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The stability of non-relativistic runaway electron distributions with res-

pect to the anomalous Doppler resonance is examined in a range of parame-

ters of interest to Tokamaks, i.e. for Y Wpe/Rce 2 and for ohmic

electric fields e = E/Ec 5 0.1. Distribution functions are calculated

numerically within a region up to 35 ve (thermal velocities) using a

finite-element 2-D Fokker-Planck code. Alternatively, an analytic approxi-

mation for the runaway distribution function is used, valid beyond the cri-

tical velocity vc ~ ve (Ec/E)I. Stability thresholds in (w, k1j)

- space are then determined. For example, for Y = 1 and e = 0.1, and pro-

viding that the runaway tail extends at least to 30 ve, unstable waves

exist having w < 0.6 Rce and k11 <0.03 Qce/ve.

a) Permanent address: D~partement de Physique, Universit6 de Montreal,

Montreal, Quebec, Canada, H3C 3J7.
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I. INTRODUCTION

The response of a plasma to an applied steady electric field E is one of

the central problems in Tokamak physics and has been during the past two

decades the subject of interest of a number of theoretical studies.1-6

Some of the theory, but mainly the experimental effort in this field has

been recently reviewed by Knoepfel and Spong. 7 The basic effect resulting

from the application of a steady electric field to a distribution of elec-

trons is the generation of runaway electrons forming a raised suprathermal

"runaway" tail in the direction opposite to the applied electric field.

Since under certain conditions runaway electrons can cause damage to the

confining structures, it has been of great importance to determine their

distribution function and more particularly the runaway production rate

associated with them.2- 6 Since these distributions possess a typically

high degree of temperature anisotropy, an important problem which also has

received some attention 8-12 is the linear stability of magnetized plasma

waves. Roughly speaking, instability occurs when Landau damping (given by

3f/3vIj at vI1 = vL = w/kII) cannot compensate for the destabilizing

effect of the anomalous Doppler resonance [given by the value of f at

v = VAD = (w + 2ce)/kII].

In this work we use a finite-element boundary-value code and semi-analytic

techniques to investigate runaway distributions and their stability with

respect to the anomalous Doppler resonance. We limit our attention to the

investigation of conditions for the onset of the instability, and we there-

fore do not include in the formalism the effect of wave-induced pitch-angle
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scattering of electrons. We report here that our results are in agreement

with those of Wiley et al. 12, but in disagreement with Refs. 9, 10 and 11.

The present work was motivated to some extent by the disparity we find in

the literature9-12 as regards the predicted parameter space for the run-

away instability. The disagreement on the calculated values of the growth

rate can be traced to uncertainty in the evaluation of Landau damping, this

resonance being situated at vL = w/kIj which is nearer to the bulk of

the distribution than is the anomalous Doppler resonance vAD. Hence VL

is situated in a region where f varies relatively rapidly, and where

uncareful modeling of the distribution function can seriously misrepresent

the actual value of 3f/3v,1 . In contrast, the anomalous Doppler resonance

(ADR) is located in a region of high temperature anisotropy, i.e. far out

on the runaway tail at a position vAD > 2 vL. There, the tail is rela-

tively flat and its height directly proportional to the induced particle

flow, i.e. to the runaway rate which is a known function
3 ,5,6,13 of

ion charge Zi and electric field E. Since the effect of the ADR is

essentially determined by the number of electrons supporting the wave, its

contribution to the growth rate can be therefore estimated in a straight-

forward manner.

