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Abstract

In this paper theory on collective scattering measurements of electron density fluctuations in

fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent

beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto-

and crosspower spectra obtained from measurements. These are discussed and simple simulations

made to elucidate the physical meaning of the findings. In this context, the known methods of

obtaining spatial localization are discussed and appraised. Where actual numbers are applied,

we utilize quantities from two collective scattering instruments: The ALTAIR diagnostic on the

Tore Supra tokamak [A. Truc et al., ”ALTAIR: An infrared laser scattering diagnostic on the Tore

Supra tokamak,” Rev. Sci. Instrum. 63, 3716-3724 (1992)] and the LOTUS diagnostic on the

Wendelstein 7-AS stellarator [M. Saffman et al., ”CO2 laser based two-volume collective scattering

instrument for spatially localized turbulence measurements,” Rev. Sci. Instrum. 72, 2579-2592

(2001)].

PACS numbers: 52.25.Gj, 52.25.Rv, 52.35.Ra, 52.55.Hc, 52.70.Kz
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I. INTRODUCTION

A. Motivation

In this paper we will revisit theoretical aspects of small-angle collective scattering of

infrared light off electron density fluctuations. Our main reasons for this second look are

the following:

• Working through the literature, we have found that most of the information needed

for a full treatment of scattering is indeed available, but distributed among numerous

authors. Further, some of these sources are not readily available. We here collect

those results and present one coherent derivation from basic scattering concepts to the

analytical expression for the detected photocurrent.

• It has been important to us to present understandable derivations throughout the

paper. In most cases all steps are included, removing the necessity to make separate

notes. One exception is section III A 2.

• The theory is reviewed from a practical point of view; the work done is in support of

measurements of density fluctuations in the Wendelstein 7-AS (W7-AS) stellarator.1

Here, we used a CO2 laser having a wavelength of 10.59 µm to make small-angle

measurements.2–8

• A number of points have been clarified, for instance the somewhat confusing term

’antenna’ or ’virtual local oscillator’ beam. Further, several minor corrections to the

derivations in previous work have been included.

• Spatial localization of the density fluctuations measured using collective scattering is

of central importance.9 We review the methods available and discuss the pros and cons

of these techniques.

The paper constitutes a synthesis between collective light scattering theory and experi-

ment which will be useful for theoreticians and experimentalists alike in interpreting mea-

surements.
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As we have noted, the sources of information on the theory of collective scattering are

spread over several decades and authors. We will make it clear in the paper where we use

them.

B. Collective scattering measurements

In 1960 the first laser was demonstrated,10 which provided a stable source of monochro-

matic radiation.

The first observation of density fluctuations in a fusion device using laser scattering

was made by C.M.Surko and R.E.Slusher in the Adiabatic Toroidal Compressor (ATC)

tokamak.11

Subsequently, detection of density fluctuations using lasers has been performed in nu-

merous machines, both applying the technique used in the ATC tokamak12–17 and related

methods, e.g. far-infrared (FIR) scattering18–20 and phase-contrast imaging (PCI).21–23

Scattering using infrared light has several advantages over alternative systems: The tech-

nique is non-intrusive, i.e. it does not perturb the investigated plasma in any way. Re-

fraction effects can be neglected due to the high frequency of the laser radiation. Further,

fluctuations can be measured at all densities, the lower density limit only depending on the

signal-to-noise ratio (SNR) of the acquisition electronics.

The major drawback of collective scattering is spatial localization: Direct localization,

where the measurement volume is limited in size by crossing beams is only possible for

extremely large wavenumbers where the fluctuation amplitude is known to be minute. How-

ever, several methods of indirect localization have been developed; one where two measure-

ment volumes overlap in the plasma,24 one where the change of the magnetic field direction

along the measurement volume is taken into account16 and a third design which is an updated

version of the crossed beam technique.2

Summarizing the state of collective scattering diagnostics on fusion machines in 2004:

A large amount of measurements has been made in these devices. The massive database

strongly suggests that the density fluctuations created by turbulence cause strong transport

of energy and particles out of the plasma. However, a consistent detailed picture of how the

various turbulent components are correlated with global transport has not yet emerged.
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C. Organization of the paper

The paper is organized as follows: In section II, we derive an expression for the detected

photocurrent from first principles. Thereafter demodulation is explained, phase separation

of the detected signal is interpreted and an expression for the density fluctuations squared is

presented. Finally, a simple example illustrates this density fluctuation formula for Gaussian

beams. In section III, the measurement volume is treated in detail. The simple geometrical

estimate is compared to a more elaborate treatment. Following this, direct and indirect

localization is discussed, and general expressions for auto- and crosspower are derived. A

discussion ensues, and finally simulations assist in the interpretation of localized autopower

from a single measurement volume. Section IV states our main conclusions.

II. COLLECTIVE LIGHT SCATTERING

In this section we will investigate the theoretical aspects of scattering in detail. The main

result will be the derivation of an expression for the observed photocurrent (section II D,

Eq. (29)).

A classification of scattering is found in section II A, and the scattering cross section is

briefly reviewed in section II B. Basic scattering theory is described in section II C, and

a derivation of the detected photocurrent is the subject of section II D. Retrieval of the

complex signal using demodulation is explained in section II E. The relationship between

the observed phase and the direction of motion is explored in section II F. The final section

(II G) deals with spectral theory applied to the derived photocurrent.

A. Scattering classification

We would like to touch upon a few subjects relating to the type of scattering that is

observed. First of all a classification of scattering is useful:25

• If one were to describe scattering of an electromagnetic field off a particle quantum

mechanically, the description would be of photons bouncing off the particle.

1. Thomson scattering: Negligible change in mean particle momentum during col-

lision with the photon (h ω � mc2).
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2. Compton scattering: The case where photons are so energetic that their momen-

tum cannot be ignored.

As we work with a wavelength λ0 = 10.59 µm in the infrared range, the photon energy

is much smaller than the rest mass of the electron. Therefore we will restrict ourselves

to consider classical Thomson scattering.

• Since the ions are much heavier than the electrons, their acceleration and hence radi-

ation is usually sufficiently small to be ignored. So the electrons do the scattering.

• The Salpeter parameter αS = 1/kλD
26 determines whether the scattering observed

is incoherent (αS < 1) or coherent (αS > 1). Here, k is the wavenumber observed

and λD =
√

ε0T/ne2 is the Debye length. Basically, incoherent scattering is due to

scattering off single electrons, while coherent scattering is due to scattering off a bunch

of electrons; this is also known as collective scattering and is the limit we are observing

with the W7-AS diagnostic.

To sum up, we are dealing with collective Thomson scattering. Four elements go into the

process of scattering:

1. The incident radiation (the laser beam).

2. The set of scatterers (electrons).

3. The reference beam.

4. The detector.

In this paper we describe the first 3 parts; a description of the detectors used is to be

found in Ref. 2 which also contains a detailed description of the practical implementation

of the localized turbulence scattering (LOTUS) diagnostic.

B. Scattering cross section

The power P per unit solid angle Ωs scattered at an angle ζ by an electron is given by

dP

dΩs

=

√

ε0

µ0

|E2
0 |r2

e sin2 ζ, (1)
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where
√

ε0

µ0
|E2

0 | (see section II C 1 for the definition of E0) is the incident laser power per unit

area,

re =
µ0e

2

4πme

(2)

is the classical electron radius and ζ is the angle between the incident and scattered power.25

The scattering cross section σ per unit solid angle is then defined as

dσ

dΩs

=
dP

dΩs

1
√

ε0

µ0
|E2

0 |
= r2

e sin2 ζ (3)

Knowing that dΩs = 2π sin ζdζ we get

σ =

∫

dσ = 2πr2
e

∫ π

0

sin3 ζdζ = 2πr2
e(4/3), (4)

which one could interpret as an effective size of the electron for scattering.

