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ABSTRACT

The azimuthally invariant cold-fluid equilibrium is obtained for a periodic, strongly
bunched charged annular beam with an arbitrary radial density profile inside of a
perfectly conducting cylinder and an externally applied uniform magnetic field. The self-
electric and self-magnetic fields, which are utilized in the equilibrium solution, are
computed self-consistently using an electrostatic Green’s function technique and a
Lorentz transformation to the longitudinal rest frame of the beam. An upper bound on
the maximum value of an effective self-field parameter for the existence of a bunched
annular beam equilibrium is obtained. As an application of the bunched annular beam
equilibrium theory, it is shown that the Los Alamos National Laboratory relativistic
klystron amplifier experiment is operating dightly above the effective self-field
parameter limit, and a discussion of why this may be the cause for their observed beam
loss and microwave pulse shortening is presented. The existence of bunched annular
beam equilibria is also demonstrated for two other high-power microwave (HPM)
experiments, the reativistic klystron oscillator experiment at Air Force Research
Laboratory and the backward wave oscillator experiment at the University of New
Mexico. In genera, the results of the equilibrium anaysis will be useful in the
determination of the stability properties of strongly bunched annular beams in HPM
devices.

PACS: 29.27, 41.85



|.INTRODUCTION

In recent years, a number of high-power microwave (HPM) experiments have
employed high-intensity bunched annular relativistic electron beams, such as the
relativistic klystron amplifier (RKA) experiment at Los Alamos National Laboratory
(LANL) [1], relativigtic klystron oscillator (RKO) experiment at Air Force Research
Laboratory (AFRL) [2], and the backward wave oscillator (BWO) at the University of
New Mexico [3]. Since an annular beam typically has a transverse size, which is of the
order of the conductor wall radius, the beamwall interaction can be increased compared
to the interaction of a pencil beam with a wall. The greater beam-wall interaction can
advantageously provide a higher power microwave source. However, the increase in
beam-wall interaction, especialy when the beam becomes strongly bunched during high
power operation of such a device, may require a stronger magnetic field for beam
focusing. Indeed, many HPM devices driven by annular beams suffer from considerable
beam losses and the well-known problem of rf pulse shortening [1,3].

In previous papers [4,5], the authors had success in using a Green’ s function technique

for modeling a strongly bunched pencil beam with negligibly small transverse size. A
constraint was found on the maximum effective self-field parameter, 2w? /w? , which is

a measure of the space charge in the beam for a given magnetic field strength. In the

previous expression, w is the effective plasma frequency and w, is the electron

cyclotron frequency. This parameter limit agreed well with the self-field parameters of
three periodic permanent magnet (PPM) klystron experiments, i.e., 50 MW-XL PPM
[6,7], 75 MW-XP [6,7] and the Klystrino [8], which are all at the Stanford Linear
Accelerator Center.

In this paper, we will examine the constraints on the maximum effective self-field
parameter for a bunched annular beam with negligibly small longitudinal thickness in a
perfectly conducting cylindrical pipe. The limit, which we will analyze in this paper,
pertains to the equilibrium transport of the bunched annular beam with no beam loss in
the pipe. Unlike the well-known space-charge limiting current, which was derived under
the assumption of an infinitely strong axial guide magnetic field and an unbunched
(continuous) beam [9], the present limit applies to a bunched beam in a finite axia guide

magnetic field. In particular, we develop a relativistic traveling-wave equilibrium fluid



theory to model the transverse density distribution of the strongly bunched annular beam.
The electric field inside of the beam is completely self-consistent, i.e., the electric field
includes contributions from the beam and the induced surface charge on the conductor
wall. It is obtained through a Green's function technique.

By using density test functions to compute the maximum self-field parameters for
annular beams, we compare theoretical parameter limits with those corresponding to
three annular beam experiments— 1.3 GHz RKA experiment at LANL [1], 1.3 GHz RKO
[2] experiment at AFRL, and the 9.4 GHz BWO [3] experiment at the University of New
Mexico. We note that the density functions used for modeling these experiments are in
fluid equilibrium, but their stability is still unknown at the moment and will be studied in
our future research. By performing a stability analysis involving radial and azimuthal
perturbations on the beam equilibrium, one may find a lower value on the maximum self-
field parameter than what the cold-fluid equilibrium theory predicts.