Amongst the quoted stability studies9-
1 2, most accurate appear to us the

12
results of Wiley et al. , based upon a distribution function f obtained

numerically within the range v <20 ve (ve2 = kTe/me) from a 2-D

Fokker-Planck code. Beyond that range they extrapolate f in the form
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F (vi) (1
f = exp (-vj/2T1 ), (1)

2w Tj (v )

F - a + b/v, T_ - c + d ln (cv2 + Z ),(2)

where e - E/Ec and a, b, c, d are constants to fit (1) to the 2-D numeri-

cal results in a region of overlap. We note that although their function F

does not scale correctly with v (F = 1 + const/ev2 is obtained in Ref. 10

and independently in Sec. III of the present work), the procedure gives

good results because the Landau resonance falls into the region where f is

determined numerically from the 2-D Fokker-Planck code, and only the ADR is

situated in the extrapolated region. There, however, f is relatively flat

and the scaling with v, no longer matters. Following the outlined

procedure they find that for e:50-1 and we / < 2 the distribution is

stable up to v, = vAD =40. Only in the extreme case of e - 0.1,

Wpe / ce 2 and Zi - 1 an unstable mode was found with vL - 10 and

vAD - 42.5.

The other three quoted papers9 ,10,11 are analytic studies based on the

plausible model runaway distribution function (1), but in each case with

different forms of F and T1 . Parail and Pogutse8 use F = 1 + 1/ev2 , but

they take Tj equal to the thermal bulk temperature, and assume kg/Ace

which is not always true for runaway electrons. With these assumptions

they predict instability when v >3c-1/2 (,ce 1 )3/2. According to

this criterion, most of the parameter space found stable in Wiley et al.
12

should be unstable. Liu and Mok9 use for TL the 2-D analytic result6
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TI = (1/e) in ev11, but for F they take a parallel Maxwellian

exp (-v /v2) to approximately account for the loss of runaways from the

distribution. The tail cut-off velocity vo was estimated to lie around

17 ve. This loss mechanism should enhance the Landau damping and simul-

taneously decrease the destabilizing effect of the ADR through depression

of the runaway tail. None the less instability was found in -the region

w /T2 >0.025/ for v <vo, which overlaps the stable region of Wiley et
pe ce- D

al. 12. Finally, Gandy et al. use the distribution function of Liu and

Mok9 and consequently obtain some similar results, but also some additional

results that appear puzzling. A major question immediately arises from

their discussion of Landau damping which they find is larger on the runaway

tail than in the bulk between v and v = e-1/2v . Furthermore, they find
e c e

in a certain parameter range that the growth rate increases with decreasing

electric field. This effect, as the authors later point out, is caused by

incorrect normalization of the runaway tail distribution function.

On the basis of the preceding discussion we conclude that modeling of the

distribution function, aimed at analyzing stability with respect to the

anomalous Doppler resonance, must be done very carefully.

The plan of this paper is as follows. In Sec. II we describe our 2-D

Fokker-Planck code and discuss some basic properties of the distribution

function. In Sec. III, the results of Sec. II are combined with single-

particle dynamics to determine the runaway distribution function in ana-
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lytic form. In sec. IV we deal with the instability threshold, and present

our conclusions.
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II. RUNAWAY DISTRIBUTION FUNCTIONS

We will employ the fast test-electron kinetic model formulated by Kulsrud

et al. 1 3 for simulating runaway distribution functions. The model is

described in sufficient detail in Refs. 12 and 13, its characteristic fea-

ture being a linear collision operator describing the interaction of fast

test electrons with fixed Maxwellian field electrons and ions. While on

the one hand the model does not completely account for total electron

momentum and energy conservation, the frozen bulk annihilating the excess

momentum and energy absorbed from the field, on the other hand the model is

adequate for describing fast electrons, and guarantees the existence of a

steady state without the necessity of having to further model bulk momentum

and bulk energy loss mechanisms. With these stipulations, the electron

distribution function f is described by the Fokker-Planck equation

a f
= -div S, (3)

where is the test-electron flux. In spherical coordinates (v, v = v/V),

we have

B 3
S = P E f -3 (vf + -) (4a)
v v av

S = (1-Vy2 )k (-ef + A af (4b)
y 2v2 ay
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The equilibrium solution of Eq. (3) with e = 0 is the Maxwellian

fm= (2 7r) exp(-v 2 /2).

