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ASYMPTOTIC ANALYSIS OF DISPERSION CHARACTERISTICS IN 
TWO-DIMENSIONAL METALLIC PHOTONIC BAND GAP 

STRUCTURES 
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We present a self-consistent technique for the asymptotic analysis of dispersion curves in 

two-dimensional (2D) metallic photonic band gap (PBG) structures representing square and 

triangular arrays of metal rods. The technique is applicable for the structures with rod radii (a), 

which are small compared to the distance between the rods (b) and to the wavelength (λ). The 

induced current and charge distributions on the rods are expressed self-consistently in terms of 

the electromagnetic wave field. The dispersion characteristics are calculated for the TE and TM 

modes. The results are in agreement with those obtained previously using the Photonic Band Gap 

Structure Simulator (PBGSS) code.  
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I. INTRODUCTION 
Photonic band gap (PBG) structures [1] provide exciting new ways to control 

electromagnetic waves in optical [2,3] and microwave devices [4-7]. In particular, they can be 

successfully applied for higher order mode (wakefields) suppression in microwave linear 

accelerators. The wakefields are unwanted modes, which are excited by an interaction of an 

intense electron beam with the rf circuit. They can affect the propagation of other electron 

beams. To obtain high-efficiency acceleration, the acceleration cavities must be selective with 

respect to the operating mode, while suppressing unwanted oscillations. Use of the two-

dimensional (2D) metallic PBG structures has been shown experimentally to be a promising 

approach to the realization of such mode selective circuits [4-7].  

A PBG structure (photonic crystal) represents a lattice of macroscopic pieces (for example, 

rods or spheres) of dielectric or metal. One can design photonic crystals with photonic band 

gaps, preventing light of certain frequencies from propagating in certain directions. If, for some 

frequency range, a photonic crystal reflects light incident at any angle, the crystal has a global 

photonic band gap. Calculation of the fundamental and higher frequency global photonic band 

gaps is an important problem. To solve this problem for metallic lattices, a computer code, called 

the Photonic Band Gap Structure Simulator (PBGSS), was developed recently at Massachusetts 

Institute of Technology [8]. However the finite difference method employed for the calculation 

of the dispersion characteristics in Ref. [8] was unable to reveal the nature of the wave 

interactions in PBG structures. In this paper we present an asymptotic analysis, which allows us 

to study these interactions and improves our understanding of the physics. 

We study TM and TE modes propagating in square and triangular lattices of metal rods (see 

Fig. 1). We consider the limit when the rod radius, a, is much smaller than the wavelength 

⊥= k/2πλ  and the distance between the rods, b. In this limit we can separate two regions in the 

2D lattice with the qualitatively different behavior of electromagnetic waves. The near-field 

region is the one that immediately surrounds the rod. In this region the field changes at the scale 

of the rod radius and we can apply an approximate (quasistatic [9]) approach to calculate self-

consistently the sources (charges and currents) in the metallic rods due to the electromagnetic 

waves in the lattice. The region beyond the near-field region is the far-field region, where the 

field changes at the scale of the wavelength. According to Bloch’s theorem, the electromagnetic 

field in the lattice can be decomposed into a set of plane waves with the wave vectors multiple of 
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the reciprocal lattice vectors. The currents, calculated self-consistently in the near-field region, 

are shown to produce the coupling of several plane waves at the metal rods. The coupling 

perturbs the plane-wave dispersion relations in the lattice and produces the dispersion 

characteristics, which are different for the TM and TE waves. Thus, the form of the dispersion 

curves is determined by both, the lattice symmetries, and the plane-wave coupling at the metal 

rods.  

The results of the quasistatic calculation of the TM and TE dispersion characteristics are 

presented. We compare the results of the quasistatic calculation to those obtained previously 

using the PBGSS code [8]. A good agreement is found.  

