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Abstract

The spatial distribution of collisionless ions collected by a spherical object of ra-
dius much larger than the Debye length, in a flowing plasma, is calculated using a
particle-in-cell code. The results provide the first rigorous theoretical calibration of
a “Mach probe” in a plasma with negligible magnetic field. They are also applica-
ble, for example, to spacecraft-plasma interactions. Ion to electron temperature ratios
0.1 < Ti/ZTe < 10 are explored. Qualitative differences are observed between the
results for low and high Ti/ZTe, arising from ion dynamics in the wake. However, a
practically universal form for the upstream to downstream current density dependence
on flow velocity is observed for Ti/ZTe <∼ 3.

1 Introduction

A sphere in a stationary collisionless plasma is arguably the simplest possible problem involv-
ing a bounded object in a plasma. The classic assumption is that the surface simply removes
ions (and electrons) incident on it, by neutralization. In addition, if the total current density
to the surface is small relative to the random electron current, for example if it is floating,
a good approximation is to assume that the surface acquires a sufficiently negative poten-
tial as to reflect most electrons, and hence that the electrons adopt a thermal Boltzmann
density distribution proportional to exp(eφ/Te), where e is the electron charge, and φ the
electric potential. Despite its simplicity, and despite earlier partial or approximate analyses
[1, 2, 3, 4, 5], this problem was not definitively solved for non-zero ion temperature until the
1960s. The quasineutral case with negligible Debye length compared with the sphere radius
was solved for Ti/Te = 1 by Al’pert et al [6]. The problem with finite Debye length was also
definitively explored at almost the same time by Laframboise [7]. These solutions, based on
kinetic theory and detailed particle orbit analysis, used [5] the fact that angular momentum
is conserved in this spherically symmetric situation. This allows a major simplification, but
even so the analysis and numerical methods required for the integro-differential problem
were, and are, challenging. Perhaps this difficulty and the relative comprehensiveness of
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Laframboise’s results, have discouraged all but a few [8, 9] substantial elaborations of this
problem, even though some subtle questions remain about the limit of zero temperature and
collisionality [10, 7].

Adding a background plasma flow, or equivalently a motion of the sphere through a
stationary plasma, breaks the symmetry of the problem and undermines the previous analysis
approach, because angular momentum is no longer conserved. This asymmetric problem
gained early attention mostly for applications to spacecraft in the ionosphere (see e.g. [6]),
which generally move at substantially supersonic speeds. Many analyses assume that such
situations are adequately treated by ignoring the effect of the self-consistent electric field on
the ion orbits. However, that approach does not yield the correct structure of the plasma
wake, and can be expected to give approximately correct ion collection only if Ti/ZTe � 1,
which is very rare in nature. In the limit of large flow velocity relative to the sound speed,
more satisfactory approximations are to ignore only the parallel electric field and velocity
spread, yielding tractable equations, with self-similar solutions, for the perpendicular velocity
distribution [11, 12] in the wake. However, those approximations disqualify the analysis from
calculating the ion flux to the sphere in the wake, even in cases where the structure of the
far wake is correctly obtained. Even the more recent numerical studies that include more
self consistent physics [13] give no information about the ion collection, possibly because the
downstream flux is so small for highly supersonic flow. In many studies, modeling results
are very specific to particular experiments (e.g.[14]).

An application of comparable current importance in plasmas for fusion and industrial
processing applications is to measure the plasma flow by measuring separately the upstream
and downstream ion collection currents to electrically distinct conductors. The various forms
of such measurements are often called Mach probes. The calibration of Mach probes in mag-
netized plasmas (that is, when the ion Larmor radius is smaller than the probe dimension)
has been established by theory [15, 16] and verified in experiments [17]. But, remarkably, the
simpler-seeming problem of unmagnetized Mach probes, which is the subject of the present
study, and especially the relationship between the upstream/downstream current ratio and
the flow velocity has not till now been satisfactorily solved. Calibration formulas by Hudis
and Lidsky, based on heuristic arguments [18] have recently been increasingly used, for want
of anything better, since experiments badly need some calibration (see e.g. [19, 20, 21, 22]).
However, as has recently been pointed out [23], the physical inconsistencies of the Hudis and
Lidsky arguments provide no confidence that they are correct. Indeed, the results of the
present work demonstrate that they are quantitatively as well as physically in error.

Yet another application is in calculating the charging of grains in dusty plasmas. That
generally involves large Debye length relative to sphere size, to which the present quasi-
neutral results are not applicable.

This paper reports an essentially fully consistent solution of the flowing collisionless
plasma and sphere problem, with the only approximations being that the electrons are
governed by a Boltzmann factor and that the Debye length, λD is infinitesimally small.
A future publication will address non-zero λD, but the present quasineutral case has the
merit that the ion collection flux density is independent of the probe potential, φ0, so that
the results depend on two fewer parameters (λD/R and φ0) than otherwise, and can be
expressed more compactly. It also has the merit that it represents the limit in which probes
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are easiest to interpret.
The calculations are performed using a particle-in-cell computer code written specifically

for this problem in spherical coordinates, dubbed SCEPTIC (Specialized-Coordinate Elec-
trostatic Particle and Thermals In Cell). In the next section this code is described, and in
section 3 it is benchmarked against prior solutions for stationary plasmas. The main results
of the present work are presented in section 4 and compared with previous assumptions and
experiments in section 5.

2 Equations and Methods

Each ion, of charge Ze and mass m, at position x is governed by Newton’s law in the
electrostatic potential:

m
d2x

dt2
= −Ze∇φ. (1)

The electrons have density
ne = Zni∞ exp(eφ/Te), (2)

where ni∞ is the ion density where φ = 0, far from the probe. The self consistent potential
satisfies Poisson’s equation. In the present approximation that the Debye length is negligibly
small compared with the radius of the probe, Poisson’s equation may be replaced by the
equation of quasineutrality, which eliminates the electron density from the problem,

ni = ne/Z = ni∞ exp(eφ/Te). (3)

The ion density ni is obtained by integration over all velocities of the ion distribution func-
tion, f(x,v).

It is convenient to measure potential in units of Te/e, velocity in units of (ZTe/m)1/2,
density in units of ni∞ and to take the probe radius as r = 1, effectively making the units of
time equal to the probe radius divided by (ZTe/m)1/2. These choices non-dimensionalize the
problem, but for simplicity, we shall continue to use the same symbols for the dimensionless
quantities. Notice that the velocity is normalized to a value that is somewhat less than the
ion sound speed (cs = [(ZTe + 3Ti)/m]1/2) when the ion temperature is non-zero. But the
normalization factor (ZTe/m)1/2 is well defined and independent of position, unlike Ti.

2.1 Mesh and Difference Scheme

The particle-in-cell (PIC) computational method[24, 25] derives the ion distribution by solv-
ing eq (1) for a large number of individual particles spanning the distribution function, and
assigning their charges to a mesh of cells on which the electric potential is calculated. The
SCEPTIC code uses either nearest grid point (NGP) or linearly interpolated (cloud in cell,
CIC) assignment of charges[25]. Unlike most PIC codes, the mesh here is chosen as a spheri-
cal grid with equal spacing in radius (r) and in the cosine of the azimuthal angle (θ) relative
to the direction of flow. The grid is two-dimensional in space, the system being assumed
rotationally symmetric about the direction of flow (z). In other words, there are considered
to be only a single cell and no gradients in the angle of longitude.
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Particles (ions) are represented, and equation (1) is solved, in all three cartesian coordi-
nates for position and velocity (6-dimensional phase space) using the appropriate components
of radial and angular acceleration derived from from ∂φ/∂r and ∂φ/∂θ. The cartesian parti-
cle representation proves to be more satisfactory than spherical because it avoids coordinate
singularities at which numerical difficulties are otherwise experienced. It incurs a significant
computational cost in converting particle to cell position and acceleration components, but
this cost is no more than half the total. Standard leap-frog integration [25] is used for the
particle advance.

