design to levels

whereby the winding could act in this structurally fail-safe manner even

if it sustained substantial deformation in the event of a failure in its

primary structure. A general analysis of this problem was, therefore,

performed and is presented in Chapter 3.

The model and examples in Chapter 3 are based on an infinitely long

solenoid configuration. Although the geometry is simple, this shape al-

lows the important parameters to become apparent. The preliminary con-

clusions are:

(a) A protective circuit reaction involving dissipation in resis-
tive elements following a major structural failure is unlikely to

be effective on a fast enough time scale to limit the mangetic to

kinetic energy conversion process in magnets using high current den-
sity windings.

(b) Windings with low enough current densities can absorb the total

load following structural failure, thus limiting the kinetic energy

conversion process, although this might involve substantial yielding
and deformation of the winding. This is not usually a design re-

quirement, but might form the basis for one criteria for large magnet

design.

(c) Protective circuits involving inductive energy transfer can re-

spond fast enough to limit the kinetic energy conversion process in
high or low current density configurations. The range of coupling

coefficients and time constants to allow this method to be ef-
fective are under study. This is the source of our interest in the

use of multiple circuits for discharge of a TF coil system as begun
this year and as discussed in Chapter 4.

Chapter 3 closes with a simple model which illustrates the ability of

an inductively coupled secondary circuit to be effective in restraining

magnetic to kinetic energy conversion in the event of a structural failure

in a primary circuit. In Chapter 4, the use of multiple circuits in a TF
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coil system was studied since it presents a means for limiting another

process, that is, the magnetic to thermal energy conversion in a super-

conducting winding in the event of a quench. Typically, results show that

only a small fraction of the total energy needs to be removed if only one

of k circuits is discharged because the bulk of the energy is retained by

the (k-1) circuits which maintain constant flux throughout the transient.

This procedure allows the first circuit to be discharged more rapidly for

a given initial voltage and final temperature limit, thus allowing for a

longer delay time before the dump is initiated or for operation at a higher

current density. The remaining coils could then be discharged on a longer

time scale. However, if the remaining circuits require rapid discharge

shortly after the first, then the necessary voltage per coil may or may not

be higher than that required for the first circuit depending on the dis-

charge sequence, number of coils and aspect ratio. The voltage to ground

can be considerably lower than if a single system circuit was used. The

general criteria governing the different reactions will be developed fur-

ther next year.

Chapter 5 describes the experimental activity under this program dur-

ing FY83. This involved a continuation of earlier activity regarding mea-

surements of arc extinction voltages between electrodes in 300 K and 4.2 K

(Section 5.1). Section 5.2 describes a small "football" experiment in-

volving internally cooled cable conductor. Because of delays in delivery

of the conductor the test was not carried out in FY83 as planned, but

will be performed in FY84 together with another small football test as

originally planned for FY84. Section 5.3 gives an update on the hybrid

magnet status at FBNML as a continuation of our interest in the short
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circuit in the superconducting section of that system. In summary, the

short persists, but has minimal impact on operations because of the well

cooled, highly stable design of this coil. Other types of design could

experience -a much more serious impact.

The report closes with a summary of safety related activities parti-

ally supported by this program. In FY83 this included participation in a

Fusion Safety Workshop in Japan and involved a presentation regarding pro-

grams in magnet safety in the United States, participation in workshop

discussions on other fusion systems, and tours of the fusion facilities

at JAERI.
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2.0 HPDE MAGNET FAILURE

(Subject to review and update in FY84)

2.1 System Description and Summary - R.J. Thome and J.M. Tarrh

The High Performance Demonstration Experiment (HPDE) at the Arnold Engi-

neering Development Center (AEDC) employed a large (active bore approximately

1 m square x 7 m long) iron-bound copper magnet designed to operate in either

of two modes: (1) as a 3.7 T (continuous) water cooled magnet, or (2) as a 6 T

(long pulse) nitrogen precooled, cryogenic magnet. In either mode, coolant

would flow through conventional hollow copper conductor windings. A unique

force containment structure of 2219 aluminum alloy was selected on the basis of

thermal considerations (77 to 350 K operating temperature range; coefficient of

thermal expansion permitting dimensional matching to the coil) and cost. In

December 1982 a catastrophic structural failure occurred at a field level of

4.1 T which led to massive brittle fractures and failure of most of the struc-

tural components, significant displacements of some of the iron frame compo-

nents, and substantial deformation of the winding with some conductor fracture.

Although the failure occurred at a fraction of the design field level, no per-

sonnel injury occurred because of the operating procedures in force at the time

of the incident which restricted personnel access and required operating per-

sonnel to be in a remote control area. At present, the structure is consider-

ed beyond repair. The windings are considered to be reparable without prohibi-

tive time and effort assuming a reduced performance requirement (single mode,

pulsed from room temperature).

Following the incident a detailed investigation was performed by AEDC per-

sonnel.1 In parallel with this effort, MIT carried out a preliminary failure an-

alysis which is summarized in Section 2.2. Although there is general agreement,
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more than one failure scenario is possible from the standpoint of the early se-

quence of events. The evidence indicates a localized structural failure lead-

ing to sequential overloading and fracture of other structural components. The

primary cause appears to have been design flaws relative to structural details

and the load distribution in localized areas. A contributing factor was uti-

lization of structural materials having low ductility. The conversion of the

stored magnetic energy to kinetic energy of the fractured components was limit-

ed because of the large cross-section of the winding and the ability of the

windings to deform to a configuration which could accept the magnetic loads

while the coil discharged. This has led to the simplified modeling and anal-

yses for magnets in general which is described in Chapter 3.0.

The remainder of this section will describe the system characteristics be-

fore and after failure. Section 2.2 will describe the failure analyses and sum-

marize the fault scenarios. Further analyses of effects such as the deflection

limiting nature of the clamping between components of the iron flux return frame

will be carried out in FY84 together with a review of the preliminary failure

analysis. This chapter, will therefore, be updated in our FY84 report.

The HPDE magnet utilized a saddle coil pair typical of an MHD experiment

in which a magnetic field is required in a direction perpendicular to the

axis of a long channel. The shape of the coils is shown in Fig. 2.1 which also

indicates the direction and magnitude of the electromagnetic loads on the coils

at the design field level. The scale of the device is indicated by Fig. 2.2

which shows the coils before addition of the aluminum structure or side and top



- 7-

Lni

LA..

C'C>

Ck.JLL

C)-

4. ~LLJ <

co- -0

CC\

C:))

LjLL

I--

LLI-



Coolant
Tubes

Longitudinal
Windings

End Turns

Figure 2.2 HPDE Magnet Coils before addition of
structure or top and side components
of iron flux return frame.
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components of the iron flux return frame. The figure indicates the longi-

tudinal section of the windings which lie parallel to the MHD channel axis

and the end turns of the saddle coils which pass over and under the MRD

channel (not shown).

The structure was composed of aluminum plates which enclosed the wind-

ings as shown in Fig. 2.3 and were primarily held in place by a system of

keys and bolts. The "sidebar loads" in Fig. 2.1 were carried by the verti-

cal beam modules on each side of the magnet. These modules were held in

place by the transverse tension members. Near the ends of the coils, port-

ions of this load were carried by the collars which were composed of four

plates at each end, held together with keyed fingers.

The longitudinal forces in Fig. 2.1 were carried partly by the longi-

tudinal windings but predominantly by the longitudinal tension members (LTM).

These plates (having cross-sections of 1.0 x 0.13 m each) ran the length of the

windings and had fingers at their ends which passed through the face plates to

pick up a portion of the loads from the face plates. Figure 2.4 shows details

of the fastening approach which uses keyblocks between the LTM fingers on the

outside of the face plate. The fingers and keys between the collar components

are also evident in this view. Analyses indicate that one or the other of

these finger areas failed as the initiating event, followed by failure of the

other area and subsequent sequential overload and failure of the transverse ten-

sion members and their connections to the vertical side beam modules along the

entire length of the magnet. Table 2.1 summarizes the fractured structural com-

ponents based on a visual inspection.
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Figure 2.4 Partial Structure in
and fingers and keys
evident in this view
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the end turn region; LTM fingers
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TABLE 2.1
HPDE MAGNET FCS

Damage Status Based on Visual Inspection

COMPONENTS LOCATION CONDITION

N, SFace Plates

Side Plates SW, NW

SE , NE

Longitudinal Tension
Members

W

E

Collars SW, NW

SE

NE

No failures

Failed through slotted regions

No failure

Fingers failed at both ends.
Plate fractured and separated
at N collar region. Bend at
collar region.

No failure evident at present

All fingers failed

Fingers failed at bottom

No failure

Vertical Side Beams W

E

Transverse Tension
Members

Saddle Caps

Tongues

W

E

N
S

S

N

N
S

Vertical Edge
Stiffeners

All connections to transverse
tension members failed at top
and bottom. Central regions
intact.

Failed along bottom at connect-
ions to the transverse tension
members at ends.

All failed, top and bottom, at
or near side beam connections.

All failed or cracked along bot-
tom except f or one in center.
Failure in several top members
at each end.

No failure, top or bottom

Rotated about fore - aft axis but

no failure

Lips broken off

No failure
Failed

-12-
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The relationship and scale of the iron flux, return frame (magnet steel

yoke) relative to other magnet components is shown in Fig. 2.5 and an overall

view of the fully assembled magnet is shown in Fig. 2.6. The outer case (also

called the thermal enclosure) in the end turn region was provided for thermal

isolation. Overall characteristics of the magnet system prior to failure are

summarized in Table 2.2.