The quasistatic method in 2D metallic lattices may be generalized to treat 2D the dielectric 

lattices and dielectric-metallic hybrids [10]. Moreover, three-dimensional PBG structures [1] 

such as dielectric or metallic lattices or dielectric-metallic hybrids may be studied with this 

technique. Finally, the self-consistent expressions for the currents in the rods allow the 

calculation of modes localized around the defects in lattices, such as those studied in [4-7, 11, 

12]. 

The article is organized as follows. In Sec. II, we discuss the symmetries of 2D lattices and 

present a general description of electromagnetic waves in periodic structures. In Sec. III, we 

formulate the basis of the quasistatic approach, calculate self-consistently the currents in the 

metal rods due to the electromagnetic fields, and derive the dispersion characteristics for the TM 

and TE waves. We illustrate the physics of plane-wave interactions with several examples. 

Conclusions are presented in Sec. IV.  

 

II. ELECTROMAGNETIC WAVE PROPAGATION IN PBG 
STRUCTURES 

We consider two lattices of long perfectly conducting rods, namely, the square lattice [Fig. 

1(a)] and the triangular lattice [Fig. 1(b)], which were studied in Ref.8. The conductivity profile 

in the lattices satisfies the periodic condition 

                                               ( ) ( )⊥⊥ =+ xTx σσ nm, ,                                           (1) 

with the set of  periodicity vectors nm,T  defined as  
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In Eqs. (1) and (2), x e e⊥ = +x yx y$ $  is the transverse coordinate, b  is the lattice spacing, and 

m  and n  are integers. It is readily shown from Maxwell's equations that the wave field in the 

two-dimensional PBG structures can be decomposed into two independent sets of modes: 

transverse electric (TE) modes and transverse magnetic (TM) modes. In a TE (TM) mode the 

electric (magnetic) field vector is perpendicular to the rod axis (i.e., z-axis). All the field 

components in the TM (TE) modes can be expressed in terms of the axial component of the 

electric (magnetic) field, which is further denoted by Ψ . Since the system is homogeneous along 

the z-axis, we can use the Fourier transform in both the axial coordinate z and time t and consider  

( ) ( ) ( )dzdtetzk tzki
z

z∫∫ −
⊥⊥ Ψ= ωωψ ,,,, xx .          (3) 

For simplicity we will use the notation ( )⊥xψ  instead of ( )ωψ ,, zk⊥x  assuming that both 

frequency ω and longitudinal wave number zk  are fixed. The Helmholtz equation for the wave 

function ( )⊥xψ  follows from the Maxwell equations, 

    ( ) ( )⊥⊥⊥ 







−=∇ xx ψωψ 2

2
22

c
kz ,                                        (4) 

and is valid for anm >−⊥ ,Tx  in every unit cell of the lattice.  

Let ( )ωρ ,, zk⊥x  and ( )ω,, zk⊥xJ  be the charge and current densities induced by the field at 

the surfaces of the conducting rods. The Helmholtz equation (4) can be generalized for the entire 

space (vacuum and conducting rods), if the charges and currents are included. The generalized 

Helmholtz equation is 

( ) ( ) ( )⊥⊥⊥⊥ =+∇ xxx fψκψ 22 ,    (5) 

where 2222 / zkc −=ωκ , and ( )⊥xf  is a function, related to the currents and charges  

( )
( ) ( )
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Bloch’s theorem allows us to expand ( )⊥xψ  in a Fourier series,  
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( ) ∑ ⊥⊥⊥ ⋅⋅
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with ⊥k  being  an arbitrary wave vector perpendicular to the rods and nm,G  being vectors of the 

reciprocal lattice [13]. Reciprocal lattice vectors are related to nm,T  by the orthogonality 

condition ',',',', 2 nnmmnmnm δπδ=⋅TG . This yields  
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Physically, the Fourier series in Eq. (7) corresponds to an expansion of the electromagnetic 

field into a set of orthogonal plane waves. Only the plane waves with certain wave numbers can 

exist in the periodic lattice. With the aid of Eq. (7), Eq. (5) can be rewritten as 

