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ABSTRACT

A cold-fluid model for a self-organized electron spiral toroid (EST) is presented. In
the present model, the electrons are assumed to undergo energetic spiral motion along a
hollow torus with a fixed ion background, the electron mean free path is assumed to be
long compared with the torus size, and the minor radius of the EST is assumed to be small
compared with the major radius. Using this model, the equilibrium and stability properties
of the electron flow in the self-organized EST are analyzed. It is found that a class of self-
organized EST equilibria exists with or without an externally applied toroidal magnetic field.
It is shown that in the absence of any applied toroidal magnetic field, the EST equilibria are
stable at high electron densities (i.e., at high toroidal self-magnetic fields), although they are

unstable at low electron densities (i.e., at low toroidal self-magnetic fields).
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I. INTRODUCTION

Self-organized plasmas are often observed in nature. A well-known self-organized plasma
is the so-called spheromak plasma [1] in which the magnetic field is produced almost entirely
by the internal current flow in the plasma. Because no toroidal magnetic field is required
outside the plasma (e.g., at the wall), spheromak plasmas can form spontaneuously given the
appropriate initial conditions. Spheromak plasmas, which appear in the form of spheroids
or toroids, have been studied theoretically [2-5] using magnetohydrodynamics (MHD) for
more than five decades. Since the late 1950s, spheromak plasmas have been generated in
various laboratories and have been studied experimentally [6-11], although there have been
few detailed experimental studies of spontaneously generated spheromak plasmas in nature.
The laboratory studies of spheromak plasmas were motivated by their potential applications
in nuclear fusion [6-9], in terms of both a plasma confinement device [6,7] and a reactor fueling
device [9], and in intense X-ray generation by accelerating and magnetically compressing the
plasma [10,11].

Ball lightning [12] is another interesting self-organized plasma, but it is less understood.
It is often observed during a lightning event in atmosphere. Both spherical and toroidal
ball lightning plasmas have been reported [12]. Because the precise conditions for ball
lightning to occur are still unknown, detailed properties of ball lightning plasmas, such as
the energy density, have not been measured experimentally. Proposed theoretical models for
ball lightning range from spheromak-like MHD models to dusty plasmas.

Recently, experimental evidence of self-organized toroidal plasmas in a DC arc discharge
have been reported [13,14]. These self-organized plasma toroids, which are of 0.2 to 1 cm
in diameter, appear to be stable for up to 0.6 seconds in partial atmosphere in the absense
of any applied magnetic field. Because the electron mean free path is long compared with
the diameter of the plasma under the partial atmosphere in these experiments, the electrons

in such self-organized plasma have been postulated [13,14] to spiral energetically along a



torus with an ion background which is confined by the partial atmospheric pressure. These
self-organized plasmas are referred to as self-organized electron spiral toroids [13]. Potential
applications of self-organized electron spiral toroids include energy pulse formation, energy
storage, and propulsion.

In this paper, we present a theoretical model for the self-organized electron spiral toroid
(EST). In the present model, the electrons are assumed to undergo energetic spiral motion
along a hollow torus with an ion background. The electron mean free path is assumed to
be long compared with the EST size and the electron temperature is assumed to be low, so
that the electrons are considered to form a hollow beam torus with cold-fluid motion. In
the analysis, the electron temperature is assumed to be small. Because we are interested in
the plasma dynamics on a time scale of the electron motion, the ion background is assumed
to be fixed. Furthermore, the minor radius of the EST is assumed to be small compared
with the major radius, i.e., the aspect ratio of the EST is assumed to be small. Consistent
with the small aspect ratio assumption, the toroidal velocity of the electron flow is assumed
to be negligibly small compared with the poloidal velocity of the electron flow. Using this
model, the equilibrium and stability properties of the electron flow in the self-organized EST
are analyzed. It is found that a class of self-organized EST equilibria exists without an
externally applied toroidal magnetic field. It is shown that in the absence of any applied
toroidal magnetic field, the EST equilibria are stable at high electron densities (i.e., at high
toroidal self-magnetic fields), although they are unstable at low electron densities (i.e., at
low toroidal self-magnetic fields).

The organization of this article is as follows. In Sec. II, a cold-fluid equilibrium theory
of the electron spiral toroid (EST) is presented. Examples of tenuous and intense electron
spiral toroids are presented. In Sec. III, use is made of the continuity equation, the force
equation, and Maxwell’s equations to obtain a complete set of linearized equations governing

extraordinary mode perturbations. An eigenvalue equation for extraordinary mode purtur-



bations is derived, and solved numerically with a computer code. Detailed derivations of
the extraordinary eigenmode equations including the boundary conditions are given in the
Appendices at the end of this article. The results of the stability analyses of both tenuous
and intense electron spiral toroids are discussed. In Sec. IV, the conclusions of this paper

are presented.



