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Abstract: A series of experiments are described which are aimed at quantifying the relative

contribution of divertor leakage and radial ion transport on neutral pressures surrounding the

core plasma. Evidence is presented implying that cross-field transport competes with, or

dominates, parallel transport in such a way that plasma exists far out in the Scrape-Off Layer

(SOL) in the shadow of limiters and recycles on main chamber surfaces. The transition from L-

to H-mode core confinement does not affect the far SOL characteristics nor the scaling of

pressures around the plasma.

Variations in magnetic equilibrium are used to vary the divertor pressures independent of

the core plasma. Based on the analysis of such experiments using a simple neutral flow model

we estimate that neutrals escaping from leaks in the lower (closed) divertor during lower x-point

operation contribute a smaller fraction (~10-30%) of the midplane pressure than main chamber

recycling. The inferred leakage is much larger from the upper (open) divertor during upper x-

point operation. Most neutrals escaping from either divertor do not directly travel to the

midplane. Instead, they are redirected, most likely by some combination of ionization and/or

collisions (elastic, charge exchange).
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1. Introduction

The Scrape-Off Layer (SOL) affects a number of aspects of tokamak operation. Plasma

conditions outside the plasma core determine the characteristics of the divertor plasma and

therefore the parallel power and particle flow profile at divertor or limiter surfaces. The resultant

divertor impurity sources and helium compression in the divertor are also important. Moreover,

the SOL can be very important for directly affecting the core - impurity sources in the main

chamber, boundary conditions of density and temperature, and in particular, fueling and particle

control.

There are two routes for neutrals to arrive in the region outside the core plasma, from which

they may reach the core: 1) through radial ion transport to the main chamber surfaces with

resultant recycling and creation of neutrals; and 2) by neutral leakage from the divertor (for a

diverted plasma). In this paper we describe a series of experiments aimed at assessing the relative

roles of these two paths for affecting the main chamber neutral pressure. These include variations

in geometry, magnetic equilibrium, divertor bypass leakage and confinement mode.

Previous experiments concentrating on this subject have shown that cross-field ion transport

in Alcator C-Mod [1-5] can lead to large ion fluxes to main chamber surfaces and are of

sufficient magnitude to explain main chamber neutral pressures. Strong cross-field transport was

also required to explain SOL profiles in ASDEX Upgrade [6].

It is reasonable to expect that the divertor geometry should play a role in neutral control

[7,8]. Neutrals could leak from the divertor and directly travel to the midplane. The experimental

results on this subject are varied, to say the least. Results from JET [9], JFT-2M [10], and DIII-D

[11] indicate that increased divertor closure (geometry as well as closing leaks through the

divertor structure) leads to a  reduction in the midplane pressure. Results from the closing of

leaks on C-Mod and ASDEX Upgrade [12-14], as well as the most recent changes in the JET

divertor [15,8],lead to an increase in divertor pressure with no change in midplane pressure . C-

Mod experiments utilizing divertor bypass valves also implied little effect on the midplane

pressure [7,16].

The variety of experimental results and potential contributors to the midplane pressure call

into question whether the axisymmetic poloidal divertor concept is fully understood. It is clear

that a better understanding of the limits of the divertor configuration will allow us to make a

more quantitative judgement between alternative particle and heat flux handling geometries.

The experiments reported here are aimed at better quantifying the relative contribution of

divertor leakage and radial ion transport on the midplane pressure. We add further evidence to

already published papers showing that radial particle transport is strong and the accompanying

recycling  on main chamber surfaces can explain measured neutral pressures. Changing the core
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transport from L- to H-mode leads to little or no effect on the far SOL indicating that the flux to

the walls has not changed, just the gradients at the separatrix and the density in the core..

In an effort to assess the divertor leakage contribution to the midplane pressure we varied

upper and lower divertor pressures (and by inference divertor leakage) independent of core

density. Based on a simple model we are able to estimate that neutral leakage from the lower

divertor during lower single-null discharges contributes between ~10-30% of the midplane

pressure, the rest supplied by main chamber recycling. The contribution to the midplane pressure

due to leakage out of the upper divertor during upper single-null discharges is of similar

magnitude as the contribution from main chamber recycling.

2. Experimental description

All results reported in this paper were obtained with deuterium discharges with B B× ∇
towards the bottom of the vessel. For most discharges the x-point was located at the bottom of

the vessel where the closed, vertical plate divertor, is located (Fig. 1a). Unless otherwise

specified all discharges are in L-mode and utilize D2 as the fill gas. Some experiments required

the dominant x-point to be located at the top of the vessel where the divertor is completely open

(Fig. 1a).