 ( )[ ] ( )⊥
⋅+⋅

⊥ =+− ⊥⊥⊥∑ xGk xGxk fe nmii
nm

nm
nm

,
,

,

2
,

2 ψκ .  (9) 

Multiplying Eq. (9) by ⊥⊥⊥ ⋅−⋅− xGxk nmiie ,  and integrating over the elementary cell area, 

A, yields 

( )[ ] ( ) ⊥
⋅−⋅−

⊥⊥
⊥⊥⊥∫=+− xxGk xGxk 2

.
,

2
,

2 d1 ,nmii

cellel
nmnm ef

A
ψκ .  (10) 

The simplest approximation to solve the system of equations (10) can be made using the 

assumption that there is no interaction between the rods and the electromagnetic waves, i.e., 

( ) 0=⊥xf . This is called the ''plane-wave approximation'' [2,14]. The eigenfrequencies obtained 

in the framework of this approximation are simply 

nm
nmc ,

,

Gk +=







⊥
ω .     (11) 

The dispersion curves given by Eq. (11) are the consequence of only the crystal symmetries. 

They are independent of the nature of the interactions in the periodic structure and are the same 

for all photonic crystals with the same geometry. The dispersion curves in the plane-wave 

approximation for both the square and triangular lattices are plotted in Ref. [14].  
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III. QUASISTATIC APPROXIMATION FOR THIN CONDUCTING RODS 

The plane-wave approximation discussed at the end of Sec. II is a zeroth-order analysis.  In 

this section, we consider a first-order approximation for ( )⊥xf , which describes the interactions 

between the electromagnetic waves and conducting rods in Eqs. (10). The first-order 

approximation holds in the limit when the rods are small compared to the wavelength, i.e., 

1<<aκ  (quasistatic limit) and to the distance between the rods, i.e., 1/ <<ba . In this limit, 

approximations can be made to the wave equation (5), and the source ( )⊥xf  can be self-

consistently related to the wave function ( )⊥xψ .  

Assume that the center of the rod ( )nm,  is located at nm,Tx =⊥ . There are two regions 

surrounding the rod ( )nm, , where the behavior of ( ) ( )⊥xnm,ψ  is qualitatively different [15]: near-

field region and far-field region, as shown in Fig. 2. We introduce the notation nm,Txr −= ⊥ . In 

the near-field region where 1<<rκ , the wave function ( )nm,ψ  changes rapidly, i.e., 

( ) ( ) ( )nm
near

nm
near

nm
near a ,22,,2 /~ ψκψψ >>∇ .    (12) 

In the far-field region where 1≥rκ , the wave-function ( )nm,ψ  changes slowly, i.e., 

( ) ( )nm
far

nm
far

,2,2 ~ ψκψ∇  .    (13) 

The near- and the far-field solutions must match at the boundary of the two regions, 
( ) ( )

κκ
ψψ

/1~

,

/1~

,

r
nm

farr
nm

near = .     (14) 

In the remainder of this section, we use the near- and the far-field solutions to derive 

approximate self-consistent expressions for the sources ( )⊥xf  and solve the system of Eqs. (10). 

We now consider the TM and TE modes separately.  

 

A. TM case 

Outside the conducting rods we have ( ) 0=⊥xf . Taking into account Eq. (12), we write Eq. 

(5) in the near-field region in the electrostatic approximation as 
( ) 0,2 =∇ nm
nearψ .     (15) 

For the TM case the boundary condition at the rod is given by 
( ) 0, =

=ar
nm

nearψ .            (16) 
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The general solution of the Laplace Eq. (15) in 2D is given by 

( ) ( ) ( )[ ]∑
∞

=

+





 +++=

1
00

, sincosln
l

lll
ll

l
nm

near lqlp
r
brarba θθψ .  (17) 

Here llll qpba ,,,  are arbitrary constants. It is sufficient to keep only the first two terms in Eq. 