We use the normalized variables

t + tv0 , v + V/v , v2 = kT/m, (T = T.

E
= -, E

E c C

M v e VO

e

= T), f + fv3
e

4 Trn e 4nA

U0 2 3me ve

and the coefficients A(v) and B(v) are A = Ae + Ai, B = Be + Bi,

where 13

Ae = [$(x) - G(x)]Ix = v//2

A. Z. [$(x) - G(x)]I v//2

B = v3 G (x)/ x V2 x = v//2

B. = v3 Z (M /M ) G (x)/ x /2 (m/M ) v/i/2

(7a)

(7b)

(8a)

(8b)

and

G(x) = [p(x) - x '(x)]/ 2 x2

(5)

(6)

(x) = erf (x), (9)



9

For v>1, we have A = 1 + Zi, B = 1.

To integrate Eq. (3) we use the finite-element code TWODEPEP 14 . We direct-

ly solve the boundary-value problem for a steady state, af/at = 0. A more

detailed discussion on the use of the code to solve the steady-state

Fokker-Planck equation divg = 0 is given in Ref. 15.

The distribution function is generated on a domain (v,y) with boundary val-

ues as depicted in Fig. 1. The component SU of the particle flux vanishes

at y = ±1 on grounds of symmetry around v1 = 0. Imposition of the condi-

tion f = const at v = 0 is equivalent to including in a time dependent code

a source of particles that replenishes the bulk at exactly the same rate at

which particles run away. The runaway tail in this problem is thus sup-

ported by a steady bulk and the number of particles in the distribution is

therefore not conserved. The runaway tails thus formed should be good ap-

proximations of tails produced from bulk distributions that are not contin-

uously replenished, as long as the number of particles in the bulk remains

much larger than the number of particles in the tail. Finally, at the

upper bound of integration v = vmax we should impose the flux condition

Sv = Epf, but instead we set f = 0. This is done out of purely economic

reasons to reduce the large number of elements required in the code when

the flux boundary condition is used.

In order to scrutinize the runaway distributions thus produced, we first

compare in Table I selected values of the runaway production rate r

(defined as the electron flux through a spherical surface of radius v)
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1
r = 2 7r v 2 f dy Sv (10)

-1

with results obtained in other studies 1 2 ,13. For any particular e the

value of r was monitored along the runaway tail, and, as expected, it

remained constant except in a narrow region at the upper bound of integra-

tion where the imposed condition f = 0 distorts the distribution. A typi-

cal 2-D runaway distribution together with flux streamlines 16 is shown

in Fig. 2. A different representation is in Fig. 3, where we plot the per-

pendicular velocity moments of f, the "parallel" distribution function F

and the "perpendicular temperature" Tj,

00 <v f
F = 2 7r f dv v f =< f >, T= 2F (11)

0

We observe a runaway tail forming as expected near v l - = 5. The

sudden drop in F at v Dmax = 30 is a local deformation caused by the bound-

ary condition f = 0. At the critical velocity vc = C , T-_ starts increas-

ing which signifies the presence of fast particles whose distribution is

broadened in the perpendicular direction. The large TL seen on the side

of negative vp is caused by the predominance there of suprathermals

pitch-angle-scattered out of the runaway region. In contrast, the bulk is

dominated by the thermal particles. The peak in T and the subsequent

decline is caused by the diminishing extent of vp as vj approaches

vmax = 35 (the computation in performed within the circle v = vmax)*

If the integration domain were extended we would expect to observe an

increasing Tj.
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The presence of a perpendicularly broadened distribution of suprathermals

is further witnessed in Figs. 4 and 5. In Fig. 4 we show perpendicular

cuts of f at six different positions vil. Although for lviii < ve the

population is dominated by thermals having TL = 1 (as is apparent from

Fig. 3b) the first two cuts in Fig. 4, at vU = 2 and 3, show the presence

of a hot tail. The distribution function f is thus everywhere made up of

two components, the thermal component dominating in the bulk, and the per-

pendicularly broadened one dominating outside the bulk. The broadened dis-

tribution is obviously near-Maxwellian. Further evidence for the presence

of a perpendicularly broadened component is given in Fig. 3, where we plot

the perpendicular moments Fn of the deviation from a Maxwellian

<v (f - fM)> , n = 0, 2, 4. (12)

