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ABSTRACT 

The azimuthally invariant cold-fluid equilibrium is obtained for a periodic, strongly 

bunched charged annular beam with an arbitrary radial density profile inside of a 

perfectly conducting cylinder and an externally applied uniform magnetic field.  The self-

electric and self-magnetic fields, which are utilized in the equilibrium solution, are 

computed self-consistently using an electrostatic Green’s function technique and a 

Lorentz transformation to the longitudinal rest frame of the beam.  An upper bound on 

the maximum value of an effective self- field parameter for the existence of a bunched 

annular beam equilibrium is obtained.  As an application of the bunched annular beam 

equilibrium theory, it is shown that the Los Alamos National Laboratory relativistic 

klystron amplifier experiment is operating slightly above the effective self- field 

parameter limit, and a discussion of why this may be the cause for their observed beam 

loss and microwave pulse shortening is presented.  The existence of bunched annular 

beam equilibria is also demonstrated for two other high-power microwave (HPM) 

experiments, the relativistic klystron oscillator experiment at Air Force Research 

Laboratory and the backward wave oscillator experiment at the University of New 

Mexico.  In general, the results of the equilibrium analysis will be useful in the 

determination of the stability properties of strongly bunched annular beams in HPM 

devices. 

 

PACS: 29.27, 41.85 

 



 2

I. INTRODUCTION 

In recent years, a number of high-power microwave (HPM) experiments have 

employed high- intensity bunched annular relativistic electron beams, such as the 

relativistic klystron amplifier (RKA) experiment at Los Alamos National Laboratory 

(LANL) [1], relativistic klystron oscillator (RKO) experiment at Air Force Research 

Laboratory (AFRL) [2], and the backward wave oscillator (BWO) at the University of 

New Mexico [3].  Since an annular beam typically has a transverse size, which is of the 

order of the conductor wall radius, the beam-wall interaction can be increased compared 

to the interaction of a pencil beam with a wall.  The greater beam-wall interaction can 

advantageously provide a higher power microwave source.  However, the increase in 

beam-wall interaction, especially when the beam becomes strongly bunched during high-

power operation of such a device, may require a stronger magnetic field for beam 

focusing.  Indeed, many HPM devices driven by annular beams suffer from considerable 

beam losses and the well-known problem of rf pulse shortening [1,3]. 

 In previous papers [4,5], the authors had success in using a Green’s function technique 

for modeling a strongly bunched pencil beam with negligibly small transverse size.  A 

constraint was found on the maximum effective self- field parameter, 222 cp ωω , which is 

a measure of the space charge in the beam for a given magnetic field strength.  In the 

previous expression, pω is the effective plasma frequency and cω  is the electron 

cyclotron frequency.  This parameter limit agreed well with the self- field parameters of 

three periodic permanent  magnet (PPM) klystron experiments, i.e., 50 MW-XL PPM 

[6,7], 75 MW-XP [6,7] and the Klystrino [8], which are all at the Stanford Linear 

Accelerator Center.   

In this paper, we will examine the constraints on the maximum effective self- field 

parameter for a bunched annular beam with negligibly small longitudinal thickness in a 

perfectly conducting cylindrical pipe.  The limit, which we will analyze in this paper, 

pertains to the equilibrium transport of the bunched annular beam with no beam loss in 

the pipe.  Unlike the well-known space-charge limiting current, which was derived under 

the assumption of an infinitely strong axial guide magnetic field and an unbunched 

(continuous) beam [9], the present limit applies to a bunched beam in a finite axial guide 

magnetic field.  In particular, we develop a relativistic traveling-wave equilibrium fluid 
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theory to model the transverse density distribution of the strongly bunched annular beam.  

The electric field inside of the beam is completely self-consistent, i.e., the electric field 

includes contributions from the beam and the induced surface charge on the conductor 

wall.  It is obtained through a Green’s function technique.   

 By using density test functions to compute the maximum self- field parameters for 

annular beams, we compare theoretical parameter limits with those corresponding to 

three annular beam experiments – 1.3 GHz RKA experiment at LANL [1], 1.3 GHz RKO 

[2] experiment at AFRL, and the 9.4 GHz BWO [3] experiment at the University of New 

Mexico.  We note that the density functions used for modeling these experiments are in 

fluid equilibrium, but their stability is still unknown at the moment and will be studied in 

our future research.  By performing a stability analysis involving radial and azimuthal 

perturbations on the beam equilibrium, one may find a lower value on the maximum self-

field parameter than what the cold-fluid equilibrium theory predicts.   