In an earlier paper [10], Prasad and Morales explored the equilibrium and wave
properties of two-dimensional ion plasmas of finite temperature, T, inside of a pillbox
conductor geometry. The plasma equilibrium was established by balancing the plasma
pressure and the self-electric field, calculated from Poisson’s equation, with an externally
applied electric field due to the fixed potential walls of the conductor. They analyzed the
wave attributes of the plasma in both the unmagnetized and magnetized cases, and
discussed the plasma equilibrium in the cold plasmalimit, i.e, T ® 0. Howewer, in their
analysis of the magnetized case, they treated the angular fluid velocity of the plasma as a
perturbed quantity, and assumed that the equilibrium fluid velocity is zero. In a later
paper [11], Prasad and Morales analyzed the rigid-rotor equilibrium for a two-
dimensiona ion plasma in the cold limit with an external magnetic field present. This
model was assumed to be in free space, and hence, the effects of the conductor wall were
not included. The equilibrium fluid analysis in our paper includes, the self-consistent
treatment of the electric fields in the presence of the conducting wall, magnetic field
confinement, and the non-zero angular fluid velocity of the beam. Unfortunately, there is
no regime in which we can compare the present analysis with the earlier analyses in Refs.
10 and 11.



The paper is organized in the following manner. In Sec. I, we discuss the self-
consistent cold-fluid periodic bunched annular beam equilibrium model with arbitrary
transverse density profile. This presertation includes the self-consistent profiles for the
self-electric and self-magnetic fields generated by the beam, the equilibrium fluid
rotational profile of the beam, and a constraint on the maximum self-field parameter
given the previously mentioned profiles. The derivations of the self-electric and self-
magnetic fields from a Green’s function technique are given in the Appendix. In Sec. I,
we demonstrate how the annular beam equilibrium model can be implemented
numerically, which is necessary for modeling the annular beams of actual experiments.
Specifically, we discuss how to numerically solve for the relevant profiles mentioned in
Sec. |11, and obtain a numerica result for the maximum self-field parameter. We then
apply the model three HPM experiments at the LANL, AFRL, and the University of New
Mexico in Sec. IV. A summary and concluding remarks are provided in Sec. V.



II. TRAVELING-WAVE RELATIVISTIC EQUILIBRIUM MODEL

The charged particle beams utilized in high-power microwave devices, such as the
RKA, RKO, and the BWO, will be longitudinally bunched in order to release energy to
the output cavity. Although, the beam will still have finite longitudinal thickness after
bunching, in the case of an annular beam, the transverse size may become conmparable to
the longitudinal size. In general, modeling a bunched beam self-consistently with finite
thickness requires a fully three-dimensional numerical calculation, which the authors are
currently pursuing. In order to incorporate the bunching phenomenon into a partial
analytical model, we will smplify the system by treating the annular bunched relativistic
electron beam to be a series of charged disks spaced by a distance, L, with zero
longitudinal thickness. Each disk represents a bunch of charge that has an equilibrium
fluid velocity,

V(rt)=V,(re +V,(r)e, +Ve,, 1)
inside of a grounded perfectly conducting cylindrical pipe of radius, a. The zaxis is
chosen to be the axis of the cylinder, and we only analyze azimuthally invariant charge
distributions. The azimuthally invariant assumption is a maor simplification of the
present fluid analysis that ill alows for an equilibrium distribution in the beam.
Although azimuthal variations in annular intense relativistic electron beams that lead to
beam:-breakup instabilities are known to exist [12], we ignore these types of variations in

our analysis. We include a constant externa magnetic field, B = Bg,, for beam

focusing. Figure 1 illustrates the model.

In general, the bunch distribution has radial dependence, and can be written as,
¥
n(r,t):Nbs (r)é d(z-VZt- kL), 2
k=-¥

where N, is the number of particlesin abunch, s contains the radial dependence in the

bunch density, and d is the Dirac delta function. Equation (2) immediately yields the

a

following normalization, 2p cyirrs (r) =1. An additional assumption in our model is that
0

the effect of finite temperature in the system may be ignored, so that the cold-fluid

approximation can be made.