II. EQUILIBRIUM THEORY

In this section, we present a cold-fluid equilibrium theory of the electron spiral toroid
(EST). As stated in the Introduction, we make the following assumptions: a) the electron
mean free path is assumed to be long compared with the EST size, so that the electrons
are considered to form a hollow beam torus; b) the electron temperature is assumed to be
low, so that a cold fluid description is used; c) the minor radius of the EST is assumed to
be small compared with the major radius, so that the toroidal effects are negligibly small;
and d) the ion background is assumed to be fixed. The last assumption implies that the
equilibrium theory and subsequent stability analysis are valid in the time scale that is short
in comparison with the time scale for the ion motion.

To the lowest order, we treat the toroidal flow in the EST with a small aspect ratio (i.e.,
with rye /7o < 1, where g is the major EST radius) as if it flows along a straight cylinder, and
analyze detailed equilibrium properties of the poloidal flow in the EST as shown in Fig. 1.
In the poloidal coordinate system (p, ¢, 796), the equilibrium electron density is assumed to

be

. ﬁbrbl/p, T < P < Tpa,
ny(p) = { 0, otherwise. M

The equilibrium electron flow velocity has the general form
V(p) = Vs(p)éy + Vaeo, (2)
where Vy <V, and Vj = const. The fixed ion density is assumed to be

ni(p) = fre(p), (3)

where f is the ion fraction, which is slightly greater than unity.
It is readily shown that the equilibrium electron density and flow velocity, n, and 1%

defined in Egs. (1) and (2), satisfy the steady-state continuity equation
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with 8/0t = 0. In Eq. (4), J = —en,V is the electron current density and —e is the electron
charge.

The cold-fluid force balance equation for the equilibrium electron flow is

v R L I
= (V- V)Vz—%[Equ(BoeﬁB)], (5)

where 0/0t = 0, m is the electron mass, Byép is the applied toroidal magnetic field, and
Es = E5(p)é, and B = Bj(p)és + Bj(p)éy are the self-electric and self-magnetic fields
produced by the electrons and background ions, respectively. Although an applied toroidal
magnetic field is included in the present formation of the equilibrium and stability problem,
it is set to be zero in all of the numerical examples presented later in this paper. The radial

component of Eq. (5) is

= —{E*(p) + Volp) [ Bo + By o))} , (6)

where the negligibly small term Vj B; has been ignored. Solving Eq. (6) for Vi(p) yields

1 Jep e’p? gep """
Vo(p) = 2 (BO + Bg) + W(BO +Bj)® + E ; (7)
respectively.
The equilibrium Maxwell equations are:
10 _e(l—f)

E})=— —= , 8
pap(p )) = () (8)
9 B3 = moeValohms(o) ()

ap 6 = Ho€Ve(P)Me(P)-

Solving Eq. (8) for Ej; with the boundary condition E5(p = 0) = 0 yields

Ef;(p) _ { 0—,(@/60)(1 — [)fwren (1 —r01/p), ;b1<<rb/1).< Tp2, (10)

Substituting Eq. (7) into (9) yields

/2
d . Hoe ep e’p dep )"
d_pBo = “my(p) { (Bo + Bg) + l m2 (Bo+ B;)? + WEp ; (11)



which has to be solved numerically under the boundary condition Bj(p = r2) = 0.
Use is made of a computer code, named CFTEST, to solve Egs. (7) and (11) numeri-
cally. For present purposes, it is convenient to express Egs. (7) and (11) in the following

dimensionless forms (for 1 < p < 7y /71)

y(p) = % {Q + Qo + [(Qs +0)? +4A(f — 1)% (1 — %)]1/2} : (12)

e

QO <@> = 0. (14)

b1

and
de A N
i :%{QS+QO:I: l(QS+QO)2+4(f—1)

| =

subject to the boundary condition

In Egs. (12) and (13), the dimensionless variables and parameters are defined by

a Qs eB;

where

wplr) = (—”>/ (16)

€m
is the electron plasma frequency at p = 71, and c is the speed of light in vacuo.

Egs. (12) and (13) are fully characterized by three dimensionless parameters, namely, «,
a dimensionless measure of the electron density, f, the ratio of the background ion density to
the electron density, and QO, the normalized cyclotron frequency associated with the applied

toroidal magnetic field. Moreover, since the variable p varies over the range from 1 to rp/Tm



and the value of ry3 /7y can be chosen arbitrarily, we expect that EST equilibria exist over
a wide range of system parameters.