 In an earlier paper [10], Prasad and Morales explored the equilibrium and wave 

properties of two-dimensional ion plasmas of finite temperature, T, inside of a pillbox 

conductor geometry.  The plasma equilibrium was established by balancing the plasma 

pressure and the self-electric field, calculated from Poisson’s equation, with an externally 

applied electric field due to the fixed potential walls of the conductor.  They analyzed the 

wave attributes of the plasma in both the unmagnetized and magnetized cases, and 

discussed the plasma equilibrium in the cold plasma limit, i.e., 0→T .  However, in their 

analysis of the magnetized case, they treated the angular fluid velocity of the plasma as a 

perturbed quantity, and assumed that the equilibrium fluid velocity is zero.  In a later 

paper [11], Prasad and Morales analyzed the rigid-rotor equilibrium for a two-

dimensional ion plasma in the cold limit with an external magnetic field present.  This 

model was assumed to be in free space, and hence, the effects of the conductor wall were 

not included.  The equilibrium fluid analysis in our paper includes, the self-consistent 

treatment of the electric fields in the presence of the conducting wall, magnetic field 

confinement, and the non-zero angular fluid velocity of the beam.  Unfortunately, there is 

no regime in which we can compare the present analysis with the earlier analyses in Refs. 

10 and 11. 
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The paper is organized in the following manner.  In Sec. II, we discuss the self-

consistent cold-fluid periodic bunched annular beam equilibrium model with arbitrary 

transverse density profile.  This presentation includes the self-consistent profiles for the 

self-electric and self-magnetic fields generated by the beam, the equilibrium fluid 

rotational profile of the beam, and a constraint on the maximum self- field parameter 

given the previously mentioned profiles. The derivations of the self-electric and self-

magnetic fields from a Green’s function technique are given in the Appendix.  In Sec. III, 

we demonstrate how the annular beam equilibrium model can be implemented 

numerically, which is necessary for modeling the annular beams of actual experiments.  

Specifically, we discuss how to numerically solve for the relevant profiles mentioned in 

Sec. II, and obtain a numerical result for the maximum self- field parameter.  We then 

apply the model three HPM experiments at the LANL, AFRL, and the University of New 

Mexico in Sec. IV.  A summary and concluding remarks are provided in Sec. V.  
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II. TRAVELING-WAVE RELATIVISTIC EQUILIBRIUM MODEL 

The charged particle beams utilized in high-power microwave devices, such as the 

RKA, RKO, and the BWO, will be longitudinally bunched in order to release energy to 

the output cavity.  Although, the beam will still have finite longitudinal thickness after 

bunching, in the case of an annular beam, the transverse size may become comparable to 

the longitudinal size.  In general, modeling a bunched beam self-consistently with finite 

thickness requires a fully three-dimensional numerical calculation, which the authors are 

currently pursuing.  In order to incorporate the bunching phenomenon into a partial 

analytical model, we will simplify the system by treating the annular bunched relativistic 

electron beam to be a series of charged disks spaced by a distance, L, with zero 

longitudinal thickness.  Each disk represents a bunch of charge that has an equilibrium 

fluid velocity,  

( ) ( ) ( ) zzrr ˆVˆrVˆrVt, eeerV ++= θθ ,                                      (1) 

inside of a grounded perfectly conducting cylindrical pipe of radius, a.  The z-axis is 

chosen to be the axis of the cylinder, and we only analyze azimuthally invariant charge 

distributions.  The azimuthally invariant assumption is a major simplification of the 

present fluid analysis that still allows for an equilibrium distribution in the beam.  

Although azimuthal variations in annular intense relativistic electron beams that lead to 

beam-breakup instabilities are known to exist [12], we ignore these types of variations in 

our analysis.  We include a constant external magnetic field, zˆB eB 0= , for beam 

focusing.  Figure 1 illustrates the model.   

In general, the bunch distribution has radial dependence, and can be written as, 

( ) ( ) ( )∑
∞

−∞=

−−=
k

zb kLtVzrNtn δσ,r ,              (2) 

where bN  is the number of particles in a bunch, σ  contains the radial dependence in the 

bunch density, and δ  is the Dirac delta function.  Equation (2) immediately yields the 

following normalization, ( )∫ =
a

rrdr
0

12 σπ .  An additional assumption in our model is that 

the effect of finite temperature in the system may be ignored, so that the cold-fluid 

approximation can be made.  
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 While in any actual HPM device there is a z-dependent velocity spread in the bunch, 

we have ignored this dependence in (1) to make the problem more tractable.  This 

together with the assumption in equation (2) describes a tightly bunched beam during the 

full power operation of the HPM device. 

Since the transverse charge distribution, σ , will be a sufficiently well-behaved 

function, i.e., piecewise continuous in the region ar ≤≤0 , it may be expanded in terms 

of Fourier-Bessel series, 

               ( ) ( )∑
∞

=

=
1

00
m

mm arjJr σσ ,                 (3) 

where ( )xJ l  is the lth order Bessel function of the first kind, lmj  is the mth positive 

zero of  ( )xJ l , and { }mσ  is the set of expansion coefficients.   