Alcator C-Mod, like most tokamaks, lacks toroidal (and poloidal) symmetry of the main

chamber surfaces outside the divertor. Fig. 1b illustrates this. There are three poloidal limiters

and four ICRF antennas (with the accompanying 4 side limiters shown) located at different

points toroidally. Even the open upper divertor has 20 thin (1.25 cm toroidally) plates located

near ports used to strengthen the vessel. These are shown in profile in Fig. 1a as a dotted line.

Each plate has protection tiles on the edges facing the plasma.

The general characteristics and diagnostics of the Alcator C-Mod device can be found

elsewhere. Further details on some of the edge diagnostics have also been published previously

[12,4]. Here we present some of the more relevant diagnostic descriptions.

The locations of the various pressure diagnostics are shown in Figures 1a-b. Baratron

capacitance manometer gauges (~50 ms response time) are located in vertical ports connected to

the upper and lower divertors as well as at the midplane of the torus in a large horizontal port.

There are two such gauges in the lower divertor, one of which is located at a port (herein called

an ‘open’ port) which has a large opening in the outer divertor plate over the port (for diagnostic

penetration) through which neutrals can escape back to the main chamber. The second Baratron

gauge is  located at a port without a diagnostic opening (‘closed’ port where neutral leakage is

minimal). Other gauges include a shielded Bayard-Alpert ionization gauge (response time ~ 30

ms), located at the outer midplane, and several Penning gauges (response time < 5 ms), located at

several points toroidally (see Fig. 1b) and poloidally (Fig. 1a). All gauges are calibrated against
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the Baratron gauges. The Penning gauges have the additional constraint of requiring the full

toroidal magnetic field on at the time of calibration. It is important to point out that the only

diagnostic we have of the upper divertor is the Baratron gauge mentioned above.

The outer divertor bypass system [16] allows the neutral leakage through the closed lower

divertor to the main chamber to be varied dynamically during a discharge. There are 10 discrete

toroidally–spaced valves, the locations of which are shown in Fig. 1b.

High resolution profiles of electron temperature and density in the SOL are obtained from

two scanning probe systems, both of which are shown in Fig. 1a: a vertical-scanning probe that

samples plasma at a position 'upstream' from the entrance to the outer divertor, and a

horizontally-scanning probe that records plasma conditions 10 cm above the midplane.

For the experiments described herein we vary the magnetic equilibrium from lower to upper

x-point. The measure of the equilibrium variation is the radial gap between the first and second

separatrix mapped to the outer midplane, denoted by the parameter SSEP in the EFIT

equilibrium solver code [17]. SSEP is negative for lower x-point dominant, positive for the upper

null. Typical minimum values are -15 to -20 mm for lower x-point equilibria, but often the

magnitude of SSEP is larger.

3. Main chamber sources of neutrals due to cross-field ion flow

In the introduction we referred to two potential contributors to the neutral population

surrounding the plasma (in general we are referring to the neutral density at the outer midplane):

1) ion fluxes recycling off main chamber surfaces as neutrals; and 2) neutral leakage from the

divertor. Note that the former forms a circuit of ions transported across the magnetic field,

flowing out of the core and SOL, and returning to the core and SOL as neutrals. The latter forms

a different circuit – ions leave the SOL by flowing along the field into the divertor, recycling as

neutrals and reentering the core or SOL (leaking through divertor structure) where they are

ionized, closing the loop. In this section we will first discuss the evidence for the existence and

magnitude of the first loop.

3.1 General characterization

We briefly review the characteristics of the SOL and the techniques used in this section.

Figure 2 includes density (Fig. 2a) and temperature (Fig. 2b) profiles across the SOL for 9

different core densities 1x1020 m-3 ≤ ne  ≤ 2.6x1020 m-3 ( 0.17 ≤ nGreenwald ≤ 0.45), derived

from the horizontal scanning probe. The distance from the separatrix is labeled ‘ρ’. The location

of the limiter is indicated, varying from ρ =19-22 mm for these data. The near SOL (ρ ≤ 4.0 mm)

has a short e-folding length that is similar to its width. The density at the limiter and in its
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shadow is strongly dependent on ne . At the two highest densities shown the density profile near

the separatrix flattens as well.

Such a characterization of the density profile in the SOL as two regions has been recorded on

most divertor tokamaks. See, for example, References [18,19,6,20,12] The differences in

gradients between the near and far SOL have been modeled as due to differences in radial ion

transport [21,6,22,1,2,4] with cross field diffusion in the far SOL exceeding Bohm values. We

note also that density profiles with such ‘shoulders’ have also been explained as due to non-local

neutral sources [18,23].

The temperature near the separatrix varies little as one might expect from a region where

parallel conduction dominates energy transport. The temperature gradients near the separatrix

vary little as ne  is increased. The gradient scale length gradually increases as a function of ρ. In

the region beyond the limiter, the temperature is almost always in the range 5-10 eV with little

gradient. There are examples of a high temperatures in the far SOL from other tokamaks going

back many years [24,25].

