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ABSTRACT

This paper summarizes the theoretical and numerical results we have obtained for the
excitation and propagation of electron Bernstein waves in spherical tokamak plasmas.

INTRODUCTION

In the electron cyclotron range of frequencies the high-β NSTX and MAST plasmas are
overdense to the traditional extraordinary X mode and/or the ordinary O mode. For low
harmonics of the electron cyclotron frequency, the X and O modes are cutoff at the edge
and for high harmonics the plasma is essentially optically thin to these modes. However,
for low harmonics, the X mode and the O mode can mode convert to the electron Bernstein
waves (EBW) which have no density cutoffs and can propagate into the core of the plasma.
From ray tracing analysis we find that EBWs are locally and strongly absorbed at the
Doppler shifted electron cyclotron resonance or its harmonics [1]. For spherical tokamak
plasmas, the location of the EBW energy deposition is significantly different for excitations
on or away from the equatorial plane [1].

EXCITATION AND PROPAGATION OF EBWs

The excitation of EBWs is studied in a slab geometry model where the x coordinate
is in the direction of the inhomogeneity, y is along the poloidal direction, and z along the
toroidal direction. Assuming that the magnetic field is along z, the propagation of waves
in an inhomogeneous cold and collisionless plasma is given by
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where F = ik‖Ex − dEz/dx, dF/dx = (ω2/c2)K‖Ez, c is the speed of light, ω is the wave
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frequency, k‖ is the component of the wave vector �k along the magnetic field �B = B0(x)ẑ,
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pe
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, KX = −ωce
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ωpe and ωce are the electron plasma and cyclotron angular frequencies, respectively.

For the case when k‖ = 0, Eqs. (1) and (2) are uncoupled and describe the propagation
of the X mode and the O mode, respectively, across the magnetic field. The X mode
equation (1) has a resonance at K⊥ = 0 corresponding to the upper hybrid resonance
(UHR). Eq. (1) also has two cutoffs corresponding to the zeros of K2

⊥ −K2
X . The resonance

power absorption of the X mode at the UHR corresponds to the power mode converted to
the EBWs [1]. Since the O mode is completely decoupled from the X mode, if an O mode is
excited at the edge its power will be reflected back out at the O mode cutoff located where
K‖ = 0. In this analysis we have ignored the effect of temperature on the propagation of
waves and assumed that there is no electron cyclotron resonance between the edge of the
plasma and the cutoffs of the X and O modes. Thus, the only absorption is at the UHR.

If we assume that, for small n‖ = ck‖/ω, only the X mode is excited at the plasma
boundary, then the equation for X mode propagation is approximately given by
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This equation is obtained from (1) and (2) by assuming that Ez ≈ 0. In this approximation
the X mode resonance is no longer at K⊥ = 0 but at K⊥ − n2

‖ = 0 which, for small n‖, is
a small correction. From an analogous analysis carried out in [2], we find that the fraction
of the power on the X mode that is converted to EBWs is given by
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ψ is the Psi function,
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In Eqs. (8) and (9) the right-hand sides are evaluated at the UHR (K⊥ = 0), Ln is the
density scalelength, and α = ωpe/ωce. If φ is zero or an integer multiple of π, then from (5)
we note that CXB ≥ 0.5 if 0.05 <∼ η <∼ 0.6. For n‖ = 0, from (8) we find that the necessary
condition for the X-B mode conversion to be better than 50% requires

0.013 T cm <∼ |BLn|UHR
<∼ 0.16 T cm (10)

This shows that the X-B mode conversion process is efficient for sharp density gradients,
i.e., short density scalelengths. As n‖ is increased from zero, the fraction of the X mode
power that is coupled to EBWs decreases.

From Eq. (2) it is clear that for k‖ = 0 the O mode does not couple power to the EBW.
For the O mode power to couple to EBW it is necessary to have oblique propagation of the
O mode, i.e., k‖ �= 0. Then the O mode power can couple to the X mode which in turn
can undergo resonance absorption. The necessary condition for optimum coupling of the
O mode power to the X mode is [3]
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(11)

where the right-hand side is to be evaluated at the spatial location where ω = ωpe. However,
in order for the O mode power not to get reflected back out on the X mode requires that
η > 1 [1, 4]. From (8) we find that this condition is satisfied when the density scalelength
is long.

From the above discussion we conclude that the X-B and the O-X-B mode conversion
processes are optimized in different regions of the two-dimensional parameter space spanned
by wave frequency and parallel wavelength. The X-B mode conversion process is optimized
for k‖ ≈ 0 and wave frequencies which place the UHR in the short density scalelength
region. The O-X-B mode conversion process is optimized for k‖ given in (11) and for wave
frequencies which place the UHR in a longer density scalelength region of the plasma. The
optimum X-B process occurs closer to the edge of the plasma than the optimum O-X-B
conversion. A more detailed analysis based on a kinetic treatment of the EBW in sheared
magnetic fields confirms the basic results of the analysis given above [1, 4].

Figure 1 shows numerical results obtained from the kinetic theory for NSTX-type pa-
rameters [1, 4]. Figure 1(a) shows the case when both the X mode and the O mode are
excited at the same frequency of 15 GHz. Figure 1(b) compares the case of optimum con-
version from the X mode, for a wave frequency of 15 GHz, to the optimum conversion from
the O mode for a wave frequency of 28 GHz. It is evident from these figures that the mode
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Figure 1: Fractional power mode converted to EBWs for an externally launched X mode,
CXB, or externally launched O mode, COB, as a function of nz.

conversion to EBWs of the X mode and of the O mode are optimized for different ranges
of the parameter space spanned by the wave frequency and parallel wave numbers.

We have also studied the propagation of EBW rays in model NSTX profiles. The
ray trajectories are obtained in a fully kinetic (Maxwellian), non-relativistic, plasma. We
find that the EBW damps locally at the Doppler-shifted electron cyclotron resonance or its
harmonics. The k‖ along the ray trajectories vary over a large range if the rays are launched
off the equatorial plane. This is due to the effect of a significant poloidal magnetic field [5].
The large k‖ upshifts lead to an appreciable Doppler shift from the actual electron cyclotron
resonance (or its harmonics) so that the damping could be far removed from the electron
cyclotron resonance layer. In spite of the large increases in k‖ the damping on electrons
is still due to the Doppler-shifted cyclotron resonance rather than Landau damping. The
plasma region in which the damping of the EBW is desired, either for heating or for driving
plasma currents, can be controlled by an appropriate launching angle in the poloidal plane.
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