Figure 2 shows a tenuous EST equilibrium as obtained numerically with the aid of the
computer code in the absence of any applied toroidal magnetic field. The choice of system
parameters in Fig. 2 corresponds to: a = 1.6, f = 1.02, Qo = 0, and rpo/rp; = 1.01. In
this case, the EST equilibrium is tenuous because the Budker parameter is evaluated to be
v = (a/2)(rye/me1 — 1) = 8 x 1073, which is small compared with unity. In Fig. 2, the
normalized cyclotron frequency €2*/wy(rp1) and normalized electron angular flow velocity
wy/wp(Tp1) are plotted as a function of the normalized minor radius p/r, for the clockwise-
rotating electron flow in the tenuous EST equilibrium. For the clockwise-rotating electron
flow, which corresponds to the minus sign in Egs. (12) and (13), the electrons rotate in the
positive éy-direction in reference to the schematic diagram shown in Fig. 1, and the self-
magnetic field points out of the page because the current flow is in the negative ey-direction.
In contrast, both the electron rotation and self-magnetic field for the counter-clockwise-
rotating electron flow reverse their directions with respect to the clockwise-rotating electron
flow.

With the choice of an inner minor radius of ry; = 4.95 x 10~* m and a major radius of
ro = 2.5 X 1072 m for the EST, we derive from Fig. 2 the following dimensional parameters:
Tpe = 5.00x 107* m, Vy(rpe) = 5.37x10° m/s, Bi(rp) = —6.6x 10* Tesla, N, = 2.243x10'°,
and N; = 2.288 x 109, where N, is the total number of the electrons in the EST and N; is
the total number of the ions in the background.

Figure 3 shows plots of the normalized cyclotron frequency €2*/w,(rp1) and normalized
electron angular flow velocity wy/wy(rp1) versus the normalized minor radius p/ry; for the
clockwise-rotating electron flow in an intense EST equilibrium as obtained numerically in the
absence of any applied toroidal magnetic field for the choice of system parameters correspond-

ing to: a = 1000, f = 1.0001, Qo = 0, and Tp2/Tp1 = 1.01. In this case, the EST equilibrium



is intense because the Budker parameter is evaluated to be v = (a/2)(rp/ry — 1) = 5,
which is larger than unity. In comparison with the tenuous case shown in Fig. 2, we ob-
serve in Fig. 3 that the magnitude of the electron flow velocity increases rapidly at the
outer edge of the EST. This trend becomes more pronounced as the Budker parameter in-
creases. With the choice of an inner minor radius of r5; = 1.00 x 1072 m and a major
radius of rg = 0.1 m for the EST, we derive from Fig. 3 the following dimensional pa-
rameters: 15 = 1.01 X 1072 m, Vj(rp2) = 9.49 x 106 m/s, B§(ry;) = —1.49 x 1072 Tesla,
Ny = 5.609987x 104, and N; = 5.610549 x 10'4, where N, is the total number of the electrons

in the EST and N; is the total number of the ions in the background.



II1. STABILITY ANALYSIS
In the present analysis, we consider extraordinary-mode perturbations on the cold-fluid
EST equilibrium discussed in Sec. II. Under the extraordinary-mode perturbations, the elec-

tron density ny(p, ¢,t), electron flow velocity V(p, ¢,t), and electric and magnetic fields

E(p, ¢,t) and B(p, ¢,t) in the EST can be expressed as

(p, ¢, t) = my(p) + Smp(p)e 7", (17)

V(p, 6:t) = Vis(p)&s + [8Vo(p)E, + 5V (p)Egle’™*~, (18)
E(p, ¢,t) = Eo(p)é, + [6E,(p)é, + 6Ey(p)Ese’ ™", (19)
B(p, ¢,t) = By(p)é + 5 By(p)epe’®™". (20)

In Egs. (17)-(20), I = £1,42,---, w is the frequency of the perturbations, p is the (mi-
nor) radial coordinate, ¢ is the poloidal angle, and 6 is the toroidal angle; The quanti-
ties ny(p), Vp(p)€s, E,(p)e, and By(p)ép are the electron density, flow velocity, and elec-
tric and magnetic fields in the cold-fluid EST equilibrium, respectively; The perturbations
onp(p, ,t) = dny(p)e =D, §Vy(p, b, t) = [6V,(p)€, + Vi (p)esle’t$=D | etc. are assumed to
be small in the present analysis. Because an eigenmode with Imw > 0 is unstable, we must
show that all extraordinary modes have Imw < 0 to prove that an EST equilibrium is stable
against extraordinary-mode purturbations.