As the density is increased beyond the range shown here, the flat region of the density profile

starts moving inside the separatrix . At the same time the separatrix temperature drops, indicative

that parallel conduction is no longer determining the temperature there. The details of the

evolution of SOL conditions as the density limit is approached can be found elsewhere [5].

In previous work [4] we have developed an interpretive analysis of probe profiles to

determine radial ion fluxes, Γ⊥ ,i  at the limiter radius. The cross-field ion flux density entering the

region between two poloidal limiters, Γ⊥ ,lim  can be determined by integrating the parallel ion

current incident on those limiters.

Γ Γ⊥ ⊥⋅ ≈ − ⋅∫ ∫, ||, ||i idA dA
lim./SOL interface lim. sides

(1)

The assumption underlying the use of this continuity equation is that ionization in the limiter

shadow must be small compared to parallel flux term in the continuity equation. Note that

perpendicular transport dominates over parallel transport in the limiter shadow due to the short

parallel distance between limiters (0.8 m). Based on the above Eq. 1 becomes:

2nc L Ss i/ >> (2)

Where L is the toroidal spacing, Si is the ionization rate density, and cs is the ion sound

speed. For the region between two limiters where the horizontal scanning probe is inserted this

criterion is easily satisfied. Typical values of the parameters are ne ~ 1x1019 m-3, Te ~ 10 eV, L

~ 0.8m, and Si ~ 2x1022 m-3s-1. Γ⊥ ,lim , shown in Figure 2c, scales linearly with the midplane

pressure (which itself scales as ~ ne
4 [3,4]). The top horizontal axis shows an estimate of the
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inward flux of neutrals, Γ⊥ ,0 , based on the midplane pressure. Under the assumption that the

presence of the 2 poloidal limiters does not change the local radial fluxes (the local measurement

is indicative of elsewhere in the outer SOL), we see that radially outward ion fluxes are balanced

by the inward neutral fluxes to within a reasonable factor (~ 2). A departure from a linear

relationship between fluxes to the limiter and midplane neutral pressures at the highest densities

has been found for a set data taken over a wider variety of plasma currents and limiter gaps [4].

There is evidence that recycling at the outer midplane might be low compared to other poloidal

locations: Pressures at the top of the vessel can be 2-10x that at the midplane. In addition, Dα
measurements show that at times recycling at the inner wall can be higher than at the outer

midplane. Furthermore, flux surfaces in the far SOL impact on the horizontal baffle section of

the outer divertor leading to additional plasma recycling outside the lower divertor proper.

3.2 Effect of changes in core confinement

The characteristics of the far SOL appear to be relatively unaffected by the transition from L-

to H-mode. In Fig. 3 we show the effects on the SOL of a transition from L- to H-mode. The far

SOL is unaffected by the change in core confinement even though the line-averaged density, ne ,

nearly doubles. In the near SOL region the electron pressure and density as well as their

gradients are larger. Utilizing these profiles and the local Lyα emissivity [26], a local radial ion

particle flux, Γ⊥ ,i  [4,5], an effective particle diffusivity, D neff i e≡ ∇⊥Γ , /  (Fig. 3b), and an

average radial ion velocity, v ⊥ ⊥≡, , /i i enΓ (Fig. 3c), are obtained. After the transition to H-

mode Deff  drops by about a factor of 2-3 near the separatrix as previously noted [4]. A similar

drop is seen in v⊥ . The characteristics of radial transport in the far SOL are essentially

unchanged. We note that the above estimates of velocity are lower than that found through

analysis of He ion transport in the SOL of C-Mod [27] as well as the analysis of fluctuation

measurements using probes [28] and Dα emission [29].

The correlation between plasma density, flux and neutral pressure at the limiter extends to H-

mode plasmas. In Fig. 4 we provide, for both L-mode and H-mode plasmas, the scaling of

density (Fig. 4a) and radial ion flux at the limiter radius (Fig. 4b) as well as the midplane

pressure (Fig. 4c) vs. the core line-averaged density. All measures scale similarly. The L- and H-

mode data points are often from the same discharge, before and after the transition. The L-H

transition has the effect of an approximately horizontal translation on the graph. In other words,

the measured quantity (e.g. Γ⊥ ,i , ne,lim) stays approximately constant while the core ne  rises

during H-mode. Thus, like Figure 3, the change from L- to H-mode leaves the radial ion fluxes

and resultant main chamber recycling the same. On the other hand the lack of variation of the

midplane pressure from L- to H-mode might also be consistent with neutral leakage affecting the
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midplane pressure: Divertor pressures (and the accompanying leakage) also do not change

significantly in the transition.