The PIC computational method faces a trade-off. To reduce random noise one would like
to have a large number of particles per cell, but to resolve features of small spatial scale one
would like to have small cells, and so one is forced to a large total number of particles, which
is limited by computational resources. The difficulty of this trade-off becomes particularly
acute at the probe surface r = 1, because the quasineutral equations experience a square-root
slope singularity there, necessary to match their solution to the (infinitesimally thin and not
specifically modelled) sheath. At the same place, the mesh cells are smallest in peripheral
extent, because the radius is smallest, and the plasma density is also smallest because the
potential is at its most negative. The expedient used in fluid codes to resolve the singularity,
namely to employ a mesh that is spaced uniformly in a coordinate proportional to the square-
root of the distance from the sheath edge [15], is inappropriate for a PIC code, because it
leads to too few particles per cell near the boundary. In practice, a uniform mesh spacing in
r is a reasonable compromise.

If one chooses a standard mesh interpolation scheme[25] for the radial force, then the
result of being unable to use extremely fine spacing at the sheath edge is to obtain only
square-root accuracy in the calculation. However, it is possible to interpolate the radial
force in such a way as to take into account the knowledge that the sheath-edge possesses
a square-root singularity and thereby obtain far more accurate results without excessive
cells and particles. This process uses an alternative radial coordinate proportional to the
square-root of the distance from the sheath edge,

ζ ≡
√

2(r − 1), (4)

so that
∂φ

∂r
=

1

ζ

∂φ

∂ζ
, (5)

but mesh spacing that is, of course, non-uniform in ζ-space, because uniform in r. At the
sheath boundary, ∂φ/∂ζ tends to a finite value. All the singularity in ∂φ/∂r is contained in
the term 1/ζ. Therefore, when taking finite differences to approximate the gradient, if this
is done in ζ-space, at least linear accuracy can be obtained. The consistent scheme adopted
is then to attribute the finite difference approximation

∂φ

∂ζ
=
φi+1 − φi
ζi+1 − ζi

(6)

to the position
ζi+1/2 ≡ (ζi + ζi+1)/2. (7)
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The value of the radial acceleration, ∂φ/∂r is then obtained for each particle based on appro-
priate choice of interpolation of ∂φ/∂ζ from the points ζi+1/2, for example linear interpolation
or nearest grid point, followed by division by the exact local value of ζ at the particle. The
field singularity at the sheath edge is thereby reproduced even though the mesh itself does
not resolve it.

The use of this radial force interpolation scheme does not conserve momentum for the
PIC simulation, which is a problem widely discussed in the literature [25, 24]. However, for
the present problem that is a minor factor compared with approximating the acceleration at
the sheath edge.

2.2 Boundary Conditions

Particle trajectories are advanced until they cross a boundary of the computational domain,
either at the sphere, r = 1, or at an outer boundary r = rmax chosen far enough from
the probe so that its finite distance is unimportant, but not so far that the simulation
volume overwhelms our computational resources. Typically rmax = 5. A constant number of
particles is maintained by immediately reinjecting from the outer boundary, any particle that
leaves the domain. Particles are reinjected with random position on the outer boundary and
random velocity. The probability distribution of position and velocity is chosen proportional
to the differential flux of particles across the boundary arising from a shifted Maxwellian
distribution, our choice for the unperturbed ion distribution function, as follows.

The background (normalized) distribution function is taken as a Maxwellian shifted by
a flow velocity vf in the z-direction. At an azimuthal angle θ the inward radial component
of the drift velocity is vfr = −vf cos θ and the cumulative distribution of inward traveling
particles, integrated over all tangential velocities is

G(u, cos θ) =
1√
2π

∫ −u
0

u′ exp[−(u′ − ufr)2/2] du′ (8)

=
1√
2π

[
exp

(
−
u2
fr

2

)
− exp

(
−(u− ufr)2

2

)]

+
ufr
2

[
erf

(
u− ufr√

2

)
− erf

(
−ufr√

2

)]
(9)

Here we are using u to denote the (r-component of) velocity normalized to the ion thermal
velocity: u = v/(Ti/m)1/2, and the dependence on cos θ is implicit in ufr = uf cos θ.

In the limit u→∞ this becomes

G(∞, cos θ) =
1√
2π

exp

(
−
u2
fr

2

)
+
ufr
2

[
erfc

(
−ufr√

2

)]
(10)

which is the differential distribution of total flux with respect to cos θ. From that we can
obtain the cumulative distribution in cos θ which we denote

Q(cos θ) =
∫ cos θ

−1
G(∞, cos θ′)d cos θ′. (11)
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The functionsQ(cos θ) andG(u, cos θ) are precalculated over a sufficiently fine mesh spanning
the domain of their arguments. Then the random deviates appropriately distributed are
found by (1) obtaining two independent uniform random deviates ξ1, ξ2 over the range 0 <
ξ < 1; (2) solving the equation Q(cos θ) = ξ1Q(1) to determine cos θ; (3) with this value
of cos θ, solving G(u, cos θ) = ξ2G(∞, cos θ) to find u, the radial velocity; (4) choosing the
tangential velocities from two Gaussian distributions, the azimuthal distribution shifted by
uf sin θ.

Since the number of particles is what is fixed, the particle density at infinity is not
known a priori. Therefore the reference value of potential is unknown until the calculation
is converged. This does not affect the dynamics, since it is only the potential gradient that
matters. Therefore the calculation is carried out with the potential determined simply from
φ = lnni. When the result is converged, the density is rescaled to be unity at infinity. The
scaling factor is determined by fitting a value and a slope to the solution averaged over all
angles (cos θ ≤ 0) in the outer 40% of radius, and using the asymptotic form (n∞−n) ∝ 1/r2,
which is known for the stationary plasma case [5] and gives excellent consistency for finite
flow cases, where the upstream density is hardly perturbed.

The cells at the boundaries of the calculation domain require special treatment of the
finite differences to enable field values to be obtained all the way to the cell edge. For the
outer boundary the extrapolation used is ∂φ/∂ζ = const. The more consistent alternative
∂ lnφ/∂ ln r = −2 makes negligible difference. At the effective coordinate boundaries where
cos θ = ±1, we take ∂φ/∂ cos θ = const. At the probe, the singularity has already been
discussed, but two types of boundary condition on ∂φ/∂ζ have been explored. The simplest,
which has been used only for the NGP version of the code, takes ∂φ/∂ζ = const., which is
considered to be the “natural” boundary condition. An alternative, which is used with the
CIC version, is to ensure that the normal ion velocity reaches the sound speed at the probe
edge. In other words, we apply a Bohm condition. This condition is very prone to particle
fluctuations and cannot therefore simply be applied at each step. Instead the difference
between the potential at the boundary, which is in the center of the last cell (which therefore
is only half populated) and the adjacent radial cell is adjusted smoothly over typically 50
time-steps, via a feedback loop based on the difference between the edge radial speed and
the (time-step averaged) sound speed using the local value of the radial ion temperature.
The two approaches give consistent results within their uncertainties, as is described later.
Attempts to use the “kinetic Bohm condition”[26, 27] showed it to be too subject to noise
to be useful.

The SCEPTIC code is written using the Message Passing Interface (MPI) protocols to
enable parallel processing for the particle advancing, which is by far the dominant compu-
tational cost. The results presented here were obtained with 36 processors of the Beowulf
cluster at Alcator, with each processor responsible for typically 200,000 particles, giving a
total of 7.2 million particles. The simulation is advanced in time until a steady state is
reached. Two to three steps per second (real time) were achieved with 1.2 GHz Athlon pro-
cessors, and, depending on conditions, roughly 1000 steps were sufficient to reach a steady
state.
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3 Stationary-plasma solutions and convergence

In view of the subtleties in handling the sheath-edge boundary, and to establish the validity
of the SCEPTIC code, it seemed important to benchmark it against previous calculations.
A literature search revealed no published quantitative data about particle collection by a
sphere in flowing plasmas that could be used for this purpose. However, two references
provide detailed quantitative data about the solution to the quasineutral stationary-plasma
case with Ti = Te, [6, 9]. [The code cannot be run with zero ion temperature so comparison
with the simpler zero-temperature solutions cannot be made.]