The aims of this section are to derive a complete set of linearized equations relating the
perturbed quantities dny, 0V, 6V, 0E,, dE4, and d By, to derive the eigenvalue equation and
appropriate boundary conditions, and to investigate the stability properties of both tenuous
and intense ESTs. Consistent with the thin-beam approximation, the present analysis ignores
curvature effects in the toroidal direction; that is, the unit vector € is considered as a
constant unit vector. Detailed derivations are presented in Appendices A-D for an EST in
open space (e.g., in air), and the results are summarized in Sec. III.A. The stability properties

of tenuous and intense EST's are discussed in Sec. I11.B.
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A. The Eigenvalue Problem

The stability problem of an EST can then be formulated as the following eigenvalue

problem (for ry < p < r32)

ld p dsd 12
——\T a3 gl Lpl—¢ — =01 1, p)]6® = 0 21
pdp {1 —w2p2/c2l2[ +Xp(w, ,P)] dp } p2[ + xo(w, 1, p)] , (21)

with the boundary conditions:

i J(wre/c)

22
21rpic Jj (wrp /) (22)

G'(p=rn) =

and
i Hy(wry/c)
21rpec Hi(wrpe/c)

G*(p=rp2) = (23)

for an EST in open space (e.g., in air). In Egs. (21)-(23), the eigenfunction §® is defined by

5 = 60(p) = 5y(p). (24)

The susceptibility functions x,(w,!, p) and x4(w,(, p) are defined by

(1 — wwyp?/c21)?
v 1—w?p?/c2l?

&

Xp(wa l’ p) = -

2

w2p? /P12 > o w? (Q — 2wb> w?p?/c21?
)

w2
lp)=— -2 (14+—21""
Xo(w; 1, p) 02 ( T — w2p? 22 lw 1 —w?p?/c2l2

+ (w— llw:)ziwipj)é;l/c2l2) (?) dip lc:_g(g - 20%)] , (26)

respectively, where Q = Q° + Q. The function vZ(w,, p) is defined by

w2p? /P12

vy (w1, p) = (w — lwp)? [1 + [y

] (- 2wy) Bdip(p%b) - Q] @)

The admittance function G(p) is defined by

6" 6Es(p, ¢, t)6B;(p, ¢ t)pd _ 1 8Bj(p) (28)
21 pd Ey(p, ¢, 1)[? 2mp 0E;(p)’

G(p) =
which can be expressed explicitly as

. ) 1
&lp) = (2—7rl> 1 — w?p?/cl? 8

11



y {_w_g ( 1 )(Q—wa)+ [w_p_w_z%( p >(w_ZWb)1—wwbp2/C2l] 1 déd)}. (29)

2\l el 2 \aP 1—w2p?/c12 | 6@ dp

The functions J;(z) and H;(z) are the first-kind Bessel and Hankel functions of order I,

respectively.

Although the eigenvalue equation (21) resembles the extraordinary eigenvalue equation
[15,16] describing the electron flow in crossed-field vacuum electron devices such as mag-
netrons and crossed-field amplifiers, there are significant differences. First, the present eigen-
value equation includes the effects of an fixed ion background which is absent in crossed-
field vacuum electron devices. This allows us to analyze the stability properties of the
self-organized EST in the absence of an applied toroidal magnetic field. Second, the present
eivenvalue equation must be solved subject to the open boundary condition given in Eq. (23)
rather than a closed conducting-wall boundary condition used in the analysis of crossed-field
vacuum electron devices.

In the eigenvalue equation (21), there are two important resonances for the interaction

between the electron flow and the perturbed wave fields, namely,
w — lwy(p) = 0, (30)

and

w2p? /2l 1d

B. Numerical Results

A computer code, named CFTEST, has been developed for solving the eigenvalue problem
defined in Egs. (21)-(23). In the code, the standard shooting method is used to integrate
the eigenvalue equation (21) from p = 74 to 742, and the boundary conditions in Egs. (22)
and (23). The code has been validated and is working correctly.

Use is made of CFTEST to investigate the stability properties of tenuous EST equilibria

in the absence of any applied toroidal magnetic field. For the tenuous EST equilibrium

12



shown in Fig. 2 in Sec. II, the results of the stability analysis are summarized in Fig. 4.
Figures 4(a) and 4(b) show, respectively, the normalized real eigenfrequency Rew/w,(731)
and normalized imaginary eigenfrequency Imw/wy(rp1) as a function of the poloidal mode
number [ for the extraordinary eigenmode perturbations. As shown in Fig. 4, for each
poloidal mode number [ from [ = 1 to 6 and for [ > 10, there is a stable eigenmode with a
real eigenfrequency. However, for each poloidal mode number [ from [ = 7 to 9, there is a
pair of eigenmodes with complex eigenfrequencies. The eigenmodes with positive imaginary
eigenfrequencies are unstable, whereas those with negative imaginary eigenfrequencies are
damped. The maximum growth rate of the unstable eigenmodes is Imwye; = 0.005 wy (1),
which occurs at [ = 8. The real eigenfrequency increases as the poloidal mode number [
increases, as expected from the resonance conditions in Egs. (30) and (31).