We see that the perpendicular temperature of the perturbation, T = F2/2F0,

is indeed large outside the bulk. In the bulk T is only slightly larger

than Tbulk = 1, because the deviation of f from a Maxwellian is there

dominated by an E-induced shift responsible for the bulk current. This

part of the perturbation, proportional to ep, becomes negative for negative

vil, and its effect is to make the total perturbation negative in the bulk

for negative v11. The negative sections appear as interrupted lines in

Fig. Sa. The result of Fig. 5b, where we plotted F2/2F0 and F4/4i2 , serves

to further reinforce what we saw in Fig. 4, namely that f is Maxwellian in

the perpendicular direction. More specifically, we are referring to the

particular property F2/2F0 = F4 /4i2 valid for Maxwellians.
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III. ANALYTIC SOLUTIONS IN THE RUNAWAY REGION

In the 2-D Fokker-Planck calculations velocity-space is limited to v <35 by

available memory size. In order to extend the distribution function in the

runaway region beyond this range, we make use of the result obtained in

Fig. 4, namely that the runaway distribution function f is Maxwellian in

the perpendicular direction. We can thus write for v Iyvc

F(v1 )

f ~
2n TL(v )

2
exp (-v1/2T),

where we know from 2-D theory of the runaway tail5, 6 that TL scales as

(1 + Z.)
T ln (vg1 )E

and that

F ~(E)/E,

where P is the runaway producton rate6

r ~ 0.35 E-3 /8 [ - (2 E) I

(13)

(14)

(15)

(16)

with = (1 + Zi)/2. The scaling of r with e is confirmed very well for
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Zi = 1 by our 2-D calculations (c.f. Fig. 6). However, the functions

(14) and (15) are the far-asymptotic (i.e. vl>vc) expressions for TL

and F so that they need to be specified in more detail if they are to be of

any use in growth rate calculations. Of particular importance is to estab-

lish the scaling of F with v,, since the magnitude of Landau damping

depends on dF/dvq.

The functions F(vH) and TI(vq) are derived in detail in Ref. 17. We

outline here the principal steps, based on the fact that in the runaway

region an electron is not collision dominated and its average trajectory is

given by the test-particle relaxation equations. The relaxation equations

are

dv

dt C - av /v3; a = 2 + Z (17)

1 dv= ev - 1/v, (18)

where the electric field acceleration is directed along the positive

vI - axis, and evII is the rate at which the electron gains energy in

the field.

First, as regards the function F, conservation of particles in the

E-field-induced flux requires that

(19)< f v > = const = r,
ii
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where vii is given by (17). Upon substitution for f from (13) we get

F (e- <f/v 3) = , 20)

where the integral <f/v 3> can be evaluated as

<f/ v > e q erfc (/q), (21)
v 2T_1

with q = v2/2TL. When v >2T1 , we find the approximation

3 3 +3

<f/v > ~ Tj/(v + 3v1 T), (22)

which yields the simple expression

F2 ] (23)
e E (v + 3T1)

This function, which depends on ion charge through a = 2 + Z. and T1 , is in

excellent agreement with parallel distribution functions determined numeri-

cally from the 2-D Fokker-Planck code. Three examples are presented in

Fig. 7. The various cases we have examined cover the interval of E from

E = 0.01 to E = 0.1, with Zi = 1, 4 and 9.