For the present purposes, these works provide radial profiles of potential plus the single
value of the flux density of ions to the probe. [Parrot et al use a full electron distribution
rather than the Boltzmann factor, but their ion flux clearly saturates at moderately negative
probe potentials, presumably at the value that would be obtained using the Boltzmann ap-
proximation.] Their values of current density, expressed in units of the unperturbed random
flux density (n∞(T/2πm)1/2), are 1.47 (Al’pert) and 1.448 (Parrot), which in the present
normalization are 0.586 and 0.578 respectively, times n∞(ZT/m)1/2.

Figure 1 shows an example of the diagnostic output from a stationary-plasma simulation
using SCEPTIC. The density is contoured on the plane z = r cos θ, r sin θ in a way that
approximates the physical geometry. The spherical configuration is the revolution of this
plot about the z-axis. The radial plots of the density show the extreme gradients at the
probe edge. They also show excellent spherical symmetry, confirmed also by the angular
plots. In all these plots the density is normalized to unity at infinity only roughly, dividing
the total particle number by the simulation volume, since the final normalization requires
the fitting procedure described previously. All these curves use instantaneous values of the
parameters in the simulation, from which the noise level for this case with 100 radial and 30
angular cells, with 7.2M particles may be appreciated. It is quite low for the density except
immediately at the sheath edge. Additional dashed curves in the plots versus cos θ give
40-step time averages, which naturally show even better spherical symmetry (independence
of cos θ).

The most interesting curves in Fig 1 are perhaps the temperatures. These are defined as
the second moment of the distribution function divided by the density, of course, since the
distribution is not Maxwellian. The radial temperature drops as the ions are accelerated into
the sheath. Tracking this quantity is important because when the sound-speed sheath-edge
boundary condition is used, Tr at the edge is required to evaluate the sound speed. By the
way, for this purpose the sound speed is evaluated from the expression

c2
s =

(
dprr
dn

+ ZTe

)
/m, (12)

where p is the ion pressure tensor. This expression is more rigorous than simply using the
combination 3Ti + ZTe, but the results are hardly different. The tangential temperature
increases as the probe is approached. This is because of conservation of angular momentum.
The temperature is seen to tend to the external value, 1, at the outer boundary, but does
not reach it there, because the boundary is fairly close in this case rmax = 3.

In figure 2 we show a comparison of the solutions obtained with SCEPTIC and those
of Al’pert and Parrot. The agreement is excellent. However, the solution of Parrot has
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Figure 1: Diagnostics from a stationary-plasma simulation, Ti = Te. Top left, colour contours
of plasma density and velocity vectors. Bottom left, radial density variation at angles θ =
0, 180o and θ = 92, 88o. Top right, density variation with cos θ at the probe (dashed line
averaged over 40 steps) and averaged over the outer half of the radial domain. Bottom right,
velocity and radial and angular ion temperature as a function of radius, averaged over 40
time-steps..

obviously inadequate resolution at the singular probe edge, while Al’pert et al clearly went
to considerable effort to resolve it with fine spacing. The SCEPTIC runs shown used 400
radial mesh-points covering the range 1 < r < 3, thus giving reasonable resolution of the
sheath edge. It was found that the outer boundary condition had negligible effect even with
this rather modest maximum radius. Ten angular (cos θ) cells were used here, and of course
the solution was independent of angle, so the angle-averaged result is plotted. Moreover, to
reduce further the numerical noise level, the results were averaged over the last 40 steps of
the simulation, during which it was already converged. The results with the CIC and NGP
versions of the code are hardly distinguishable except in the expanded view immediately
adjacent to the probe edge, where the natural boundary condition of the NGP version leads
to slightly less negative potentials.

If the effect of inaccuracies in the probe boundary condition is mainly to cause an effective
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Figure 2: Comparison with prior published results, of the normalized potential versus radius
for Ti = Te as obtained from the two versions of the SCEPTIC code (NGP and CIC). The
lower plot is an expansion of the edge region.

sheath edge at a radial position slightly different from r = 1, then, by inspection of this plot,
the resulting uncertainty is no more than approximately 0.003 (times the probe radius),
which would correspond to a fractional area uncertainty of 0.006 (0.6%). The differences
between the PIC values of normalized potential are less than 0.005 everywhere except in the
last two cells. The agreement of the PIC results is better than the Parrot results with those
of Al’pert. In short, highly satisfactory agreement is obtained in the potential profile.

The same cannot be said for the value of the ion flux to the probe. Therefore a detailed
convergence study of the code was undertaken, to determine the dependence of the flux on the
number of radial mesh points, and thus the resolution. The flux is determined by counting
the particles that hit the probe at each step. The normalized flux density is then the average
per step, divided by the area, divided by the step time, and divided by the normalization
factor needed to scale the density to make ni∞ = 1. Some care must be taken to ensure that
as the mesh spacing is varied the timestep is adjusted to avoid numerical instabilities. For
this reason, more steps are needed for the finer mesh spacings. Some illustrative results are
shown in Fig 3, along with the published values of Al’pert et al and of Parrot et al.

The most striking fact is that there is serious disagreement of the results of the SCEPTIC
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Figure 3: Dependence of the average normalized ion flux density on mesh spacing obtained
with different sized radial mesh, for different versions of the SCEPTIC code. (Open squares:
production CIC; triangles: production NGP; stars: Bohm-condition NGP; filled squares:
linear interpolation NGP.)

code with the published values. The two production versions of the code use the square-root
scaling approach described in section 2.2. They agree with each other within about 1%
for mesh spacing up to 0.08, but at greater spacing (0.2) the natural boundary condition
of the NGP code gives rather lower flux. This extreme spacing would correspond to only
10 radial mesh points in 1 < r < 3. A version of the NGP code with the enforcement
of sound-speed flow at the boundary (i.e. the Bohm condition, similar to the CIC code)
gives somewhat (about 1%) higher results but does not show the larger discrepancy with
coarse spacing. A version that does not use the square-root scaling at the sheath edge
shows much larger discrepancies but seems to converge (slowly) to the same flux for very
fine spacing. The results of the production SCEPTIC code converge to a value that may be
taken conservatively as 0.614 ± 0.006. This is significantly higher, by about 6%, than the
values given by Parrot and Al’pert, which themselves differ by about 2%. It is unknown
what the source of this difference is. One speculation is that it might arise from dynamics
far from the probe, for example some effective collision length relative to angular momentum
conservation. Simulations give a flux value that appears independent of rmax, which tends
to discount this suggestion. Another possibility is that the effective treatment of trapped
orbit particles might be different. Normally it is presumed that trapped orbits are not
quantitatively important. It might be, however, simply that the flux integrations in the

10



prior works were relatively inaccurate. It is hard to see how the results can be so inaccurate
in a PIC code, since particles are perfectly conserved.

In subsequent sections, we use lower radial mesh resolution, corresponding to a spacing
of typically 0.04. Judging by Fig 3, the results are well converged at such a spacing.

4 Flowing Plasma Results

The primary results of the present work are the ion current density to the probe, resolved
in angle, and its dependence on the flow velocity and ion temperature.

Fig 4 shows the normalized ion flux as a function of cos θ for a range of flow velocities
(marked on the curves) and Ti = 1 (times Te). The CIC scheme is used here. The radial and
angular meshes used are 100× 30, and rmax = 5 is sufficient to give flux values little affected
by the outer boundary.

Figure 4: Ion flux density to the sphere, normalized to ni∞(ZTe/m)1/2, as a function of cos θ
for Ti = Te. The SCEPTIC results are solid lines; the fit of eq (13) is indicated by chain
curves.

A plot like this provides the fundamental data that is derived from the simulations.
However, it is helpful also to have a compact representation of the data in approximate
analytic form. It is clear by inspection, and also by perturbation analysis, that the angular
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variation of the flux density Γ(vf , cos θ) at small flow velocities, can be approximated to
first order by a straight line: Γ(vf , cos θ) − Γ(0, 0) ∝ vf cos θ. This is naturally the first
asymmetric spherical harmonic. Plainly, that approximation breaks down as vf aproaches
1, and the curves must become concave. It transpires that a reasonable universal fit to all
the curves is obtained with the 3-parameter form

Γ(vf , cos θ) = Γ0 exp{vf [(1− cos θ)Ku − (1 + cos θ)Kd]/2}, (13)

with Γ0 = 0.62, Ku = 0.64, and Kd = 0.70. The fit is illustrated in Fig 4. It agrees with the
numerical results within their uncertainty for vf ≤ 1.2. At higher flow velocities the fit is
increasingly inadequate, especially on the downstream side (cos θ > 0), but for purposes of
Langmuir probe interpretation, where experimental uncertainties up to 30% are not unusual,
the fit is certainly useful to at least vf = 2.5.