As the electron density increases in the EST, i.e., as the parameter a increases, the
growth rates of the instabilities shown in Fig. 4 decrease relative to the plasma frequency.
This is illustrated in Fig. 5, in which the normalized imaginary eigenfrequency is plotted
as a function of the parameter a for several unstable eigenmodes with the poloidal mode
number [ = 5, 6, 7 and 8. The choice of system parameters in Fig. 5 corresponds to: 2 = 0,
Te2/Tn = 1.01, and f — 1 = 0.032/a. In Fig. 5, the value of the parameter f is adjusted
according to the relation f — 1 = 0.032/a, so that the normalized electron poloidal flow
velocity is fixed at 72 w?(ry;)/c® = 3.2 x 1074 [see Eq. (7)]. It is evident in Fig. 5 that the
normalized growth rate Imw /w,(73;) decreases as o increase. As a matter of fact, the relative
maximum growth rate of the instabilities is found to slowly decrease to zero as the parameter
a further increases, indicating stability for intense electron spiral toroids.

Use is also made of CFTEST to investigate the stability properties of intense EST equi-
libria in the absence of any applied toroidal magnetic field. All of the intense ESTs we
investigated are found to be stable. As a typical example, the results of the stability analysis

are summarized in Fig. 6 for the intense EST equilibrium shown in Fig. 3 in Sec. II. Figures

13



6(a) and 6(b) show, respectively, the normalized real frequency Rew/w,(ry1) and normalized
imaginary frequency Imw/w,(rp1) as a function of the poloidal mode number [ for the ex-
traordinary eigenmode perturbations. The real frequency increases as the mode number [
increases. The imaginary parts of the eigenfrequencies are either zero or negative. Therefore,
all of the eigenmodes are stable. It is worthwhile noting that there are more eigenmodes in
the intense case than in the tenuous case. The modes with higher frequencies correspond to

higher-order radial oscillations.
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IV. CONCLUSIONS

We have presented a cold-fluid model for a self-organized electron spiral toroid (EST)
in partial atmosphere, assuming a) the electrons undergo energetic spiral motion along a
hollow torus with an ion background, b) the electron mean free path is long compared with
the EST size, c) the electron temperature is low, d) the ion background is assumed to be
fixed, and e) the minor radius of the EST is small compared with the major radius. Using
this model, the equilibrium and stability properties of the electron flow in the self-organized
EST were analyzed.

In particular, the equilibrium poloidal electron flow velocity and equilibrium toroidal
self-magnetic field were determined for a small-aspect ratio hollow EST. Examples of intense
and tenuous EST equilibria were presented. Use was made of the continuity equation, the
force equation, and Maxwell’s equations to obtain a complete set of linearized equations
governing extraordinary mode perturbations. An eigenvalue equation for extraordinary mode
purturbations was derived, and solved numerically with a computer code. It was found
that a class of self-organized EST equilibria exists without an externally applied toroidal
magnetic field. It was shown that in the absence of any applied toroidal magnetic field, the
EST equilibria are stable at high electron densities (i.e., at high toroidal self-magnetic fields),

although they are unstable at low electron densities (i.e., at low toroidal self-magnetic fields).
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APPENDIX A: LINEARIZED CONTINUITY, FORCE
AND MAXWELL EQUATIONS

Under the extraordinary-mode perturbations given in Egs. (17)-(20), the conservation of

electron charge is maintained, which is described by the continuity equation

%nb(p’ ¢a t) + V. [’nb(p, ¢, t)V(p, ¢, t)] =0.

Linearizing Eq. (A1), we obtain

1d il il
i =L (onsdV,) + Lnyd Vi + LVym = 0.
twdny + pdp(pnb ») + pnb b+ P wonp =0

From Eq. (A2), the density perturbation dn; is given by

1 i d l
- - ~ 10
w — lwb pdp(pnb&v;’) + pnb ‘/;5 ’

577,5 =

where the equilibrium electron angular flow velocity wy is defined by

which is a function of p.

The linearized force equation is given by

0
ot

Equation (A5) can be expressed in the component form

—i(w — L)V, — 2wV + QVy = — %(515,, + V6By),

1d,, e
—i(w — — —Q =— —J)F
i(w — lwp)oVy + lpdp(p Wh) ] oV, m5 b
where
e
Q=0Q(p) = E[Bz(p) + B

Z 8V + (Vyéy - V)V + (8V - V) Vyéy = — %(515 + Vyéy x 0B + 6V x Byéy).