Next, to obtain T1 (vl1) we eliminate from Eqs. (17) and (18) the time vari-
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able and solve for 4 /2 as a function of v11. The starting point is the

equation

S+ =a - x(24)
dx p p

where x = v2 , y = vi, and

p (x,y) = ex (x + y) -3 2  ax. (25)

For large enough x we can neglect in (25) the term ax, and we write

p ~ex2 (1 + y/x)3/2 =x 2U, (26)

where in anticipation of the far-asymptotic behavior (14) we assume that

y/x<l. The function U = 1 + y/x is then slow compared with y itself, so

that to solve Eq. (25) we treat U as a constant factor, and subsequently in

the solution thus obtained allow U to again vary. To solve Eq. (24) we go

to the new variable z = 1/x, whereby Eq. (24) becomes

dy -y la (27)
dz eU ZEU

whose solution is

y = ez/eU {y0 + (a-1) [El(z/eU) - El (z /eU)]}, (28)
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where El is the exponential integral. The dominant asymptotic contribution

in y is

y = U e E, (z/EU), (29)

which, upon identifying y with 2TJ, gives

1 + Z.
T 2 IU ln (1 + ev2U). (30)

If we neglect the weak effect of U in the argument of the logarithm, and

write U = 1 + 3T /v 2 , then

T = (v2 /6) [-1 + (1 + 12T /v2) ], (31)

where

1 + Z.
T = I ln (1 + ev). (32)

The expression (31) gives excellent agreement with numerical integrations

of the relaxation equations, as well as with Ti from the 2-D Fokker-Planck

code. Three examples are presented in Fig. 8. We again caution that the

results for Tj from the 2-D code are not valid near the upper bound of

integration where Ti decreases because of limitations on velocity-space.
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IV. STABILITY WITH RESPECT TO THE ANOMALOUS DOPPLER RESONANCE

Electrostatic plasma waves propagating in an infinite, uniform plasma

immersed in a uniform external magnetic field, are described by the dielec-

tric function 1 8 C

2

e k~) 1+ Wp('n
~ (~w) +j nk2.

where j = e, i, and n runs

... Further

S2. = 47 n. e2/m
pJ J J J,

(33)
D .j2 (k2vi/a)

fd3v nj n ej
w - k 1v11 - n cj + iy

through the cyclotron harmonics n = 0, ±1, 2,

(34).cj = Ie.B/mjcl,

Jn is the Bessel function, and

n Q . 3f . af.
D cj j V+ k (35)

For weakly growing waves, y w, the dispersion relation and the growth rate

are respectively1 8

Re e = 0, = - Im e
- a(Re£)/ac1

(36)



18

Provided that kI/k<< m /me, we can neglect the ion contribution in (33),

and we get

W 2 ke Y2

Oce k2 1+ Y 2
Y =

Sce

and

cc v2 j2 kL v_

k2 = k? f dv_ _L J2 2 ) D ne(v I, v ),
k2 kn I ne in

n kIk ~ o ce

(38)

(37)

where v1 = (w - n ce)/k are the positions of the resonances along v,

and 19 a = (1 - W2)/(l + y2 - w2 ). The contributions of only the n = 0, -1,

+1 resonances need be retained in the sum. Conventionally these three

resonances are respectively called the Landau, the anomalous Doppler, and

the Doppler resonance, and we label their contributions to (38) as YL,

yAD and yD. Correspondingly, instead of v110 and vq+1 we use the

notation vL, v and vD. It is convenient to work in the normalized varia-

bles (6), to which we add the parameter Y specified in (37) and use

+ ce
k + kv / .-

e ce
(39)

The growth rate (38) then becomes

(40)
n0, 2  dv vJ 2 (k v )D (v , v)

n=0, ±10



19

where

w +1 W- 1
V0 =VL 1, V VAD = k ,V = vD = k(

and

D = -- sign (k 11) + - . (42)
n I I vJk 1 VJi

To begin our analysis, we calculated the distribution function f for a few

selected values of e in the range 0.015 e50.1, of interest to Tokamaks.