For the traveling-wave equilibrium velocity and density profiles defined in (1) and (2) 

it is readily shown from the continuity equation, 

( ) ( ) ( )( ) 0=⋅∇+
∂

∂
t,t,n

t
t,n

rVr
r

,               (4) 

that ( ) 0=∂∂ rVr rσ .  Therefore, rVrσ  is a constant.  Since 0=
=arrVrσ , we have 

0=rVrσ , which implies that  

      0=rV                    (5)  

everywhere. 

 In the paraxial approximation, the equilibrium force balance equation is expressed as,   

( ) ( )



 +×+−=∇⋅ selfextself

e
b cm

e
BB

V
EVVγ ,                   (6) 

where selfE  is the self-consistent electric field due to the charge bunches and the induced 

charges on the conductor wall, z
ext ˆB eB 0=  is the external focusing magnetic field, and 

selfB  is the magnetic field associated with the longitudinal motion of the beam.  

Likewise, - e  denotes the charge of an electron, em  is the rest mass of an electron, and c 

is the speed of light in a vacuum.  The relativistic beam mass factor is given by 

( ) 2121
−

−≅ zb Vγ , since  the motion in the transverse direction is small compared to the 

longitudinal motion in the paraxial approximation.  Note that we are implicitly assuming 
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that the magnetic field due to the transverse motion of the beam is much smaller than the 

applied field.  By enforcing azimuthal symmetry, we find that ( ) r
selfself ˆrE eE =  and 

( ) θeeB ˆrBˆB self
z += 0 , where selfE  and selfB will be derived in Appendix A and are given 

by, 

   ( ) ( )aLjarjJneNE bm
m

mmbb
self 2cothˆ2 0

1
01 γγπ ∑

∞

=

−= ,             (7)     

                selfzself E
c

V
B = .                            (8) 

A non-trivial solution to the equilibrium force equation is =zV  constant in the beam 

and ( ) ( )rrrVV bωθθ ==  satisfying the equation, 

              ( )











+±=

rm
eE

r
ecb

self

b

c
b 2

4
11

2 ωγγ
ω

ω ,                                   (9) 

where cmeB ec 0=ω  is the non-relativistic electron cyclotron frequency.  Since the 

argument under the square root in equation (9) must be positive, we can establish a lower 

bound on the internal electric field inside the beam, 

     ermE ecb
self 42ωγ−≥ ,                (10) 

which must be satisfied everywhere ( ) 0≠rσ .  It proves useful to introduce the following 

dimensionless self-electric field,  

( ) ( ) erNarLEr b
self 22−≡Γ .               (11) 

 From (7), we immediately find that                   

( ) ( ) ( )∑
∞

=

=Γ
1

001

322

k
mmm jcotharjJ

r
a

r απσ
α

π
,            (12) 

where La bγπα 2= .  In order for (10) to be satisfied throughout the beam density 

profile, a maximum of the function ( )rΓ , which we shall denote as maxΓ , must exists. 

In general, we can establish a space-charge limit on the beam, i.e., an upper bound on 

the self- field parameter, 222 cp ωω , where ( ) 2124 ebbp mneNπω =  and ( ) 12 −
= Lan bb γπ  

are, respectively, the effective plasma frequency and effective bunch density in the rest 

frame of the beam.  Note that when we Lorentz boost to the rest frame of the beam, the 
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bunch spacing becomes LL brest γ= .  Using (10), we can express the space-charge limit in 

terms of the self- field parameter as  

max
2

2
12

Γ
≤

c

p

ω

ω
.                                                       (13) 

In the following sections, we will use equation (13) to uncover space-charge limits on 

strongly bunched annular beams.  Once the value of 222 cp ωω  is chosen in the model, 

such that it satisfies (13), the fast and slow angular velocity profiles of the beam may be 

expressed as, 

         ( ) ( )











Γ−±= rr

c

p

b

c
b 2

22
11

2 ω

ω

γ
ω

ω ,               (14) 

where the plus (minus) sign denotes the fast (slow) solution to the angular velocity 

profile.  Physically, ( )rbω  is only needed in the region where the beam density is non-

zero.  However, for reasonable choices of ( )rσ , ( )rΓ  will achieve its maximum inside 

the beam.  Combining the density and angular velocity profiles in (2) and (14), along 

with chosen values for α  and 222 cp ωω , provides a closed model for a traveling-wave 

equilibrium beam for a bunched annular beam.  
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III. NUMERICAL RESULTS 

 In this section, we apply the fluid theory formalism to bunched annular electron 

beams.  As discussed in the Introduction, intense annular electron beams have been used 

in a variety of high-power microwave experiments, such as the relativistic klystron 

amplifier and oscillator and the backward wave oscillator.  Annular electron beams can 

provide a higher beam-wall interaction than an equivalent pencil electron beam, and 

therefore, annular beams can offer better energy efficiency in certain experiments.  

However, the increased beam-wall interaction may lead to beam loss or other deleterious 

effects. 

Bunched annular beam distributions form a special class of solutions which self-

consistently solve the fluid theory discussed in the previous section. We define the 

geometry of an annular beam bunch by an inner radius, ir  and an outer radius, or . 