(17) to be able to satisfy the boundary conditions in Eqs. (14) and (16). The solution satisfying 

the boundary conditions is 

( ) ( ) ( )
( )





 −=
a
rnm

far
nm

near κ
κψψ

ln
ln1,, .    (18) 

Using the solution in Eq. (18) we can calculate the source in the rod ( )nm,  creating this 

field. We obtain 

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )rr δψ

κ
πκ

κ
ψ

ψ nm
far

nm
farnm

near
nm

a
r

a
f ,2

,
,2,

ln
2ln

ln
−=∇−≅∇= ⊥⊥ .   (19) 

Here ( ) ( )rnmf ,  is the source in the rod ( )nm, . In the vicinity of the rod ( )nm,  with the source 

in a single rod included the equation for ψ  becomes 

( )
( ) ( )rδψ

κ
πψκψ nm

fara
,22

ln
2−=+∇ ⊥ .    (20) 

The far-field solutions of different rods must match: ( ) ( )⊥≡ xψψ nm
far

, . For a periodic system 

of conducting rods, we must sum over all the rods to calculate the total sources and obtain the 

following wave equation:  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ).
ln

2
ln

2

,
,

,
,

,22

nm
nm

nm
nm

nm
far

a

a
f

Txx

Txxxx

−−=

−−==+∇

⊥⊥

⊥⊥⊥⊥⊥

∑

∑

δψ
κ
π

δψ
κ
πψκψ

  (21) 

Equation (10) along with ( )⊥xf  from Eq. (21) becomes 

( )[ ] ( )∑−=+− ⊥
','

',',
2

,
2

ln
2

nm
nmnmnm aA

ψ
κ
πψκ Gk .    (22) 

The eigenvalues κ  of the linear system in Eqs. (22) can now be found by diagonalizing the 

infinite matrix 
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( )

( )
LLLLL

LL

LLLLL

LL

LL

AAA

AAA

AAA

M

m,n

,

ααα

ααα

ααα

−+−−

−−+−

−−−

=

⊥

⊥

⊥

2

2
10

2

Gk

Gk

k

,   (23) 

where ( )aκ
πα

ln
2= . Because the coefficient α  depends on the eigenfrequency κ , the matrix M 

must be diagonalized iteratively for each eigenvalue. 

The eigenvalues of the infinite matrix M can be calculated approximately as the eigenvalues 

of a truncated matrix with a finite rank. This corresponds to approximating ψ  with a finite 

number of lowest terms of the Fourier representation in Eq. (7). The number of Fourier 

harmonics in the representation needed to achieve the desired accuracy for κ  increases with 

increasing a/b.  

For small ba /  the truncation of the Fourier representation in Eq. (7) gives a simple physical 

picture of the interactions of a finite number of plane waves at the conducting rods of the lattice. 

For 0/ →ba  the interactions basically become binary, that is, each plane wave interacts 

primarily with another plane wave, which has the wave vector of the same magnitude. For 

example, the binary interaction of plane waves can explain the behavior of the lowest local band 

gap width at the X-points of the square and triangular lattices. We consider the X-point 

( xb
ek ˆπ=⊥ ) of the square lattice and restrict ourselves to the interaction of the two plane waves 

with the lowest values of nm,Gk +⊥ . These waves correspond to ( ) =11, nm ( )0,0  and 

( ) =22 , nm ( )0,1−  with 
bnm
π=+⊥ ,Gk  for both. The truncated matrix M, describing the 

interaction of the two waves at the X- point, is simply  

22

2

2

222

2

~

bbb

bbbM
απα

ααπ

−−

−−
= .      (24) 

The eigenvalues of M~ in Eq. (24) are  
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.

