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Abstract

A two-dimensional, two-fluid model is used to investigate driven magnetic reconnection in colli-
sionless or semi-collisional plasmas. The reconnection is driven by externally induced plasma flows

in a background magnetic configuration that has a hyperbolic null in the reconnection plane and a

strong component, so called guide component, perpendicular to that plane. Assuming the external
drive to be sufficiently weak for a linear approximation to hold, a dynamic evolution of the system is
obtained which does not reach a stationary state. The magnetic reconnection proceeds in two phases:

an initial one whose characteristic rate is a fraction of the Alfven frequency, and a later one whose

rate is determined by the electron collision frequency.
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One of the fundamental goals of magnetic reconnection research is to understand the fast reconnec-
tion rates observed to occur in plasmas of low collisionality, both in the space' and in the laboratory2.
A significant part of the theoretical progress made over the past decade comes from a body of work
based on a collisionless or semi-collisional, two-fluid description of the plasma-". In particular, much
attention has been devoted to elucidate the effects of the different non-ideal terms in the two-fluid
generalized Ohm's law. In the experimental area, facilities such as MRX at the Princeton Plasma
Physics Laboratorys and VTF at the M.I.T. Plasma Science and Fusion Center 16 17 have been specif-
ically dedicated to study magnetic reconnection in low collisionality regimes. In the VTF device, a
toroidal plasma is confined in an externally created magnetic field that has a quadrupole poloidal
cusp component and a toroidal or guide component. The relative magnitude of these magnetic field
components can be varied to investigate both the weak-guide-field and the strong-guide-field regimes.
Reconnection of the poloidal magnetic field is driven by plasma flows towards and away from the
poloidal null or X-line, through E x B drifts generated by an externally induced toroidal electric field.

In the present work we use the two-fluid collisionless or semi-collisional formalism, to investigate
driven magnetic reconnection in a simplified two-dimensional model that simulates the geometry and
conditions of the VTF experiment, in its strong-guide-field regime. The strong guide field guarantees
that the plasma is magnetized and makes the fluid description more plausible. We also assume that
the ratio 3 between kinetic and magnetic pressures is small, as is the case for VTF. Thus we are
concerned with driven reconnection in a background magnetic configuration consisting of a hyperbolic
null in the reconnection plane with a strong component perpendicular to it. Such a magnetic config-
uration has been considered to study driven reconnection as well as resistively damped modes within
the framework of single-fluid resistive MHD'1- 22 , but it has not been investigated within the two-fluid
framework appropriate to low collisionality regimes.

In addition to the usual quasineutrality assumption, we choose, for the sake of simplicity, to close

the two-fluid MHD system by assuming isotropic stress tensors and constant temperatures. Thus our

momentum balance equations read:

nm +± (uC . V)u,] = j x B - V(pe + pi), (1)

E+uixB = rj+ -(j x B -Vp,) - m. [Lu + (Ue -V)ue (2)
ne e at

where the index a = e, i labels the electron and (singly charged) ion species, ua and pa = nTco stand

respectively for their flow velocities and pressures Tco being their constant temperatures, ma are the

particle masses, e is the magnitude of the electron charge and n is the particle density. Also, B denotes
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the magnetic field, E the electric field, j the current density and -r the collisional resistivity which is

assumed to be constant. The electron momentum balance equation (2) has been written in the form of

a generalized Ohm's law, showing explicitly on its right hand side the resistive, Hall, electron pressure

and electron inertia terms. Our quasineutral, two-fluid MHD system is completed by including the

ion continuity equation an/at + V - (nui) = 0, Ampere's law V x B = j = en(ui - ue), and the two

homogeneous' Maxwell's equations. Then we carry out a two-dimensional reduction by assuming a

Cartesian geometry with the hyperbolic magnetic null in the (x, y)-plane, the guide component along

the z-direction and all variables independent of the z-coordinate. Thus the magnetic field and the ion

flow velocity admit the following representations:

B(x, y, t) = e. x VV)(x, y, t) + Bz(x, y, t)ez, (3)

ui(x, y, t) = e, x Vp(x, y, t) + Vx(x, y, t) + ui.(x, y, t)e.. (4)

We assume an equilibrium of constant density no, vanishing flow, current and electric field, and a

magnetic field with a constant z-component and components in the (x, y)-plane given by the leading

term of a Taylor expansion about a hyperbolic null, i. e. a quadrupole cusp with sources at infinity:

