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ABSTRACT

The confinement of a tightly bunched electron beam is studied in a periodic
permanent magnet (PPM) focusing klystron. By analyzing the Hamiltonian dynamicsof a
train of collinear periodic point charges interacting with a conducting drift tube, an rf
fied, and an applied PPM focusing field, a space-charge limit is derived for the radial
confinement of lightly bunched electron beams, and is shown to be significantly below
the well-known Brillouin density limit for an unbunched beam Several state-of-the-art
PPM klystrons developed at SLAC are found to operate close to this limit, shedding some
light on the origin of observed beam losses.

PACS: 29.27, 41.85



The confinement of intense charged-particle beams is an important subject in beam
physics [1] and plasma physics [2]. It is critical to the research and development of high
intensity rf and induction linacs and high-intensity storage rings for high-energy and
nuclear physics research, spallation neutron sources, and heavy ion fusion [3]. The
confinement of intense electron beams is also important to the development of high
power microwave (HPM) sources [4], such as klystrons, traveling wave tubes and
backward wave oscillators. One of the main challenges for successful operation of these
devices at high-intensities, which is related to beam confinement, is the prevention of
beam halo formation [5,6] and beam loss. Recently, beam losses have been measured in a
number of highintensity accelerator and high-power microwave experiments. For
example, beam power losses have been observed in several periodic permanent magnet
(PPM) focusing klystrons [7] at the Stanford Linear Accelerator Center and in other HPM
sources elsewhere [8]. Beam loss has aso been attributed to be a limiting factor in the
proton storage ring (PSR) [9] at Los Alamos and in the relativistic heavy ion collider
(RHIC) [10] at Brookhaven. While the physics of confining continuous charged beams
has been studied extensively in plasma physics [2] and vacuum electronics [4], the
confinement properties of bunched beams, like those used in the SLAC PPM klystrons
and other high-intensity rf accelerators, have only had modest investigation [11-13].

In this Letter, we show the existence of a theoretical space-charge limit for confining
bunched electron beams in high-power PPM focusing klystrons. High-power klystron
amplifiers are ideal devices for studying the three-dimensional effects of beam-wall
interactions on the confinement of bunched beams, since high-intensity beam bunches
must travel a relatively long distance through a conducting drift tube whose radius must
be small emough to prevent second harmonic propagation. The present self-field

parameter limit is an extension of, but is well below, the well-known Brillouin density

limit [2,14], 2w’ /w? =1, which is applicable to continuous beams in a uniformfocusing

magnetic field of Be, in the rest frame of the beam. Here, w, :(4pnee2/me)1/2 and

w, = eB/m,c are the plasma and cyclotron frequencies, respectively, in cgs units. Asan

important application, we will apply the presert beam confinement criterion to two state-
of-the-art X-band PPM focusing klystrons [7,15] developed at SLAC for the Next Linear



Collider (NLC) and the W-band Klystrino [16], another PPM device at SLAC. We will
show that the self-field parameters for these devices are close to the limit, which sheds
some light on the origin of beam losses observed in these devices.

The present model begins with a relativistic Hamiltonian description of a collinear
periodic distribution of electron bunches moving in a perfectly conducting cylindrical
pipe of radius a. The electrons are focused transversely by an applied PPM focusing
field. Assuming that the beam is strongly bunched longitudinally by an rf field, and has a
negligibly small transverse size, we approximate the beam bunches by periodic point
charges with a periodic spacing of L. In terms of klystron parameters, L corresponds to

v,/ T, where v, = b,c isthe average velocity of the bunches moving parallel to the pipe
axis, and f isthe operating frequency of the klystron. Figure 1 shows a diagram of the

system.
Since the electron bunches are collinear and periodic, we only need to specify the

coordinates of the center of mass of one electron bunch in the Hamiltonian. In the
externally applied magnetic field B* =K~ A with A® =(rB,/ 2)cos(k,z)e, and the
approximated rf field Ecos(kz-vvt)éZ with k=2p /L and w =2pf being the wave

number and angular frequency, the Hamiltonian for this system is given in the laboratory

frame by
é 2 P S QE
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where Q = - Neisthetotal charge of an electron bunch, M = Nm, is the total mass of the
electron bunch, N is the number of electrons per bunch, - € and m, are the electron
charge and rest mass, respectively, P isthe canonical momentum of the electron bunch,
f =" and A" are the scalar and vector potentials associated with the charge and current
on the conductor wall induced by the beam itself, respectively, and ¢ is the speed of light
in vacuum. In expressing Eq. (1), we have implicitly assumed that v, >> |vq| and
v, >>|v;|, which is consistent with the fact that the axial motion remains relativistic, and

the usual assumption that the effective Budker parameter is small, or more specifically,



Ne? / mc’L<<a/L. Consequently, A*" @A®'e,. Consistent with the assumptions
V, >>|v,| and v, >>|v,|, it will be shown shortly that A" @b,f ='.