TABLE 2.2
HPDE MAGNET CHARACTERISTICS

Copper conductor weight
Aluminum structure weight
Steel weight
Pole length
Entrance aperture
Exit aperture
Half-coil height
Coil width
Space factor
Turns (total)
Length of average turn
Conductor dimensions
Cooling passages
Overall length of coil
Cooling requirements

LN2 for initial cooldown

LN2 for recooling
Water (27 megawatts)

Peak axial fields
Cold mode at pulse peak
Warm mode

83,500 kg
54,100 kg

500,000 kg
7.1 m
0.89 m wide x 0.71 m high
1.40 m wide x 1.17 m high
0.50 m
0.53 m
0.8 m
720
22 m
.025 m x .025 m
.0068 m dia.
8.72 m

64,000 liters
<10,000 liters
12.8 m3/min

6.0 tesla
3.7 tesla

On December 9, 1983 the magnet was being charged in a routine manner prior

to an MHD channel test. It had been cooled to 105 K which was lower than any

previous run. The coil was energized for 39 seconds and the field strength had

reached 4.1 T (several earlier runs had attained or approached this level)

when the force containment structure failed.
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The sequence of events during the failure is shown in Fig. 2.7, as re-

constructed from the data systems and witnesses.' The time scale of the

failure is shown to be very short in comparison to the electrical time con-

stant (inductance divided by resistance) of the magnet. Observers described

the failure as earthshaking and producing a loud boom which, although short,

had a perceptible duration (time) and contained two peaks. A discussion of

the sequence of events and the time scale of the failure based on analysis

is given in Section 2.2.4.

The figures described in the following were taken at various stages in

the disassembly process. Figure 2.8 shows the fracture at the base of the

LTM fingers. A closeup of the fracture at the base of a finger is shown in

Fig. 2.9. Note that the presence of the finger and the keyways in the finger

represent significant stress concentrations and a significant reduction of the

LTM load carrying ability relative to its full size cross-section which exist-

ed over most of its length. The failure in this region was accompanied (either

immediately before or immediately after) by failure of the fingers which key

the four components of the collar assembly together.

Failure of the collar in the end turn region led to a sequential overload

and failure of each transverse tension member and vertical side beam subassembly

along the length of the magnet. Figure 2.10 shows several fractured vertical

side beam modules after removal and placement side-by-side on the floor.

After failure of the transverse support structure, the longitudinal coil

windings moved outward under the action of the sidebar forces. Figure 2.11

schematically illustrates the manner in which the outward deformation was
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Sideplate

Fracture at
Base of
LTM Fingers
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Tension Member
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Figure 2.8 Fractures at base of LTM fingers.
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ultimately restrained. This occurred because the coil cross-section was large

enough to carry the load as an outwardly loaded arch anchored at its ends by

the end turns pulling in towards the pole piece. In a winding designed with

a high enough current density (i.e., small cross-section), the windings would

not necessarily be capable of this restraint and could have fractured. This

effect is studied with a simplified model in Chapter 3.0 to illustrate the abi-

lity of a winding to absorb the load and restrain the conversion of magnetic

to kinetic energy.

Figures 2.12 is a view looking down the side of the magnet from the top

before removal of side components of the iron flux return frame. The view in-

dicates the displacement of the iron from between the top and bottom magnet steel

yokes by the outward movement of the windings. The displacement and arch formed

by the windings as well as the anchoring of the windings at the ends is shown in

Fig. 2.13.

Despite the relatively large winding deformation, very few turns were

actually severed. Damage to the winding was most severe in the ends of the top

and bottom two layers which were adjacent to the steel yokes and subjected to

substantial loading as a reaction to the arch formed by the windings when they

moved outward. A view in this region is given in Fig. 2.14.

Figure 2.15 shows the winding deformation at the "far" end of the magnet

from the point where the failure initiated. Note the broken LTM fingers lodged

in the faceplate and the winding deformation relative to the flatness of the

faceplate.
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Figure 2.12 View looking down the side of the
magnet from the top.
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Figure 2.13 View showing outward movement
and arch formed by winding.
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End Turn Region
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I n sulat i

Longitudinal
Winding

Faceplate ---

Corner -
on Block

Figure 2.15 End turns with iron side structure removed.
Note LTM fingers entrapped in faceplate.
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The HPDE magnet failure was catastrophic in the sense that most struc-

tural components were fractured and the winding suffered extensive plastic

deformation. However, operating procedures prevented possible injury to per-

sonnel and the rugged nature of the winding limited deformations to large

but safe values, and restrained conversion of magnetic to kinetic energy of

failed components. This suggests that it may de desirable to limit oper-

ating current densities in magnet design to levels whereby the winding could

act in this structurally fail-safe manner even if it sustained substantial

deformation in the event of a failure in its primary structure.

2.2 Preliminary Structural Failure Analysis (May 1983) - H. Becker, A. Hatch,
P. Marston and J. Tarrh

Strength-of-materials calculations have been performed on the HPDE magnet

at AEDC to assist in determining the nature and cause of the failure that

occurred in the force containment structure (FCS) on December 9, 1982. From a

structural standpoint, the broad basis for the failure appears to have been

design flaws, particularly of structural details. Initiation of the failure

was the result of severe overloading of the fingers in the ends of the

"longitudinal tension members" where they penetrate the "face plate" and also

of the fingers in the collar" (See Fig. 2.16). These very high local stresses

were not detected in either of the previous stress analyses performed. The

use of materials having low ductility may have contributed to the extent of the

failure.

The results of the calculations are summarized and the most probable fail-

ure scenario is identified based on the calculations. The conclusions must be

considered tenetative since they are founded on structural mechanics only,
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although at present the locations and shapes of the visible fracture sur-

faces appear to substantiate the conclusions.

2.2.1 Failure Sources

The structural failure of the magnet, which occurred at only 2/3

of design field (less than half load), may be attributed to inadequate struc-

tures engineering. Four related aspects are discussed in this section: the

design concept, the stress analysis, inspection, and the materials selection.

Design Concept

One of the design criteria for the force containment structure was ease

of assembly and disassembly. One of the results of this criterion was the

use of the vertical notches that cut through the fingers at the ends of the

longitudinal tension members (LTMs). The consequent reduced section is among

the prime candidates for the failure initiation site; however, a thorough an-

alysis of the stresses in these areas had not been done previously.

The basic concept for the force containment structure requires the use

of four load paths to transmit the major portion of the axial Lorentz load

from the end structural plate/collar system into the LTMs, which react the

axial forces. None of these load paths was considered stiff enough (by an-

alysis) to transmit more than 40 percent of the axial force. Furthermore,

the stiffest axial path would not begin to act until the remainder of the sys-

tem were to deform to half the design value. Since the magnet never was

loaded beyond that value, it is possible that the stiffest load path was in-

active at the time of failure. However, this axial load condition appears to

have had little influence on the mode of failure initiation.
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Lorentz loads in all directions are transmitted through fingers, keys

and key blocks. Tolerances among these structural elements and deformations

during loading could alter the design load paths. As a result, local struc-

tural behavior could have become the most important factor in controlling

the magnet's structural integrity.

Stress Analysis

Prior to this analysis, no calculations appear to have been made of the

stresses induced by the transverse Lorentz forces on the LTMs and the sur-

rounding structure at the magnet ends. That is, the longitudinal force sup-

ports were thoroughly analyzed, but no consideration was given to the effects

of the transverse deflections of the structure (due to the transverse Lorentz

loads) on the stresses in the longitudinal force supports. As will be shown,

the axial stresses in the LTM fingers due to longitudinal forces alone are

trivial compared with the actual stresses when the transverse deflections are

taken into account. Conclusions about fatigue life were drawn from a fatigue

curve constructed using an artificial procedure instead of test data. No

fracture mechanics studies were performed.

Inspection

There is no record of inspection of critrical areas identified in the pre-

vious stress analyses, although ice formation was observed in areas where a

crack might have been initiated. While the magnet was extensively instru-

mented, the strain gauges were located in such a way that critical stresses

were not detected.
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Material Selection

Aluminum alloys, which have low fracture toughness, were used for the

force containment structure. They tend to propagate a fatigue crack rapidly

when the crack length is of the order of 1/10 inch (a nominal minimum ob-

servable size) if the peak theoretical elastic stress exceeds 100,000 psi,

as predicted would occur. In addition, the high strength 2000 series aluminum

alloys commonly are corrosion sensitive.

All of these areas were working together against successful operation of

the magnet. However, had adequate stress analysis of the structural details been

performed, the inadequacy of the structure would have been apparent.

2.2.2 Stress Analysis

Summary

An analysis was conducted by MIT primarily to identify regions of high

stress, the conditions that induced that stress, and the possible impact upon

a failure scenario. Hand calculations were used since high precision was un-

necessary. A number of dimensions were scaled from drawings. The results of

the analysis appear to indicate the probable structural failure site and fail-

ure mode.

The dynamic behavior following failure initiation also was considered.

In addition, a structural energy budget was prepared. A simplified fracture

mechanics analysis was performed to supplement a fatigue life calculation.

The calculations were performed for nominal 4 tesla forces. Loads were

actually assumed to be approximately 45 percent of the calculated forces shown

in Fig. 2.1 (from Reference 2). The same fraction was used for the pressure
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distributions given in Reference 3.

The structural behavior was assumed to be symmetric from side to side

and from top to bottom.

The highest stresses were found at the outlet end of the magnet in the

fingers of the LTMs and in the fingers at the corners of the collar (Figs.

2.17 and 2.18). The numerical magnitudes of the calculated stresses in these

locations were of the order of twice the measured ultimate strengths of the

aluminum alloys used in the FCS. Stresses at selected other locations were

found to be in the range between yield and ultimate.

The presence of stress concentrations, ice pressure (if present), and

temperature gradients would amplify these stresses. However, these effects

were not included in the stresses calculated by MIT and reported herein.

The axial load paths were assumed to follow those shown in Reference 2.

As mentioned above, however, calculations indicate that small tolerances at

the various keys in the system could alter the Lorentz load distribution and

possibly, in an extreme case, eliminate one or more thereby overloading the

others. Furthermore, the use of a gap in the spacer bar (between LTM and TTM)

indicated that below 4 T the potentially stiffest load path for longitudinal

forces was out of action.

Results of Calculations

The peak stresses were found to occur in the downstream fingers of the LTMs

(Fig. 2.17) and in the corner fingers of the collars (Fig. 2.18).
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The major stresses in the LTM fingers were due to sidewise bending of all

the fingers about a vertical axis and vertical bending about a horizontal axis

in the top and bottom fingers only. As mentioned herein above, the axial tension

was small. Figure 2.19 depicts the stresses due to each component. Combined

values appear in Fig. 2.20.