Bo(x, y) = B'(-xex + yey) + Bzoe 2. The corresponding equilibrium magnetic potential is therefore

iko (x, y) = Bixy. The magnitude of the equilibrium guide field relative to the cusp field is given by the

constant with dimensions of length to = Bo/B'. We can now define the different equilibrium plasma

parameters, specifically the ratio between kinetic and magnetic pressures =- 2no(Teo+To)/Bzo2 , the

electron and ion skin depths d a2 ma/(e2no), the ion sound gyroradius p"2 = mi(Teo+To)/(e2 Bzo 2)
and the Alfv6n transit time -rA2 = mino/B , 2 . The complete, time dependent solution is written as the

sum of equilibrium and perturbation terms: n(x,y,t) = no+ni(x,y, t), V)(x, y, t) = B'xy+V1 (x,y,t)

and Bz(x, y, t) = Bzo + Bzi(x, y, t), so that the current density and the electric field are given by

j(x, y, t) = -e, x VB21 (x, y, t) + V2 01(x, y, t)ez, (5)

V x E(x, y, t) = [zx V4'1(x, y,t) + Bi~r,y, t)ez). (6)

The external drive is imposed through the boundary condition that, far away from the separatrices

(x, y - ±oo), the z-component of the electric field E. = aip1/at approaches the constant Em corre-

sponding to a constant, externally applied electric field Eocez. We assume this external drive to be

sufficiently weak to carry out a linearization of the problem, taking V51, Bzi (hence j and E), ni, W, x

and uiz to be linear in Eoc,, and neglecting quadratic terms. The linearized two-fluid MHD equations

can then be reduced to a coupled system for the perturbed magnetic potential V)1 and the ion flow

potentials W and x, all other variables being explicitly obtainable from these three.
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The next step is to introduce our low-beta, strong-guide-field orderings, specifically # < 1,
di2 /1 2 < 1 (hence p 2 /102 < 8), and rA9/&t ~ pV - deV ~ 1. Besides, we neglect the mass

ratio me/mi when compared to unity. As a result, the compressional flow potential X can also be

eliminated and we obtain the reduced system4,,1 ,12:

t(V2 ) nomi (7)

[(1 - d 2V2)7pb] = 2, (1 - ps2V2 )p] + 77V20 1, (8)

where we have used the notation [f,g] = e, (Vf x Vg). The reduced Ohm's law (8) contains the

effects of the collisional resistivity, the electron inertia and the Hall term, but no explicit dependence

on the ion skin depth di (as opposed to the ion sound gyroradius p,) remains under the assumed

orderings. An additional term involving explicitly the di length scale would have had to be kept under

the less restrictive assumptions # < 1 and p, 2 /102 < 1 but d,2 /102 ~ 1. It is illustrative to write down

the plane wave dispersion relation that follows from the reduced system (7,8) in the case of a uniform

equilibrium magnetic field with Alfven speed cA:

w[w(1 + de2k2 ) - iqk2] = CA2kII2 (1 + PS2 k2 ), (9)

which is the Alfv6n branch of two-fluid MHD in the limit < < 1, k1l2 /k 2 < 1 and d,2 k11
2 < 1.

With io(x, y) = B' xy, Eqs.(7,8) admit a class of separable solutions of the form 01 (x, y, t) =

01 (x, t) + 51(y, t) and v(x, y, t) = p(x, t) - Wp(y, t). Restricting ourselves to these, we can eliminate

V),(x, t) and p(x, t) in favor of j(x, t) = 9 2 01(x, t)/tx 2 , to obtain the single equation:

2a~x 2 + a 2rAX = 2 2(X t j Xt02)9
(10)

We solve the above as an initial value problem with vanishing initial current, j(x, 0) = 0, and a non-

zero initial time derivative j(x, 0)/at which is evaluated according to Eq.(8) from a non-zero initial

flow potential <p(x, y, 0). The latter is constrained to be consistent with our boundary conditions of a

E x B flow driven by the externally applied electric field at far distances:

1imx,y-+aoop(x, y, t) = 0 1n I k 1, (11)2Bc'o x

and

limx,y-.±ooE(x, y, t) = E.. (12)

These boundary conditions (11,12) are preserved at all times by our evolution equations (7,8), provided

they are satisfied at t = 0. To this effect, we choose the following initial flow potential:

<(x, y, 0) = E in 2J), (13)
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where 3 is a regularizing parameter with dimensions of length that should be taken greater than or of
the order of both de and p8. Once the time dependent solution j(x, t) has been obtained, Faraday's
and Ohm's laws applied at the X-line, x = y = 0, yield the reconnection rate:

E,(0, 0, t) = =901(A,0,t) = 2 8 lt) 2 [de 2 ' (0, t) . (14)at at 2d at OtJ

The long time asymptotic behavior of the current density at the X-line can be derived analytically.
Introducing the Laplace transformed J(x, s) = fo* dt exp(-st) j(x, t), the Laplace transform version
of Eq.(10), including the appropriate initial conditions, can be solved for x = 0 and s -+ 0 using
asymptotic matching techniques. The result is

J(O, s -+ 0) ~ EooTAP, (15)
2J2 (de282 + 718)1/2'

so that, inverting the Laplace transform, we get

j(O, t -+oo) ~ EcAS for 7 = 0, (16)

and
j(0t-*o) EOO7Ap, EOOTAP,j((0, t -+ 0) ~ 2 r77t) 1/ 2 

- 26 2de(7rt/re) 1/ 2  for 7 # 0, (17)

where we have used the relation 77 = de2/re, 7e being the electron collision time. The weakly collisional
regime of interest in VTF corresponds to re >> rA.

The complete solution of the above described initial value problem for j(x, t) is obtained numer-
ically. The actual integration of Eq.(10) is carried out in Fourier space, so that spatial boundary
conditions are truly satisfied at x = ±oo without the recourse to a finite x - space computational
domain and the need to introduce the corresponding maximum computational length parameter. We
can show that, in Fourier space, the spectral content of the time-dependent current density grows ex-
ponentially towards both high and low wavelengths, and that the Fourier transform of Eq.(10) acquires
a simple wave-like character when expressed in terms of a logarithmic wavelength variable. Therefore,
for any given value of the time, the computational domain in Fourier space can be determined such
that the inclusion of the whole range of required spectral wavelengths is guaranteed. We also note
that no further parameters are added in the numerical solutions, so that in the collisionless (71 = 0)
simulations a truly dissipation-free system is integrated.

Some of our numerical results are shown in Figs.1-4. In Fig.1 we plot the X-line value of the current

density j(0, t) versus time, for several values of the dimensionless resistivity parameter 77rA/de2

TA/re. After an approximately linear rise, the X-line current density approaches a constant in the
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collisionless case and decays proportional to (t/eT)-1/2 in the resistive cases. Thus the long time
behavior of j(0, t) agrees with the analytic prediction (16,17). The cases displayed correspond to the
choice 6 = d, = ps, but we have verified the same result for different values of the ratios 6/p, and
de/p,. The reconnected flux Vrec(t) = 1(0, 0, t) is derived from j(0, t) by integrating Eq.(14), and
the corresponding numerical results are plotted in Fig.2. There we observe an initial phase during
which the reconnection proceeds linearly in time with a characteristic rate equal to a fraction of the
inverse Alfv6n time, independent of the resistivity. Subsequently we observe two different behaviors

depending on whether or not the resistivity vanishes. In the strictly collisionless case (-A/re = 0),
the reconnection practically ends after several Alfv6n times and the total amount of reconnected flux
is finite. The numerical value of this collisionless reconnected flux is in agreement with the analytic
value derived from Eqs.(14,16): prec(t -- oo) = EoorAdeps/32 . In the resistive cases, after the initial

fast reconnection phase with 1,rec(t) proportional to t/TA, for t > re the system transitions to a

slower reconnection phase with 2Prec(t) proportional to (t/r,)1/2, reminiscent of the Sweet-Parker 2 24

rate and also in agreement with the analytic prediction from Eqs.(14,17). Figures 3 and 4 illustrate

the long time behavior of the current sheet profile. Under the strictly collisionless assumption, the

current grows in an approximately linear fashion from its initial seed until its X-line maximum nears

saturation. After that, the maximum at the X-line approaches its constant asymptotic value but the

spatial profile develops a complex structure with an inner sublayer that shrinks in time without limit,

similar to the findings of Ref.4. This shrinking is exponential as shown in Fig.3: for sufficiently long
times the current profile is, to a first approximation, given by

j(x, t -- > 00) ~ EoorAPS F [e pt (18)262 de Ps de-rA

where F is a function of a single argument whose form is determined by the early history of the system,

and satisfies F(0) = 1, F(oo) = 0. The asymptotic formula (18) can also be derived analytically from

the long time behavior of Eq. (10) with r7 = 0. For non-vanishing resistivity and after its initial linear

growth, the X-line maximum of the current density decays proportional to (t/Te)1/2 according to