Figure 5: Contour plot of the density near a probe with Ti = Te and vf = 2. Mean (fluid)
velocity at a subset of the cells is shown by vector arrows. The lower figure shows the density
along the axis of symmetry.
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In Fig 5 are shown examples of plasma parameters for a flow velocity vf = 2. This
speed equals the (adiabatic) sound speed in the unperturbed plasma, although there is
nothing qualitatively unusual about the results for this specific value. The upstream density
is hardly perturbed. There is no need for a potential drop to satisfy the Bohm condition,
because the flow is already at the sound speed. For higher flow speeds the upstream remains
unperturbed. The increase of the noise level close to the probe is visible; it is mostly caused
by decreasing cell size. On the downstream side, a deep potential well forms close to the
probe. However, as can be seen from the vector plot of (distribution-averaged) velocity,
the multidimensional nature of the solution is an essential factor in the problem, and the
downstream velocity is diverted to give a sound-speed flow into the probe by the integrated
effect of the electric field around the periphery of the probe, not just by direct acceleration
in the z-direction. Moreover, the flow divergence in the z-direction immediately downstream
from the probe is balanced by the convergence of the azimuthal flow there.

The contours in Fig 6 show that the upstream temperatures are hardly changed from the
external value (namely 1). But that on the downstream side, extremely strong anisotropy

Figure 6: Color contours of radial temperature (top) and tangential temperature (bottom),
for the case of Fig 5.

occurs, with cooling by a factor of roughly two of the radial temperature, and heating by even
more of the tangential temperature. Of course, especially in the tangential direction, the
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distribution function is not at all Maxwellian. Figure 7 shows the distribution functions in
the radial and the azimuthal components of velocity, averaged over 500 time steps for the first
cell in radius and in cos θ, that is, closest to the probe on the down-stream side. The units are
simply the total number of particle counts in each velocity bin. The radial distribution has,

Figure 7: Ion distribution functions in radial and azimuthal velocity, for the case of Fig 5,
in the first downstream angular cell, at the sheath-edge.

of course, almost all negative-going particles. The asymmetry in the azimuthal distribution
arises because the cell is not on axis, but extends in angle from zero to approximately 20o.
The two-humped form arises from particles accelerated around the probe from opposite sides.

The SCEPTIC code works without difficulty for Ti/ZTe >∼ 1 both at subsonic and su-
personic flow velocities. However, as the ion temperature is reduced substantially below the
electron temperature the code eventually becomes subject to a numerical instability called
the finite-grid instability. This instability is commonplace in electron PIC codes[24, 25], but
also is experienced by hybrid codes[28] like SCEPTIC. The unstable waves in this case are
sound waves, whose ion Landau damping becomes rapidly smaller as Ti/ZTe is reduced. It
manifests itself as non-physical heating of the ions caused by enhanced fluctuations, and
is experienced with the NGP version for Ti/ZTe <∼ 0.2. Consistent with the observations
of Rambo[28] the CIC code is less susceptible to this problem and no numerical heating is
observed on SCEPTIC down to Ti/ZTe = 0.1.

Fig 8 shows the normalized ion flux as a function of cos θ for a range of flow velocities
(marked on each curve). Each plot is for a chosen ion temperature (normalized to ZTe) in
the range 0.1 ≤ Ti ≤ 10. The CIC code is used for Ti/ZTe ≤ 1. and the NGP code for
other values, although the CIC code gives the same result within uncertainties. We take
Ti/ZTe = 0.1 as the lower limit of the present study, and do not explore beyond Ti/ZTe = 10
because results indicate that the approximation of ignoring the self-consistent field is quite
good for that ion temperature and above. (The numerical data is given in the appendix.)

To summarize the content of these calculations, Fig 9 shows the flux density at the axis of
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Figure 8: Ion flux density normalized to ni∞(ZTe/m)1/2, as a function of cos θ for different
flow velocities, as indicated on the curves, and a range of ion temperatures.
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symmetry (| cos θ | = 1) upstream and downstream as a function of drift velocity. Additional
Ti = 1 data from runs using the CIC version (as per Fig 6), and the NGP versions with
natural, and Bohm, sheath conditions are included. It can be seen that they agree within a
few percent which is roughly our uncertainty.

Figure 9: Flux density to the probe at | cos θ | = 1 (the axis of symmetry) upstream and
downstream, for the range of temperatures as a function of flow velocity. The solid line is
the fit, eq (13). The dotted line is the result of neglecting electric field, for Ti = 10, giving
the analytical result eq (10).

With some notable exceptions at low Ti, the results are quite close to the fit of eq(13)
noted for unity ion temperature. The slope of the curves at low velocity is remarkably similar
to the line of fit. There is modest variation in the absolute flux about the line, and at high
velocities and low temperatures, the points fall lower on the downstream side.

At high temperatures the results deviate more strongly from the fit, and by Ti = 10, the
analytic “free-flight” result eq (10), obtained by neglecting the electric field, begins to fit the
data quite well. Naturally, in the limit Ti � 1, that approximation is expected to become
accurate, when thermal ion energies far exceed the typical potential energy, ZTe = 1.

The ratio of upstream to downstream ion current is shown in Fig 10. This is the quantity
determining the calibration factor of a Mach probe. The results for different temperatures
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Figure 10: Ratio of current density upstream to downstream for the same data as Fig 9.

are even closer together for Ti < 5, and close to the line obtained from eq (13), namely

Γup

Γdown

= exp(Kvf ), (14)

with K = Ku +Kd = 1.34. At Ti ≥ 10 the analytic free-flight expression is quite a good fit,
and the flow velocity for a specific ratio becomes proportional to

√
Ti.

At low temperature there are substantial deviations from the line of fit for velocities of
order unity or just below. This effect is particularly noticeable for Ti = 0.1. It consists of
the downstream flux density being higher than the trend. Inspection of Fig 8 show that the
cause is that the flux density is non-monotonic in cos θ, there being a secondary peak on
the downstream axis. Physically this arises because of focusing of the ions onto the axis on
the downstream side, which has sufficient effect even at small radii to raise the probe flux.
When the flow velocity is high enough, the effect at the probe disappears, although it does
not disappear in the wake. Fig 11 shows density contours illustrating the wake, obtained
for a higher resolution (100 × 100) mesh at low ion temperature. Experiments [29, 30]
and prior theory[12, 14] and simulations [13] have previously documented this effect in the
wake structure. With ion temperature low enough to prevent dominant Landau damping, a
rarefaction cone appears, whose angle at high velocity is approximately given by the usual
Čerenkov condition, and a density peak on axis. Simulation of the wake region was not the
major purpose of this study or the SCEPTIC code, but it is gratifying to see it reproduce
one of the major results of a topic that has received considerable attention.

Since the effect is localized to the axis, and is dependent on the spherical geometry, its
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Figure 11: Density contours and velocity vectors in a plasma with low ion temperature
(Ti = 0.1ZTe) and flow 1.5, and 3.0 times the sound speed.

effect on Mach probe calibration seems likely to be less severe in practice than might be
thought from the data of Fig 10.

5 Discussion

With the exception of the free-flight analytic solution, valid at high Ti/ZTe, no rigorous
prior theoretical calculations of the unmagnetized Mach probe calibration appear to exist.
However, experiments have been performed, and some of them had independent information
about flow. The difficulty with quantitative comparisons is that essentially none of the
experiments used a probe geometry even remotely approximating the idealized sphere that
has been analysed here. Since the ion dynamics plainly depends on the multidimensional
geometry, there is no a priori reason to believe that the calibration is independent of the
shape of the probe, and indeed it may not be. Further simulations need to be done to
investigate this question.