In addition to the high normal stresses (nominally twice the 86 ksi ulti-

mate tensile strength of 2219 aluminum alloy at 77 K) a twisting shear stress

of the order of the ultimate strength can act on the plane of the nominal frac-

ture surface. It would arise from resistance to the anticlastic (saddle shape)

curvature induced by the horizontal bending of the LTM (Fig. 2.21). (It

should be noted that anticlastic curvature was observed at the LTM downstream

end where the fingers broke.)

The neutral axis orientation in each finger is shown in Fig. 2.20. Each

is rotated slightly from the vertical. The sense of rotation is different from

that measured at AEDC (Fig. 2.22). However, the discrepancy is slight and may

be due to the torsional shear and to details of the key/block/faceplate fitup

at each finger.

The sidewise deflection shape of the LTM is shown in Fig. 2.17. The cause

of the large horizontal bending stress is depicted. It arises from LTM bend-

ing (induced by the transverse Lorentz forces) between the faceplate and collar,

together with bending from the outward deflection of the collar. The sideplate

was found to be too flexible to support more than 20 percent of the Lorentz

pressure on the LTM. Furthermore, the collar was found to react some of the

transverse Lorentz pressure that would be expected to act on the VSBM/TTM
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subsystem. The local load distribution was found from assuming the VSBM/TTM

combination to act as an elastic foundation for the LTM, taking the finite rigi-

dity of the collar into account.

The calculations indicate that the large transverse force on each ver-

tical collar causes the corner fingers to stretch far enough to prevent con-

tact of the vertical faces of the horizontal and vertical collars (Fig. 2.18).

Therefore, the local rotations could be resisted only by the fingers in ver-

tical bending. The axial forces on the collars induced bending about a ver-

tical axis thereby inducing a stress field similar to that in the LTM fingers

(Figs. 2.19 and 2.20) and at a comparable level of combined stress.

The calculated numerical values of stress in the fingers of the LTMs and

the collars differ somewhat but are of the same order of magnitude (twice

the ultimate tensile strength of 2219). Precise comparisons would be of

little value at present considering the indeterminate factors mentioned above.

Most important, however, is the fact that the calculated stresses do not in-

clude concentration factors.

Fatigue Life Estimate

An estimate was made of the fatigue life to be expected for the HPDE FCS

at a peak field of 4 T with most pulses at much lower values. For this purpose,

the alternating stress was chosen arbitrarily at 86 ksi since most of the

fatigue damage would occur at the higher stresses, and concentrations would

tend to increase the stresses (or resultant strains) mentioned above. The

curves of Fig. 2.23 were used for the prediction. They indicate 36 cycles using

Reference 3 data and 10 times that for the assumed AEDC curve.
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These results raise the question of possible cracking at the LTM and

collar fingers at early stages in the life of the system. However, the small

critical crack size (of the order of 1/32 inch at 83 ksi from a linear elastic

fracture mechanics calculation) also indicates the potential difficulty of

observing cracks during a casual inspection. A dye penetrant procedure, for

example, would have been required.

2.2.4 Failure Scenarios

Sites and Modes

The calculated high stresses in the fingers of the LTMs and collars in-

dicate that either could have been the site of initial failure (Figs. 2.17

and 2.18). Furthermore, if either set of fingers was to break suddenly,

failure of the other set would be expected to follow within fractions of a

millisecond.

After the LTM fingers broke, the axial stress wave resulting from the un-

loading traveled upstream. The mass of the LTM behind the front was moving

upstream at 10 to 15 miles per hour. The wavefront reached the aluminum mass

at the inlet in 2 milliseconds and the LTM applied an impact load to the com-

ponents. During that time, and subsequent to it, the Lorentz side forces used

the coil and LTM as a crowbar to provide enough additional overload to break

the collar. The LTM then "unzippered" the VSBM/TTM subsystem.

In spite of the 0.13 m thickness, the sideplate is flexible and weak be-

cause of the vertical grooves cut into it. As a result, it might not affect

the unloading process that would follow fracture of the LTM fingers. The

sideplate also has a plane of weakness through the vertical groove at the
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faceplate notch. The sudden upstream movement of the LTM would tend to break

the plate along that groove. Also, the lateral pressure on the broken LTM

would tend to throw it and the sideplate sideward. That could disengage the

three vertical keys between the LTM and sideplate.

If the collar failed first then the sideplate would have been thrown

free as the LTM fingers failed. The time differences involved are of the

order of microseconds.

When the sideward VSBM/TTM stripping action reached the inlet region, the

laternal force would tend to break the upstream collar. The LTM finger failure

would occur shortly thereafter because of the sideways loading that would build

up a large bending moment on the LTM with a peak at the observed fracture site.

Furthermore, the compression load from the inlet end wave reflection would tend

to maintain contact on the LTM at the upstream faceplate. As the LTM deflected

sideward, the downstream compressive force would act on that deflection to in-

crease the bending moment. The combination probably led to the observed up-

stream failure of the LTM.

The impact of the LTM on the faceplate could also account for the fractur-

ing of the lips on the upper and lower tongues.

Lateral Lorentz forces on the bowed coil would be resisted by sideward com-

ponents from tension forces in the conductors at the inlet and outlet saddles.

The axial component would be resisted by the steel. The observed final position

of the coil can be accounted for by that mechanism as the means of stopping the

dynamic action. The copper stress would be 27,000 psi and the strain would be

0.015. The combination would be reasonably close to a representative
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stress-strain curve for annealed copper at 100 K.

Using that type of stopping action, calculations were made that indicate

the entire failure event occurred within 50 to 100 milliseconds.

Energy Budget

The stored magnetic energy at 4 T is approximately 160 MJ. The total

fracture energy is estimated at 0.7 MJ. Plastic deformation of the copper coil

could account for 7 MJ. Sliding friction of the steel masses could dissipate

another 0.5 MJ. That total is approximately 8 MJ or 5 percent of the stored

magnetic energy. On the other hand, the entire stored energy could be accounted

for by an 8 K temperature rise in the copper coil (starting at 100 K) subsequent

to the structural failure.

Future Work

The analysis leading to the above conclusions will be reviewed, refined and

documented. These results will be presented as part of a workshop on the struc-

tural design basis for large superconducting magnets.

It is also interesting to consider the extent of the structural damage to

a comparable superconducting magnet wherein the coils remained superconducting

during the event and the total stored energy was available for mechanical de-

formation. This consideration will be incorporated into on-going safety and

protection studies and will also be discussed at the aforementioned workshop.
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3.0 MAGNETIC TO KINETIC ENERGY CONVERSION FOLLOWING
STRUCTURAL FAILURE

R.J. Thome and W.G. Langton

3.1 Summary

In this section, an idealized magnet structural failure problem will

be analyzed to develop insight into the governing parameters, the sequence

of events, and the time scale over which the events occur. The analysis

is then applied to examples which show the dramatic difference in char-

acter if the coil is driven beyond its ultimate strength after the struc-

ture fails versus the case where the coil can absorb the total load with-

out rupture even though some yielding -is necessary.

The model and examples are based on an infinitely long solenoid con-

figuration. This simple shape allows the important parameters to become

apparent. The preliminary conclusions are:

(a) A protective circuit reaction involving dissipation in resis-
tive elements following a major structural failure is unlikely to
be effective on a fast enough time scale to limit the magnetic to
kinetic energy conversion process in magnets using high current
density windings.

(b) Windings with low enough current densities can absorb the
total load following structural failure, thus limiting the kine-
tic energy conversion process, although this might involve sub-
stantial yielding and deformation of the winding. This is not
usually a design requirement, but might form the basis for one
criteria for large magnet design.

(c) Protective circuits involving inductive energy transfer can
respond fast enough to limit the kinetic energy conversion pro-
cess in high or low current density configurations. The range of
coupling coefficients and time constants to allow this method to
be effective are under study. This is the source of our interest
in the use of multiple circuits for discharge of a TF coil system
as begun this year and as discussed in Section 4.
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The preliminary conclusions will be evaluated further as part of next years

Large Magnet Safety and Protection Effort. Consideration will be given to

model alteration to include non-solenoidal effects.

3.2 Model Description - Resistive Protection

Figure 3.1 shows a long thin solenoid consisting of a coil and an ex-

ternal structure. The coil produces a magnetic field B within the bore

and has a radial build tc and length to. The magnetic field produces an

outward radial pressure, B2/(2 po) which is reacted by hoop tension Fc in

the coil and FS in the structure. The structure is assumed to be com-

posed of a series of alternating strong and weak links where the latter

are the conceptual equivalent of fasteners, welds or other stress con-

centrators in the structural material. In the model, the strong members

have a radial build ts and the weak members have a radial build, tw. A

force balance on the element shown requires:

(B2

Fs +Fc = ----- (3.1)

The stresses in the coil and structural components are related to the

loads by:
Fs = as ts -to = w tw o (3.2)

Fc m oc tc to (33)

where
aj = hoop stress, j = s,w,c

The coil and structure expand the same amount when the load is applied

so geometric compatibility requires
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ec = f ew + (1-f) es (3.4)

where:

ej = strain, j = s,w,c

f = fraction of circumference occupied by
weak links

The stress and strain in the materials are determined by the con-

stituent relations. In this case, we will assume the ideal elastic

stress-strain curves shown in Fig. 3.2a. The yield strengths for the

structure and coil materials are awy and acy, respectively, and the

ultimate strain capability of the coil corresponding to rupture is eu.

Figure 3.2b illustrates a typical design point without weak links

where the coil and structure have the same strain and operate at some

fraction of their respective yield strengths. Figure 3.2c, on the

other hand, shows a possible condition for the first charge to the op-

erating level when links are present which are weak enough (i.e., - tw is

small enough in the model) so that the links are loaded beyond yield and

stretch plastically. The strain at each of the three points may be shown

to be

y WY tw

Es ts (3.5)

e (- r - aY tw)/ (Ec tc) (3.6)
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w - (1-f)(3.7)

where

Ej modulus of elasticity, j = s,c

If the coil is discharged, the coil and strong components of the

structure recover along the same curves, but, because of the yielding

at w, the weak structure recovers along a different path. This is il-

lustrated in Fig. 3.3 . The final state is represented by points c', s',

and w' in the figure which assumes that the coil cannot pull away from

the structure. The coil is left with a residual tension and the struc-

ture with a residual compression such that:

e w - a )Y
Es

ac (3.8)

(1-f) tc ftc

Ec ES ts E t

tc
as a c' - (3.9)

ts

ts
aw' - (3.10)

tw
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If the coil is then repeatedly charged to the original point and dis-

charged, the material will cycle between the primed and unprimed states

in Fig. 3.3. Assume that, after a number of cycles, the weak links fail

at t = 0 with the materials in the charged state, c, s and w, at t = 0-.