While in any actual HPM device there is a zdependent velocity spread in the bunch,
we have ignored this dependence in (1) to make the problem more tractable. This
together with the assumption in equation (2) describes a tightly bunched beam during the
full power operation of the HPM device.

Since the transverse charge distribution, s , will be a sufficiently well-behaved
function, i.e., piecewise continuousintheregion O £ r £ a, it may be expanded in terms
of Fourier-Bessel series,

s () =8 s wds(jont/a). 3

m=1

where J,(x) isthe Ith order Bessel function of the first kind, j,, is the mth positive

m

zeroof J,(x),and {s ,} isthe set of expansion coefficients.

For the traveling-wave equilibrium velocity and density profiles defined in (1) and (2)
it is readily shown from the continuity equation,

finlr.t) , Nxn(rt)v(rt) =0, 4

it
that f(rsV,)/r =0. Therefore, rsV, is a constant. Since rsV,|_ =0, we have
rsV, =0, which implies that
V. =0 ®)

everywhere.
In the paraxial approximation, the equilibrium force balance equation is expressed as,

N - e e self V' ext selfltJ
VANV =-—] +—" (B* +B “ 6

where E*" isthe self-consistent electric field due to the charge bunches and the induced
charges on the conductor wall, B* = B, is the external focusing magnetic field, and
B*" is the magnetic field associated with the longitudina motion of the beam.
Likewise, - € denotes the charge of an electron, m, is the rest mass of an electron, and ¢
is the speed of light in a vacuum. The relativistic beam mass factor is given by
g, @(1- V7 )']/2, since the motion in the transverse direction is small compared to the

longitudinal motion in the paraxial approximation. Note that we are implicitly assuming



that the magnetic field due to the transverse motion of the beam is much smaller than the

applied field. By enforcing azimuthal symmetry, we find that E=' = E*'(r}& and
B = By, + B*'(r ), , where E=* and B**"will be derived in Appendix A and are given
by,

% = - 2pN,egu 8 find (jomr /@) coth(jongsL/2a), 7
m=1
Bself :ﬁEse” ] (8)
C

A nontrivia solution to the equilibrium force equation is V, = constant in the beam

and V, =V, (r) =rw, (r) satisfying the equation,

é =t U
Wb(r)= We e”l+ 1+ 2 4 ©)
' gwemr g

where w, = eB,/m.c is the nonrelativistic electron cyclotron frequency. Since the

argument under the sgquare root in equation (9) must be positive, we can establish a lower
bound on the internal electric field inside the beam,

E<' s - gw’mr/4e, (10)
which must be satisfied everywhere s (r)* 0. It proves useful to introduce the following
dimensionless self-electric field,

dr)e - LE*(r)a?/2rN, e. (12)
From (7), we immediately find that

) =228 s 3, (jor/a)cothiio /a). w)

ar o

where a =2pa/g,L. In order for (10) to be satisfied throughout the beam density
profile, amaximum of the function Gr), which we shall denote as G,,, , must exists.

In general, we can establish a space-charge limit on the beam, i.e., an upper bound on
the seif-field parameter, 2w?/w?, where w, = (4pre2nb/me)J/2 and n, = (pazg,oL)'1

are, respectively, the effective plasma frequency and effective bunch density in the rest
frame of the beam. Note that when we Lorentz boost to the rest frame of the beam, the



bunch spacing becomes L, =g, L. Using (10), we can express the space-charge limit in

terms of the self-field parameter as

w2 1
PE—. 13
w2 "G (13)

In the following sections, we will use equation (13) to uncover space-charge limits on

strongly bunched annular beams. Once the value of Z\N,f /Wf is chosen in the model,

such that it satisfies (13), the fast and dow angular velocity profiles of the beam may be

expressed as,
é w2 u
W, (r) = e @ /1- > a4, (14)
25 § We

where the plus (minus) sign denotes the fast (slow) solution to the angular velocity

profile. Physically, w,(r) is only needed in the region where the beam density is non-
zero. However, for reasonable choices of s (r), G[r) will achieve its maximum inside

the beam. Combining the density and angular velocity profiles in (2) and (14), aong

with chosen values for a and 2\N§ /WC2 , provides a closed model for a traveling-wave

equilibrium beam for a bunched annular beam.