In order to find the self-field potentials, A" and f =", it is useful to momentarily
transform to the rest frame of the beam, using the property that the scalar and vector
potentials form 4-vectors, f =/, A=) and f <", A®*"), in the rest and laboratory frames,

respectively. Since there is no longitudinally induced current on the conductor surface in

the rest frame, A®'=0. The beam-wall interaction becomes purely electrostatic in the

rest frame, and f * may be calculated by solving Poisson’s equation. In a previous
paper [13], the authors utilized a Green’'s function approach to compute the electrostatic
potential f . The Green's function was constructed from an eigenmode expansion over

the three-dimensional solutions that solve Poisson’s equation for the cylindrical

conductor geometry. By using the Green’s function, the induced surface charge density

was computed, and the electrostatic potential f *' due to the induced charge was

obtained. The result is given by [13]

f<i(r)= LQ én(a2 - FZ)- ZélKo(na)lé(nf)/lo(na)- 4

rest €
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Here, L, =9g,L is the rest-frame bunch spacing, g, :(1- bbz)'llz, r=2pr/L .,
a=2pa/L _,and 1,(x) and K,(x) arethe Ith-order modified Bessel functions of the
first and second kind, respectively. Using the Lorentz transformation, we find that
f < =g f3 and A* =g b,f =&, =bf*"e,.

In the analysis of the radial confinement of the orbit of an electron bunch, we perform
the canonical transformation  z(=z- v, t=9F,/TP,, P,=F =1F/Tz, and
H(=H +1F, /Tt with the generating function F,(zP,et)=(z- v,t)Pe, where
V,, =W/ k is the phase velocity of the rf field. Expanding the new Hamiltonian H¢ with

small transverse energy, we separate the nonrelativistic transverse motion from the
relativistic longitudinal motion, i.e.,

HC=Hf+HS, €)



Hi(z4P,) =g(PMC? - v, P, - Es;i n(kzd, (4)
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where g(P,,) = (1+ P2/ M 2cz)uz, A= (rB, / 2)cos[k0(z¢+ vpht)J, and use has been made
of A% =(P,/gMVick =" for an electron bunch deeply trapped in the rf wave field.
The longitudinal dynamics described by Hf in Eq. (4) is readily determined. In

particular, the bounce frequency is wg = (EkQ/gEM )“2 for an electron bunch deeply

trapped in the rf wave field at kz(=(4n+1)p /2 with v,=v, =v_, where n is an

ph?
integer. Typicaly, the bounce frequency is comparable to the operating rf frequency.

For the deeply trapped electron bunch, the transverse motion occurs on a time scale
that is long compared with the beam transit time through one period of the PPM focusing

field. The Hamiltonian Hf for the transverse motion can be further smplified by

averaging over one period of the PPM focusing field. This gives

2 2p2 -
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where (H¢) = (20)* )odzHE, B, =B, /~/2 is the rms value of the PPM focusing
0

field, and use has beenmade of P, =g,b,Mc. It follows from Eq. (6) that the radial

equations of motion for the deeply trapped electron bunch averaged over one period of
the PPM focusing field are

: (")

P, _16R? QBLs QT

dt g, gMr®  4Mc@ g, Tr g

(8)

Because (H$)=const., we have P?=P2+F(r,)- F(r), where the subscript zero

denotes the initial conditions, and F(r)=P?/Mr? + Q®BZ.r?/4Mc” + 2MQf 21 is an

rms rest

effective radial potential. To determine the condition for radial confinement, we are only



interested in orbits near the center of the conductor, i.e. where the beam-wall interaction

isweakest. Therefore, by taking the limit of the effective radial potential F(r) asr ® 0
(P, =0) and finding the criterion that F(r) is increasing, we obtain the space charge

limit for radially confined orbits,

1
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where |, =Nef is the average current in the Kklystron (in amperes),

|, =g,b,m.c®/e@g,b, 17KA is the electron Alfven current, w_, . =€B, ./mc, and

c,rms

a =2paf /g,b,c. We note that the left-hand side of Eq. (9) is equal to the self-field

2
c,rms

parameter 2w’ /wZ,.. in the rest frame, where W§:(4pe2/me)(N/pa2Lrest) is the

effective plasma frequency squared. This sdlf-field parameter limit is similar to a limit
that the authors computed for a uniform-focusing magnetic field, B** = Be, [13]. The
only difference is that the rms magnetic field on the left-hand side of Eq. (9) should be
replaced by B. Figure 2 shows a plot of the right-hand side of Eq. (9) versus the
parameter a .

In the limit where the bunch spacing is small compared to the pipe radius, i.e. a >>1,
the system resembles a continuous beam. Equation (9) becomes

2wl /w?,  £1- 8p°a’g,’L %e ", and recovers the Brillouin density limit for PPM

focusing. However, the more relevant limit for high-power klystrons is when the bunch

gpacing is much larger than the pipe radius, i.e, a <<1. Numerical analysis shows that

2
c,rms

equation (6) becomes ZW,ZJ Iw;,. . £2alg,L, which is much less than the Brillouin

density limit.