At t = 0 the entire electromagnetic load transfers to the coil and sub-

sequent events depend strongly on whether the load is of sufficient magni-

tude and maintained for a long enough time interval to strain the coil

material into the plastic range and up to its ultimate strain, Cu, at

which point the coil material also ruptures.

For simplicity, the weak links will be assumed to break simultane-

ously and uniformly around the periphery. Figure 3.4 then illustrates

the force balance in which the electromagnetic load is accelerating the

mass outward, but is restrained by the hoop tension in the coil. The

force balance may be written as follows:

B2  d6 M d2r
r to dO - 2Fcr sin (- ) = r to dO (3.11)

2 po 2 (2 wr to) dt2

where:
M = total mass of coil and structure

As the coil expands radially, its cross -section necks down such that

ri
tcr - tc (-) (3.12)

r

where:
tc = initial coil thickness when at radius, ri

tcr = coil thickness when expanded to a radius r

The restraining force, Fcr, provided by the coil depends on whether

the coil material is in the elastic range, plastic range or beyond its
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ultimate strain. Following the nomenclature in Fig. 3.3, this becomes

Fcr = Ec (r/ri-1) te ko if (r/ri-1) < acy/Ec (3.13)

acy tc to , if (r/ri-1) > Ocy/Ec

0 , if (r/ri-1) > eu

The electromagnetic force is determined by B which is dependent on

the current in the coil and the circuit characteristics. Assume the cir-

cuit to be the coil with an initial inductance, Lo, in series with a re-

sistor R(t) which can be later specified to characterize a superconduct-

ing coil with a discharge resistor or a conventional resistive coil. For

an infinitely long coil, the inductance is proportional to the bore area,

hence, as the coil expands its inductance changes such that

r2
L - LO - (3.14)

ri

where:
Lo= coil inductance when its

radius is ri

The circuit equation is given by

d
- (LI) + IR(t) = 0 (3.15)
dt

Equations (3.11) to (3.15) may now be combined and normalized to pro-

duce the following governing equations.
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2 dIn dn
2- + 21n n - + InRn 0 (3.16)

dT dT

d2 T,

n Ln2 -Fo =n OdT 2 (3.17)

where:
n = r/ri

In = /10

I0 = initial current

T = t/ To

T0 M r (3.18)

2 r ri Yo B0
2 /(2 po)

LO= initial inductance

R- characteristic resistance = Lo/ To

Rn= R(t)/RO

R(t) = coil resistance as f(t)

y (Cn -1) if ( n-1)< aCY/Ec (3.19)

o cy

ifn -1)> CY/EC

0 if (C)>Eu

Ocy tc to
F = (3.20)

(_2)ri to
2 y

I
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The independent variable in (3.16) and (3.17) is T , the normalized

time, the dependent variables are n , the normalized radius and In, the nor-

malized current; Rn is a normalized resistance which can be a specified func-

tion to allow different -discharge characteristics to be studied; Y is a

function of n which determines if the restraining force supplied by the

coil is in the elastic or plastic range or if the coil has been strained

to rupture. FO is a parameter determined by the characteristics of the

coil structural system. It is a measure of the maxiumm load carrying cap-

abilities of the coil relative to the initial magnetic load. The char-

acteristic time, To, is a measure of the time required to accelerate the

entire mass of the system a distance ri under the action of the total mag-

netic force initially available.

The resistance function Rn is normalized to R0 = Lo/ To. If, for

example, the coil were superconducting without a dump resistor and with

its terminals essentially short circuited through its power supply then

Rn = 0; if the coil were superconducting with a dump resistor, Ri in the

circuit or if it were a conventional coil with a constant resistance then

Rn - Ri TO/Lo; if the coil were an expanding conventional solenoid with

an initial resistance Ri and its cross-section necking down uniformly ac-

cording to (3.12) then Rn = (Ri TO/Lo)(r/ri)2. Since LO/Ri would be the

usual discharge time constant for these cases, we can define Td = Lo/Ri

and rewrite these different cases as follows:
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Rn = 0 , if circuit resistance is zero throughout
transient (eg - superconducting)

To/ d , if circuit has constant resistance Rj
throughout transient

( 0/ Td) T 2  , if coil has initial resistance Ri and
necks down" during transient accord-
ing to (3.12) (3.21)

Note that To is determined by the mass and initial magnetic c9ndition of the

system and that the system circuit resistance cannot have much effect on the

transient if To<< Td. This is illustrated in Section 3.3 together with

the effect of the parameter F0 which determines whether the system strains

beyond the ultimate strain and fractures or whether it is contained.

If To<< Td, then the resistance is ineffective and the coil current

changes during the coil expansion so as to maintain constant flux linkage.

Hence, for the solenoid in Fig. 3.1, the final field in the coil just before

fracture is given by:

Bf = B/(l + u)2 (3.22)

and the stored magnetic energy per unit length just before fracture which is

available for conversion to kinetic energy is:

Ef/ Io = (Bf 2 /2 po) it r12 (1 + 3 22 (3.23)
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For the general case, the governing equations are non-linear but can be

solved numerically by writing them in finite difference form and integrating

forward in time. The approach assumes that the net force is constant during

any interval AT and may be summarized as follows:

dn dn
= -- + AT [Im 2 m - Fo Ym (3.24)

dT Ih dTI

da( at )2 tm

nm+l = Em + AT ---- [Im2 m Fo ym] (3.25)
dTm 2

=Im( 2 d )2
Im+- IM 1 - AT -- - + Rm+l ( 1 (3.26)

1 m+1 dTl i am+1

The initial conditions required to start the iteration are I = 1,
dj

f (1 + cc) and - = 0 at T = 0.
dT

Equations (3.24) to (3.26) are in finite difference form and utilize

simple forms for Rn (see 3.21) and y (see 3.19). Since the procedure is

numerical, more complex forms could be used if desired. For example, Y

could be based on more realistic stress-strain relationships than the "ramps"

shown in Fig. 3.3. The simplified model, however, is easier to visualize

and illustrates the underlying physical interactions.

3.3 Model Description - Inductive Protection

The previous section considered the possibility of restraining the mag-

netic to kinetic energy conversion process by dissipating the magnetic energy

in a resistor in the main coil circuit. This requires that the usual
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discharge time constant, Td be of the same order as To, the characteristic

time for the magnetic force to accelerate the system mass. In many (perhaps

most) cases this will be impractical because of the rapid response time and/

or high voltages required to effect the discharge. In this section, there-

fore, we consider the possibility of restraining the energy conversion process

by transferring some of the magnetic energy to another circuit which is in-

ductively coupled to the first.

The presence of the secondary circuit alters (3.15) as follows:

d d
- (LI) + IR(t) + - (MI2 ) = 0 (3.27)
dt dt

where
M = mutual inductance between the original winding and

the second circuit or electrically conducting body

12 = current in second circuit

A second electrical equation is required because of the second circuit.

d12  d
L2 - + - (MI) + 12R2 - 0 (3.28)

dt dt

where
L2 = self inductance of second circuit

R2 = resistance of the second circuit

Equation (3.28) may be written in normalized form.

d12n d M TO
- + - (- I n) + 12n (- ) - 0 (3.29)
dT dT L2 2

where

12n - 12/10

T2 - L2 2
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If we now assume ( To/ T2 ) << 1, that is, that the time constant of the

secondary is long compared to the characteristic time To. then (3.29) implies;

d12n d M
- = - - (- I n) (3.30)

dT dT L2

In general, the force balance given by (3.11) would require a term add-

ed to the left side of the form

I
- B2 rd6ko (3.31)

where
B2 - field at solenoid segment in Fig. 3.1 due to

current in second circuit

However, for the special case shown in Fig. 3.5, the second circuit is a passive

infinitely long conducting shell inside the bore of the infinite solenoid. In

this configuration, any current in the shell produces no field outside the shell

and, specifically, B2 = 0 at the winding so (3.31) is zero and the governing me-

chanical equation is (3.17) as it was in the previous section.

Furthermore, the mutual inductance between the shell and the winding may

be shown to be a constant for this configuration even if the winding is ex-

panding in time. Equation (3.29) and (3.30) may then be combined to yield

the following electrical equation for this case.

dIn dn
(1 - k 2 i- 2 ) 7 2 - + 2 1n n - + In Rn = 0 (3.31)

dT dT

where M
k2 - = coupling coefficient

L2LO
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Fig. 3.5 Simple model of a conducting shell (or
secondary) capable of trapping
magnetic flux when the structure fails
and winding expands radially.
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Equation (3.31) is the same as (3.16) except for the multiplier on the lead-

ing term which causes a more rapid rate of change of In than if k 2 = 0 as it

is in the previous section. Equation (3.30) then implies that this causes

the current in the secondary to change at the same rate, hence, energy is

transfered into the secondary.

The examples in Section 3.4 will show that the inductive energy trans-

fer can be effective in restraining the conversion of the field energy to

kinetic energy provided the coupling coefficient is sufficiently high. The

model is simple but illustrates the basic concepts. Next year, consideration

will be given to extending the analysis by relaxing some of the simplifying

assumptions.

3.4 Solenoid Examples

3.4.1 Resistive Protection

As a hypothetical example, assume a long solenoid as in Figure

3.1 with a field B = 10 T and bore radius of 1 m. The winding build, tc,

and other characteristics are dependent on the overall current density, hence,

consider two cases as outlined in Table 3.1.