[II.NUMERICAL RESULTS

In this section, we apply the fluid theory formalism to bunched annular electron
beams. As discussed in the Introduction, intense annular electron beams have been used
in a variety of high-power microwave experiments, such as the relativistic klystron
amplifier and oscillator and the backward wave oscillator. Annular electron beams can
provide a higher beam-wall interaction than an equivalent pencil electron beam, and
therefore, annular beams can offer better energy efficiency in certain experiments.
However, the increased beamwall interaction may lead to beam loss or other deleterious
effects.

Bunched annular beam distributions form a special class of solutions which self-

consistently solve the fluid theory discussed in the previous section. We define the
geometry of an annular beam bunch by an inner radius, r, and an outer radius, r,.
Further, we assume that the beam density is zero for r £r; and r 3 r,. It is important
that the radial density goes to zero sufficiently fast at the inner and outer radii, since the

electric field defined by (7) will otherwise diverge near the beam edges. In order for the

electric field to be finite at the edges, s must go to zero at least as fast as

where r, is either 1, or r,. Therefore, the fluid theory does not alow the smple

waterbag distribution (s =constant for r, £r £, ) asasolution.

In order to calculate numerically the electric field associated with a bunched annular
beam, we must specify a radial density distribution. The choice of a radial density
distribution, s (r) , for an annular electron beam needs only to satisfy the requirements of
being zero at the edges and piecewise continuous. We will demonstrate numericaly that
the space charge limit will vary only dightly by choosing a different density function.

The two density trial functions, a quadratic function and a tent function, with which

we compare the space charge limits are given by

i 0 rer,
s()=10)=1a - - )fpra®,  reren, (15
% 0, rLEr,



0, rer,

(16)
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where F =(r, +1,)/2 isan average beam radiusand d =r, - r; isthe beam width.

In Figs. 2 and 3, we summarize our numerical results for the case of the quadratic
function. Figure 2(a) isaplot of f,a® versus r/a for F/a=0.8 and d/a =0.12, which
corresponds to r; /a=0.74 and r,/a=0.86. In Fig. 2(8), f, has been reconstructed
from 200 modes of the Bessel function expansiongiven by (3) and (15). The justification
for the high number of modes used in this calculation is due to the convergence rate of
S . The beam edges are locations of large numerical fluctuations and slower

convergence, when expanding in Bessel functions. Near the beam’s inner and outer radii,

the electric field, given by (7), reaches its maximum and minimum, respectively. Hence,
we need enough modes to sufficiently resolve G near the outer radius, where G,

occurs. By choosing a =1.0, we plot C in Fig. 2(b), as obtained numerically with 200
modes.
Notice that the maximum of C occurs dlightly less than the outer radius of the beam

(r/a» 0.848), and its value is approximately G, » 49.1. From (13), we immediately
conclude that our choice in the seif-field parameter must satisfy, 2w /w? £ 0.0204. If

we only use 20 modes, the value of G, is about 10% below G, » 49.1, which is
obtained with the 200 modes. In genera, we find that the numerical results converge
with 100 or more modes.

We should also note two facts about the function G(r) Fird, as s approaches a
flattop distribution near the outer radius, the maximum of C inside the beam will
approach r, and G, ® ¥ . Secondly, the fluctuationsin G near r/a=0 are caused by
the mode expansion, and are irrelevant for the current problem, since we are only

physicaly interested intheregime r, £r £71,.

10



Using the 200 mode expansion of G(r) from Fig. 2(b) and equation (14), we plot the
fast and slow branch solutions for w,(r) asafunction of r/a for 2w? /w? = 0.01, 0.015,

and 0.019. The function w,(r) is plotted only in the region r, £r £r,. Note that the
slow branch solution of w,(r) will undergo a sign reversal within the beam, whereas the
fast branch will always remain positive. Also, note that at the critica value
2w? /w? =1/G,, , the fast and slow branches will intersect at one point within the beam,

although it is not shown explicitly in Fig. 3.
In order to have further confidence that the model is able to predict the critical self-
field parameters for confinement when comparing to experiments, equation (13) should