We now wish to rewrite the classical electron radius using the polarizability α, defined

by the equation for the dipole moment p

p = αε0E, (5)

where E is the incident electric field.27 If this electric field possesses a harmonic time variation

with frequency ω, the electron will execute an undamped, forced oscillation.28 The equation

of motion can be solved for the electron position, leading to a determination of the dipole

moment. Using Eq. (5) we then calculate the static (ω = 0) polarizability α0

α0 =
e2

ε0meω2
0

=
µ0e

2

me

c2

ω2
0

=
µ0e

2

me

1

k2
0

, (6)

where ω0 = ck0 is the eigenfrequency of the electron.27 Eq. (6) enables us to express the

classical electron radius in terms of α0

re =
k2

0α0

4π
(7)
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C. Scattering theory

1. Radiation source

Our incident laser beam has a direction k0, where k0 = ω0/c, and a wavelength λ0

= 10.59 µm. For a linearly polarized beam, the electric field is given as in Eq. (8), where

E0(r) = E0u0(r)ei(k0·r).29 E0 is a vector whose direction and amplitude are those of the electric

field at maximum.

E0(r, t) = Re{E0(r)e−iω0t} (8)

Assuming Gaussian beams, the radial profile near the waist w will be of the form u0(r) =

e−(r2
⊥

/w2), where r⊥ is the perpendicular distance from the beam axis.

The frequency of the laser radiation ω0 is much higher than the plasma frequency ωp =
√

ne2/ε0me. This means that the refractive index of the plasma

N =
√

1 − ω2
p/ω

2
0 (9)

is close to one, or that refractive effects are negligible.30 This is a significant advantage

compared to microwave diagnostics, where raytracing calculations must assist interpretation

of the measurements.

2. Single particle scattering

For a single scatterer having index j located at position rj (see Fig. 1), the scatterer

radiates an electric field at r′ (the detector position) as a result of the incident beam field.

This field is given in Eq. (10), where nj is along r′ − rj and approximately perpendicular

to E0
31

Es(r
′, t) = Re{Es(r

′)e−iω0t}

Es(r
′) =

{

k2
0α0

4π

eik0|r′−rj |

|r′ − rj|
[nj × E0(rj)] × nj

}

(10)

The scattered field is simply the radiation field from an oscillating dipole having a moment

p32
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E =
k2

4πε0

eikr

r
[n × p] × n (11)

Therefore the above expression for the scattered electric field is often called the dipole

approximation. It is an approximation because the equation is only valid in the nonrela-

tivistic limit. For very energetic electrons the relativistic corrections become significant, see

e.g. Ref. 25.

3. Far field approximation

Two assumptions are made:

1. The position where one measures (r′) is far from the scattering region.

2. The opening angle of the detector is small,

leading to the validity of the far field approximation.31 This means that we can consider

the scattered field from all j particles in the scattering volume to have the same direction

denoted n′ parallel to nj. Therefore the scattered wave vector ks = k0n
′ and k = ks − k0 is

the wave vector selected by the optics, see Fig. 1.

The scattered field at the detector due to several particles can be written as a sum31

Es(r
′, t) = Re{Es(r

′)e−iω0t}

Es(r
′) =

k2
0α0

4π

∑

j

eik0|r′−rj |

|r′ − rj|
u0(rj)[n

′ × E0] × n′eik0·rj (12)

In going from a single particle scattering description to more particles, we will approx-

imate the position of the individual scatterers rj by one common vector r. The particles

will have a density distribution n(r, t). We write the scattered field as an integral over the

measurement volume V

Es(r
′, t) =

k2
0α0

4π

∫

V

eik0|r′−r|

|r′ − r| u0(r)[n′ × E0] × n′n(r, t)eik0·rd3r (13)
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D. The photocurrent