Case 1 is for a relatively high current density and Case 2 is for a

moderate to high level. They lead to substantially different values for tc. The

structural build, ts, is based on a stress as = 4 x 104 psi. The total mass

is that of the structure based on a steel density of 7.8 x 103 kg/m 3 and the

winding based on 8.9 x 103 kg/m 3 with a packing factor of 0.7 applied to the

latter. If a operating current level of 2 x 104 A is chosen then the in-

ductance and stored energy per unit length can be shown to be 0.625 H/m and

125 MJ/m, respectively. The ratio of winding modulus to yield strength was
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TABLE 3.1
SOLENOID CHARACTERISTICS

CASE

Magnetic Field, [T]

Bore Radius, [m]

Winding Current Density, [10 7A/m21

Winding Radial Build, tc

Structural Build, ts [m]

Total Mass Per Unit Length, M/XO,
[kg/mi

Operating Current, [kAl

Inductance Per Unit Length, Lo/o,
[H/mi

Stored Energy Per Unit Length,
E/o, [J/mi

Winding Modulus/Yield Stress,
Ec/ocy

Winding Strain, cc

Characteristics Time, T 0 [s]

Load Characteristic, Fo

Winding Ultimate Strain,cu

1

10

1.0

3.3

0.241

0.168

- 2.51 x 104

20

0.625

1.25 x 108

900

5 x 10~4

9.28 x 10-3

0.562

0.2

2

10

1.0

1.86

0.482

0.182

3.39 x 104

20

0.625

1.25 x 108

900

5 x 10~4

1.17 x 10-2

1.0

0.2
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assumed to be 900 and the ultimate winding strain at fracture was assumed to

be 20%. In both cases the initial strain in the winding at operating current

level was taken as 5 x. 104. The characteristic time may now be found using

(3.18) and, as indicated in the table, is about 10 msec for each case. This

is representative of the time required for the stored magnetic energy to ac-

celerate the system mass and is quite rapid. The yield stress for the winding

was assumed to be acy = 0.7 (2 x 104) = 1.4 x 104 psi. This value, together

with some of the characrteristics found earlier, allow F0 to be found. Equa-

tion (3.20) indicates that F0 , the load characteristic, is a measure of the

load carrying ability of the winding alone, at yield, relative to the magnetic

load. Since it is substantially less than one for Case 1 and unity for Case 2,

we expect the two cases to respond quite differently in the event of a struc-

tural failure.

Figures 3.6, 3.7 and 3.8 show the response for Case 1 following a

structural failure at t - 0. The abscissa in each figure is time normalized

to To which is - 10 ms as indicated in Table 3.1. Figure 3.6 shows the cur-

rent in the coil normalized to the initial current and the transient which re-

sults for four different values of (To/Td), the ratio of the characteristic

time to the usual discharge time constant, Td - Lo/Ri. The case of (To/Td)

= 0 corresponds to a zero resistance situation and increasing (To/Td) implies

circuitry with successively larger coil resistances. Note that the transient

is well underway in only two times the characteristic time, To. The normalized

radial displacement is shown in Fig. 3.7 over the same time period and illu-

strates substantially different reactions depending on the value of (To/Td)*

Higher values of (To/Td) generate a condition where sufficient energy is

dissipated rapidly enough in the resistance to limit the deformation. However,

low values result in a deformation which is not limited. The critical condition
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occurs when the ultimate winding strain, eu is exceeded. In these examples,

eu = 0.2, therefore, if conditions are such that n s 1 + eu A 1.2 we would

expect the winding to rupture and no restraint on conversion of the remaining

magnetic energy to kinetic. This is shown in Fig. 3.8 which is a plot of the

instantaneous kinetic energy per unit length normalized to the magnetic energy

per unit length initially stored at t = 0-. For high enough (TO/Td) the

kinetic energy starts at zero, rises to a maximum and decreases to zero. How-

ever, if the energy is not dissipated fast enough, that is, if (To/Td) is low

enough, then the coil ruptures and the unrestrained magnetic to kinetic energy

conversion occurs. Note that the sudden change in slope in Fig. 3.8 occurs at

the time when the radial displacement in Fig. 3.7 passes through n I 1.2 where

the ultimate winding strain is exceeded.

Case 1 illustrates that the unrestrained conversion of magnetic to

kinetic energy can be averted even if Fo < 1 provided the usual discharge time con-

stant is of the same order as To. In many cases, however, this would require

unrealistically high voltages and unrealisticially fast circuit response times

since To is likely to be small. As a result we will conclude preliminarily

that a response involving resistive dissipation alone is not feasible. Next

year this shall be investigated further to relate To, Td and the required

voltage to system characteristics.

It was noted earlier that a different response would be expected

for Case 2 because F0 = 1. This is illustrated in Figs. 3.9, 3.10 and 3.11

which have axis labels corresponding to those discussed for Case 1. Figure

3.9 shows the normalized current transients for the same values of (To/Id) as

used in the previous case. Note from Table 3.1 that To M 10 msec for Case 2 also.
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The normalized radial displacement is shown in Fig. 3.10 and is limited for all

(To/Td) because F0 is large enough for the winding to have sufficient strength

to accept the load after the structure fails at t = 0. However, even though

the winding strain does not reach the rupture condition (i.e. n = 1 + eu " 1.2),

some yielding must occur at the levels indicated. Since Ec/acy = 900, yielding

would be expected at about n= 1 + (900)-l w 1.001, hence all of the cases shown

cause the winding to yield plastically. Figure 3.11 gives the normalized kinetic

energy which returns to zero for all cases, including (To/Td) = 0. The

break in the kinetic energy curves occurs at the yield point where the function-

al form of the restraining force by the winding changes form (see (3.19)).

Case 2 shows that a coil with a high enough Fo can restrain the mag-

netic to kinetic energy conversion process even if the resistive dissipation is

zero (i.e. (To/Td) = 0) although yielding and winding deformation may take

place. It may be possible to translate this into a safety oriented design cri-

teria for coils of a more complex geomerty than the ideal solenoid, hence, this

will be investigated next year.

Case 1 will now be reconsidered with successively larger values of

Fo and with (To/Td) = 0 to show the change in results as the load character-

istic, F0 , is varied. Figures 3.12 and 3.13 show the normalized current and

radial displacement vs time, respectively. Figure 3.13 indicates that the dis-

placement corresponding to ultimate winding strain (i.e., n t 1.2) is exceeded

for F0 4 0.82. This is confirmed in Fig. 3.14 which shows that the conversion

to kinetic energy is unrestrained for F0 4 0.82. The case of F0 = 0.8 is parti-

cularly interesting since it represents a case where sufficient energy can be

absorbed by the coil deformation to cause the kinetic energy to pass through a
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local maximum and start to decrease, however, the ultimate strain is eventual-

ly achieved at the sudden change in slope on this curve and the winding ruptures.

3.4.2 Inductive Protection

This section will illustrate the ability of a secondary cir-

cuit to prevent unrestrained expansion even if F0 4 1 provided the coupling

coefficient between the primary and secondary circuits is sufficiently high.

The winding and structural characteristics in this example correspond to F0 =

0.7 and R = 0 for the primary circuit which leads to unrestrained conversion of

magnetic to kinetic energy as shown in Fig. 3.14, which corresponds to a coupl-

ing coefficient of zero.

For the simple case shown in Fig. 3.5, the coupling coefficient

may be shown to be M2

k2 = - (3.32)

LOL2

k2 . ( (3.33)
ri

Equation (3.33) has a particularly simple form for this geometry and is limit-

ed to the range 0 4 k2 4 1.0.

The results for this case are plotted in Figs. 3.15 to 3.17 for

selected values of coupling coefficient, k2. Figure 3.15 shows that the pre-

sence of the secondary (k 2 * 0) allows the current in the winding to fall faster

initially and that this effect can occur on the fast time scale which is of the

order of T . Figure 3.16 shows that if k 2 is high enough (i.e., k 2 > 0.4 for

this case) then the radial displacement is limited because the ultimate winding

strain, corresponding to ri = 1.2 in this figure, is not attained. This is also in-

dicated in Fig. 3.17 which shows that the magnetic to kinetic energy conversion
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process returns to zero kinetic energy for k2 > 0.3. Lower values of k 2 repre-

sent a condition where the secondary is unable to absorb sufficient energy for

this level of F0 before the ultimate strain is reached and the winding ruptures.

This example, though simple, illustrates the potential advantage of

using inductive coupling to restrain magnetic to kinetic energy conversion be-

cause it can be effective on a fast enough time scale with reasonable levels for

coupling coefficients. Next year this will be developed further, in conjunction

with the multiple circuit TF coil system characteristics described in Section

4.0.
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4.0 DISCHARGE CHARACTERISTICS FOR MULTIPLE CIRCUIT TF COIL SYSTEMS

R.J. Thome, J.M. Tarrh, R.D. Pillsbury, Jr., W.R. Mann and W.G. Langton

4.1 Summary

The previous section closed with a simple model to illustrate the

ability of a secondary circuit to be effective in restraining magnetic to

kinetic energy conversion in the event of a structural failure in a pri-

mary circuit. In this section, the use of multiple circuits in a TF coil

system will be studied since it presents a means for limiting the magnetic

to thermal energy conversion in the winding, in the event of a quench.

Specific examples of this type have been considered by Yehl and Green

and Kazimi.2 This section will discuss the general character of the pro-

cess and the effect of the number of circuits on the voltage required for

discharge of the first and the remaining circuits. This will be related to

the allowable temperature rise, stored energy, operating current level,

and current density in the windings.

Typically, results show that only a small fraction of the total energy

needs to be removed if only one of k circuits is discharged because the

bulk of the energy is retained by the (k-1) circuits which maintain con-

stant flux throughout the transient. This procedure allows the first cir-

cuit to be discharged more rapidly for a given initial voltage and final

temperature limit, thus allowing for a longer delay time before the dump is

initiated or for operation at a higher current density. The remaining

coils could then be discharged on a longer time scale. However, if the

remaining circuits require rapid discharge shortly after the first, then

the necessary voltage per coil may or may not be higher than for the first
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circuit depending on the discharge sequence, number of coils and aspect

ratio. The voltage to ground can be considerably lower than if a single

system circuit were used. The general criteria governing the different

reactions will be developed further next year.

The next section describes the model, which was the basis for a

code developed in part under this program. The last section gives the re-

sult for a case based on a recent version of TFCX to illustrate its appli-

cation.

4.2 Model Description

Figure 4.1 shows a plan view of 2N toroidal field coils. The total

energy stored is independent of the circuitry and is given by the following

(assuming all coils to be initially charged to the same current, i0 ).