Further, we assume that the beam density is zero for irr ≤  and orr ≥ .  It is important 

that the radial density goes to zero sufficiently fast at the inner and outer radii, since the 

electric field defined by (7) will otherwise diverge near the beam edges.  In order for the 

electric field to be finite at the edges, σ  must go to zero at least as fast as 
1

ln
−

− err  

where er  is either ir  or or .  Therefore, the fluid theory does not allow the simple 

waterbag distribution ( =σ constant for oi rrr ≤≤  ) as a solution.     

In order to calculate numerically the electric field associated with a bunched annular 

beam, we must specify a radial density distribution.  The choice of a radial density 

distribution, ( )rσ , for an annular electron beam needs only to satisfy the requirements of 

being zero at the edges and piecewise continuous.  We will demonstrate numerically that 

the space charge limit will vary only slightly by choosing a different density function.  

The two density trial functions, a quadratic function and a tent function, with which 

we compare the space charge limits are given by 

       ( ) ( ) ( )( ) ,

,rr,

rrr,rrrrr

,rr,

rfr

o

oiio

i










≤

≤≤−−

≤

==

0

3

0

3
1 δπσ                    (15) 

and 
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       ( ) ( )
( )

( )













≤

≤≤−

≤≤−

≤

==

,rr,

,rrr,rrr

,rrr,rrr

,rr,

rfr

o

oo

ii

i

0

2

2

0

2

2

2
δπ

δπ
σ                  (16)  

where ( ) 2io rrr +=  is an average beam radius and io rr −=δ  is the beam width. 

 In Figs. 2 and 3, we summarize our numerical results for the case of the quadratic 

function.  Figure 2(a) is a plot of 2
1af  versus ar  for 8.0=ar  and 120.a =δ , which 

corresponds to 740.ari =  and 860.aro = .  In Fig. 2(a), 1f  has been reconstructed 

from 200 modes of the Bessel function expansion given by (3) and (15).  The justification 

for the high number of modes used in this calculation is due to the convergence rate of 

σ .  The beam edges are locations of large numerical fluctuations and slower 

convergence, when expanding in Bessel functions.  Near the beam’s inner and outer radii, 

the electric field, given by (7), reaches its maximum and minimum, respectively.  Hence, 

we need enough modes to sufficiently resolve Γ  near the outer radius, where maxΓ  

occurs.  By choosing 01.=α , we plot Γ  in Fig. 2(b), as obtained numerically with 200 

modes.   

Notice that the maximum of Γ  occurs slightly less than the outer radius of the beam 

( )8480.ar ≈ , and its value is approximately 149.max ≈Γ .  From (13), we immediately 

conclude that our choice in the self- field parameter must satisfy, 020402 22 .cp ≤ωω .  If 

we only use 20 modes, the value of maxΓ  is about 10% below 149.max ≈Γ , which is 

obtained with the 200 modes.  In general, we find that the numerical results converge 

with 100 or more modes. 

We should also note two facts about the function ( )rΓ .  First, as σ  approaches a 

flattop distribution near the outer radius, the maximum of Γ  inside the beam will 

approach or  and ∞→Γmax .  Secondly, the fluctuations in Γ  near 0=ar  are caused by 

the mode expansion, and are irrelevant for the current problem, since we are only 

physically interested in the regime oi rrr ≤≤ .  
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Using the 200 mode expansion of ( )rΓ  from Fig. 2(b) and equation (14), we plot the 

fast and slow branch solutions for ( )rbω  as a function of ar  for =222 cp ωω  0.01, 0.015, 

and 0.019.  The function ( )rbω  is plotted only in the region oi rrr ≤≤ .  Note that the 

slow branch solution of ( )rbω  will undergo a sign reversal within the beam, whereas the 

fast branch will always remain positive.  Also, note that at the critical value 

maxcp Γ=12 22 ωω , the fast and slow branches will intersect at one point within the beam, 

although it is not shown explicitly in Fig. 3. 

In order to have further confidence that the model is able to predict the critical self-

field parameters for confinement when comparing to experiments, equation (13) should 

be approximately invariant for choice of ( )rσ .  Hence, we compare the predicted critical 

self- field parameters for the two trial functions, 1f  and 2f  in (15) and (16).  Figures 4(a) 

and 4(b) show plots of the exact 1f  and 2f  functions, respectively, for 8.0=ar  and 

various values aδ = 0.08, 0.12, 0.16, and 0.2.  Figure 5 shows a plot of the critical self-

field parameter max
22 12 Γ=cp ωω  versus aδ  for 1f  and 2f .  In Fig. 5, we chose 