We then substitute f into (40) and determine y within a range of vL and v

compatible with the dispersion relation and the upper limit of integra-

tion. For Y = w /9 we took values ranging from 0.2 to 2, which covers
pe ce

most Tokamak operating regimes. In the given parameter space we found the

sum (40) negative, in agreement with Ref. 12, but in disagreement with the

analyses in Refs. 9 and 11. We point out, at this opportunity, that

because of the difference in the definition of thermal velocity, our values

of E correspond to twice that value in Refs. 9, 10, 11, where v 2 = 2kT /m .

e e e

The reason behind a negative y in our calculations is the predominance of

Landau damping within the given range of parameters, and we also note that

the contribution of YD is negligible. To give an example, in the partic-

ular case of e = 0.04, Y = 1 and Zi = 1, we observed that with the Landau

resonance located at vL = 8 vc, L exceeded YA by an order of magnitude

even as vA attained the extreme position of vi allowed in the code.
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Consequently, to generate instability the anomalous Doppler resonance must

lie much further out on the tail than was previously thought. To better

appreciate the extent of velocity-space required, it helps to realize that

for the waves in question vAD> 
2vL, or more exactly from (37)

(43)v /v > I + (1 + Y 2)1/Y.
AD L

To establish the

ble to calculate

analytic results

form (13), where

growth rate under these conditions it is no longer feasi-

f from the Fokker-Planck code, and instead we will use the

of the preceding section. Specifically, we use for f the

for F and Tj we substitute (23) and (32).

First, we evaluate the integrals in (40), which also will help us to gain

some insight into the effect of the various parameters on the growth rate.

Only two types of integrals appear in (19), namely

a2

x j P2 1 2p I a2 Wfx 2 (ax) e dx = 2 e n (p) n (a, p)

0
(44)

X 3 j2~ (tx) e-PX2 dx d-~W (a, P).

0

The rest is straightforward, and for k,, >0 we obtain

2 2 w (q) [F'Tq ( - 1)]}
0 v v

11 L

(45)
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and

Y 2 - a {wl (q) [F' + F - (q q - 1)
AD 2 kTj_ Il

(46)

+ F
Tj k1 v = v ,A

where wn(q) = exp (-q) In(q); In are the modified Bessel functions of

argument q

q = kjTj (v), (47)

and the prime means differentiation with respect to vg.

We begin the discussion of the growth rate by pointing out that at the

Landau resonance the dominant term is F', and typically q<<1, for which

Io(q) = 1. At the anomalous Doppler resonance the dominant term is

F/TI k11, but q is not necessarily very small and we cannot automatical-

ly use the small argument expansion II(q) = q/2. This then entails that

in the expression for yAD the factor TI does not cancel out from the

dominant term (F/TIkjj) wl(q). An increasing TI has therefore a sta-

bilizing influence, an effect which disappears in the usual small-argument

expansion treatment of the growth rate (40). Whether a small-argument

expansion can be used obviously depends on the width of f in vi, of which

TI is a measure.
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Instability occurs when y = yL + yA >0. The normal Doppler contribu-

tion can be neglected since F at vH = vD is orders of magnitude smaller

than F at vA (i.e. on the runaway tail). The wave variables w, kil

kL and the plasma parameter y2 = 2 pe/S2ce - n/B2 which go into y

must satisfy the dispersion relation (37), from which we can express, for

example, k2 asI

k2 _2 2 2 V2

JL +2 +Y v 1 + Y2  (vD -vL)2'

and we can go from w, kg to vL, vA by means of the transformation

(48)

W = vL , k
VA - VL

The behavior of y can

dominant terms

_ 1 .
v~-L

be discussed on a qualitative basis by collecting the

y = w (q) F' + wl(q) - (vA vL)

vL I

(50)

where we recall that q = kjTj. To begin, it is useful to realize that for

a fixed value of vA, the function y goes through a local maximum with

respect to vL. This is because Landau damping dominates for small values

of vL near the bulk on the grounds of large F, and then again dominates

for large values of vL [constrained, of course, by (43)] as wl(q) becomes

(49)
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very small. More generally, the unstable region Y(vL, VAD)>0 can be

obtained on the basis of (50) in the explicit approximate form

2 v2Y
1 + Y2 2 4 L

v > v + 2  [ + + L (v ). (51)
AD L Y E VL E vL 1 + Y L

The function $(vL) has a local minimum with respect to vL and therefore

a necessary condition for instability is that vAD exceed the minimum 4.

