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ABSTRACT 

The confinement of a tightly bunched electron beam is studied in a periodic 

permanent magnet (PPM) focusing klystron. By analyzing the Hamiltonian dynamics of a 

train of collinear periodic point charges interacting with a conducting drift tube, an rf 

field, and an applied PPM focusing field, a space-charge limit is derived for the radial 

confinement of lightly bunched electron beams, and is shown to be significantly below 

the well-known Brillouin density limit for an unbunched beam. Several state-of-the-art 

PPM klystrons developed at SLAC are found to operate close to this limit, shedding some 

light on the origin of observed beam losses. 

 

PACS: 29.27, 41.85 
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The confinement of intense charged-particle beams is an important subject in beam 

physics [1] and plasma physics [2]. It is critical to the research and development of high-

intensity rf and induction linacs and high- intensity storage rings for high-energy and 

nuclear physics research, spallation neutron sources, and heavy ion fusion [3]. The 

confinement of intense electron beams is also important to the development of high-

power microwave (HPM) sources [4], such as klystrons, traveling wave tubes and 

backward wave oscillators. One of the main challenges for successful operation of these 

devices at high- intensities, which is related to beam confinement, is the prevention of 

beam halo formation [5,6] and beam loss. Recently, beam losses have been measured in a 

number of high- intensity accelerator and high-power microwave experiments. For 

example, beam power losses have been observed in several periodic permanent magnet 

(PPM) focusing klystrons [7] at the Stanford Linear Accelerator Center and in other HPM 

sources elsewhere [8]. Beam loss has also been attributed to be a limiting factor in the 

proton storage ring (PSR) [9] at Los Alamos and in the relativistic heavy ion collider 

(RHIC) [10] at Brookhaven. While the physics of confining continuous charged beams 

has been studied extensively in plasma physics [2] and vacuum electronics [4], the 

confinement properties of bunched beams, like those used in the SLAC PPM klystrons 

and other high- intensity rf accelerators, have only had modest investigation [11-13].  

In this Letter, we show the existence of a theoretical space-charge limit for confining 

bunched electron beams in high-power PPM focusing klystrons. High-power klystron 

amplifiers are ideal devices for studying the three-dimensional effects of beam-wall 

interactions on the confinement of bunched beams, since high- intensity beam bunches 

must travel a relatively long distance through a conducting drift tube whose radius must 

be small enough to prevent second harmonic propagation. The present self- field 

parameter limit is an extension of, but is well below, the well-known Brillouin density 

limit [2,14], 12 22 =cp ωω , which is applicable to continuous beams in a uniform-focusing 

magnetic field of zˆBe  in the rest frame of the beam. Here, ( ) 2124 eep menπω =  and 

cmeB ec =ω  are the plasma and cyclotron frequencies, respectively, in cgs units.  As an 

important application, we will apply the present beam confinement criterion to two state-

of-the-art X-band PPM focusing klystrons [7,15]  developed at SLAC for the Next Linear 
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Collider (NLC) and the W-band Klystrino [16], another PPM device at SLAC. We will 

show that the self- field parameters for these devices are close to the limit, which sheds 

some light on the origin of beam losses observed in these devices.  

The present model begins with a relativistic Hamiltonian description of a collinear 

periodic distribution of electron bunches moving in a perfectly conducting cylindrical 

pipe of radius a.  The electrons are focused transversely by an applied PPM focusing 

field. Assuming that the beam is strongly bunched longitudinally by an rf field, and has a 

negligibly small transverse size, we approximate the beam bunches by periodic point 

charges with a periodic spacing of L . In terms of klystron parameters, L  corresponds to 

fvb , where cv bb β=  is the average velocity of the bunches moving parallel to the pipe 

axis, and f  is the operating frequency of the klystron.  Figure 1 shows a diagram of the 

system.   

Since the electron bunches are collinear and periodic, we only need to specify the 

coordinates of the center of mass of one electron bunch in the Hamiltonian.  In the 

externally applied magnetic field extext AB ×∇=  with ( ) ( ) θeA ˆzkcos/rBext
00 2=  and the 

approximated rf field ( ) zˆtkzcosE eω−  with L/k π2=  and fπω 2=  being the wave 

number and angular frequency, the Hamiltonian for this system is given in the laboratory 

frame by 

( ) ( )tkzsin
k
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where NeQ −= is the total charge of an electron bunch, eNmM =  is the total mass of the 

electron bunch, N is the number of electrons per bunch, e−  and em  are the electron 

charge and rest mass, respectively, P  is the canonical momentum of the electron bunch, 
selfφ  and selfA  are the scalar and vector potentials associated with the charge and current 