8.0=ar  and 0.12 == La bγπα .  The calculated self- field parameters for the two 

different trial functions are nearly identical as shown in Fig. 5.  The difference between 

the self- field parameters of the quadratic functions and their equivalent tent functions is 

about 1%.  Notice that the critical self- field parameter for both functions decreases as 

aδ  decreases.  This behavior is intuitively obvious, since the bunches of charge are 

radially compressed while keeping bN  fixed; hence, the electric field will rise due to the 

increase in radial beam density.      
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IV. APPLICATION TO ANNULAR BEAM EXPERIMENTS 

In this section, we will apply the bunched annular beam equilibrium theory to three 

experiments, namely, the 1.3 GHz RKA experiment at LANL [1], the 1.3 GHz relativistic 

klystron oscillator (RKO) experiment at AFRL [2], and the 9.4 GHz backward wave 

oscillator (BWO) experiment at the University of New Mexico [3].  All three of these 

experiments utilize an annular electron beam for high-power microwave generation, 

whose transverse size is comparable to the conductor wall.  If the operating parameters of 

an annular beam experiment are such that equation (13) is violated, than the beam would 

not be in equilibrium once the beam is fully bunched during high-power operation of the 

experiment.  Equilibrium could be achieved if the beam reduces space charge by a loss 

mechanism to the surrounding conducting wall, and such a mechanism is known to be a 

cause of microwave pulse shortening.   

The motivation for comparing the RKA experiment at LANL with our theory is that 

this experiment reported microwave pulse shortening, as well as indications of beam loss 

and anomalous beam halo formation [1].  In Ref. 13, the LANL group provided an 

analysis of a modulated space-charge current limit due to the large potential depression 

for HPM sources, which they claimed may be responsible for the amount of microwave 

power which can be extracted in their RKA experiment.  However, their current limit 

does not include the effect of beam confinement by magnetic focusing, and hence, does 

not explain the beam halo formation or the beam loss often associated with microwave 

pulse shortening.  We will show that the RKA experiment is operating slightly above the 

effective self- field parameter limit in equation (13).   

The other two experiments that we will examine, namely the AFRL RKO experiment 

[2] and the University of New Mexico BWO experiment [3], will be shown to be 

operating below the critical limit in (13).  Although, the BWO experiment did measure 

beam loss it is most likely not due to the present theory (the BWO has a higher 

background gas pressure compared to the RKA and RKO experiments) [3].  The AFRL 

RKO experiment reached full beam transport without observing beam loss, which is in 

agreement with the current theory.  The experiment did have microwave pulse length 

limitations that were most likely caused by rf gap voltage breakdown [2].  We have 
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included these experiments in our paper for the sake of comparison with the LANL RKA 

experiment. 

We use the quadratic density function (15) to approximate the radial density 

distribution.  The space charge limit is then numerically computed by using (13) and the 

relevant experimental data, which is provided in Table 1.   

The parameters α  and 222 cp ωω  can be further expressed in terms of experimental 

values, such as the average beam current bI , the magnetic field 0B , the device frequency 

f, and the relativistic mass factor of the beam ( ) 2121
−

−= bb βγ .  Since fLvb =  and 

efNI bb = , we can rewrite the dimensionless parameters α  and 222 cp ωω  as 

( ) 212 12 −= bcaf γπα  and Acbcp IaIc 22222 82 ωωω = , where   

( ) ( ) 2123212 1171 −≈−= bebA kAecmI γγ  is the Alfven current.  

Using the experimental values from Table 1, we compare the self- field parameter, 
222 cp ωω , for each experiment with the critical self- field parameter for the same value of  

α .  We should note that the value of bγ  chosen for modeling each of the experiments 

corresponds to the injected energy, i.e. injb γγ = , and not the value γ  due to space-charge 

depression [9], i.e.  

( )( ) 







+

=−− −

oi

b
inj rr

a
ln

kA
I 2

17
2

1
212γγγ .          (17) 

In the case of the LANL RKA, the difference between injγ  and γ  is approximately 6%. 

However, the critical result of our theory, namely the effective space-charge density limit 

in (13), is essentially unaffected by the choice of bγ  in the typical parameter ranges for 

HPM sources, as we will now demonstrate.   

In equation (13), we immediately see that the left-hand side is proportional to 

( ) 212 1
−

−bγ .  From equation (12), we see that ( )rΓ  has a factor of ( ) 212 1−bγ  outside of the 

power series, as well as a nonlinear dependence on ( ) 212 1−bγ  in each of the ( )απ onjcoth  

functions.  As seen from Table 1, a typical range for α  is 0250 .. << α , and hence 
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( ) 01.jcoth on ≈απ  to within 0.1%.  Therefore, ( ) 212 1−bγ  may be factored out of equation 

(13) to a very good approximation, and the theory becomes invariant for choice of bγ .   

For the LANL RKA experiment, 540.≈α  and 013302 22 .
expcp ≈ωω  during the 

maximum current operation of 6 kA.  Using (13), we obtain the theoretical space-charge 

limit of 012602 22 .
critcp ≈ωω , which implies that the beam may not be in equilibrium.  