(2N-1) 2N

E - [o NM'I + z 4 M'n (4.1)

L M-=1 n=m+1

where

2N = total number of coils

io = current per coil

M'mn = mutual inductance between coils m and n

If these coils are connected such that there are a total of k circuits then

there are 2N/k coils per circuit.* Assume that the sequential coils in

* Where 2N/k is an integer, that is, there are an equal number of coils
in each circuit.
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Fig. 4.1 are in alternating circuits; that is, the mth circuit contains

coil numbers m, m+k, m+2k, .. , m+(2N-k) where m = 1, 2, .. , k. The in-

ductance between circuits m and m' (note: m = m' implies self inductance)

is then given by

2N 2N
(-- - 1) (--- - 1)

k k

-M 2; M'1m+k, m' + jk (4.2)

j=O 1=0

Initially, each circuit links the same total flux given by:

k

0 = Xm - Mj io; M-1, 2, .. , k. (4.3)

j-l

If one circuit is discharged completely while the others maintain con-

stant flux, then the final flux linked by circuit m is Xmf given by:

k

X0 " Xmf - Z MMj ijf; m-2, 3, .. , k. (4.4)

j-2

where ijf = final current in circuit j

and it is assumed, without loss of generality, that circuit 1 is the first

to be discharged. Since Xo can be found from (4.3), then (4.4) represents

a set of equaitons which can be solved for the unknown currents, ijf.

The code developed to address this problem has been written for k < 9

and has been used for the sample case in Section 4.3. Many of the
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advantages of the multiple circuit approach, however, occur for k=2 or 3

and k will probably be limited to a small number for practical circuit de-

sign and operation. The following, therefore, summarizes the final cur-

rents for k up to four circuits in terms of the coupling coefficient

kij = Mij/Mii (note that Mi = M and Mij Mj for these systems).

Case A: k = 2

if = 0

12f /io = 1 + k 1 2  (4.5)

Case B: k 3

ilf 0
1+2k 1 2

12f/io 13fio = (4.6)
1+k12

Case C: k 4

if = 0

(1+2k 1 2 + k13 ) (1-k12 )

(1+k13 ) - 2k12
2

(1+k13 - (2)
i3f/io = (12f/io) (4.8)

(1 - k12)

In general, the final energy stored in the system is given by

k k-1 k

Mi
Ef = -- 7 '" , 2j + 2; 2 M ii fi il (4.9)

j=2 j=2 j'=j+1

and the final flux linked by the first circuit is

k

1X = 2 MI ijf (4.10)

J=2
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If we assume that all circuits are charged and at a current io for

t<td and that a transient is initiated at t-td by inserting a resistance

RI in the first circuit while all others have zero resistances, then the

first circuit will decay with an exponential time constant, T. All other

circuits will approach their final current levels imf with the same time

constant. This condition is expressed by the following for t;td-

-(t-td)/T

il - io e (4.11)

-(t-td)/T

im = imf - (imf-io) e ;m*1 (4.12)

The inductance voltage across the terminals of Circuit 1 is given by

k
dX1  d

V -- = - ( Z Mjmim) (4.13)
dt dt

m=1

Equations (4.11) to (4.13) may now be combined to show that

k
2E Mi Mim -(t-td)/T

V, - (- ) -1 + 3 - (imf/iO - 1) e (4.14)

ioT Mo Mi]
m-2

where:
Mo circuit inductance if k=1

M11  = inductance of first circuit if k*1.

E = Moo 2 /2

The maximum value of V1 occurs at t=td and (4.14) shows that for a given

stored energy, initial current and discharge time constant, V1 is always

less for a multiple circuit system because:
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(a) Mll < M as indicated by (4.2)

(b) the absolute value of the term in brackets is reduced for k>1
because Mlm < M11 for circuits of this type where M11 = MMM
and because imf/io > 1 for m*1

It is useful to define a characteristic voltage, VC, as the maximum

voltage which would be required to discharge the system if there were only

one circuit, that is

2E
VC = (4.16)

iOT

Equation (4.14) and (4.16) can be combined to form the normalized maximum

voltage for the first of k circuits to be discharged.

k
Vmmax Mil M-m imf

V1max = - = (- ) -1 + Z -- (-- -1) (4.17)
Vc MO Mil 

Sm=2

Equation (4.17) implies that Vimax is primarily a function of k and the

overall geometrical characteristics of the coils which comprise the TF

coil system. The effect of k is to strongly reduce Vimax with the most

significant reduction occurring when k increases from one to two or three.

Equation (4.5) can be used with (4.17) to illustrate the effect for k=2,

with the result that:

V1max -(1/2)(1-k 1 2 ) (4.18)

k=2

Since k1 2 < 1, (4.18) shows that the maximum voltage required to discharge

the first of two circuits is less than one half that required to discharge
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the system if it were connected in a single circuit. This arises primaryly

because less than half the energy must be removed. The quantity Vmax can

be interpreted as the voltage to ground required in each case. The maximum

voltage required to discharge the second circuit with the same time con-

stant as that used for the first circuit is given by

2Ef

V2max = - (4.19)
12 fT

k=2

Equation (4.19) can be normalized to the characteristic voltage (4.16) and

shown to be

/2max = -1/2; Tj =T2 = T (4.20)

k=2

Thus, the maximum voltage required to discharge the second circuit in a two

circuit system is only half that required to discharge a one circuit sys-

tem with the same time constant. Note that the voltage per coil would be

the same in both situations, but that the maximum voltage to ground is re-

duced by a factor of two for the two circuit system relative to the single

circuit system. However, because the second circuit is starting its tran-

sient from a higher current level, its discharge time constant should be

shorter than T if it is to be protected to the same temperature limit.

This will be discussed further later in this section. The results for the

maximum voltage for the second circuit in a two circuit system are

V2max (1 + k1 2)--- = ; T, = T2 =T (4.21)
Vc 2
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The main advantage of using the multiple circuit approach is the sub-

stantial reduction in the circuit voltage to ground which then reduces the

risk of a ground fault. The main disadvantage with the system as described

thus far is additional circuit complexity. Specifically, if either the time

constant or temperature limit for discharge of the first and second cir-

cuits is to be the same then the resistor to be inserted in the second cir-

cuit, R2 is not the same as that required for the first circuit, R1 , that is

Ro
RI = - (1-k12 ) (4.22)

2

R2 = - if T1 -T 2 - T
2(1+k 1 2)

or

Ro (1+k1 2)
R2 = if Ti - T2 = Tf (4.23)

2

where R0 = MO/T = resistor required if a single circuit system is used.

The selection of the required discharge time constant, T, is depen-

dent on the cause for discharge. In a superconducting magnet system, if

a normal region forms and begins to propagate (i.e. - "quench"), a rapid

discharge is usually initiated in order to limit the ohmic heating and

corresponding temperature rise in the normal zone. Assume that the normal

zone forms at t=0 with an instantaneous local transfer of current from the

superconductor to its copper stabilizer which then has a current density

jcu. If the heating is adiabatic, then the local temperature rise is gov-

erned by the following

1

cu2 dt - (m Ym Cm Am) dT (4.24)

P cuAcu
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where

Pcu. = resistivity of copper = pcu (T)

Acu = copper cross-sectional area in conductor

Am = cross-sectional area of material m which is
capable of local heat absorption but is not
a current carrier for t > 0 except when
m = cu

Cm = specific heat of material m = Cm (T)

Ym = density of material m

T = temperature

The left side of (4.24) can be integrated if a current transient is defined

for all time and the right side can be integrated based on an initial tem-

perature and material properties as a function of temperature after the

geometric ratios Am/Acu are defined. For a specific conductor, the latter

are known and the right side of (4.24) becomes a function of the final tem-

perature only, that is, G(Tf). To evaluate the left side of (4.24), assume

the transient shown in Fig. 4.2 which assumes quench initiation at t-0

followed by a delay time, td, during which the current is held constant.

A discharge of the circuit then occurs with a time constant, Td. Equation

(4.24) can then be integrated to yield:

2 d
Jo (td + - ) = G(Tf) (4.25)

2

where
jo = initial current density in cu

If we further assume that the resistance of the normal region is small re-

lative to the resistor inserted in the circuit at t=td then Td in (4.25)

can be set equal to the T required earlier in this section with the result

that
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G(Tf)
T -2 - td (4.26)

[JoJ

For a given conductor, final temperature and delay time (4.26) allows

T to be found for use in the voltage expressions derived earlier.

The concepts which have been developed are applied in the next sec-

tion to a specific case to illustrate some of the effects of the multiple

circuit approach. A substantial decrease of the voltage required for dis-

charge of the first circuit relative to that required for a single circuit

discharge can be achieved, with the main incremental benefit occurring for

k-2 and 3. This can be done at the cost of increased circuit complexity

because sequentially-discharged circuits require different dump resistor

values if the discharge time constants are to be the same or, more real-

istically, if the same adiabatic temperature limit is applied for pro-

tection purposes. This trade-off problem will be considered further next

year to develop general criteria for selection of circuit configurations.

4.3 Discharge Characteristics for TFCX TF Coils

The concepts discussed in the previous section have been incorporated

in a code which was developed to study the discharge characteristics of a

TF coil system from the coil protection standpoint. Cases for TFCX were

considered where the entire coil set is discharged or where the coil set is

divided into a number of circuits and only one of the circuits is dis-

charged. In order to maintain a zero net out-of-plane force on any given

coil, two circuits must be used with alternate coils in each circuit, such

that the discharge of the first circuit still results in a TF distribution

which is periodic about the machine axis. Using more than two circuits has

other advantages but does not result in zero net out-of-plane forces. The
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code was applied to a 10 T TFCX scale system with 12 or 16 coils to illu-

strate some of the features of this approach when discharge circuits of

this type are used. The advantages, disadvantages, and system implica-

tions of using multiple circuits is still under evaluation.

An elevation view of the TF coil outline used in this study is shown

in Fig. 4.3. It is the result of an early study and is somewhat larger

than more recent design points. The ampere turns per coil and cross-sec-

tion in the upper left of the figure correspond to a 16 coil configura-

tion. The portion of this study based on a 12 coil set used the same TF

coil outline in the rz plane, but with the ampere turns per coil increased

by the ratio of 16/12.