(A4)

(45)

(48)

is the electron cyclotron frequency in the equilibrium toroidal magnetic field [Bj(p) + By|€p-

16



The perturbed electric and magnetic fields 5E(p, ¢,t) and 5§(p, ¢,t) satisfy linearized

Maxwell’s equations

V. 5E(pa ?, t) = - éénb(pa ?, t)’ (Ag)
V x 85(p, 6,1) + £:6B(p,6,1) =0, (410

V x 58(p,6,1) — 55550, 6,1) = —puclm(p)OV (5, 6,1) + Velp)esdma(p,6,0)]. (412
Note that for 5§(p, $,t) = 6By(p)e’t“Yéy, Eq. (A11) is automatically satisfied, i.e.,

— 1 0 .
V.- _._9 i(lp—wt)] _
dB(p, $,1) PEICT) (06 Bo(p)e =0, (A13)

where 7y is the major EST radius, and 7¢0 is the displacement along the toroid. It should

be reminded that the unit vector € is considered as a constant unit vector in the present

analysis. Equations (A9), (A10) and (A12) can be expressed in the component form

1d il e
2 () + L5E, = — Som, Al4
pdp(p o) 0P oo (A14)
1d il

——(pdFEy) — —0FE, = iwd By, Al5
pdp(P s) 0P o (A15)
. .

’;530 + ZC—°;’5E,, = — poenydV,, (A16)

d w
— d—p(SBg + g(squ = —,uoe(nbéng + V¢5nb) (A17)

While there are four equations (A14)-(A17) for three field variables dE,, dE,; and 6By, we

work with Egs. (A15) and (A16) to obtain

1 d iwp? [ e
FE=——r—— | —00+ —= (— ) Al
OE, 1 — w2p2/22 [dp + 2[2 <€0>nb V;’] (A18)
and
By= — |9 dsp, 00 <3> 6V, (A19)
71 —w2p?/c22? | 2l dp 2 \e/) 7P|

17



where 0®(p) is defined in Eq. (24). Note that when |wp/cl| < 1, we have approximately

i .
OB, = — 00, 0E, % - %5@, 5By = 0, (A20)

corresponding to electrostatic perturbations.
To summarize briefly, equations (24), (A3), (A6), (A7), (A18) and (A19) relate the per-
turbed quantities dny, 0V, 6Vy, 0E,, dEy, and 0 By. These equations together with Poisson’s

equation (A14) will be used in Appendix B to derive an eigenvalue equation involving only

0 (p) = (ip/)dE4(p)-

18



APPENDIX B: DERIVATION OF THE EIGENVALUE EQUATION
The extraordinary-mode eigenvalue equation is derived in three major steps. As a first
step, we eliminate the density perturbation dn; in Eq. (A14) by substituting Egs. (A3) and

(A18) into Poisson’s equation (A14). This readily gives

2
1d ( p d5¢> B

i\,

e i 1d 1d [ iwp?/l? l/p
T el odp T odo — . (B1
€o { w — lwy Pdp(pnb 2 pdp ll —w?p?/c2l? (V) | + w— lwbnbévqS (B1)

It is evident in Eq. (B1) that the field perturbation & is driven self-consistently by the
electron density perturbation which is now expressed in terms of the velocity perturbations
0V, and 0Vj.

As a second step, we express the velocity perturbations §V, and §V} in terms of the field
perturbation §® using the linearized force equations (A6) and (A7) and linearized Maxwell’s
equations (24), (A18) and (A19). Indeed, substituting Egs. (A18) and (A19) into Eq. (A6),

some straightforward algebra yields

w2p? /A1 ie 1—wVyp/c?l dé®
_ e L (0 — _ e P
(w — lwp) [1 + T w2p2/c2l2] OV, + (2 — 2wy )V, m 1=w2p2 )R dp (B2)
and substituting Eq. (24) into Eq. (A7) yields,
1d,, e l

|- —Q . - £ 253, B

i lp dp(p Wp) ] 0V, + (w— lwp)dVy — p5 (B3)
Solving Egs. (B2) and (B3) for 6V, and 6V}, we find that

_de [ 1 —wVyp/c?l d5®

oV, = — [(Q Zwb)p5<1> + (w lwb)1 —RIEE dp | (B4)

_ 2 22 /.22
0V = c { L= wVop/cl Fi(p%}b) — Q] ©S (w — lwy) [1 R L A ] 15@} )

mug |1 —w?p?/c? | pdp 1—w?p?/c2| p

(B3)

where the quantity v2 = v2(w, 1, p) is defined in Eq. (27).
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As a third step, we substitute Egs. (B4) and (B5) into Eq. (B1) to obtain the eigenvalue

equation

1d p do® 12 w? - w2p? /1 50
pdp \1—w?p?/c22 dp p? vE 1 —w?p?/c2]?
1 1d ! 1 —wVyp/c®l d6d
- 0 — %) 6% + (w —
lwbpdp { y l( wb)p5 + (w — lwp) 1 —w2p?/c2 dp

li w?  wp?/A? 1 —wVyp/c?l do®
vi 1 —w?p?/c3? 1 —w?p?/c2? dp

pdp
lw 1 1 —wVyp/c®l [1 d déd
P/ l Ly wb)—Q] dod
pdp dp

where [ = 41,42, - -+, and w,(p) = [e2ny(p)/eom]'/? is the (local) electron plasma frequency.