4. Main chamber neutrals due to divertor neutral leakage

At issue is the level of neutral leakage out of the divertor, and whether such neutrals reach

the midplane and the pressure measurement gauge. We do not directly measure the flow, rather

we measure pressures and try to infer the flow magnitude relative to main chamber recycling.

4.1 General observations: lower x-point discharges

The strongest argument that neutrals are leaking out of the divertor and directly reaching the

midplane measurement gauge is the correlation between the pressures measured in the divertor

and at the midplane [30]. In Figure 5 we present the scaling of midplane pressure against the

pressure measured at three divertor locations described in Section 2 (see Figures 1a-b): a) the

lower divertor at a closed port (Fig. 5a); b) the lower divertor at an open port (Fig. 5b); and c) the

upper open divertor (Fig. 5c). The data are from lower single-null discharges where the gaps and

plasma current (0.8 MA) were held constant. Attached and detached divertor discharges are

included. Both the lower open port divertor and upper divertor pressures correlate linearly with

the midplane pressure, the scalings of the two pressures roughly a factor of 9 apart. The

correlation is poorer for the lower divertor (closed port) pressure. Neutrals leak out of the lower

divertor mainly through the five diagnostic openings in the outer divertor, one such location

monitored by the ‘open port’ gauge. Thus that gauge should be proportional to the leakage flux.

The neutrals that collect below closed divertor sections must travel toroidally to reach the

diagnostic openings in the outer divertor before escaping the divertor towards the midplane.

The linear scaling between the lower divertor (open port) pressure (PLD), upper divertor

pressure (PUD) and the midplane pressure (P0,Mid) is consistent with a simple model which

balances the number of neutrals entering the core plasma per unit time (Γ⊥ ,0 ) across the

separatrix at the outer edge (area, APlasma) with the neutral flux through lower and upper

divertor leakage areas, AL,Leak and AU,Leak [30]:

Γ Γ⊥ ⊥≡ ≈ ⋅ ⋅ + + ⋅, , , , ,( )0 0β βP A f P A P A AMid Plasma LD L Leak UD U Leak i Plasma (3)

A term to allow for main chamber recycling has been added. We have assumed some effective

transmission factor f< 1, for neutrals to directly stream from the divertor to the midplane. The

conversion factor, β, is from the proportionality between pressure and flux. Implicit in Eq. 3 is

the assumption that the measured midplane pressure is representative of a toroidal and poloidal
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average of neutral pressures over the area APlasma. β drops out when Eq. 3 is converted to

pressures:

P f P R P R PMid UD UA LD LA MCR0, ( )≈ + + (4)

The contribution of main chamber recycling at outer wall surfaces is denoted by PMCR. The

ratio of AL,Leak to APlasma, RLA =.0136, and RUA ~ 8xRLA.

We can use this equation as a framework for discussion of the data of Fig. 5. For such lower

single-null discharges the upper divertor is just part of the main chamber. The pressures there,

higher than the midplane, are due to main chamber recycling, either at the inner wall or at the top

of the chamber. Since PLDRLA ~ PUDRUA then the contribution to the midplane pressure due to

main chamber recycling at the top of the chamber is already similar to leakage from the lower

divertor. Allowing main chamber recycling at the outer wall (PMCR) will reduce the relative

contribution of lower divertor leakage still further.

Where are the ions coming from that produce such a large source of neutrals in the upper

divertor for lower x-point discharges? If it is direct ion fluxes to the top of the vessel, then cross-

field transport must be populating field lines on flux surfaces beyond the second separatrix and

limiter (The upper x-point is outside the vessel for most of these data points).

Using a plausible upper limit for f (0.5) we can estimate PMCR. Substituting in the scaling

relationships of Fig. 5bc between PUD, PLD and P0,Mid we find PMCR ~ 0.67xP0,Mid.

Inclusion of the upper chamber contribution to the midplane pressure in PMCR implies that main

chamber recycling contributes 80% of the midplane pressure. This simple analysis relies on the

assumption of a value for f. It is also clear that the various pressures are tightly coupled (e.g.

pressures on ne ), making it difficult to separate out dependencies. In the remainder of this paper

we will present the results of experiments where f is not assumed and one pressure is varied

independent of core ne .