The calculation of discharge characteristics requires circuit self

and mutual inductances. These were obtained by computing the self and mu-

tual inductances for and between individual coils in the complete set, then

collapsing the inductance matrix according to the number of circuits. It

was assumed that the coils were connected with each successive coil distri-

buted sequentially among k circuits. Sixteen coils may, therefore, be

connected in one circuit or with sequential coils in two, four or eight

circuits with eight, four or two coils per circuit, respectively. Twelve

coils on the other hand, may be connected in one circuit or with sequential

coils in two, three, four or six circuits with six, four, three or two

coils per circuits respectively.

Table 4.1 gives some of the characteristics if the system is charged

to the operating level and one circuit is then discharged while the remain-

ing (k-1) circuits maintain constant flux; that is, they are not discharged

and remain superconducting. The first line gives the percent energy which
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Figure 4.3 Typical TF Coil dimensions for TFCX.
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TABLE 4.1
CHARACTERISTICS FOR DISCHARGE OF THE FIRST OF k CIRCUITS a

(1) % Energy Removed
or Vmax/Vmaxi

(2) Bf/Bi c

(3) If/i d

(4) Vmax T [105 V-sec]b

Number
of

Coils

12
16

12
16

12
16

12
16.

Number of Circuits, k

1 2 3 4

100 19.9 12.9 9.6
100 13.1 - 6.4

0 0.80 0.87 0.90
0 0.87 - 0.94

- 1.6 1.3 1.29 1
- 1.74 - 1.36

25.6 5.07 3.33 2.43 1
24.5 3.19 - 1.60

6

6.4

.94

8

3.4

0.97

a Coil Geometry as in Figure 4.3

b E = 1.45 x 1010 J for B = 10 T

c B Final

B Initial

d I Final (Adj. Circuit)

I Initial

.28 -
- 1.35

.67 -
- 0.83
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must be removed from the system if one circuit is discharged as a function

of the number of circuits, k. For one circuit, 100% of the energy must be

removed in the event a fast discharge is required. If there are two cir-

cuits in a twelve coil system then about 20% of the total stored energy

must be removed in discharging one circuit and the fraction drops to 13%

in discharging one out of three circuits, 9.6% for one out of four circuits

and 6.4% for one out of six circuits. The corresponding fractions are

somewhat smaller for the 16 coil system because a smaller fraction of the

total system is de-energized when discharging one circuit.

When one of the k circuits is discharged while (k-1) maintain con-

stant flux, the currents in the circuits which remain "on" are altered

somewhat from the initial condition. The second line gives the ratio of

the final average toroidal field to the initial field level as a function

of the number of circuits. The table indicates that 80% or more of the

initial field level is maintained for the twelve coil system with two or

more circuits when one is discharged and that 87% or more is maintained

for the sixteen coil set.

All of the circuits which remain "on" do not necessarily have the

same final current, because of differences in coupling between circuits.

The ratio of final to initial current in the circuit adjacent to the one

which is discharged is shown in line three. The increase is most dramatic

for two circuits, where the ratio is 1.6 and 1.74 for 12 and 16 coil sys-

tems, respectively. For more circuits, the ratios are about 1.3 to 1.35.

This current increase, coupled with the high field level which is retained

as indicated in line two, illustrates the potential for forcing the coils

to go normal in those circuits adjacent to the one being discharged. An
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evaluation is required to determine whether or not this ability to initi-

ate normal regions and distribute the energy dissipation more uniformly

throughout the system is favorable under selected fault conditions. Al-

ternatively, lines two and three may be used to determine the over-current

capability required for the conductor if it is to be designed to remain

superconducting in the circuits which are not discharged. Since conductors

are often designed at about 70% of critical current, the table implies

that k-2 would force circuit two to go normal, but k>3 could allow circuits

2 and 3 to remain superconducting if designed for this condition.

In a system with a given operating current and initial energy, line

1, the percent energy removed, is also the ratio of the maximum voltage

which must be applied to the first circuit being discharged to the maxi-

mum voltage which must be applied if all coils are in one circuit. This

illustrates one of the potential advantages of the multiple circuit sys-

tem. For example, for two circuits, the maximum voltage which must be

applied to discharge one of them to zero current is only 19.9% of the max-

imum voltage required to discharge all coils to zero current if they are

all in only one circuit. This occurs because most of the energy is re-

tained in the system by the coils which stay "on" and maintain constant

flux. If, however, the remaining circuits subsequently require discharge

with the same time constant or with a faster time constant to satisfy a

specified adiabatic temperature rise limitation, then they might require a

higher voltage per coil than applied to the first. The trade-off between

the advantage of using a low voltage on the first circuit versus the likei-

hood of needing a subsequent rapid discharge of the remaining circuits

is still under evaluation. Note that if there are three or more circuits,

then the ratio of final to initial current in the circuit adjacent to
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the discharged circuit is in the range of 1.3 to 1.35 (line 3). Since

this is in the range of the ratio of critical current in operating cur-

rent typically selected for TF conductors, the remaining charged circuits

may be designed to remain superconducting thus allowing the bulk of the

TF system energy to be maintained or removed over a longer period of

time.

The last line in Table 4.1 applies for a total system stored energy

of 1.39 x 1010 J and corresponds to a maximum field at the winding of 10

T. It gives the product of maximum discharge voltage and discharge time

constant for this system for the first circuit to be discharged as a func-

tion of the number of circuits. The discharge time constant, T, is

usually specified on the basis of a protection criterion for allowable

conductor temperature rise in the event of a normal front propagation.

Since the time constant is the same for all cases in the table this indi-

cates the potential advantage for the first discharge of using multiple

circuits.

The use of multiple TF coil circuits has the potential for rapid dis-

charge of a section of the TF system while maintaining some degree of out-

of-plane force symmetry and allowing the bulk of the energy and field

level to be decreased on a longer time scale. The system implications

and impact of subsequent rapid discharge requirements on the remaining

circuits is still under evaluation, but can be expected to be more advant-

ageous as the scale of a system increases or as the current density in-

creases.
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5.0 SAFETY RELATED EXPERIMENTS

5.1 Arc Extinction Voltages Between Helium-Filled Electrodes at 300 K and
4.2 K - J. Borzikowski, T. Ishigohka, and Y. Iwasa

5.1.1 Introduction

A series of experiments to determine the arc extinction voltage was

conducted in both room temperature gaseous helium and liquid helium environments.

The experimental concept was to initiate an arc within a helium-

filled electrode gap by using an exploding wire technique. A DC current flowing

through the resistive circuit was made to pass through a thin wire fuse, by

manually opening a knife switch. The fuse would then heat rapidly and burn out,

producing a partially ionized, high-density plasma in the gap. If the voltage

across the electrodes was high, and the degree of ionization in the gap was suf-

ficient, an arc would be sustained. Since we were interested only in whether or

not an arc would be extinguished under specific initial conditions, no attempt to

study steady-state arcing was made.

5.1.2 Experimental Apparatus and Procedures

Circuit Layout

Figure 5.1 shows the basic circuit used for all the tests. A 125 A, 40

V DC power was used in its constant voltage mode. The use of this "constant"

supply rather than a capacitor bank as the source of electric current for the

circuit is the major change from the circuit used in our previous measurements.'

The major difficulty with the capacitor bank is that both supply voltage and

current decrease rapidly during the critical moments of arc formation and ex-

tinction, and it was not absolutely clear if arc extinction occurred because of

insufficient electrode voltage or because of insufficient arc current.



Electrodes

To Ch. I
Fuse

To Ch. 2

Knife
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Fig.5.1 Circuit used for the measurements.
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The load resistor, R, was made by soldering three, 1.8-m lengths of 304

stainless steel tubing each having a 0.25-mm wall thickness, using copper plumb-

ing elbows. The negative end of this resistor served as a fixed terminal, while

the other terminal was adjustable. The adjustable terminal consisted of a strip

of braided copper wire, anchored by a steel hose clamp and attached to the posi-

tive lead by a spring clamp. The load, resistance variable in discrete steps,

had a range of approximately 0.7 0. A given supply voltage, at fixed R, de-

termined the initial current.

A 1-mg shunt resistor, placed in series with the electrode assembly, mea-

sured the electrode current. A manual single-throw knife switch was used to

direct current flow to the electrode assembly.

A four-channel transient digital recorder monitored both the electrode

current and voltage as a function of time. A digital volt meter (DVM), con-

nected across the load resistor, measured V - an initial condition parameter

used to compare data from different events. By later calibration, VR could,

given the actual value of R, be converted to initial circuit current.

As an additional diagnostic, an acoustic emissions (AE) sensor was in-

stalled on the electrode assembly. It was found that, since an arc gener-

ates strong AE signals, these sensors could confirm the presence of an arc.

AE signal bursts typically describe a wave envelope which, in this application,

lasted approximately 10 ms. For this reason their use in short arc events

(45 ms) was of limited value since the modulating envelope would mask any acti-

vity due to arcing.
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Electrode Assembly and Fuse

As mentioned previously, the electrode assembly used in the room tempera-

ture gaseous helium environment is different from that used in the liquid helium

environment, the one for LHe use being smaller than the room temperature as-

sembly, in order to minimize liquid helium consumption.

Both assemblies consist of two electrically-insulated copper plates (the

anode and cathode) separated by a fixed distance -- the electrode gap. A

screw mounted in the probe secures the filament assembly (fuse) between the

anode and cathode plates.

The fuse consists of an insulating square (1 cm) with a hole or slot ma-

chined at the center to accommodate a thin metal wire filament. The wire is

threaded through the insulator, folded in step fashion, and then sandwiched

between two copper squares. The fuse assembly is illustrated schematically

in Fig. 5.2. This assembly is then secured between the anode and cathode

plates by a screw mounted centrally through the anode.

Procedures

A. Room Temperature

1. Thread filament through and fold across insulator.

2. Slide copper plates across top and bottom of insulator keeping
filament immobile.

3. Mount and secure fuse assembly in electrode assembly, using anode
screw.

4. Replace bell bar cover and begin pumping, filling channel with
helium.

5. Zero all transient digitizer signals and recheck settings.

6. Turn on supply current and monitor VR.
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7. Adjust V to desired level.