One way for the beam to reach equilibrium is by beam loss to the conductor wall, thereby 

reducing the value of 
expcp

222 ωω  such that it equals 
critcp

222 ωω .  This may be the 

explanation of the anomalous beam halo and the consequential beam loss, which were 

both observed in the RKA experiment.  Assuming that beam loss corresponds to the 

beam trying to reach bunched equilibrium as discussed in Sec. II, a simple estimate on 

the amount of beam current loss may be made, namely 

expcp

critcpexpcp

22

2222

2

22
losscurrentbeam%

ωω

ωωωω −
= .          (18) 

In this case, the predicted percentage of beam current loss would be about 5%.  

Unfortunately, the authors were not provided with experimental measurement of beam 

current loss with which to compare this result.  

For the AFRL RKO experiment, 2.1≈α and 0021.02
exp

22 ≈cp ωω .  The theoretical 

space-charge limit for the RKO experiment is given by 0161.02 22 ≈
critcp ωω , hence this 

experiment is operating well-below the space charge limit.  For the University of New 

Mexico BWO experiment, 831.≈α  and 0045.02
exp

22 ≈cp ωω , whereas the 

corresponding theoretical limit is given by 05902 22 .
critcp ≈ωω .  In both of these 

experiments, the experimental values of 222 cp ωω  are an order of magnitude lower than 

the corresponding theoretical limits for bunched annular beam confinement.  This implies 

that if the beam reaches a bunched equilibrium, it will be well below the theoretical 

space-charge limit for an equilibrium to exists.  
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 The fact that the experimental value of the self- field parameter for the BWO, 
222 cp ωω , is significantly lower than its critical value implies that this theoretical limit is 

probably not the cause of the observed microwave pulse shortening and beam loss.  

While the density functions used for the experimental modeling are in fluid equilibrium, 

we have not established the stability of the equilibrium, which will be an important 

subject in our further investigation.  Such a stability calculation will include both radial 

and azimuthal perturbations of the beam equilibrium in the fluid theory.  If the bunched 

beam equilibrium is unstable, it may lead to a lower value of the self- field parameter for 

confinement of the bunched annular beam. 

Our theory has also ignored the longitudinal component of the beam.  The purpose for 

ignoring the longitudinal beam thickness was to simplify the theory.  Our zero-thickness 

model, which we have developed in this paper, may be interpreted as an extreme form of 

a bunched beam.  It produces the strongest coupling that a periodic charged beam can 

have to a perfectly conducting pipe, while still retaining the realistic finite transverse size.   

The strong beam wall coupling has the effect of reducing the critical value of 222 cp ωω , 

since a greater magnetic field is needed in order to confine the beam.  However, a self-

consistent theory incorporating the third dimension of the beam would have the effect of 

increasing the critical self- field parameter.       
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V. SUMMARY 

We have studied the confinement of a periodic, azimuthally invariant bunched annular 

beam inside of a perfectly conducting cylinder in the framework of a cold-fluid 

equilibrium theory.  In order to balance the internal repulsive electric field force of the 

beam, we include a uniform external magnetic focusing field.  The model allows for an 

arbitrary transverse density profile and provides the self-consistent electric and magnetic 

fields due to the beam with the appropriate boundary conditions at the wall.  The model 

also incorporates the correct relativistic effects from the longitudinal motion of the beam.   

The self-consistent electric and magnetic fields in the plane of a flat bunch were 

analytically computed by first, expanding the density function in terms of Bessel 

functions, and then utilizing an electrostatic Green’s function for periodic point charges.  

From the equilibrium force balance equation, we derived the equilibrium beam rotation 

and established an upper bound on the effective self- field parameter, 222 cp ωω , for 

equilibrium to exist. 

In order to demonstrate the robustness of our model with regard to density profiles, we 

numerically found that the space charge limit for annular beams remains relatively 

invariant with choice of distribution function.  In particular, we chose two types of 

functions, quadratic and tent, and showed that their corresponding critical self- field 

parameters only vary by a fraction of a 1%.   

We have shown that the parameters for an annular beam experiment (i.e. average 

beam current, magnetic field strength, etc.) may used to calculate the relevant parameters 

in our annular beam model.  In doing so, a self-consistent equilibrium fluid model for an 

experiment may be established.  The quadratic function was used to numerically model 

the annular beams of three high-power microwave experiments, the LANL 1.3 GHz 

RKA, the AFRL 1.3 GHz RKO, and the University of New Mexico’s 9.4 GHz BWO.   

The LANL RKA experiment was found to be operating slightly above the critical 

space-charge limit for bunched beam equilibrium.  Operation above the critical limit may 

have caused a percentage of the beam current to be lost to the wall, which in turn could 

lead to microwave pulse shortening.  

The AFRL RKO and the University of New Mexico BWO experiments were both 

found to be operating well below the critical space-charge limit.  This result agrees with 
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the successful beam transport in the AFRL RKO experiment, but does not agree with the 

observed beam loss and microwave pulse shortening in the UNM BWO experiment.  