(B6)

_P
2

l(Q — Zwb)£5<1> + (w — lwb)

2 w—lwy, 1—w?p?/2I2

Finally, after a lengthy algebraic exercise, we can express the eigenvalue equation (B6)

in the following form

1d p 5o P
- L i - n =
pdp {1 —w2p2/c2l2[ + Xp(w, 1, p)] =~ dp } p2[ + X¢(w, 1, p)]6® = 0, (B7)

where the susceptibility functions x,(w,l, p) and x4(w,, p) are defined in Egs. (25) and (26),
respectively.
Equation (B7) must be solved subject to appropriate boundary conditions. For an EST

in open space (e.g., in air), the boundary conditions are
6D(p=0)=0 and 6P(p=o00)x p'/2. (B3)

Consistent with the boundary conditions in Eq. (B8), the boundary conditions at p = ry
and 7pz will be derived in Appendix D after a brief discussion of the solutions to Eq. (B7) in

the vacuum regions in Appendix C.
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APPENDIX C: SOLUTIONS IN THE VACUUM REGIONS
We solve the eigenvalue equation (B7) in the vacuum regions with p < 7, and with
p > T2, where ny(p) = dny(p) = Vy(p) = dV,(p) = 0. For p < ry1 or p > rp, Eq. (B7) can

expressed as

1d p d6® 12
_ — —0P =
pdp (1 —w?p?/c? dp > p25 0 D

or

25% 114 w20/ 22 2 72
d*o 114 w?p”/c*l* d6® w* ® 5B -0 (©2)
dp® | pl1—w?p?/I2 dp 2 p2
While neither Eq. (C1) nor Eq. (C2) seems to be analytically tractable, we can solve for §®
indirectly by returning to Eqs. (A14)-(A17). Setting ny(p) = dnp(p) = 6Vz(p) = 6V,(p) =0,

we express Eqs. (A14)-(A17) as

1d il
——(pdE,) + —0E4 =0, C3
1d il
——(pdEy) — —0F, = iwd By, C4
il w
;5B0 + géEp =0, (C5)
d w
We have from Eq. (C3),
1d
Ey= ———(poE
and from Eq. (C5),
wp
6By = — 505, (C8)

Substituting Egs. (C7) and (C8) into Eq. (C4) yields Bessel’s equation
1d| d w? 2

e PR Y Y L) (pE,) =

for the variable pdE,.

General solutions to Eq. (C9) are

pdE,(p) = Ci(wp/c) + DYi(wp/c), (C10)
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where Jj(z) and Yj(x) are the first- and second-kind Bessel functions of order [, and C and
D are constants to be determined by the boundary conditions given in Eq. (B8) together
with solutions to Eq. (B7) within the EST electron layer (r;1 < p < rp2). Substituting
Egs. (C7) and (C10) into Eq. (24), we obtain general solutions to the eigenvalue equation in

the vacuum regions outside the EST electron layer with p < r; and with p > 749,
. wp / /
09(p) = — 15 [CJi(wp/c) + DY/ (wp/c)], (C11)

where J(z) = dJi(z)/dz and Y/ (z) = dYi(z)/dz.

We now find special solutions for an EST in open space by taking into account the
boundary conditions given in Eq. (B8). In the inner vacuum region with 0 < p < 1, D =0,
because all of the field perturbations must be finite at p = 0. Therefore, for 0 < p < 731, the

eigenfunction d®(p) can be expressed as

69(p) = — 7o C<Ji(wp/o) (C12)

and the corresponding perturbed fields are given by

5B3(p) = — 13C<hlwn/c),
SE,(p) = = h(wpo) (C13)
5B (p) = Ol (wp/).

Here, C. is a constant to be determined by the boundary conditions at p = ry;.
In the outer vacuum region with p > 1, D = iC, because the perturbed fields form an

out-going wave. Therefore, for p > ry, the eigenfunction §®(p) can be expressed as
__wp /
6®(p) = — %C>Hl (wp/c), (C14)
where H,(z) is the first-kind Hankel function of order ! defined by
Hy(z) = Ji(z) + iY(z). (C15)

22



The corresponding perturbed fields are given by

6Bs(p) = — 15 CsHiwp/<),
3E,p) = <= Hiwp/o), (C16)
5E4(p) = 2 Cs Hilwp]c).