be approximately invariant for choice of s (r) . Hence, we compare the predicted critical
self-field parameters for the two tria functions, f, and f, in (15) and (16). Figures 4(a)
and 4(b) show plots of the exact f, and f, functions, respectively, for 7/a=0.8 and
various values d/a= 0.08, 0.12, 0.16, and 0.2. Figure 5 shows a plot of the critical self-

field parameter 2w’ /w? =/G,, versus d/a for f, and f,. In Fig. 5, we chose

f/a=0.8 and a =2pa/g,L=1.0. The caculated self-field parameters for the two
different trial functions are nearly identical as shown in Fig. 5. The difference between
the self-field parameters of the quadratic functions and their equivalent tent functions is
about 1%. Notice that the critical self-field parameter for both functions decreases as
d/a decreases. This behavior is intuitively obvious, since the bunches of charge are
radially compressed while keeping N, fixed; hence, the electric field will rise due to the

increase in radial beam density.

11



IV. APPLICATION TO ANNULAR BEAM EXPERIMENTS

In this section, we will apply the bunched annular beam equilibrium theory to three
experiments, namely, the 1.3 GHz RKA experiment at LANL [1], the 1.3 GHz relativistic
klystron oscillator (RKO) experiment at AFRL [2], and the 9.4 GHz backward wave
oscillator (BWO) experiment at the University of New Mexico [3]. All three of these
experiments utilize an annular electron beam for high-power microwave generation,
whose transverse size is comparable to the conductor wall. If the operating parameters of
an annular beam experiment are such that equation (13) is violated, than the beam would
not be in equilibrium once the beam is fully bunched during high-power operation of the
experiment. Equilibrium could be achieved if the beam reduces space charge by a loss
mechanism to the surrounding conducting wall, and such a mechanism is known to be a
cause of microwave pulse shortening.

The motivation for comparing the RKA experiment at LANL with our theory is that
this experiment reported microwave pulse shortening, as well as indications of beam loss
and anomalous beam halo formation [1]. In Ref. 13, the LANL group provided an
analysis of a modulated space-charge current limit due to the large potential depression
for HPM sources, which they claimed may be responsible for the amount of microwave
power which can be extracted in their RKA experiment. However, their current limit
does not include the effect of beam confinement by magnetic focusing, and hence, does
not explain the beam hao formation or the beam loss often associated with microwave
pulse shortening. We will show that the RKA experiment is operating dightly above the
effective salf-field parameter limit in equation (13).

The other two experiments that we will examine, namely the AFRL RKO experiment
[2] and the University of New Mexico BWO experiment [3], will be shown to be
operating below the critical limit in (13). Although, the BWO experiment did measure
beam loss it is most likely not due to the present theory (the BWO has a higher
background gas pressure compared to the RKA and RKO experiments) [3]. The AFRL
RKO experiment reached full beam transport without observing beam loss, which is in
agreement with the current theory. The experiment did have microwave pulse length
limitations that were most likely caused by rf gap voltage breakdown [2]. We have



included these experiments in our paper for the sake of comparison with the LANL RKA
experiment.

We use the quadratic density function (15) to approximate the radia density
distribution. The space charge limit is then numerically computed by using (13) and the
relevant experimental data, which is provided in Table 1.

The parameters a and Z\Nf) /wc2 can be further expressed in terms of experimental
values, such asthe average beam current |, , the magnetic field B,, the device frequency
f, and the relativistic mass factor of the beam g, :(1- bbz)']/z. Since v, = fL and

l, =N,ef , we can rewrite the dimensionless parameters a and 2w /w? as
a = 2paf /c(gb2 - 1)1/2 and aw? fw? =8¢l fw?a’l ,, where

Ia :(9132 - 1)]/2mec3/e » 17kA(g§ - 1)]/2 isthe Alfven current.
Using the experimental values from Table 1, we compare the sdlf-field parameter,

2w,2)/wc2 , for each experiment with the critical self-field parameter for the same value of
a . We should note that the value of g, chosen for modeling each of the experiments

corresponds to the injected energy, i.e. g, =g, and not the value g due to space-charge

depression [9], i.e.
(ginj - gxl' 9_2)‘/2 =

In the case of the LANL RKA, the difference between g, and g is approximately 6%.