Nevertheless, it is interesting to compare the calibration factor obtained here with what
has been previously proposed or used on an empirical or theoretical basis. The whole question
can be boiled down to providing the value of the calibration coefficient K in eq (14). In all
cases the exponential form is a rather good approximation, but even if it weren’t we could
regard the coefficient as giving the logarithmic gradient at the origin, which is the calibration
for slow flow.

In Table 1 are given the calibration factors from different sources. The fit to present
results is simply a constant, K = 1.34 accurate to 10% or better, for Ti <∼ 3 (times ZTe).
Figure 10 gives a more complete assessment of the accuracy. At high Ti >∼ 10 the free-flight
eq (10) applies.

The heuristic formula of Hudis and Lidsky, like some other fluid theories, is somewhat
ambiguous since it refers to a sound-speed cs to be applied at the sheath edge. The ion
temperature there is substantially less than at infinity, so it is unclear what value to use
in cs. Here, for simplicity, we take the sound speed to be given by the isothermal formula
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Table 1: Comparison of Mach Probe calibration factors
Author K formula K(Ti = 1) Description Ref
Present work 1.34 for Ti <∼ 3 1.34 fit to SCEPTIC

Eq 10
√

2πTe/Ti 2.5 Free-flight [6]

Hudis & Lidsky 4(TiTe)
1/2/(Te + Ti) 2 Heuristic [18]

Schats et al 4
√
Te/Ti 4 Heuristic [19]

Solomon & Schats (4/π)
√
Ti/Te 1.27 Heuristic [20]

Chung et al 1.26 @Ti = 0.1 Experiment [31]
Oksuz et al 1.3 @Ti = 0.1 Experiment [32]

Hutchinson (0.43
√

1 + Ti/Te)
−1 1.64 Magnetized, fluid [15]

Chung & Hutchinson 1.7 Magnetized, kinetic [16]

cs = [(Te + Ti)/m]1/2 (taking Z = 1 to avoid cumbersome notation). We substitute the
unperturbed Ti in this formula. The error of ignoring the factor of 3 (ratio of specific
heats for one degree of freedom adiabatic ions) roughly cancels the error of ignoring the
temperature variation. Some comparisons of magnetized Mach probe fluid theories indicate
this approach is an acceptable approximation[33] in that context.

The unsatisfactory nature of heuristic arguments is illustrated by the fact that the dif-
ferent formulas of Schats et al, and of Solomon and Schats both claim to be extensions of
the arguments of Hudis and Lidsky, but are quantitatively and qualitatively very different.
In the absence of rigorous calculations, the choice of such theories is a matter of unjustified
“taste”. None can be regarded as properly justified.

The experiments of Chung et al [31] are based on comparing magnetized with unmag-
netized Mach probes in the same plasma. They found reasonable consistency between the
the two using K = 1.26 for the unmagnetized probes, when Ti = 0.1Te. (But the magne-
tized probes were subject to the effects of connection of the presheath along the field to the
end plates[34].) Oksuz et al [32] measured the ion velocity using laser induced fluorescence.
They found good agreement when using the Hudis and Lidsky formula at Ti = 0.1Te, which
is K ≈ 1.3. It is encouraging that the two experimental values, confirmed by independent
velocity measurements, agree with the present work within their uncertainty. It may indi-
cate that the value obtained here has validity wider than just to spherical probes. However,
confirmation over more of the temperature range is surely needed.

The final two values are the accepted theories for magnetized Mach probes. The kinetic
calculations agree rather well with the fluid calculations, but shear viscosity can affect the
result. The cited values take viscous momentum diffusivity to equal particle diffusivity. It
should be noted that the values of K are significantly greater for these magnetized cases
than the present unmagnetized values.
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6 Conclusions

The ion flux to a spherical body in a collisionless plasma with negligible Debye length,
has been calculated for a wide range of temperatures and flow speeds. In addition to the
numerical data, compact analytic approximations fitting the data have been given, equations
(13) and (14). These provide a rigorous theoretical calibration of unmagnetized Mach probes,
at least for this particular geometry. Although the agreement with the plasma potential
profile of prior quasineutral calculations in stationary plasmas is excellent, a theoretically
significant discrepancy has been found in the ion flux to the probe. The value obtained here,
whose uncertainty is estimated to be approximately 1%, is 6% higher than prior published
values. In rapidly flowing plasmas at low ion temperature, wake structure and associated
ion focussing affect the ion collection, causing flux density to be a non-monotonic function
of angle.
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A Data tables

Here we present in tabular form, for reference, most of the data in figure 8.

Table 2: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 0.1ZTe.

vf : 0.000 0.100 0.200 0.400 0.600 0.800 1.000 1.200 1.600 2.000 2.500 3.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.983 0.546 0.575 0.606 0.684 0.769 0.896 1.030 1.218 1.590 2.044 2.509 2.990
-0.931 0.547 0.576 0.606 0.668 0.740 0.848 0.976 1.153 1.505 1.936 2.378 2.831
-0.862 0.546 0.575 0.599 0.654 0.709 0.801 0.913 1.072 1.393 1.770 2.187 2.631
-0.793 0.547 0.572 0.593 0.640 0.686 0.757 0.852 0.996 1.286 1.620 2.015 2.414
-0.724 0.546 0.569 0.587 0.628 0.658 0.718 0.799 0.917 1.171 1.480 1.820 2.208
-0.655 0.550 0.569 0.584 0.615 0.636 0.677 0.747 0.857 1.071 1.321 1.641 1.980
-0.586 0.546 0.564 0.581 0.603 0.608 0.645 0.704 0.790 0.974 1.188 1.462 1.769
-0.517 0.549 0.562 0.576 0.589 0.591 0.606 0.650 0.736 0.881 1.051 1.296 1.558
-0.448 0.548 0.563 0.569 0.581 0.573 0.574 0.609 0.675 0.807 0.963 1.119 1.345
-0.379 0.551 0.553 0.568 0.568 0.552 0.540 0.569 0.625 0.714 0.867 0.970 1.139
-0.310 0.549 0.555 0.561 0.563 0.534 0.512 0.527 0.575 0.648 0.741 0.900 0.963
-0.241 0.550 0.555 0.558 0.546 0.520 0.486 0.493 0.527 0.583 0.685 0.740 0.898
-0.172 0.548 0.556 0.554 0.544 0.506 0.460 0.459 0.485 0.534 0.554 0.646 0.694
-0.103 0.551 0.554 0.550 0.531 0.492 0.433 0.422 0.445 0.465 0.538 0.535 0.610
-0.034 0.548 0.549 0.552 0.527 0.476 0.411 0.396 0.405 0.419 0.425 0.452 0.457
0.034 0.547 0.552 0.542 0.520 0.471 0.392 0.366 0.371 0.376 0.400 0.386 0.399
0.103 0.548 0.550 0.544 0.508 0.460 0.375 0.340 0.337 0.332 0.327 0.322 0.306
0.172 0.546 0.543 0.534 0.506 0.448 0.351 0.311 0.307 0.292 0.295 0.275 0.256
0.241 0.548 0.543 0.532 0.495 0.445 0.343 0.289 0.276 0.265 0.256 0.228 0.206
0.310 0.546 0.545 0.532 0.497 0.439 0.332 0.269 0.254 0.228 0.206 0.185 0.169
0.379 0.548 0.543 0.525 0.491 0.433 0.325 0.250 0.228 0.205 0.195 0.158 0.136
0.448 0.548 0.538 0.520 0.484 0.433 0.331 0.227 0.210 0.180 0.154 0.132 0.107
0.517 0.548 0.537 0.518 0.480 0.430 0.335 0.221 0.187 0.156 0.133 0.104 0.084
0.586 0.551 0.533 0.519 0.479 0.431 0.347 0.194 0.176 0.137 0.115 0.089 0.067
0.655 0.552 0.531 0.513 0.475 0.424 0.371 0.193 0.156 0.116 0.097 0.072 0.053
0.724 0.549 0.527 0.511 0.471 0.430 0.385 0.175 0.149 0.103 0.076 0.058 0.041
0.793 0.551 0.531 0.508 0.469 0.431 0.401 0.186 0.142 0.091 0.074 0.046 0.029
0.862 0.550 0.530 0.504 0.464 0.432 0.415 0.210 0.150 0.089 0.054 0.037 0.024
0.931 0.549 0.526 0.503 0.461 0.431 0.424 0.299 0.194 0.101 0.063 0.031 0.018
0.983 0.545 0.524 0.502 0.460 0.432 0.435 0.400 0.280 0.156 0.091 0.050 0.023
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Table 3: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 0.2ZTe.