To give the reader some appreciation of the fluxes being discussed, we review the

throughputs of such leaks. We assume that the amount of leakage is predicted by simple free

molecular flow through an aperture. Given the area of the lower divertor openings, the

conductance (~ 20 m3/sec) and driving pressure lead to leakage fluxes in the range 0.5-2 x1022

particle/sec for typical lower open divertor conditions (5-20 mTorr). This neutral leak rate is of

similar magnitude as the radial ion fluxes shown in Fig. 2c and the integrated ion flux to the

lower outer divertor plate. The torus gas puff rate used to maintain the plasma density is about a

factor of 20 smaller!
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4.2 Effect of changes in up-down divertor balance

Because the divertor and midplane pressures are so strongly correlated with each other and

with the core plasma line-averaged density we have attempted to find ways of varying the

divertor pressure, and thus the source of neutral leakage, independent of ne . Our primary method

for divertor pressure control is to vary the magnetic equilibrium from single-null x-point at the

lower divertor to double-null (symmetric up-down x-points). Using SSEP as a measure of

divertor dominance, Fig. 6 shows the upper divertor, midplane and lower divertor (closed and

open ports) pressures vs. SSEP. When SSEP is a large negative value the lower divertor

pressures are much higher than that at the upper divertor. At the other extreme, when the

equilibrium is double-null (SSEP=0), the two divertor pressures are closer. Ignoring outlier

points, the midplane pressure may be considered to increase slightly as SSEP approaches 0.

We can use a simpler version of Eq. 3 for analysis of this data:

∆ ∆ ∆ ∆P P P PMid LD UD MCR0 8, ( )= ⋅ + ⋅ +α (4)

whereα = f•RLA and RUA/RLA~8. Since the core conditions were held approximately constant,

we assume the same for PMCR and the last term drops out. We thus derive a value of α ( and f)

that fits the data, and solve for PMCR using Eq. 3. The curves in Fig. 6 show the result of fitting

the pressure data from the divertors and the model prediction of the midplane pressure with the

derived value of α = .002 ( f ~ 12.5%). The contribution to the midplane pressure are PMCR

/P0,Mid ~ 0.9 and PL,Leak /P0,Mid ~ 0.1.

We note that this estimation of PMCR/P0,Mid, and those following, are not dependent on

knowing the values of f, RLA and RUA. They are absorbed into one fit parameter, α, which is

then used to determine P P P PMCR Mid LD UD= − ⋅ + ⋅0 8, ( )α .

4.3 Effect of upper x-point discharge

Based on the results shown in Figure 6 discharges were programmed to take SSEP beyond

0 to achieve upper single-null dominant equilibria. Two discharges are shown in Figure 7, one

with SSEP (Fig. 7a) varied from –15 mm to + 8 mm, the other with little SSEP variation for

reference. The plasma, formed limited on the inner wall, becomes diverted at ~ 0.25 seconds.

The density reaches an equilibrium value of 0.95 x 1020 m-3 at 0.5 seconds. As the magnetic

equilibrium becomes double-null (SSEP=0), the upper and lower divertor (closed) pressures

reach similar values as seen in Figure 6. The outer wall pressures (Fig. 7c-e) at the three poloidal

locations appear to equalize at a lower value. At the largest values of SSEP (and thus the upper

divertor pressure) there are signs of leakage from that divertor affecting the outer wall (upper)

pressure and that at the midplane. As for the data of Fig. 6, changes in lower divertor leakage
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have little effect on the midplane pressure. More telling is that the leakage from the upper

divertor (~1.25 sec) reaches values ~ 8x that from the lower divertor (~.65 sec), and yet the

relative increase in the midplane pressure is only in the range 1.7-2.

When we apply the neutral flux balance model to the data of Figure 7 we find the same

values of α (~ .002 ) & f (~12 %) give a good fit to the time variation in outer wall (midplane)

pressure due to neutral leakage out of the divertors. The lower divertor contribution to the

midplane pressure is again small (≤ 10% of PMCR), even for the highest lower divertor pressures

shown in Figure 7. The upper divertor leakage contribution rises to ~ 0.7-1.0x PMCR as the

upper divertor pressure rises.

4.4 Effect of changes in inner limiter gap

Supporting evidence for the dominance of main chamber recycling comes from another

experiment where the plasma was limited on the inner wall. Fig. 8 shows a comparison of limited

vs. standard divertor operation for two cases - outer gap of 15 mm and 25 mm. The height of the

plasma was unchanged leading to slight variations in elongation due to the varying width of the

plasma equilibrium. The lower (closed) divertor pressure (Fig. 8a) is reduced by reduced power

flow into the divertor as the plasma becomes limited. But the midplane pressure (Fig. 8b) is

relatively unaffected. The lower (open) port pressure measurement was not working for this run,

but in general, its pressure is 2-3 x lower (Fig. 5 includes similar ne  discharges where the ratio

was ~ 2.5) than the closed port for such attached discharges. Since the upper chamber pressures

are extremely low (0.1 mTorr) and do not change for these experiments then it is unlikely that

the large neutral source created at the inner wall is affecting the outer midplane pressures. Thus

the large drop in lower divertor pressure should lead to a large drop in midplane pressure if

leakage dominates the midplane pressure. This clearly is not the case. The analysis using Eq. 4

yields α =.005-.0010, f =.33-.72 and the fraction of P0,Mid due to main chamber recycling,

PMCR/P0,Mid, is ~ 74-87%.