While the bunched annular beam in the BWO experiment is well confined from the 

viewpoint of an equilibrium theory, the stability of the bunched beam equilibria remains 

to be determined in order to answer the question of whether or not beam loss occurs in 

this experiment.  This will be an important subject for further investigation.  
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                    APPENDIX A: DERIVATION OF THE SELF-FIELDS 

 The equilibrium self-electric and self-magnetic fields, ( ) r
self ˆrE e  and ( ) θêrB self , are 

found by calculating them in the rest frame of the beam and then performing a Lorentz 

transformation back to the laboratory frame.  The advantage of this approach is that in the 

beam rest frame, the self-magnetic field is negligibly small.  Therefore, it is sufficient to 

calculate only the self-electric field of the beam including the full effect of induced 

charge on the conducting cylinder.  Indeed, by introducing the scalar and vector 

potentials, ( )rselfφ  and ( ) z
self ˆrA e  in the laboratory frame, and correspondingly ( )rself

restφ  

and ( )rself
restA  in the rest frame, it is readily shown from the Lorentz transformation that 

       ( ) ( )rr self
restb

self φγφ ≅                  (A1) 

and 

  ( ) ( ) z
self
restbbz

self ˆrˆrA ee φβγ≅                 (A2) 

where cVzb =β  and use has been made of the approximation ( ) 0=rself
restA .  From the 

definitions for the scalar and vector potentials, the self-electric and self-magnetic fields 

are given by 

    ( ) ( ) ( ) r
self
restb

self
rest

br
self ˆrE

r
rˆr eeE γ

φ
γ =

∂
∂

−=               (A3) 

           ( ) ( ) ( ) θθ βγ
φ

βγ eeB ˆrE
r

rˆr self
restbb

self
rest

bb
self −=

∂
∂

−=             (A4) 

 An electrostatic Green’s function technique, which was utilized in a recent work on 

bunched beams [4], is used to calculate the scalar potential ( )rself
restφ  and self-electric field 

( ) r
self
rest ˆrE e  in the rest frame of the beam.  Specifically, for a periodic collinear distribution 

of unit point charges separated by a distance LL brest γ=  inside of a perfectly conducting 

cylinder of radius a, the electrostatic Green’s function satisfies the following two 

equations in the rest frame of the beam, 

                ( ) ( )∑
∞

−∞=

−′−−=′∇
k

zrest̂kL;G errrr δπ42             (A5) 

and 

( ) 0=′
=ar

;G rr                (A6) 



 20 

where r  and r′  are the coordinates of the point of observation and the location of a point 

charge, respectively.   The solution to equations (A5) and (A6) is given by [4] 

( ) [ ]
[ ]

( )[ ] ( )[ ] ( )
( ) ( ) ( ) ( ) ( )[ ] ,

4

2
21

1

22

2222

∑∑
∞

−∞=
>>

<
∞

=

<><>

<><>

−′−′−+









′−−+

′−−+
=′

l
llll

l

l

krest

rest

r̂kIkKr̂kKkI
kI
r̂kI

ẑẑkcoslcos
L

cosrrrr
cosrrarra

ln
L

;G

αα
α

θθ

θθ
θθ

rr

        (A7)   

where ( )<> rr  denotes the greater (lesser) of r  and r ′ ,  ( )xI l  and ( )xK l  are the lth order 

modified Bessel functions of the first and second kind, respectively, restLaπα 2= , and 

hat ‘^’ denotes normalization by restLπ2 . 

 The electrostatic self-potential ( )rself
restφ  may be found from Coulomb’s Law, 

        ( ) ( ) ( )∑
∞

−∞=

−=∇
k

restb
self
rest kLzreN δσπφ 42 r               (A8) 

with the boundary condition at the conductor wall, 

( ) 0=
=ar

self
rest rφ .                 (A9) 

By utilizing the electrostatic Green’s function (A7), we can find that the electrostatic 

potential in the plane of the beam, i.e., ( ) ( )
0=′=

=
zz

self
rest

self
rest r rφφ , can be expressed as 

         ( ) ( ) ( ) ( ) ( )∫ ∫∫ 







′′′′+′′′′′−=

∆+
′=

∆−

′=→∆

π

σσθφ
2

0 0
0

a

rr
zz

rr

zzr
b

self
rest ;Grrrd;GrrrddlimeNr rrrr .   (A10) 

In (A10), the radial integral must be split into two parts, namely rr <′  and rr >′ , in 

order to ensure convergence of ( )rself
restφ .  In mathematical formalism, ( )rself

restφ  is obtained 

by taking the principal integral of ( ) ( )rr ′′′ ;Grr σ  in the radial direction.  Using the 

azimuthal symmetry assumption and the relation, 

( )[ ] xxyyxd ln4cos2ln
2

0

22 πθθθ
π

=′−−+′∫  for xy <≤0  [14], we find, 

( ) ( ) ( ) ( ) ( )