Eq.(17), and the inner width of its spatial profile also decreases without limit. However this shrinking

of the current sheet is slower in the resistive cases, where it follows approximately the square root of

the time. This is illustrated in Fig.4 for a resistivity-dominated simulation at TA/re = 9: the long

time form of the current density profile is now approximated by the empirical fit:

E.oTAPs XtI/27 1/2
j(x, t -+ oo) E TAP 2 G ote (19)

262 de(,rt/re)1/2  de

where again G(O) = 1 and G(oo) = 0.

We have applied our model to a set of parameters representative of strong-guide-field regime

experiments in VTF with hydrogen plasma 28 . The corresponding values of the density, tempera-
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tures, guide field, cusp field gradient length and applied electric field are respectively no = 10 17 m-3,

To < To = 20eV, B2 o = 0.0875T, lo = 7m and Eo = 10V/m. So we have p, 2 /1,2  5 x 10-7,

0 ~ 10 4 and d 2/1 0
2 ~ 10-2, therefore our low-beta, strong-guide-field conditions are well satisfied.

The electron skin depth and the ion sound gyroradius are comparable, de ~ 3pa, and the collisionality

is fairly low, 7e ~ 407A. Taking 6 = 2de in our simulation, we obtain a maximum X-line current

density, at the end of its linear rise and before its slow resistive decay sets in, approximately equal

to 5 x 10 3A/m 2 which is in agreement with the experimentally measured value. The electrostatic

potential in the (x, y)-plane far away from the separatrices is D ~ Bzo Wp ~ 35 In ly/xl V, also in

agreement with the experimental measurement.

In summary, we have developed a model for driven magnetic reconnection in low collisionality

plasmas that, despite its mathematical simplicity, yields a number of significant physical results. The

assumed low-beta and strong-guide-field orderings imply a generalized Ohm's law where electron iner-

tia, ion sound gyroradius and eventual collisional resistivity define the relevant length scales. Our time

dependent solutions show an ever evolving system in which, after an initial linear rise, the inner width

of the current layers decreases without limit below the characteristic length scales. The long time rate

of this current layer shrinking depends on the collisionality, being exponential in the collisionless case

and power-like in the finite resistivity case. The behavior of the maximum current density at the X-line

also changes qualitatively when we compare the collisionless case where it approaches a constant at

long times, with the resistive case where it decays proportional to (t/re)-1/2. The rate of magnetic

reconnection evolves from an initial phase when the reconnected flux grows on an Alfv~n-related scale,

proportional to t/rA, to a later phase when it grows on a resistivity-related scale, proportional to

(t/re) 1/2; for a strictly collisionless plasma the reconnection ends after the Alfv6nic phase and the

total amount of reconnected flux is finite. We must point out that our results, obtained with an ide-

alized two-dimensional linear model, are more likely to be physically valid for the initial short times.

Clearly, three-dimensional non-linear effects will preclude the sustainement of our ever narrowing cur-

rent layers. Therefore we might speculate about an intermittent process whereby finite amounts of

flux are reconnected in short, Alfv6n-scale time intervals, at the end of which secondary instabilities

destroy the current sheets once they have become sufficiently narrow, so the cycle can start over again.

We acknowledge many fruitful discussions with A. Fasoli, J. Egedal, P. Catto, J. Hastie, F. Pego-

raro and D. Grasso. One of us (R. V.) was supported by a FIENER Grant from Fundaci6n G6mez

Pardo, Spain. This work was sponsored by the U.S. Department of Energy under Grant No. DE-

FG02-91ER-54109 at the Massachusetts Institute of Technology.
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FIGURE CAPTIONS.

Fig.1. Time dependence of the normalized X-line current density, for different values of the resistivity

parameter rA/Te = rA/de2 . The dashed lines indicate the long time asymptotic behavior in the

resistive cases.

Fig.2. Time dependence of the normalized reconnected flux for different values of the resistivity.

Fig.3. Normalized current density profiles in a collisionless simulation at four different times, showing

their asymptotic scaling invariance.

Fig.4. Normalized current density profiles in a resistive simulation at four different times, showing
their approximate scaling invariance.
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