We have also limited the plasma on the outer poloidal limiters while keeping the inner gap

constant. The midplane pressure only rises slightly, even though the local limiter fluxes are

estimated to increase by a factor of 8. The plasma profiles in the shadow of these limiters

measured near the divertor entrance do not change much, indicating the general SOL away from

the limiter is relatively unaffected.  The divertor pressure and plasma characteristics change. We

cannot account for where the neutrals, created at the limiter surfaces, go. These data are not

consistent with any particular explanation of what dominates the midplane pressure. Further

analysis and experiments are required.
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4.5 Effect of toroidal variation in leakage

The above experiments indicate that a significant fraction of neutrals leaking from through

the divertor structure do not reach the midplane. We have executed a series of experiments

aimed at estimating the transmission fraction of neutrals by an independent method. Figure 9

shows the result of one discharge where the divertor bypass valves from three toroidally-adjacent

bypass locations (at –18o, 18o, 54o, Fig. 1b) were opened and closed with period 200 ms during

plasma discharges. The locations of the various pressure gauges relative to the bypass valves can

be found in Fig. 1. The plasma current is held constant and ne  (Fig. 9a) is increasing. Helium

was utilized as the fuel gas for these experiments to eliminate the uncertainty of the role of the

wall as a reservoir for neutrals. During the period that the bypass valves are opening or closing

(~ 20 ms, shaded regions, Fig. 9b), there is a prompt effect on the outer wall (lower) Penning

gauge (Fig. 9e). We attribute this to neutrals directly reaching the gauge from the nearby bypass

valves. The midplane gauges (9d), the divertor gauge (9f) and ne  show similar, slower, changes.

The small change in the outer wall (upper) gauge (9c) potentially exhibits some of the same

prompt effect as the outer wall (lower) gauge but the effect is very small.

We also varied the location of the three adjacent valves from near to the Penning gauges to

far from them. Figure 10a-b shows the effect on ne  and the outer wall (lower) gauge for one

valve cycle, including the case from Figure 9 (shown as a solid line) as well as a case where the

closest of the three valves was 72 degrees away from the outer wall gauge (dashed line). When

the bypass valves are farther away from the gauge, the prompt effect on the outer wall (lower)

gauge disappears and its change in pressure is smaller relative to the increase in density. The

result of varying the toroidal locations of valves to still more locations is summarized in Figures

10c-d. The change in pressure measured at the outer wall lower (10c) and midplane (10d) gauges

are plotted against the change in density caused by the release of gas. The data are grouped by

cases where the valves are located just by the gauge (circles) and for valves located 72-108

degrees away (triangles). These results indicate that only the region of the outer wall poloidally

and toroidally near the outer divertor valve is affected directly by neutral leakage. In addition,

~50% of the pressure rise on the outer wall gauge near the bypass valves is due to a toroidally

uniform rise (Fig. 10c). We find ~ 20 degree e-folding distance toroidally (~20 cm) for the

prompt effect. The poloidal decay length is difficult to estimate but based on the change in outer

wall (upper, Fig. 9c) gauge relative to that of the outer wall (lower, Fig. 9e), it appears to be of

order 40-50 cm. Thus it would appear that most of the neutrals leaking from the divertor are

converted to ions, travel around the torus and recycle in the main chamber near other gauges.

This would explain the toroidally uniform pressure rise as well as the slow time behavior

correlation between the gauges and the core ne .
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5. Discussion

5.1 Main chamber neutrals due to cross-field transport

There is certainly a large quantity of evidence, both in this paper and in previous work, that

the magnitude and scaling of cross-field ion transport in C-Mod can explain measured midplane

pressures. In this paper we further explore the effect of the transition from L- to H-mode. The

effects of the energy confinement change are limited to the core and the near SOL in these ohmic

H-mode plasmas. Since the cross-field ion flux in the SOL does not significantly change, the

core density rises to be consistent with reduced cross-field transport near the separatrix.