on the conductor wall induced by the beam itself, respectively, and c  is the speed of light 

in vacuum. In expressing Eq. (1), we have implicitly assumed that θvvb >>  and 

rb vv >> , which is consistent with the fact that the axial motion remains relativistic, and 

the usual assumption that the effective Budker parameter is small, or more specifically, 
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L/aLcm/Ne e <<22 . Consequently, z
self
z

self ˆA eA ≅ . Consistent with the assumptions 

θ>> vvb  and rb vv >> , it will be shown shortly that .A self
b

self
z φβ≅  

In order to find the self- field potentials, self
zA  and selfφ , it is useful to momentarily 

transform to the rest frame of the beam, using the property that the scalar and vector 

potentials form 4-vectors, ( )self
rest

self
rest , Aφ  and ( )selfself ,Aφ , in the rest and laboratory frames, 

respectively. Since there is no longitudinally induced current on the conductor surface in 

the rest frame, self
restA =0.  The beam-wall interaction becomes purely electrostatic in the 

rest frame, and self
restφ  may be calculated by solving Poisson’s equation.  In a previous 

paper [13], the authors utilized a Green’s function approach to compute the electrostatic 

potential self
restφ . The Green’s function was constructed from an eigenmode expansion over 

the three-dimensional solutions that solve Poisson’s equation for the cylindrical 

conductor geometry.  By using the Green’s function, the induced surface charge density 

was computed, and the electrostatic potential self
restφ  due to the induced charge was 

obtained. The result is given by [13] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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lll
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r αααααφ .(2) 

Here, LL brest γ=  is the rest- frame bunch spacing, ( ) 2121
−

−= bb βγ , restLrr̂ π2= , 

restLaπα 2= , and ( )xIl  and ( )xKl  are the l th-order modified Bessel functions of the 

first and second kind, respectively. Using the Lorentz transformation, we find that 
self
restb

self φγφ =  and z
self

bz
self
restbb

self ˆˆ eeA φβφβγ == .  

In the analysis of the radial confinement of the orbit of an electron bunch, we perform 

the canonical transformation zph P/Ftvzz ′∂∂=−=′ 2 , z/FPP zz ∂∂==′ 2 , and 

t/FHH ∂∂+=′ 2  with the generating function ( ) ( ) zphz Ptvzt,P;zF ′′ −=2 , where 

k/vph ω=  is the phase velocity of the rf field. Expanding the new Hamiltonian H ′  with 

small transverse energy, we separate the nonrelativistic transverse motion from the 

relativistic longitudinal motion, i.e.,   

                                                ⊥′+′=′ HHH || ,                                                      (3) 
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 ( ) ( ) ( )zksin
k
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where ( ) ( ) 212221
/

zz cM/PP ′′ +=γ , ( ) ( )[ ]tvzkcos/rBA ph
ext +′= 00 2θ , and use has been made 

of  ( ) self
z

self
z Mc/PA φγ′=  for an electron bunch deeply trapped in the rf wave field. 

The longitudinal dynamics described by ||H ′  in Eq. (4) is readily determined. In 

particular, the bounce frequency is ( ) 213 /
bB M/EkQ γω =  for an electron bunch deeply 

trapped in the rf wave field at ( ) 214 /nzk π+=′  with phbz vvv == , where n  is an 

integer. Typically, the bounce frequency is comparable to the operating rf frequency.    

For the deeply trapped electron bunch, the transverse motion occurs on a time scale 

that is long compared with the beam transit time through one period of the PPM focusing 

field. The Hamiltonian ⊥′H  for the transverse motion can be further simplified by 

averaging over one period of the PPM focusing field. This gives  
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 where ( ) ⊥
−

⊥ ′=′ ∫ HdzkH
k/ 02

0
0

12
π

π , 20 /BBrms =  is the rms value of the PPM focusing 

field, and use has been made of McP bbz βγ=′ .  It follows from Eq. (6) that the radial 

equations of motion for the deeply trapped electron bunch averaged over one period of 

the PPM focusing field are 

M
P
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dr

b

r
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= ,                                                          (7) 
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Because .constH =′⊥ , we have ( ) ( )rFrFPP rr −+= 0
2
0

2 , where the subscript zero 

denotes the initial conditions, and ( ) self
restrms MQMcrBQMrPrF φθ 24 222222 ++=  is an 

effective radial potential. To determine the condition for radial confinement, we are only 
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interested in orbits near the center of the conductor, i.e. where the beam-wall interaction 

is weakest.  Therefore, by taking the limit of the effective radial potential ( )rF  as 0→r  

( )0=θP  and finding the criterion that ( )rF  is increasing, we obtain the space charge 

limit for radially confined orbits, 

                    ( ) ( )