vf : 0.000 0.100 0.200 0.400 0.600 0.800 1.000 1.200 1.600 2.000 2.500 3.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.983 0.552 0.575 0.616 0.685 0.790 0.910 1.052 1.214 1.621 2.038 2.494 3.013
-0.931 0.552 0.583 0.605 0.680 0.762 0.876 0.998 1.150 1.530 1.910 2.367 2.855
-0.862 0.554 0.580 0.606 0.659 0.736 0.828 0.937 1.075 1.425 1.758 2.177 2.619
-0.793 0.552 0.568 0.596 0.647 0.706 0.793 0.884 0.995 1.307 1.610 2.003 2.418
-0.724 0.552 0.574 0.590 0.632 0.684 0.748 0.822 0.925 1.194 1.474 1.832 2.192
-0.655 0.552 0.569 0.586 0.620 0.659 0.709 0.772 0.860 1.093 1.335 1.635 1.990
-0.586 0.555 0.570 0.580 0.605 0.636 0.676 0.721 0.796 0.994 1.190 1.480 1.763
-0.517 0.552 0.566 0.577 0.597 0.619 0.646 0.681 0.735 0.899 1.068 1.297 1.555
-0.448 0.554 0.561 0.569 0.589 0.596 0.608 0.638 0.691 0.837 0.951 1.140 1.349
-0.379 0.549 0.557 0.570 0.575 0.575 0.587 0.595 0.634 0.745 0.885 0.994 1.153
-0.310 0.550 0.559 0.563 0.564 0.564 0.554 0.553 0.584 0.682 0.745 0.897 0.981
-0.241 0.553 0.555 0.558 0.551 0.540 0.533 0.518 0.540 0.606 0.696 0.761 0.913
-0.172 0.551 0.552 0.547 0.548 0.534 0.505 0.490 0.498 0.561 0.578 0.659 0.713
-0.103 0.551 0.552 0.552 0.535 0.513 0.480 0.454 0.456 0.487 0.542 0.554 0.618
-0.034 0.552 0.550 0.540 0.526 0.501 0.463 0.426 0.420 0.451 0.453 0.476 0.488
0.034 0.554 0.547 0.539 0.520 0.488 0.443 0.401 0.389 0.394 0.407 0.404 0.414
0.103 0.550 0.545 0.535 0.510 0.472 0.434 0.373 0.355 0.358 0.348 0.338 0.335
0.172 0.548 0.542 0.531 0.502 0.468 0.409 0.353 0.325 0.316 0.301 0.285 0.273
0.241 0.551 0.543 0.527 0.496 0.456 0.398 0.329 0.303 0.277 0.268 0.241 0.224
0.310 0.556 0.539 0.522 0.488 0.446 0.392 0.311 0.274 0.250 0.226 0.203 0.175
0.379 0.552 0.537 0.517 0.484 0.436 0.379 0.299 0.254 0.217 0.194 0.166 0.145
0.448 0.552 0.534 0.516 0.478 0.431 0.375 0.285 0.231 0.195 0.171 0.138 0.115
0.517 0.552 0.534 0.512 0.472 0.425 0.367 0.274 0.214 0.171 0.143 0.113 0.093
0.586 0.549 0.527 0.509 0.467 0.422 0.363 0.276 0.202 0.150 0.122 0.093 0.072
0.655 0.554 0.531 0.506 0.459 0.411 0.360 0.275 0.187 0.136 0.103 0.075 0.055
0.724 0.553 0.528 0.506 0.455 0.410 0.359 0.283 0.181 0.119 0.090 0.060 0.044
0.793 0.553 0.527 0.499 0.451 0.411 0.359 0.299 0.188 0.109 0.074 0.051 0.034
0.862 0.554 0.523 0.499 0.451 0.402 0.362 0.310 0.201 0.105 0.067 0.041 0.025
0.931 0.549 0.522 0.490 0.442 0.399 0.366 0.325 0.238 0.123 0.071 0.039 0.023
0.983 0.550 0.520 0.491 0.444 0.403 0.363 0.335 0.274 0.157 0.095 0.050 0.026
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Table 4: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 0.5ZTe.

vf : 0.000 0.100 0.200 0.400 0.600 0.800 1.000 1.200 1.600 2.000 2.500 3.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.983 0.572 0.614 0.649 0.738 0.831 0.958 1.105 1.260 1.630 2.001 2.521 3.024
-0.931 0.571 0.600 0.638 0.719 0.821 0.934 1.056 1.204 1.547 1.886 2.365 2.848
-0.862 0.569 0.604 0.637 0.704 0.788 0.893 1.005 1.138 1.436 1.751 2.190 2.610
-0.793 0.568 0.597 0.629 0.691 0.773 0.851 0.943 1.059 1.332 1.618 2.007 2.401
-0.724 0.566 0.594 0.618 0.681 0.737 0.822 0.905 0.995 1.230 1.482 1.825 2.200
-0.655 0.570 0.590 0.611 0.667 0.719 0.774 0.845 0.929 1.129 1.361 1.666 1.987
-0.586 0.568 0.593 0.612 0.652 0.692 0.744 0.799 0.867 1.035 1.221 1.507 1.764
-0.517 0.570 0.586 0.609 0.637 0.679 0.710 0.751 0.813 0.945 1.102 1.325 1.568
-0.448 0.564 0.579 0.594 0.628 0.657 0.678 0.712 0.750 0.871 0.995 1.188 1.377
-0.379 0.572 0.584 0.595 0.620 0.628 0.654 0.674 0.707 0.787 0.894 1.038 1.175
-0.310 0.571 0.579 0.588 0.603 0.617 0.626 0.642 0.662 0.735 0.812 0.912 1.020
-0.241 0.571 0.579 0.580 0.596 0.601 0.605 0.606 0.618 0.659 0.723 0.815 0.934
-0.172 0.566 0.580 0.581 0.578 0.583 0.579 0.577 0.572 0.603 0.640 0.703 0.758
-0.103 0.565 0.571 0.571 0.575 0.563 0.551 0.542 0.536 0.550 0.576 0.613 0.668
-0.034 0.563 0.570 0.564 0.559 0.545 0.535 0.509 0.501 0.500 0.508 0.525 0.541
0.034 0.571 0.564 0.566 0.548 0.537 0.514 0.487 0.470 0.447 0.450 0.455 0.467
0.103 0.565 0.563 0.555 0.541 0.513 0.495 0.463 0.433 0.412 0.393 0.383 0.382
0.172 0.566 0.560 0.553 0.531 0.503 0.470 0.442 0.408 0.364 0.347 0.335 0.316
0.241 0.562 0.559 0.545 0.529 0.499 0.459 0.420 0.383 0.334 0.304 0.278 0.262
0.310 0.570 0.554 0.544 0.520 0.480 0.446 0.402 0.360 0.294 0.265 0.240 0.212
0.379 0.566 0.556 0.538 0.506 0.469 0.431 0.383 0.336 0.276 0.233 0.196 0.173
0.448 0.568 0.547 0.532 0.492 0.461 0.417 0.370 0.321 0.237 0.202 0.168 0.141
0.517 0.566 0.544 0.528 0.488 0.446 0.404 0.357 0.306 0.225 0.174 0.139 0.113
0.586 0.569 0.543 0.523 0.487 0.443 0.393 0.347 0.292 0.198 0.153 0.117 0.091
0.655 0.570 0.549 0.518 0.474 0.434 0.381 0.334 0.281 0.188 0.131 0.095 0.072
0.724 0.567 0.538 0.516 0.467 0.417 0.372 0.321 0.272 0.174 0.116 0.079 0.057
0.793 0.566 0.545 0.510 0.461 0.411 0.361 0.317 0.266 0.163 0.105 0.063 0.043
0.862 0.568 0.536 0.506 0.453 0.402 0.358 0.307 0.265 0.168 0.104 0.058 0.036
0.931 0.570 0.534 0.508 0.449 0.399 0.349 0.303 0.261 0.167 0.099 0.055 0.032
0.983 0.563 0.532 0.496 0.438 0.392 0.348 0.295 0.260 0.172 0.105 0.063 0.036
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Table 5: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 1.0ZTe.