This behavior is clearly borne out in Fig. 9, showing stability threshold

contours y (vL, vAD) = 0, obtained from (45) and (46) with (23) and

(31) for several combinations of e = E/Ec and Y = 6pe/Qce' The

regions of instability are situated, as expected, around a line

vL = const. The lower branch of the stability boundary is due to strong

damping, while the upper branch is due to a vanishing anomalous Doppler

contribution as ki + 0. In (w, ki)-space, the instability regions must

again bifurcate on the line vi = w/k = VL(bif), as illustrated in

Fig. 10. For example, when E = 0.1 and Y = 1, the unstable region will be

restricted to the vicinity of the line w 10 kllve, and the region

w<0.6 Qce, k1 <0.03 Qce/ve.

The general picture we offer here is that instability due to the anomalous

Doppler resonance does not occur unless vAD exceeds a threshold, identi-

fied as the minimum with respect to vL of the function (51). This

threshold position of vAD is generally much larger than the threshold
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given by Parail and Pogutse o, vAD = 3 vc (Oce/wpe)3/2. Also,

the unstable regions obtained here are much smaller than what would be

expected on the basis of Refs. 9 and 11. As the threshold in vAD is

exceeded, a maximum growth rate is then expected around the line

vL = vL(bif). Away from this line, a low-vL threshold arises from

strong Landau damping, and a high-vL threshold arises due to a diminish-

ing anomalous Doppler contribution as kj decreases.

In conclusion, the basic observation we made here is that even for strong

fields (E/Ec = 0.1) and high density over magnetic field ratios

(Wpe/ilce = 1), the runaway tail must exceed 30 ve in order to support

growing modes. For plasmas having bulk temperatures around 1 keV this

translates into tails extending beyond the velocity of light. Most Tokamak

plasmas of current interest therefore require a relativistic treatment of

the anomalous Doppler instability, along the lines of Refs. 8 and 20,

supported by a relativistic 2-D Fokker-Planck code. This generalization

will be the subject of a future paper.
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FIGURE CAPTIONS

Fig. 1 Region of integration and boundary conditions for the Fokker-

Planck equation (3).

Fig. 2 2-D numerical integration. a) Contourplot of the distribution

function f. b) Orientation of the flux S and contourplot of the

stream function 2itf dp' SV(v,p').

Fig. 3 2-D numerical integration. Perpendicular-velocity moments of f:

the parallel distribution function F and the perpendicular

temperature TI as functions of vj.

Fig. 4 2-D numerical integration. Cuts of the distribution funcion f as

a function of vi, taken at six different positions of vII.

Fig. 5 2-D numerical integration. Perpendicular-velocity moments of the

deviation f = f - fM, of f from a Maxwellian, as a function of

vii. Interrupted lines signify negative values of the functions.

Fig. 6 The runaway production rate r (in units nvo) as a function of

e = eE/mvevo, for Zi = 1. Full line: theory of Refs. 3, 5

and 6 with the pre-exponential factor 0.35 from Ref. 13. Points:

present numerical results.

Fig. 7 Comparison of 2-D numerical and analytic [Eq. (23)] runaway dis-

tribution functions F.
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Fig. 8 Comparison of 2-D numerical and analytic [Eq. 31)] perpendicular

temperatures T1 .

Fig. 9 Stability boundaries y (vL, vAD) = 0 for several combinations

of e = E/Ec and Y = wpe/Qce*

Fig. 10 Stability boundary y = 0 in (w, k1 )-space.
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