2, ,®2a 0
= : an

n =
17KA g +1, o

However, the critical result of our theory, namely the effective space-charge density limit
in (13), is essentially unaffected by the choice of g, in the typical parameter ranges for

HPM sources, as we will now demonstrate.
In equation (13), we immediately see that the left-hand side is proportional to

(gb2 - 1)' Y2 From equation (12), we see that dr) has afactor of (gb2 - 1)1/2 outside of the

power series, as well as a nonlinear dependence on (gb2 - 1)1/2 in each of the coth(pjon /a)

functions. As seen from Table 1, a typical range for a is 0.5<a <20, and hence

13



coth(pjon /a) » 1.0 to within 0.1%. Therefore, (gb2 - 1)'/2 may be factored out of equation
(13) to avery good approximation, and the theory becomes invariant for choice of g, .

» 0.0133 during the

exp

For the LANL RKA experiment, a » 054 and 2w? /w?

maximum current operation of 6 kA. Using (13), we obtain the theoretical space-charge

limit of 2\N§/WC2 ~»0.0126, which implies that the beam may not be in equilibrium.

crit

One way for the beam to reach equilibrium is by beam loss to the conductor wall, thereby

reducing the value of 2w?/w?

., Sich that it equals wlw?l

crit

This may be the

explanation of the amomalous beam halo and the consequential beam loss, which were

both observed in the RKA experiment. Assuming that beam loss corresponds to the

beam trying to reach bunched equilibrium as discussed in Sec. I, a smple estimate on
the amount of beam current loss may be made, namely

2\N§/WC2 e 2\N§/WC2

2w? /WC2

% beam current loss = et (18)

exp
In this case, the predicted percentage of beam current loss would be about 5%.
Unfortunately, the authors were not provided with experimental measurement of beam

current loss with which to compare this result.

» 0.0021. The theoreticd

ep

For the AFRL RKO experiment, a »1.2and 2w /w?

space-charge limit for the RKO experiment is given by Z\Nﬁ/wf

. 0.0161, hence this

cri

experiment is operating well-below the space charge limit. For the University of New

Mexico BWO experiment, a »183 and 2w2/w?| » 00045, whereas the

ep

corresponding theoretical limit is given by 2w? /w?

L 0.059. In both of these

cri

experiments, the experimental values of 2\N,2) /WC2 are an order of magnitude lower than

the corresponding theoretical limits for bunched annular beam confinement. This implies
that if the beam reaches a bunched equilibrium, it will be well below the theoretical
space-charge limit for an equilibrium to exists.

14



The fact that the experimental value of the self-field parameter for the BWO,
2\N§/WC2 , is sgnificantly lower than its critical value implies that this theoretica limit is

probably not the cause of the observed microwave pulse shortening and beam loss.
While the density functions used for the experimental modeling are in fluid equilibrium,
we have not established the stability of the equilibrium, which will be an important
subject in our further investigation. Such a stability calculation will include both radial
and azimuthal perturbations of the beam equilibrium in the fluid theory. If the bunched
beam equilibrium is unstable, it may lead to a lower value of the self-field parameter for
confinement of the bunched annular beam.

Our theory has aso ignored the longitudinal component of the beam. The purpose for
ignoring the longitudinal beam thickness was to simplify the theory. Our zero-thickness
model, which we have developed in this paper, may be interpreted as an extreme form of
a bunched beam. It produces the strongest coupling that a periodic charged beam can

have to a perfectly conducting pipe, while still retaining the realistic finite transverse size.

The strong beam wall coupling has the effect of reducing the critical value of 2W§ /Wc2 ,

since a greater magnetic field is needed in order to confine the beam. However, a self-
consistent theory incorporating the third dimension of the beam would have the effect of

increasing the critical self-field parameter.

15



V.SUMMARY

We have studied the confinement of a periodic, azimuthally invariant bunched annular
beam inside of a perfectly conducting cylinder in the framework of a cold-fluid
equilibrium theory. In order to balance the nternal repulsive electric field force of the
beam, we include a uniform external magnetic focusing field. The model allows for an
arbitrary transverse density profile and provides the self-consistent electric and magnetic
fields due to the beam with the appropriate boundary conditions at the wall. The model
also incorporates the correct relativistic effects from the longitudinal motion of the beam.