Let us explore what it means for cross-field transport to compete effectively with parallel

transport. One way to quantify the ‘strength’ of radial, compared to parallel, transport is to

determine a v⊥ ,min  needed for the ion flux crossing a given flux surface, Γ⊥ ,i , to be equal to the

integral of the parallel ion flux flowing to the divertor from that flux surface on outwards:

Γ⊥ ⊥ ⊥

⊥ ⊥

=, ,min

,min

~ ,

~ /

i pol s
pol

Tor

s

n RL nMc
B

B
R

Mc L

v

v

2 2π π λ

λ
(8)

We have approximated the integral of parallel fluxes by 2π λR ⊥ . For M = 1, then v⊥ ,min  (Fig. 3d)

is similar in magnitude v⊥ ,i  (Fig. 3c) obtained from the continuity analysis. We see that the two

profiles are very similar in magnitude and shape. If, as experimental data from the vertical

scanning probe at the entrance of the divertor has shown [4], that flow is more in the range of

M=0.1, then radial fluxes are more likely to be dominant. The relative magnitude of

perpendicular and parallel velocities has potential consequences for the SOL and main chamber

recycling. For example, the effect of inserting of a limiter into the SOL would be reduced as

perpendicular transport becomes more dominant, essentially ‘filling-in’ around obstacles. This

‘filling-in’ effect would be further enhanced by ionization in the limiter shadow.

We believe that the strong radial transport in the far SOL is convective in nature. Figure 2a-b

indicates that in regions lacking gradients in density (far SOL) or Te (shadow of a limiter) power

is being transported across the magnetic field, enough to sustain the plasma there against parallel

conduction as well as the cost of ionizing neutrals. That is evidence of convected power.

An indirect effect of main chamber recycling is that impurity sources are created on surfaces

close to the plasma core. Such impurity sources have a higher probability of reaching the plasma

core than impurities originating in the divertor [31-34]. Better determination of the locations of

main chamber recycling and impurity sources are needed.
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5.2 Main chamber neutrals due to neutral leakage

A simple model, embodied in Eq. 4, was applied to a wide variety of data. Values of the

fraction of the midplane pressure supplied by main chamber recycling range from 70 – 90%.

Based on our limited data set we cannot determine if the variation in relative contributions of

leakage and main chamber recycling to the midplane pressure is significantly dependent on

plasma conditions.

The divertor bypass valve experiments approach the neutral leakage from another point of

view. The results from the analysis of Figures 9 and 10 indicate that the transmission of neutrals

directly to the midplane poloidally is in the range 30-50%. The flux balance analysis (Eq. 4) of

the data in Figures 6-8 yields similar values.

There are aspects of the measurements and model that need further investigation. For

example, our experiments indicate fairly short toroidal and poloidal e-folding lengths for the

direct effect of released neutrals (recycling or divertor leakage). The large number of structures

in the outer SOL and the localized nature of divertor leakage openings would indicate that

measuring the pressure at one or two toroidal locations is probably not adequate for fully

characterizing the ‘outer midplane’ pressure.

Another concern raised by the measurements and analysis contained herein is the possibility

that utilizing a free-molecular flow model to estimate divertor leakage may not be appropriate.

There are several aspects to this: First, divertor pressures are measured in a vertical port. Are

such pressures true measurements of the pressure (and thus fluxes) at the leakage aperture?

Previous comparisons of measurements at these two locations indicated little difference [35].

Secondly, we know that the SOL plasma extends far into the shadow of limiters. This leads to

the existence of plasma directly above the leakage apertures in C-Mod. Such plasma could

enhance the albedo of the plasma through charge-exchange and neutral-neutral collisions, thus

reducing the effective conductance out of the aperture. This type of effect has been utilized to

explain the lack of private flux zone pressure loss through the divertor plasmas during divertor

detachment [35]. Thirdly, the free-molecular conductance calculation of leakage fluxes assumes

zero pressure outside the aperture. This is unlikely to be true.

There has been much success in the use of 2-D SOL/divertor transport codes to model the

divertor plasma and its interaction with the divertor surfaces. Such codes are essential for

determining the efficacy of the axisymmetric poloidal divertor with respect to alternative (e.g.

ergodic divertor, limiter, or even stellarator) heat and particle flux handling configurations. At

present the SOL/divertor modelling codes do not normally include interactions with objects in

the far SOL, perhaps beyond even the second separatrix. The results herein thus raise concerns

about the 2-D code predictions with respect to the SOL plasma and wall interactions.
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It is not clear how applicable these results are to other variations in divertor geometry. Our

primary concern is that the location of the divertor leakage pathway may be very important in

determining its influence on midplane pressures. For example, the closer the leakage outlet is to

the midplane and the farther it is from the SOL plasma, the larger effect it may have.

6. Summary

The results of a series of experiments aimed at better quantifying the relative contribution of

divertor leakage and radial ion transport on neutral pressures surrounding the core are described.

We find that cross-field transport competes with, or dominates, parallel transport in such a way

that plasma exists far out in the SOL shadow, thus leading to recycling. Changing the core

transport from L- to H-mode leads to little or no effect on the far SOL indicating that the flux to

the walls has not changed, just the gradients at the separatrix and the density in the core.