1

1 10
22
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∞
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b

nInI
n

Ia
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αα
α

ω
,                                      (9) 

where NefI b =  is the average current in the klystron (in amperes), 

173 ×≅= bbebbA e/cmI βγβγ kA is the electron Alfven current, cmeB ermsrms,c =ω , and 

c/af bbβγπα 2= .  We note that the left-hand side of Eq. (9) is equal to the self- field 

parameter 222 rms,cp / ωω  in the rest frame, where ( )( )restep LaNm/e 222 4 ππω =  is the 

effective plasma frequency squared. This self- field parameter limit is similar to a limit 

that the authors computed for a uniform-focusing magnetic field, z
ext ˆBeB =  [13].  The 

only difference is that the rms magnetic field on the left-hand side of Eq. (9) should be 

replaced by B .  Figure 2 shows a plot of the right-hand side of Eq. (9) versus the 

parameter α . 

In the limit where the bunch spacing is small compared to the pipe radius, i.e. 1>>α , 

the system resembles a continuous beam. Equation (9) becomes 
La

brms,cp
beLa/ γπγπωω 4222322 812 −−−−≤ , and recovers the Brillouin density limit for PPM 

focusing.  However, the more relevant limit for high-power klystrons is when the bunch 

spacing is much larger than the pipe radius, i.e., 1<<α .  Numerical analysis shows that 

equation (6) becomes L/a/ brms,cp γωω 22 22 ≤ , which is much less than the Brillouin 

density limit. 

We now apply the beam confinement condition in Eq. (9) to three recent PPM 

focusing klystron experiments at SLAC, namely, the X-band 50 MW XL-PPM and 75 

MW XP klystrons [7,15] and the W-band Klystrino [16].  The parameters for all three 

klystrons are listed in Table 1, and their operating points are marked with letter a, b and c 

in Fig. 2, respectively. The X-band klystrons were designed and tested for the NLC, 

whereas the W-band klystrino was designed for sub-millimeter radar applications. As 

shown in Fig. 2 and Table 1, all three klystrons operate in the regime of 1<<α  and near 
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the self- field parameter limit. Because the 50 MW klystron operates slightly below the 

confinement limit, a mild beam loss still occurs in this device [7] through beam halo 

formation as reported previously [6,17]. The 75-MW XP is operating outside of the 

confinement limit. This suggests that the 75 MW klystron has greater beam loss than its 

50 MW counterpart, which is consistent with more pronounced X-ray emissions  

measured at the output section of the device [15]. The Klystrino design parameters fall 

just inside of the theoretical limit, suggesting a marginally stable beam-wall interaction.   

To summarize, we presented a center-of-mass model for a tightly bunched electron 

beam in a periodic permanent magnet (PPM) focusing klystron. By analyzing the 

Hamiltonian dynamics of a train of collinear periodic point charges interacting with a 

conducting drift tube, an rf field, and an applied PPM focusing field, we derived a space-

charge limit for the radial confinement of lightly bunched electron beams, which is 

significantly below the well-known Brillouin density limit for a continuous beam. We 

found that several state-of-the-art PPM klystrons developed at SLAC operate close to this 

limit, thereby shedding some light on the origin of observed beam losses. A further study 

of PPM confinement, which includes multi-particle simulations in each bunch, is needed 

to make a more accurate estimate on the amount of beam loss in klystrons.  
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Figure Captions  

Fig. 1  Diagram of a periodic array of charges propagating in a perfectly conducting 

cylinder with longitudinal velocity zbˆv e . 

Fig. 2 Plot of the maximum value of the self- field parameter (solid curve), 

Arms,cb Ia/Ic 2228 ω , for bunched beam confinement as a function of the parameter 

c/af bbβγπα 2= . Shown in letters are the operating points for three PPM 

focusing klystrons: a) 50 MW XL-PPM, b) 75 MW XP, and c) Klystrino. The 

dashed line denotes the Brillouin density limit for an unbunched beam.  
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Figure 2 

Hess and Chen, PRL 
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Table 1.  Parameters for SLAC PPM Focusing Klystrons 

PARAMETER 50 MW XL-PPM 75 MW XP KLYSTRINO 

f (GHz)  11.4 11.4 95 

bI  (A) 190 257 2.4 

bγ  

Brms (T)      

1.83 

0.20 

1.96 

0.16 

1.22 

0.29 

a (cm) 0.48 0.54 0.04 

α  0.75 0.77 1.15 

expArms,c

b

Ia
Ic

22

28
ω

 0.19 0.28 0.35 

crArms,c

b

Ia
Ic

22

28
ω

 0.238 0.244 0.366 

 

 

 

 

 