The sdlf-consistent electric and magnetic fields in the plane of a flat bunch were
analytically computed by first, expanding the density function in terms of Bessel
functions, and then utilizing an electrostatic Green's function for periodic point charges.

From the equilibrium force balance equation, we derived the equilibrium beam rotation

and established an upper bound on the effective self-field parameter, 2w?/w?, for

equilibrium to exist.

In order to demonstrate the robustness of our model with regard to density profiles, we
numerically found that the space charge limit for annular beams remains relatively
invariant with choice of distribution function. In particular, we chose two types of
functions, quadratic and tent, and showed that their corresponding critical self-field
parameters only vary by afraction of a 1%.

We have shown that the parameters for an annular beam experiment (i.e. average
beam current, magnetic field strength, etc.) may used to calculate the relevant parameters
in our annular beam model. In doing so, a self-consistent equilibrium fluid model for an
experiment may be established. The quadratic function was used to numerically model
the annular beams of three high-power microwave experiments, the LANL 1.3 GHz
RKA, the AFRL 1.3 GHz RKO, and the University of New Mexico’s 9.4 GHz BWO.

The LANL RKA experiment was found to be operating dightly above the critical
gpace-charge limit for bunched beam equilibrium. Operation above the critical limit may
have caused a percentage of the beam current to be lost to the wall, which in turn could
lead to microwave pulse shortening.

The AFRL RKO and the University of New Mexico BWO experiments were both
found to be operating well below the critical space-charge limit. This result agrees with

16



the successful beam transport in the AFRL RKO experiment, but does not agree with the
observed beam loss and microwave pulse shortening in the UNM BWO experiment.

While the bunched annular beam in the BWO experiment is well confined from the
viewpoint of an equilibrium theory, the stability of the bunched beam equilibria remains
to be determined in order to answer the question of whether or not beam loss occurs in

this experiment. Thiswill be an important subject for further investigation.
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APPENDIX A: DERIVATION OF THE SELF-FIELDS

The equilibrium self-electric and self-magnetic fields, E*'(rJe, and B<'(r)g, , are
found by calculating them in the rest frame of the beam and then performing a Lorentz
transformation back to the laboratory frame. The advantage of this approach is that in the
beam rest frame, the self-magnetic field is negligibly small. Therefore, it is sufficient to
calculate only the self-electric field of the beam including the full effect of induced
charge on the conducting cylinder. Indeed, by introducing the scalar and vector
potentials, f *'(r) and A®'(r)e, in the laboratory frame, and correspondingly f =f(r)

z

and A% (r) in the rest frame, it is readily shown from the Lorentz transformation that

f<(r) @gf 2 (r) (A1)
ad
A="(r)e, @o,bf 2 (r e, (A2)

where b, =V,/c and use has been made of the approximation A*'(r)=0. From the

definitions for the scalar and vector potentials, the self-electric and self-magnetic fields

are given by
self
£ (1) = -5, 1= ﬂr() 6.E= (1R, (A3
fself "
3 (1) =-&g,0, L) g e 0, @

An electrostatic Green's function technique, which was utilized in a recent work on
bunched beams [4], is used to calculate the scalar potential f ' (r) and self-electric field
E< (rJe, in the rest frame of the beam. Specifically, for a periodic collinear distribution

of unit point charges separated by a distance L, =9,L inside of a perfectly conducting

cylinder of radius a, the electrostatic Green's function sdtisfies the following two

equations in the rest frame of the beam,

G(r;r9=-4p gd(r -1 ¢ KL8,) (A5)
and
G(r;rdg _, =0 (AB)
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where r and r¢ are the coordinates of the point of observation and the location of a point
charge, respectively. The solution to equations (A5) and (A6) is given by [4]
(rr(I)- ea +r2r2/a?- 2r.r_codq - q4u
Lo e rZ+r2- 2rr. cos[q qG] H

é‘}cos[l(q - adfesslz- AP )k ) ) (6]

where r>(r<) denotes the greater (lesser) of r and r¢, 1,(x) and K, (x) arethe Ith order

(A7)