,21

2

2
2
2

22

2
2
1

b

b
πκ

π
απκ

=







 −=

     (25) 

Recall that α  is a function of κ  itself, so the equation for 1κ  must be solved iteratively. To the 

lowest order, ( )ba /ln
2

0 π
παα =≅ , and the full width of the local band gap at the X-point is given 

by 

 ( ) ( )ba
b

c
b

/ln
20

12 ππ
ακκω ==−=






∆       (26) 

for small ba / . This logarithmic dependence agrees well with the numerical calculations using 

the PBGSS code8.  

Similarly, considering the interaction of two lowest plane waves at the X-point of the 

triangular lattice ( yb
ek ˆ

3
2π=⊥ ), we find that the full width of the local band gap at the X-point 

of the triangular lattice is given by  

( )bac
b

3/2ln
20

ππ
αω ==






∆       (27) 

for small ba / . 

In the same manner, we numerically calculate the entire dispersion characteristics in the 

square and triangular lattices by including many plane-wave interactions. For 0/ →ba  only a 

limited number of the plane waves is needed to achieve a good approximation of ψ . It is 

reasonable to start the iterative process of solving the matrix M with the initial value for κ  being 

its plane-wave value 0κ  in a given point of the ⊥k -space. As the eigenvalues of ( )[ ]0κaM  are 

found, the initial guesses for κ  are corrected and new α ’s are calculated. Then, the matrix M is 

diagonalized again with new α ’s. The iterative process has been performed using a computer. 

Results of these calculations are summarized in Fig. 3(a) and Fig. 4(a). In Fig. 3(a) the results are 

shown for the TM mode in a square lattice with 05.0/ =ba . The quasistatically calculated 

eigenvalues are plotted with dots. Solid curves show the dispersion characteristics obtained from 

the PBGSS calculations8. Five to twelve lowest vectors of the reciprocal lattice, depending on the 

symmetry of the particular -k point, are taken into account, and the four lowest eigenmodes are 



 

 11

plotted. Similarly, in Fig. 4(a), the results are shown for the TM mode in a triangular lattice with 

05.0/ =ba . As in Fig. 3(a), the eigenvalues calculated with the quasistatic approximation are 

plotted with dots, whereas the solid curves show the dispersion characteristics obtained from the 

PBGSS calculations8. Six to twelve of the lowest vectors of the reciprocal lattice are taken into 

account, and the four lowest eigenfrequencies are plotted. The three special points in Fig. 3(a), Γ, 

X, and M, correspond to 0=⊥k , xa
ek ˆπ=⊥  and ( )yx eek ˆˆ +=⊥ a

π , respectively. The three 

special points in Fig. 4(a), Γ, X, and J, correspond to 0=⊥k , ya
ek ˆ

3
2π=⊥  and 

( )yx eek ˆ3ˆ
3
2 +=⊥ a
π . As seen in both Fig. 3(a) and Fig. 4(a), there is a good agreement between 

the PBGSS calculations and the quasistatic approximation. 

 

B. TE case 

As in the TM case, the Laplace equation is valid for ψ  in a near-field field region around the 

rod ( )nm,  for the TE wave, i.e., 
( ) 0,2 =∇ nm
nearψ .     (28) 

For the TE case ψ  stands for the longitudinal component of the magnetic field. The boundary 

condition for ψ  at ar =  is  

( )
0

,

=
∂

∂

=ar

nm
near

r
ψ

.            (29) 

It is convenient to rewrite the boundary condition at 1~rκ  given by Eq. (14) in the form  
( )( ) ( )( )

κκ
ψψ

/1~

,

/1~

,

r
nm

farr
nm

near ∇⋅=∇⋅ rr .   (30) 

It is sufficient to keep only three terms in the general solution of Laplace’s equation given by 

Eq. (17) in order to satisfy the boundary conditions in Eqs. (29) and (30). The solution satisfying 

the boundary conditions is 

( ) ( )( ) 







+∇⋅+= ⊥ 2

2
,

0
, 1

r
aa nm

far
nm

near ψψ r ,   (31) 
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where 0a  is a constant, and use was made of the relation  

( ) ( )( ) 







+∇⋅=








+∇ ⊥⊥ 2

2
,

2
, 1cos

r
a

r
ar nm

far
nm

far ψθψ r . 