vf : 0.000 0.100 0.200 0.400 0.600 0.800 1.000 1.200 1.600 2.000 2.500 3.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.983 0.618 0.678 0.721 0.808 0.914 1.041 1.169 1.319 1.647 2.028 2.519 3.032
-0.931 0.631 0.663 0.698 0.791 0.899 1.014 1.137 1.282 1.580 1.923 2.389 2.877
-0.862 0.626 0.660 0.703 0.778 0.872 0.972 1.093 1.206 1.477 1.790 2.206 2.655
-0.793 0.623 0.659 0.690 0.772 0.850 0.946 1.036 1.150 1.382 1.659 2.046 2.435
-0.724 0.621 0.649 0.679 0.750 0.818 0.901 0.985 1.076 1.287 1.541 1.869 2.221
-0.655 0.624 0.639 0.674 0.734 0.801 0.866 0.933 1.025 1.202 1.412 1.697 2.006
-0.586 0.625 0.650 0.670 0.719 0.777 0.832 0.892 0.959 1.110 1.295 1.533 1.799
-0.517 0.624 0.646 0.666 0.711 0.756 0.804 0.854 0.906 1.023 1.173 1.380 1.608
-0.448 0.623 0.640 0.651 0.695 0.729 0.767 0.806 0.850 0.945 1.070 1.243 1.407
-0.379 0.626 0.640 0.653 0.680 0.707 0.736 0.772 0.803 0.873 0.973 1.102 1.227
-0.310 0.629 0.633 0.650 0.667 0.702 0.714 0.736 0.756 0.799 0.882 0.983 1.085
-0.241 0.623 0.640 0.642 0.653 0.674 0.688 0.692 0.712 0.742 0.801 0.885 0.979
-0.172 0.627 0.637 0.637 0.649 0.663 0.660 0.668 0.670 0.682 0.720 0.777 0.842
-0.103 0.625 0.630 0.634 0.633 0.635 0.638 0.638 0.636 0.636 0.655 0.686 0.737
-0.034 0.624 0.618 0.623 0.620 0.618 0.613 0.602 0.595 0.578 0.592 0.602 0.612
0.034 0.626 0.627 0.615 0.613 0.606 0.587 0.571 0.562 0.538 0.529 0.535 0.539
0.103 0.614 0.614 0.615 0.599 0.586 0.568 0.547 0.532 0.495 0.466 0.461 0.444
0.172 0.620 0.611 0.607 0.591 0.572 0.548 0.524 0.501 0.449 0.423 0.401 0.391
0.241 0.616 0.613 0.601 0.573 0.562 0.532 0.502 0.470 0.413 0.373 0.344 0.312
0.310 0.626 0.605 0.596 0.568 0.538 0.516 0.477 0.450 0.379 0.340 0.296 0.272
0.379 0.619 0.599 0.586 0.559 0.532 0.493 0.458 0.424 0.356 0.297 0.260 0.226
0.448 0.622 0.597 0.585 0.550 0.513 0.470 0.443 0.401 0.324 0.277 0.219 0.185
0.517 0.623 0.601 0.579 0.537 0.499 0.471 0.418 0.379 0.302 0.238 0.188 0.147
0.586 0.618 0.597 0.575 0.525 0.488 0.448 0.404 0.364 0.277 0.218 0.163 0.123
0.655 0.624 0.593 0.563 0.520 0.471 0.432 0.390 0.345 0.259 0.191 0.133 0.103
0.724 0.626 0.599 0.562 0.519 0.467 0.417 0.376 0.323 0.246 0.178 0.117 0.082
0.793 0.620 0.592 0.558 0.507 0.456 0.402 0.363 0.319 0.235 0.164 0.104 0.067
0.862 0.623 0.587 0.554 0.492 0.448 0.395 0.344 0.305 0.221 0.152 0.094 0.055
0.931 0.625 0.586 0.552 0.485 0.431 0.386 0.334 0.292 0.208 0.144 0.086 0.051
0.983 0.620 0.588 0.562 0.478 0.433 0.370 0.331 0.288 0.213 0.143 0.083 0.045
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Table 6: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 2.0ZTe.

vf : 0.000 0.100 0.200 0.400 0.600 0.800 1.000 1.200 1.600 2.000 2.500 3.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.966 0.707 0.755 0.797 0.901 1.009 1.113 1.247 1.382 1.674 1.990 2.444 2.899
-0.897 0.716 0.758 0.801 0.887 0.982 1.075 1.182 1.311 1.569 1.876 2.272 2.671
-0.828 0.727 0.752 0.789 0.868 0.962 1.049 1.150 1.260 1.487 1.745 2.094 2.485
-0.759 0.717 0.747 0.786 0.857 0.925 1.019 1.100 1.201 1.413 1.624 1.953 2.279
-0.690 0.722 0.744 0.779 0.841 0.928 0.988 1.067 1.127 1.324 1.516 1.797 2.083
-0.621 0.719 0.747 0.768 0.839 0.887 0.943 1.012 1.093 1.232 1.406 1.656 1.894
-0.552 0.723 0.749 0.765 0.805 0.870 0.918 0.983 1.048 1.203 1.310 1.511 1.743
-0.483 0.714 0.741 0.751 0.804 0.842 0.896 0.944 0.994 1.084 1.222 1.396 1.536
-0.414 0.716 0.737 0.756 0.788 0.844 0.859 0.900 0.936 1.025 1.109 1.237 1.410
-0.345 0.718 0.726 0.751 0.783 0.803 0.835 0.875 0.896 0.973 1.045 1.143 1.246
-0.276 0.712 0.728 0.746 0.763 0.785 0.803 0.822 0.866 0.889 0.950 1.027 1.089
-0.207 0.715 0.722 0.729 0.748 0.762 0.769 0.791 0.812 0.835 0.872 0.925 0.981
-0.138 0.716 0.717 0.728 0.745 0.744 0.753 0.755 0.768 0.780 0.808 0.830 0.865
-0.069 0.719 0.721 0.721 0.726 0.734 0.733 0.730 0.730 0.747 0.723 0.738 0.727
0.000 0.710 0.716 0.717 0.710 0.727 0.713 0.688 0.678 0.669 0.674 0.647 0.641
0.069 0.721 0.720 0.712 0.706 0.686 0.672 0.672 0.667 0.644 0.600 0.600 0.583
0.138 0.711 0.707 0.709 0.678 0.686 0.657 0.650 0.632 0.580 0.554 0.523 0.479
0.207 0.722 0.710 0.699 0.690 0.653 0.633 0.609 0.595 0.554 0.501 0.456 0.436
0.276 0.716 0.701 0.698 0.661 0.635 0.618 0.600 0.559 0.492 0.459 0.407 0.359
0.345 0.707 0.706 0.685 0.665 0.631 0.593 0.554 0.533 0.496 0.408 0.350 0.307
0.414 0.721 0.694 0.697 0.648 0.618 0.569 0.544 0.507 0.427 0.387 0.310 0.249
0.483 0.717 0.688 0.665 0.628 0.586 0.563 0.517 0.482 0.402 0.335 0.268 0.237
0.552 0.710 0.691 0.680 0.640 0.587 0.532 0.490 0.446 0.385 0.311 0.256 0.208
0.621 0.721 0.694 0.649 0.619 0.565 0.514 0.480 0.427 0.352 0.293 0.212 0.168
0.690 0.720 0.675 0.660 0.603 0.556 0.517 0.451 0.415 0.331 0.250 0.188 0.150
0.759 0.711 0.681 0.654 0.588 0.543 0.484 0.437 0.390 0.309 0.236 0.165 0.105
0.828 0.709 0.684 0.654 0.578 0.519 0.466 0.420 0.375 0.289 0.221 0.154 0.113
0.897 0.714 0.677 0.647 0.574 0.522 0.459 0.403 0.355 0.273 0.198 0.139 0.092
0.966 0.711 0.677 0.632 0.558 0.495 0.436 0.389 0.343 0.254 0.187 0.123 0.079
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Table 7: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 5.0ZTe.