II mo'K

i
Loy

modified Bessel functions of the first and second kind, respectively, a = 2pa/L,., , and

hat ‘' denotes normalizationby 2p/L

The electrostatic self-potential f = (r) may be found from Coulomb’s Law,

N2 ) = pets (1) & oz 1. %)

with the boundary condition at the conductor wall,
f2(r)  =o. (A9)

By utilizing the electrostatic Green’s function (A7), we can find that the electrostatic

potential in the plane of the beam, i.e., f =f(r) =f </ (r )|z:z¢:0, can be expressed as

() =- Npelim quﬂé 01r¢© (rda(r; r0)| ot gir¢@ (rda(r; r0)| ¢u (A10)

r+Dr

In (A10), the radial integral must be split into two parts, namely r«(<r and r¢>r,in
order to ensure convergence of f <(r). In mathematical formalism, f =/ (r) is obtained
by taking the principal integral of r& (rG(r;r() in the radia direction. Using the

azimutha symmetry assumption and the relation,

2
g <Iiln[x2 +y? - 2xycodq - qG)] =4p Inx for 0£ y < x [14], wefind,

0

f () =- Nbellme Gir(kfs (rgF(r:rg+ Oirtm (roe(r; rtl)u, (A11)

e 0 r+Dr

where
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[1o(ka )K, (KF. )- Ko(ka )i, (KR ). (A12)

E*1(r)= - _%gbgbe?;w g+ -4 ML)y g1, 9
’ (A13)
+£|.m.ak+< (kr)odrecs(a)| (69- akl (6) e (rdK, krfl)g

Dr®0»~
Lr r+Dr

Note that the first term on the right hand side of (A13) represents the electric field due to
a longitudinally uniform beam and the other three terms are the corrections due to the
longitudinal bunching of the beam. Ultilizing the density expansion given in (3), the

following Bessal function integrals [15],

é‘)ﬂxxJo(yX) =y '3,(y),
o (1o (20) = (v + 22) [,y (2)+ v, )1 2],

sbock (Ko = (v7 + 2) Ty (Ko 2)- aly)K,2)

(A14)
+ 2wdo (YK, (aw) - ywd,(yw)K,(2w)],

and the Wronskian relation, 1,(x)K, (x) +1,(x)K,(x) =1/x, we obtain the following form

for the electric self-field

s N,eaésd s, s ¢ mJom , u
£ ()= - PNWARE S g (j, r/a)+28 &l 3 (ir/ad. (A1)
L &t Jom ket Jom + K@ a

A further smplification is made by employing the relation [16]

¥
a (y2 + kzxz)'l =p coth(py/x)/2yx - I/2y? , which yields

k=1
¥
E< (r) = - 20N,€0, & S mIs(jour /2) cOth jorsL/ 23) - (A16)
m=1

This concludes the derivation of (7) and (8) in Sec. II.
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FIGURE CAPTIONS
Fig. 1. Schematic of periodic bunched annular disks inside of a perfectly conducting drift
tube.
Fig. 2. Plotsof (a) quadratic beam density function versus normalized radius for an
annular beam centered at r/a=0.8, (b) G versus normalized radius for the annular
beamin (a). Here, 200 eigenmodes are used in the calculation.

Fig. 3. Thefast (top of graph) and slow (bottom of graph) branches of wb(r) inthe
region r, £ r £ r, corresponding to the 200 mode expansion of Gr) in Fig. 2(b)
for three different values of 2\/\/§/wc2 = 0.01 (solid lines), 0.015 (dashed lines),

and 0.019 (dotted lines).
Fig. 4. Plotsof (@) quadratic and (b) tent beam density functions versus normalized
radius for several bunched annular beams centered at r/a=0.8.

Fig. 5. Plotsof 2w?/w? versus normalized annular beam width for quadratic and tent

density functions centered at r/a=0.8.
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Table 1. Parameters of Three Annular Beam HPM Devices

PARAMETER ___ RKA RKO BWO
f(GHD) 13 13 94
1, (KA) 6.0 100 30

g, 21 20 17
Bo (T) 05 08 20
r; (cm) 2.70 6.60 0.90
fo (cm) 3.20 7.10 115
a(cm) 3.65 7.65 1.28
a 0.54 1.20 1.83
8c’l,
WA 0.0133 0.0021 0.0045
8c’l, 0.0126 0.016 0.059

2 2
Werme@

c,rms