Using the solution in Eq. (30), we can find that the source in the rod ( )nm,  creating this field 

is 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )rrrr δψπψψ ⊥⊥⊥⊥⊥ ∇⋅∇=∇∇⋅≅∇= nm
far

nm
far

nm
near

nm a
r
af ,2

2

2
2,,2, 2 .     (32) 

The equation for ψ  in the vicinity of the rod ( )nm,  with the source in a single rod included is 
( ) ( )rδψπψκψ ⊥⊥⊥ ∇⋅∇=+∇ nm
fara ,222 2 .   (33) 

For a periodic system of conducting rods the far-field solutions of different rods must match: 
( ) ( )⊥≡ xψψ nm
far

, . In equation for ( )⊥xψ  we sum over the contributions from all the rods to 

calculate the total sources. This yields  

( ) ( ) ( ) ( ) ( )
( ) ( ).2

2

,
,

2

,
,

,222

∑

∑
−∇⋅∇=

−∇⋅∇==+∇

⊥⊥⊥⊥

⊥⊥⊥⊥⊥⊥⊥

nm
nm

nm
nm

nm
far

a

af

Txx

Txxxx

δψπ

δψπψκψ
        (34) 

Equation (10) with ( )⊥xf  as in Eq. (34) becomes  

( )[ ] ( ) ( )∑ +⋅+−=+− ⊥⊥⊥
','

,','','

2

,
2

,
2 2

nm
nmnmnmnmnm A

a GkGkGk ψπψκ .      (35) 

The eigenvalues κ  of the system can now be found by diagonalizing the infinite matrix 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
LLLLL

LL

LLLLL

LL

LL

2
10

10
2

1010

10
2

m,nm,n,m,n

,m,n,,

m,n,

M
GkGkGkGkk

GkGkGkGkk
kGkkGkk

++⋅+−+⋅−

+⋅+−++⋅−
⋅+−⋅+−

=

⊥⊥⊥⊥⊥

⊥⊥⊥⊥⊥

⊥⊥⊥⊥⊥

αα

αα
αα

 (36) 

where 
A
a 22πα = . Note that unlike in the TM case, the coefficient α  is independent of the 

eigenvalues κ .  

The eigenvalues of the infinite matrix M can be calculated approximately as the eigenvalues 

of a truncated matrix with a finite rank. Thus, for 0/ →ba , we can explain the behavior of the 

lowest local band gap width for the TE modes at the X-points of square and triangular lattices. 
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Consider the lowest binary interaction of plane waves at the X-point. For the square lattice, the 

X-point corresponds to xb
ek ˆπ=⊥ . The two plane waves with the lowest nm,Gk +⊥ 's have 

( ) =11, nm ( )0,0  and ( ) =22 , nm ( )0,1−  and 
bnm
π=+⊥ ,Gk . The truncated matrix M, describing 

the interaction of the two waves at the X- point, is 

22

22

~

































=

bb

bbM
ππα

παπ

.       (37) 

The eigenvalues of M~  are  

( )απκ ±





= 1

2
2

2,1 b
.     (38) 

For small ba / , the full width of the local band gap at the X-point scales as 

 ( )
2

12 2 





==−=






∆

b
ab

c
b ππακκω .      (39) 

This agrees well with the numerical calculations using the PBGSS code8. Similarly, considering 

the interaction of the two lowest plane waves at the X-point of the triangular lattice 