′′′′+′′′′−= ∫∫

∆+

∆−

→∆

a

rr

rr

r
b

self
rest r;rFrrrdr;rFrrrdlimeNr σσφ

0
0

,         (A11) 

where  
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( ) ( )
( ) ( ) ( ) ( ) ( )[ ]∑

∞

=
>>

<

>

−+







=′

1
0000

0

0 ˆˆ
ˆ8

ln
4

;
krestrest

rkIkKrkKkI
kI
rkI

Lr
a

L
rrF αα

α
ππ

.     (A12) 

Hence, 

      

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )














′′′′−′′′′+





′′′′+′′′−=

∑ ∫ ∑ ∫

∫∑∫

∞

=

∆− ∞

= ∆+
→∆

∞

=

1 0 1
0101

0

0
0

1 0

01

0

4

414

k

rr

k

a

rr
r

rest

a

krest

r

rest

bbself

r̂kKrrrdr̂kkIr̂kIrrrdr̂kkKlim
L

r̂kIrrrd
kI

kKr̂kkI
L

rrrd
rL

eN
rE

σσ
π

σ
α

απ
σ

γπ

     (A13) 

       

Note that the first term on the right hand side of (A13) represents the electric field due to 

a longitudinally uniform beam and the other three terms are the corrections due to the 

longitudinal bunching of the beam.  Utilizing the density expansion given in (3), the 

following Bessel function integrals [15],  

( ) ( )yJyyxdxxJ∫ −=
1

0
1

1
0 , 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ++=
−

1

0
0110

122
00 zIyyJzIyzJzyzxIyxdxxJ , 

( ) ( ) ( ) ( ) ( ) ( ) ( )[

( ) ( ) ( ) ( )] ,0110

1

1001
122

00

zwKywywJzwKywzwJ

zKyzJzKyyJzyzxKyxdxxJ
w

−+

−+=∫
−

   (A14) 

and the Wronskian relation, ( ) ( ) ( ) ( ) xxKxIxKxI 10110 =+ , we obtain the following form 

for the electric self- field 

    ( ) ( ) ( )







+

+−= ∑∑∑
∞

=

∞

=

∞

= 1 1
01222

0

0

1
01

0

2
4

m k
m

m

mm

m
m

m

mbself arjJ
kj
j

arjJ
jL

eaN
rE

α
σσπ

.      (A15) 

A further simplification is made by employing the relation [16] 

( ) ( ) 2

1

1222 212coth yyxxyxky
k

−=+∑
∞

=

−
ππ , which yields 

                    ( ) ( ) ( )aLjcotharjJeNrE bm
m

mmbb
self 22 0

1
01 γσγπ ∑

∞

=

−= .     (A16) 

This concludes the derivation of (7) and (8) in Sec. II. 
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FIGURE CAPTIONS 

Fig. 1.  Schematic of periodic bunched annular disks inside of a perfectly conducting drift    

   tube. 

Fig. 2.  Plots of (a) quadratic beam density function versus normalized radius for an  

annular beam centered at r/a=0.8, (b)  Γ versus normalized radius for the annular   

beam in (a).  Here, 200 eigenmodes are used in the calculation. 

Fig. 3.  The fast (top of graph) and slow (bottom of graph) branches of ( )rbω  in the  

   region oi rrr ≤≤  corresponding to the 200 mode expansion of ( )rΓ  in Fig. 2(b)     

   for three different values of 222 cp ωω = 0.01 (solid lines), 0.015 (dashed lines),   

   and 0.019 (dotted lines). 

Fig. 4.  Plots of (a) quadratic and (b) tent beam density functions versus normalized  

  radius for several bunched annular beams centered at r/a=0.8.  

Fig. 5.  Plots of 222 cp ωω  versus normalized annular beam width for quadratic and tent  

  density functions centered at r/a=0.8. 
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Figure 2(a) 

0.0 0.2 0.4 0.6 0.8 1.0
r/a

-1.0

0.0

1.0

2.0

3.0

4.0

σ
a2

(a)



 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2(b) 
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Figure 3 
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Figure 4(a) 
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Figure 4(b) 
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Figure 5 
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Table 1.  Parameters of Three Annular Beam HPM Devices 
 

PARAMETER RKA  RKO  BWO  

f (GHz) 1.3 1.3 9.4 

bI  (kA) 6.0 10.0 3.0 

bγ  2.1 2.0 1.7 

B0 (T) 0.5 0.8 2.0 

ri (cm) 2.70 6.60 0.90 

ro (cm) 3.20 7.10 1.15 

a (cm) 3.65 7.65 1.28 

α  0.54 1.20 1.83 

expArms,c

b

Ia
Ic

22

28
ω

 
 

0.0133 
 

0.0021 
 

0.0045 

crArms,c

b

Ia
Ic

22

28
ω

 
 

0.0126 
 

0.016 
 

0.059 

 