vf : 0.000 0.200 0.400 0.600 0.800 1.000 1.500 2.000 2.500 3.000 4.000 5.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.966 0.990 1.074 1.167 1.287 1.387 1.503 1.830 2.190 2.569 2.975 3.848 4.799
-0.897 0.986 1.075 1.145 1.245 1.359 1.460 1.759 2.069 2.422 2.784 3.611 4.443
-0.828 0.989 1.068 1.158 1.240 1.327 1.461 1.689 1.973 2.268 2.612 3.344 4.115
-0.759 0.991 1.043 1.124 1.222 1.304 1.380 1.608 1.879 2.184 2.458 3.089 3.754
-0.690 0.984 1.066 1.119 1.178 1.269 1.348 1.555 1.761 2.011 2.264 2.790 3.460
-0.621 1.007 1.043 1.098 1.166 1.237 1.316 1.474 1.689 1.886 2.107 2.634 3.119
-0.552 0.993 1.031 1.099 1.135 1.207 1.261 1.425 1.582 1.774 1.967 2.386 2.823
-0.483 1.003 1.048 1.072 1.126 1.174 1.241 1.331 1.506 1.673 1.825 2.135 2.553
-0.414 0.975 1.035 1.039 1.097 1.129 1.197 1.314 1.440 1.516 1.664 1.939 2.229
-0.345 0.989 1.009 1.048 1.080 1.124 1.141 1.246 1.316 1.447 1.537 1.729 1.973
-0.276 0.998 1.016 1.047 1.069 1.084 1.122 1.181 1.278 1.320 1.395 1.562 1.759
-0.207 0.993 0.999 1.012 1.044 1.076 1.100 1.133 1.180 1.229 1.293 1.386 1.514
-0.138 0.988 1.002 1.007 1.024 1.036 1.043 1.073 1.099 1.128 1.150 1.226 1.268
-0.069 0.978 1.009 0.997 0.998 1.014 1.025 1.024 1.025 1.077 1.063 1.086 1.103
0.000 0.999 0.976 0.980 0.973 0.973 0.993 0.973 0.987 0.968 0.945 0.950 0.986
0.069 0.983 0.987 0.976 0.965 0.950 0.959 0.947 0.899 0.886 0.883 0.832 0.771
0.138 0.989 0.952 0.964 0.952 0.936 0.921 0.869 0.842 0.819 0.772 0.706 0.639
0.207 0.985 0.972 0.931 0.946 0.900 0.887 0.854 0.794 0.736 0.692 0.645 0.563
0.276 0.984 0.951 0.928 0.884 0.890 0.855 0.795 0.748 0.678 0.642 0.510 0.437
0.345 1.003 0.939 0.944 0.898 0.858 0.848 0.777 0.686 0.618 0.537 0.475 0.442
0.414 0.989 0.943 0.894 0.871 0.847 0.804 0.710 0.633 0.562 0.499 0.370 0.337
0.483 0.981 0.950 0.906 0.853 0.806 0.782 0.691 0.601 0.531 0.438 0.319 0.264
0.552 0.980 0.921 0.871 0.856 0.780 0.752 0.642 0.555 0.458 0.392 0.277 0.208
0.621 1.011 0.930 0.854 0.815 0.785 0.733 0.617 0.514 0.438 0.344 0.243 0.175
0.690 0.983 0.905 0.876 0.797 0.746 0.706 0.593 0.484 0.377 0.310 0.205 0.150
0.759 0.981 0.924 0.833 0.772 0.730 0.672 0.544 0.441 0.366 0.271 0.154 0.096
0.828 0.983 0.900 0.834 0.768 0.709 0.650 0.516 0.411 0.311 0.241 0.149 0.083
0.897 0.984 0.893 0.815 0.749 0.685 0.628 0.495 0.379 0.284 0.218 0.120 0.063
0.966 0.996 0.899 0.825 0.732 0.661 0.603 0.475 0.356 0.271 0.187 0.101 0.050
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Table 8: Dependence of ion flux to the sphere on flow velocity and angle when Ti = 10.ZTe.

vf : 0.000 0.200 0.400 0.600 0.800 1.000 1.500 2.000 2.500 3.000 4.000 5.000
cos θ Ion Flux density, Γ (/ni∞(ZTe/m)1/2)

-0.966 1.338 1.417 1.505 1.633 1.742 1.840 2.136 2.484 2.816 3.204 4.018 4.904
-0.897 1.326 1.410 1.515 1.588 1.697 1.802 2.077 2.369 2.696 3.023 3.758 4.542
-0.828 1.322 1.410 1.492 1.588 1.658 1.755 2.005 2.264 2.555 2.874 3.508 4.251
-0.759 1.325 1.389 1.476 1.540 1.652 1.721 1.932 2.180 2.435 2.698 3.294 3.924
-0.690 1.321 1.385 1.466 1.543 1.585 1.660 1.917 2.106 2.309 2.568 3.079 3.625
-0.621 1.338 1.389 1.457 1.510 1.567 1.644 1.788 1.990 2.191 2.400 2.816 3.355
-0.552 1.355 1.379 1.446 1.486 1.560 1.588 1.753 1.924 2.091 2.273 2.628 3.010
-0.483 1.316 1.372 1.419 1.478 1.504 1.563 1.716 1.843 1.975 2.129 2.450 2.801
-0.414 1.306 1.353 1.407 1.448 1.487 1.522 1.648 1.736 1.864 2.015 2.266 2.512
-0.345 1.348 1.359 1.408 1.420 1.455 1.487 1.561 1.675 1.750 1.860 2.079 2.320
-0.276 1.303 1.343 1.351 1.404 1.421 1.460 1.517 1.586 1.681 1.725 1.879 2.011
-0.207 1.331 1.341 1.369 1.400 1.426 1.411 1.477 1.520 1.560 1.644 1.726 1.871
-0.138 1.323 1.347 1.358 1.344 1.370 1.371 1.434 1.450 1.486 1.512 1.581 1.657
-0.069 1.319 1.322 1.328 1.339 1.348 1.372 1.343 1.359 1.382 1.404 1.421 1.451
0.000 1.335 1.337 1.326 1.321 1.320 1.303 1.311 1.354 1.309 1.285 1.314 1.294
0.069 1.322 1.301 1.305 1.308 1.295 1.270 1.262 1.229 1.228 1.212 1.150 1.117
0.138 1.303 1.316 1.317 1.305 1.269 1.265 1.216 1.193 1.137 1.119 1.052 1.007
0.207 1.350 1.316 1.298 1.265 1.247 1.205 1.201 1.116 1.090 1.028 0.931 0.855
0.276 1.317 1.294 1.269 1.248 1.226 1.192 1.112 1.064 1.000 0.946 0.819 0.720
0.345 1.329 1.287 1.285 1.242 1.191 1.168 1.102 1.003 0.950 0.863 0.783 0.662
0.414 1.315 1.264 1.229 1.222 1.182 1.139 1.020 0.980 0.888 0.784 0.646 0.529
0.483 1.313 1.276 1.221 1.196 1.153 1.084 1.025 0.902 0.810 0.750 0.576 0.475
0.552 1.312 1.245 1.208 1.178 1.127 1.091 0.946 0.843 0.745 0.681 0.524 0.401
0.621 1.341 1.282 1.208 1.151 1.101 1.049 0.907 0.810 0.715 0.595 0.445 0.329
0.690 1.315 1.247 1.182 1.123 1.066 1.013 0.901 0.767 0.650 0.579 0.397 0.297
0.759 1.326 1.248 1.184 1.097 1.039 0.995 0.845 0.721 0.623 0.500 0.340 0.223
0.828 1.325 1.254 1.164 1.103 1.016 0.958 0.814 0.688 0.560 0.472 0.315 0.207
0.897 1.317 1.224 1.166 1.080 1.008 0.929 0.784 0.644 0.533 0.425 0.265 0.171
0.966 1.328 1.229 1.149 1.070 0.980 0.914 0.737 0.602 0.489 0.384 0.230 0.136
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