8. When stabilized reading of V is obtained, shut off
He line.

9. Open switch in a smooth, rapid motion, repeated from
shot to shot.

10. Shut off current supply to prevent extending arcing or

accidental shorting.

11. When voltage dies off, close knife switch.

12. Remove bell jar setting.

13. Lossen mount screw and remove filament assembly.

B. Liquid Helium (4.2 K)

1. Filament assembly as in above procedure.

2. Precool electrode assembly in liquid nitrogen bath.

3. Place electrode assembly in helium Dewar, and transfer
liquid helium until the liquid level is above the
electrode assembly.

4. Connect voltage leads and power lines.,

5. Follow steps 3-11 above.

6. Disconnect all leads.

7. Withdraw rod assembly from Dewar.

8. Warm electrical assembly using heat gun.

9. Loosen and remove fuse assembly.

5.1.3 Results

The effects of a number of parameters on the are extinction voltages

V , obtained in an arc event lasting more than 5 ms have been investigated. V X

is defined as the peak value of voltage at the instant of fuse burnout: if the
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voltage across the electrodes exceeds V , an arc is initiated at the instant

of fuse burnout and the current across the elecrtrodes is sustained; if it is

below V , the current drops to zero.

The variable parameters are: (1) helium temperature; (2) insulator material

and/or insulator configuration; (3) fuse material; (4) gap size; (5) current. A

summary of data is presented in Table 5.1.

5.1.4 Discussion and Conclusions

As expected, increasing the gap size increases VX . A variety of

theoretical models exist to correlate these parameters but most are expressed

in terms of a "steady-state" arc voltage which is not directly applicable to

these trials. A greater variety of gaps would have to be tested in order to

better explain the relationship between V, and gap size.

The slightly lower voltages seen when using the tinned electrodes

might be explained by the lower work functions of tin (7.4 V) and lead (7.4 V)

compared with that of copper (7.7 V). For the same degree of electrode heat-

ing, surface ionization at a given current occurs more easily with tin and

lead than with copper, resulting in lower plasma resistivity and thus a lower

voltage at a given current.

In the case of the solder fuse, it seems that its higher resis-

tivity and lower heat capacity in the solid state cause very rapid burnout.

This reduces the amount of heating available to vaporize the metal and ion-

ize the gas by thermionic emissions. The radiation loss associated with the

reduced pool of highly energetic particles varies as Z2, Z being the atomic

number, which for tin ( Z= 50) and lead (Z = 82) greatly exceeds that of copper
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Table 5.1: Summary of Data
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(Z = 29, possibly poisoning the plasma with impurities.

The arc extinction voltage is virtually independent of helium temperature,

agreeing with a conclusion of the previous measurement. 1 The most important

finding of this series of measurments has been the absence of arcing following

the burnout of a solder fuse, suggesting that, if present in the magnet winding

and causing shorts, solder chips would be less troublesome than copper chips.
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5.2 Small Football Coil Test - A.M. Dawson

The small football test coil described in detail in Section 5.2.2 be-

low was completed in August 1983 and was instrumented prior to initial

testing in the Plasma Fusion Center Component Test Facility in September

1983. A second small coil is being wound and will also be tested during

FY84. Differences in the coil designs will be outlined below.

Tests that will be performed on these coils are designed first to de-

termine fundamentals of conductor behavior and then to determine coil

characteristics. These tests will include:

0 strain effects on conductor characteristics including mea-
surements of stability and critical current degradation
with increased strain

* cyclic fatigue measurements which will simulate operation
of the proposed Alcator DCT experiment. Deflections
to be incurred by the coil sides during these tests are
planned to be greater than those that the machine will
experience. The deflection size will be increased until
the following events are experienced:

(a) degradation of conductor performance and/or

(b) sheath failure and/or

(c) thermal burnout and/or

(d) internal over pressure during quench

0 motion of conductors

5.2.1 Conductor Description

The small football test coil is wound from a sheath-enclosed

cable of 27-strand, bronze matrix process Nb3Sn copper stabilized conduc-

tor. Figure 5.3 is a photograph of a cross section through the conductor.

Table 5.2 lists conductor parameters for this coil, while Table 5.3

lists conductor parameters for the proposed Alcator DCT machine. For both
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TABLE 5.2
SMALL FOOTBALL COIL CONDUCTOR PARAMETERS

Material

Cu: Noncopper ratio

Void fraction

Sheath

Sheath wall thickness

Sheath dimensions

Short sample Ic, A
10 T
12 T

Short sample Jc, A/mm2 @ 1.5 jyV/cm
10 T
12 T

Nb3Sn, copper stabilized

1.8

32%

JBK - 75

0.015 in. (0.38 mm)

0.192 " x 0.192" sq. (4.88 mm sq)

1890
1140

509
307

27Strands

Strand diameter 0.7 mm

TABLE 5.3
ALCATOR DCT TF CONDUCTOR PARAMETERS

Material

Cu: Noncopper ratio

Void fraction

Sheath material

Sheath wall thickness

Sheath dimensions

Ic, A (10 T)

Ip, A (10 T)

Copper area

Strands

Strand diameter

Nb3 Sn, copper stabilized

1.8

32 %

JBK - 75

1.73 mm

2.1 x 2.1 cm

40 kA

23 kA

1.19 cm
2

486

0.7 mm
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the test coil and the proposed Alcator DCT toroidal field coil conduc-

tor activation is 2-phase with a first phase of 4 days duration at

700 C and a second phase of 2 days duration at 730 C. This activation

sequence was chosen based on work by Hong' whidh indicates that this dual

reaction cycle achieves optimal current densities.

The Alcator DCT conductor, described in Table 5.3, is based

on the conductor configuration for the Westinghouse LCP coil. Use of the

small-scale conductor in a simple test coil configuration with unsupport-

ed sides provides an opportunity to perform long term cyclic tests and

fatigue tests that can be extrapolated to predict Alcator DCT behavior.

Such small-scale tests are flexible and comparatively inexpensive com-

pared with full scale tests.

5.2.2 Small Football Test Coil Description

The coil is wound in bifilar fashion as indicated in Fig. 5.4,

on a 304 stainless-steel mandrel. The conductor is laid into grooves ma-

chined into the mandrel. A total of 118 cm of conductor was used in

total. The central coil region incorporating 75 cm of conductor is lo-

cated in the high field region of the 6B, Bitter solenoid during experi-

ments on the coil. The three coil turns are clamped in place by stainless-

steel plates - 6 cm in width as shown in Fig. 5.5. The overall mandrel

length from the hydraulic inlet/outlet tee joints to the base is - 45 cm.

The coil has been instrumented with three pairs of voltage

taps. One pair is across the current leads, one pair is separated by 2.4

cm across a central turn, and the third pair is located across a sharp

radius of the coil to monitor the effect of strain as the unsupported edge

of the coil deflects under em loads.
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Piezoelectric acoustic emission sensors have been positioned

at the center of the coil on the clamping plate and at the bottom of the

sample holder. These will be used to detect conductor motion. A third

pair of AE sensors may be added at the level of the buswork to the coil.

The coil is cooled both by internal helium within the sheath

and by pool-cooling since the whole coil is placed in a Dewar within the

6B magnet which will provide background fields of 9, 10, and 11 T.

A small solenoid coil has also been wound of the same con-

ductor. It will be used for stability tests.

Tests on these coils will begin in late October 1983.
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5.3 Hybrid Magnet Status Update - R.J. Thome

In last year's report we described a short circuit in the superconduc-

ting coil which is part of the 30 T Hybrid Magnet System at FBNML. Be-

cause of the well-cooled, highly stable nature (relatively low current

density) of this coil, operations are not restricted provided the charge

voltage is limited. Measured voltages at high and low charge rates were

described last year and qualitatively predicted by computer analysis as

part of this program in FY82.

During FY83, FBNML operations continued with the hybrid system.

Several problems were encountered with. the water cooled coil sections.

These are traceable to the developmental nature of the advanced design

of those segments and are studied and reported as part of the NSF acti-

vity which funds that program.

The superconducting magnet continued to operate as reported in FY82.

It has logged approximately 300 hrs of operation and has experienced

about 75 thermal cycles. The short circuit persists, but is not directly

verified periodically. Its presence is inferred if the charge voltage is

too high because the presence of the short causes voltage excursions

beyond the compensation capability of the quench detection system and

the protection circuit is triggered. The latter is prevented if the

charge voltage is sufficiently low, which for this design, is still high

enough so operations are not hampered.

Toward the end of FY83, the superconducting coil was being moved and

one of the vacuum fittings to the vapor-cooled leads sprung a leak. In

the process of removal, replacement and rewelding of the lead several

voltage tap leads were severed. As a result, the main Dewar was opened
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and leads repaired. Test results on the repaired system will be included

in next year's report.
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6.0 SAFETY RELATED ACTIVITIES

R.J. Thome

6.1 Joint MESA/MIT Safety Activity

MIT performed safety analyses this past year under a separate subcontract

to MESA Corp. The prime contract was technically monitored by INEL and a sepa-

rate report for this years activity is in preparation by MESA.

The activity focused on the LCTF at ORNL. The tasks performed by MIT were

primarily concerned with short circuit analyses for the GE coil and participation

in an evaluation of the protection circuits for the coils.

After construction, the coil wound by GE for the LCTF was found to have a

short circuit across several turns by one of the instrumentation leads. An-

alyses performed under this program were able to show why earlier attempts to

burnout the shorting wire failed and to specify the conditions necessary to

burnout the short by either: (1) charging the main coil to a DC level and dis-

charging it through a dump resistor or (2) applying AC power to the coil ter-

minals. LCTF staff elected to use the latter method and successfully severed

the shorting wire.

6.2 Japan/United States Workshop on Fusion Safety*

MIT participated in a joint Fusion Safety Workshop in Japan during January

24-27, 1983. This was performed under this program and involved a presentation

* "Proceeding of the Japan/United States Workshop on Fusion Safety", JAERI-

Memorandum, 58-196 1983
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1
on Superconducting Magnet Safety Issues and Research in the United States, parti-

cipation in discussions on other workshop topics and tours of the Naka-site and

Tokai-site fusion facilities of JAERI.