We now apply the beam confinement condition in Eq. (9) to three recent PPM
focusing klystron experiments at SLAC, namely, the X-band 50 MW XL-PPM and 75
MW XP klystrons [7,15] and the W-band Klystrino [16]. The parameters for all three
klystrons are listed in Table 1, and their operating points are marked with letter a, b and c
in Fig. 2, respectively. The X-band klystrons were designed and tested for the NLC,
whereas the W-band klystrino was designed br sub-millimeter radar applications. As
shown in Fig. 2 and Table 1, all three klystrons operate in the regime of a <<1 and near



the saf-field parameter limit. Because the 50 MW klystron operates dlightly below the
confinement limit, a mild beam loss still occurs in this device [7] through beam halo
formation as reported previously [6,17]. The 75-MW XP is operating autside of the
confinement limit. This suggests that the 75 MW klystron has greater beam loss than its
50 MW counterpart, which is consistent with more pronounced X-ray emissons
measured at the output section of the device [15]. The Klystrino design parameters fall
just inside of the theoretical limit, suggesting a marginally stable beamwall interaction.
To summarize, we presented a center-of-mass model for a tightly bunched electron
beam in a periodic permanent magnet (PPM) focusing klystron. By anayzing the
Hamiltonian dynamics of a train of collinear periodic point charges interacting with a
conducting drift tube, an rf field, and an applied PPM focusing field, we derived a space-
charge limit for the radial confinement of lightly bunched electron beams, which is
significantly below the well-known Brillouin density limit for a continuous beam. We
found that several state-of-the-art PPM klystrons developed at SLAC operate close to this
limit, thereby shedding some light on the origin of observed beam losses. A further study
of PPM confinement, which includes multi-particle smulations in each bunch, is needed

to make a more accurate estimate on the amount of beam loss in klystrons.



Acknowledgement
This work was supported by the Department of Energy, Office of High Energy and
Nuclear Physics, Grant No. DE-FG02-95ER-40919, and by the Air Force Office of
Scientific Research, Grant No. F49620-00-1-0007. The authors wish to thark D. Sprehn

and G. Scheitrum for helpful discussions.



References

=

M. Reiser, Theory and Design of Charged-Particle Beams(Wiley & Sons, New
York, 1994).

2. R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Reading, MA,
1990).

Luccio and W. Mackay, eds., Proceedings of the 1999 Particle Accelerator
Conference (IEEE, Piscataway, NJ, 1999), and references therein.

4. J.Benford and J. Swegle, High Power Microwaves (Artech, Boston, 1992).

5. R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).
6
7

w

. C. Chen and R. Pakter, Phys. Plasmas 7, 2203 (2000), and references therein.

. D. Sprehn, G. Caryotakis, E. Jongewaard, R. M. Phillips, in Proceedings of 19"
International Linac Conference (Argonne National Laboratory Report ANL-98/28),
p. 689.

. F. Hegeler, C. Grabowski, and E. Schamiloglu, IEEE Trans. Plasma Sci. PS-26, 275
(1998).

9. D. H. Fitzgerald, et al., in Ref. 3, p. 518.

10. M. Harrison, in Ref. 3, p. 6.

11. J. J. Barnard, and S. M. Lund, in Proceedings of the 1997 Particle Accelerator

Conference (IEEE, Piscatway, NJ, 1997), p. 1929.
12. Gluckstern, R.L., A.V., Fedotov, S. Kurennoy, and R. Ryne, Phys. Rev. E58, 4977
(1998).

13. M.Hess and C. Chen, Phys. Plasmas 7, 5206 (2000).

14. L. Brillouin, Phys. Rev. 67, 260 (1945).

15. D. Sprehn, G. Caryotakis, E. N. Jongewaard, R. M. Phillips, and A. Vlieks, in Intense

Microwave Pulses VI, edited by H. E. Brandt, SPIE Proc. 4301, 132 (2000).

16. G. Scheitrum, private communication (2000).

17. R. Pakter and C. Chen, IEEE Trans. Plasma Sci. 28, 502 (2000).

0o



Figure Captions
Fig. 1 Diagram of aperiodic array of charges propagating in a perfectly conducting
cylinder with longitudinal velocity v,e, .
Fig. 2 Plot of the maximum value of the self-field parameter (solid curve),
8?1, /wZ,,. @l ,, for bunched beam confinement as a function of the parameter

a =2paf /g,b,c. Shown in letters are the operating points for three PPM

focusing klystrons. @) 50 MW XL-PPM, b) 75 MW XP, and c) Klystrino. The

dashed line denotes the Brillouin density limit for an unbunched beam.
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Table 1. Parameters for SLAC PPM Focusing Klystrons

PARAMETER | 50MW XL-PPM  75MW XP KLYSTRINO
f (GH2) 11.4 11.4 95
I, (A) 190 257 2.4
R 1.83 1.96 1.22
Brms (T) 0.20 0.16 0.29
a(cm) 0.48 0.54 0.04
a 0.75 0.77 1.15
8c’l,
— 0.19 0.28 0.35
WC rmsa | A
, o
8c’l
—o 0.238 0.244 0.366
Wc,rmsa IA o
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