The recycling in the main chamber due to cross-field transport appears to be an important

source for neutrals for lower divertor operation. Estimates of the contribution of lower divertor

leakage to the midplane pressure range from 10-30%. At this time we do not know whether the

relative contributions to the main chamber pressure by main chamber recycling and lower

divertor leakage vary with operating conditions. The leakage out of the upper divertor is much

higher than from the lower divertor. Even so, we find its contribution to the midplane pressure to

be similar to that of main chamber recycling.

Divertor bypass valve experiments show that neutrals flowing out of the outer divertor are

attenuated as they travel towards the midplane and around the torus. The observed toroidal and

poloidal e-folding lengths for the escaping neutrals are ~ 20 and 50 cm respectively. Such

attenuation of neutrals is consistent with the estimates of the effect of neutral leakage on the

midplane pressure. The importance of neutral leakage might be significantly altered if the

location where neutrals escape into the main chamber were located farther from the plasma,

allowing easier passage around the plasma.
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Figure captions:

Figure 1: Poloidal (a) and toroidal (b) cross-sections of Alcator C-Mod the lower closed divertor

and open upper divertor. Baratron capacitance manometer pressure gauges are located in the

vertical ports at locations 1,9 and 10. A shielded Bayard-Alpert gauge is at location 5 in a

horizontal port. Penning gauges are attached the wall of the vessel at locations 3 & 6. Scanning

probes are inserted horizontally (4) and vertically (7). Divertor bypass valves are located at 10

points toroidally (8). Two thin plates/gussets (#2, shown as dotted lines in 1a, of ~ 1.25 cm

toroidal extent, are located on either side of each of 10 vertical ports with protection tiles on the

edge facing the plasma.

Figure 2: SOL parameters and the effect of increasing ne . a) ne profiles; b) Te profiles; c) scaling

of the inferred radial ion flux density at the limiter radius, Γ⊥ ,lim , vs. midplane pressure (lower

axis) and equivalent radial influx of neutrals (upper axis). Shaded regions in a) and b) correspond

to the range of limiter radii occurring over these shots.

Figure 3: Effect of transition from L- (open circles) to H-mode (closed circles) on the SOL. The

H-mode density data is from a time ~ 140 msec after the transition when the core density is close

to its H-mode level of 2.6x1020 m-3 (from 1.6x1020 m-3 in L-mode). a) ne profile; b) Deff

profile; c) v⊥  profile; and d) v⊥ ⊥,min ~ /Mc Lsλ . The location of the limiter surface is given

by the vertical shaded region.

Figure 4: Scaling of the density at the limiter radius, ne,lim (a), Γ⊥ ,lim (b), and midplane pressure

(c, location 5 in Figure 1) vs. ne . L-mode (open circles) and H-mode (closed circles) are shown.

The H-mode discharges have the same far SOL parameters as the L-mode discharges from which

they arose.

Figure 5: Scaling of outer wall (midplane) pressure vs. various divertor pressures during lower x-

point, 800 kA, L-mode discharges. a) Lower divertor (closed); b) lower divertor (open port); and

c) open upper divertor. Detached plasmas are shown as filled symbols. Fits to the various data

sets are shown as lines.

Figure 6: Utilization of the first to second separatrix gap at the outer midplane (SSEP) to change

the divertor pressures and the resultant effect on the outer wall (midplane) pressure. SSEP is

varied from discharge to discharge from lower single-null to double-null (SSEP= -15 to 0 mm).
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L- and H-mode cases are included. The lines shown are the fits to the divertor pressures, used in

Eq. 6, as well as the resultant prediction of the midplane pressure.

Figure 7: The effect of an SSEP scan in one shot from single null at the lower divertor (SSEP <

0) to single-null at the upper divertor (SSEP > 0) is given by the solid line. A reference case with

the standard single-null at the lower divertor is also shown (long dashed line). The  vertical

short-dashed line indicates when the equilibrium becomes double-null.

Figure 8: Effect on the divertor and outer wall (midplane) pressures of limiting the plasma on the

inner wall.

Figure 9: Three divertor bypass valves (toroidal locations –18o, +18o, +54o) are opened and

closed with ~ 200 ms full period. The period when the bypass valves are opened or closed is

shaded and marked in b). The relative toroidal locations of the valves and gauges are given in

Fig. 1b).

Figure 10: Summary of the results from discharges where the toroidal location of the 3 bypass

valves is varied. The data are divided into two cases – bypass valves opened near the outer wall

(lower) gauge (solid lines and circles) and far from that gauge (dashed lines and triangles). a)

change in ne  vs. time; b) change in outer wall (lower) pressure vs. time; c) change in outer wall

(lower) pressure vs. change in ne ; and d) change in outer wall (midplane) pressure vs. change in

ne .
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