( yb
ek ˆ

3
2π=⊥ ), we find that the full width of the local band gap at the X-point of the triangular 

lattice is given by 

 .
33

2 2







8==






∆

b
a

c
b ππαω       (40) 

We calculate numerically the entire TE dispersion characteristics in both square and 

triangular lattices by including multiple plane-wave interactions at the metal rods. As illustrated 

in Figs. 3(b) and 4(b) for 0/ →ba , the approximation is good even for a small number of 

Fourier components. In Fig. 3(b), the results of the quasistatic calculations are shown with dots 

for the TE mode in a square lattice of rods with 1.0/ =ba . Solid curves show the dispersion 

characteristics obtained from the PBGSS calculations8. Five to twelve of the lowest vectors in 

the reciprocal lattice (depending on the symmetry of the particular -k point) are taken into 

account, and four lowest eigenmodes are plotted. Similarly, in Fig. 4 (b) the results of the 
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quasistatic calculations are shown with dots for the TE mode in a triangular lattice of rods with 

1.0/ =ba . Solid curves show the dispersion characteristics obtained from the PBGSS 

calculations8. Six to twelve of the lowest vectors of the reciprocal lattice were taken into account, 

and the four lowest eigenmodes are plotted. The three special points in Fig. 3(b), Γ, X, and M, 

correspond to 0=⊥k , xa
ek ˆπ=⊥  and ( )yx eek ˆˆ +=⊥ a

π , respectively. The three special points in 

Fig. 4(b), Γ, X, and J, correspond to 0=⊥k , ya
ek ˆ

3
2π=⊥  and ( )yx eek ˆ3ˆ

3
2 +=⊥ a
π . 

For the TE case, the agreement between the quasistatic and the PBGSS calculations is even 

better than for the TM case. This is because the interactions of the waves are determined by the 

small parameters 
A
a

TE

22πα =  (with 2~ bA ) for the TE case and ( )aTM κ
πα

ln
2= (with b/1~κ ) 

for the TM case. For the same value of ba / , TEα  is much smaller than TMα . Thus the quasistatic 

theory approximates the dispersion characteristics for the TE case much better than those for the 

TM case with the same value of ba / . 

 

IV. CONCLUSIONS AND DISCUSSIONS 
We have presented a self-consistent technique for calculating the dispersion characteristics in 

two-dimensional photonic band gap structures representing arrays of perfectly conducting rods. 

The technique is applicable for the structures with rod radius small compared to the distance 

between them and to the wavelength. First, we described the field in a periodic structure as a set 

of plane waves with wave numbers satisfying Bloch’s theorem. Then we expressed self-

consistently the induced current and charge distributions on the rods in terms of the 

electromagnetic wave field. We showed that these currents lead to the interaction between the 

plane waves in the structure, which is different for the TM and TE waves and affects the shape of 

the dispersion characteristics. Results were found in agreement with the dispersion 

characteristics previously calculated by the finite-difference PBGSS code8. 

Although the effectiveness of the self-consistent quasistatic approach has been demonstrated 

only with ideal 2D metallic PBG structures, the technique may be generalized to treat 2D and 3D 

dielectric lattices and dielectric-metallic hybrids. This will be an important area for future 

investigations. 
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Fig. 1: Schematic of PBG structures representing  (a) a square lattice and (b) a triangular 

lattice of perfectly conducting cylinders with radius a  and spacing b . 
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Fig. 2: Illustration of the near- and far-field regions in the quasistatic approximation. 
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Fig. 3: Dispersion characteristics in the square lattice as calculated with the PBGSS code 

(solid curves) and the quasistatic approximation (dots) for (a) TM modes with 05.0/ =ba  

and (b) TE modes with 1.0/ =ba . 
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Fig. 4: Dispersion characteristics in the triangular lattice as calculated with the PBGSS 

code (solid curves) and the quasistatic approximation (dots) for (a) TM modes with 

05.0/ =ba  and (b) TE modes with 1.0/ =ba . 
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