Here, Cs is a constant to be determined by the boundary conditions at p = rps.

The rms radial Poynting flux is

Plo) = S0E,(0)0B; (o) exp@imat) = — & 25100 Hi(wp /o) Hi (wp/) exp(2tmu)
(C17)
for p > rpe. If the EST is stable with Imw < 0, then the Poynting flux is small under small
purturbations. On the other hand, if the EST is unstable with Imw > 0, then the Poynting

flux increases exponentially as a function of time as purturbations grow, reducing the lifetime

of the EST.
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APPENDIX D: DERIVATION OF BOUNDARY CONDITIONS

To solve the eigenvalue equation (B7) numerically in the electron layer from p = 74 to
Ty2, we must set the boundary conditions at the inner and outer surfaces of an EST. For
present purposes, we introduce the admittance defined in Eq. (29), which is the ratio between
the radial Poynting flow per unit length in the f-direction and the square of the (effective)
voltage associated with 0 E,. Since both 0 E,(p) and the radial Poynting flux are continuous,
it follows that the admittance G is continuous at p = ry; and p = 1.

For an EST in open space (e.g., in air), the boundary conditions can be derived with the
aid of the special solutions obtained in Appendix C and the continuity of the admittance at
the EST surfaces. Substituting Eq. (C13) into Eq. (28), and setting p = r,; — 0, we obtain

i J(wrp/c)
2rryc J)(wre /c)

G'(p=rnn—0) = (D1)

Similarly, substituting Eq. (C16) into Eq. (28), and setting p = ry2 + 0, we obtain

. i Hj(wry/c)
= = . 2
Gp=r2+0) 2mrpec Hj(wrpe/c) (D2)

Evidently, one of the advantages of introducing the admittance G is that the coefficients C.
and Cs do not appear explicitly in Egs. (D1) and (D2).

Inside the EST electron layer, an analytical expression for the admittance G can be
obtained by substituting Eqgs. (24), (A20) and (B4) into Eq. (28). This gives (for ry < p <

Tb2)
. 1 1
G*(p) = (2—7rl> 1 — w2p?/c22 X

y {_w_f,( 1 >(Q_2%)+ [w_p_w_,?( p >(w_ZWb)1—wwbp2/C2l] 1 déd)}. (D3)

V2 \l Al B\ 1—w2p?/212 | 6@ dp
Since G*(p) is continuous at p = ry; and 743, we obtain the following boundary conditions

i J(wrn/c)
27rye J)(wrp /c)’

G*(p = 'rbl) =

(D4)

and
i Hy(wry/c)
2mryec H(wrye/c)’

G*(p=rp2) = (D5)

24



where G*(p) is defined in Eq. (29) for 7y < p < 7. This concludes the derivation of the

boundary conditions in Egs. (22) and (23).
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FIGURE CAPTIONS

Fig. 1 Cross section of an electron spiral toroid showing the poloidal electron flow V(p)éy
and poloidal coordinate system (p, ¢, ) with €y pointing into the page.

Fig. 2 Plots of (a) normalized cyclotron frequency Q°/w,(r) and (b) normalized electron
angular flow velocity wp/wy(rp1) versus the normalized minor radius p/ry; for the
clockwise-rotating electron flow in a tenuous EST equilibrium. The choice of system
parameters corresponds to: a = 1.6, f = 1.02, Qg = 0, and 7y /rp; = 1.01.

Fig. 3 Plots of (a) normalized cyclotron frequency Q°/w,(rs) and (b) normalized electron
angular flow velocity wy/wy (1) versus the normalized minor radiusp/ry for the
clockwise-rotating electron flow in an intense EST equilibrium. The choice of system
parameters corresponds to: a = 1000, f = 1.0001, Qp = 0, and 74/, = 1.01.

Fig. 4 Plots of (a) normalized real eigenfrequency Rew/w,(rp1) and (b) normalized imaginary
eigenfrequency Imw/wy (1) versus the poloidal mode number [ for a tenuous EST
with the same choice of system parameters as shown in Fig. 2.

Fig. 5 Plot of the normalized imaginary eigenfrequency Imw/w,(73;) versus the dimensionless
parameter o = rflwf, (r1)/c? for several values of the poloidal mode mumber . Here,
the choice of system parameters corresponds to: €y = 0, /71 = 1.01, and
f—1=0.032/c.

Fig. 6 Plots of (a) normalized real eigenfrequency Rew/w,(rp1) and (b) normalized imaginary
eigenfrequency Imw/w,(r31) versus the poloidal mode number [ for an intense EST

with the same choice of system parameters as shown in Fig. 3.
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