The electric field of the local oscillator (LO, see Fig. 2) beam along n’ at the detector is

given as

ELO(r′, t) = Re{ELO(r′)e−i(ω0+ω∆)t}

ELO(r′) = ELOuLO(r′)eik0n
′·r′ , (14)

where ω∆ is a frequency shift and kLO = ks = k0n
′.29

The incident optical power reaching the detector can be found integrating the Poynting

vector over the detector area A29

S(t) =
1

µ0

∫

A

(E × B) · d2r′ =

1

µ0c

∫

A

|ELO(r′, t) + Es(r
′, t)|2d2r′ =

1

µ0c

∫

A

|ELO(r′, t)|2 + |Es(r
′, t)|2 + 2 × Re{E∗

LO(r′, t)Es(r
′, t)}d2r′ (15)

What we are interested in is the last term of the equation, namely the beating term

SB(t) =

∫

A

2

µ0c
Re{E∗

LO(r′, t)Es(r
′, t)}d2r′ (16)

The term containing the LO power is constant, and the contribution to the power from

the scattered field is very small because its field amplitude is much smaller than that of the

LO.31

Now we define the integrand of Eq. (16) to be sB(r′)

sB(r′) =

2

µ0c
Re{E∗

LO(r′, t)Es(r
′, t)} =

2

√

ε0

µ0

Re{Es(r
′) · E∗

LO(r′)eiω∆t} (17)

Assuming a detector quantum efficiency η leads to the photocurrent29
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iB(t) =
eη

h ω0

∫

A

sB(r′)d2r′ (18)

The photocurrent due to an ensemble of scatterers at the detector position r′ (replacing

iB by ik, where the subscript k is the measured wavenumber) is

ik(t)
h ω0

eη
=

∫

A

sB(r′)d2r′ =

2Re

{

1

µ0c

∫

A

[E∗
LO(r′, t)Es(r

′, t)]d2r′
}

=

2Re

{

1

µ0c

∫

A

[

E∗
LOu∗

LO(r′)e−ik0n
′·r′eit(ω0+ω∆)

k2
0α0

4π

∫

V

eik0|r′−r|

|r′ − r| u0(r)[n′ × E0] × n′n(r, t)eik0·re−iω0td3r

]

d2r′
}

, (19)

where we have inserted Eqs. (14) and (13) for the LO and scattered electric field, respectively.

We now introduce the Fresnel-Kirchhoff diffraction formula

1

iλ0

∫

A

eik0|r′−r|

|r′ − r| u
∗
LO(r′)E∗

LOe−ik0n
′·r′d2r′ = u∗

LO(r)E∗
LOe−iks·r, (20)

which is the radiated field for small angles of diffraction from a known monochromatic field

distribution on a diaphragm A.33 This radiated field (the antenna or virtual LO beam29)

propagates from the detector to the scatterers.34 The reciprocity theorem of Helmholtz states

that a point source at r will produce at r’ the same effect as a point source of equal intensity

placed at r’ will produce at r.33 Therefore Eq. (20) describing the field in the measurement

volume (position r) due to a source at the detector (position r’) is equivalent to the reverse

situation, where the measurement volume is the source.

In Eq. (21) we first reorganize Eq. (19) and then apply the Fresnel-Kirchhoff diffraction

formula

11



ik(t)
h ω0

eη
=

2Re

{

k2
0α0

4π

1

µ0c
eitω∆

∫

V

[

iλ0

iλ0

∫

A

eik0|r′−r|

|r′ − r| u
∗
LO(r′)E∗

LOe−iks·r′d2r′
]

[n′ × E0] × n′eik0·ru0(r)n(r, t)d3r
}

=

2Re

{

i
k2

0α0

4π

λ0

µ0c
eitω∆

∫

V

E∗
LOu∗

LO(r)e−iks·rE0u0(r)eik0·rn(r, t)d3r

}

=

2Re

{

i
πα0

λ0

√

ε0

µ0

eitω∆

∫

V

E∗
LOu∗

LO(r)E0u0(r)e−ik·rn(r, t)d3r

}

, (21)

since

k2
0α0

4π

λ0

µ0c
=

πα0

λ0

√

ε0

µ0

(22)

and

[n′ × E0] × n′ = E0 (23)

The expression for the current now becomes

ik(t) =

2
eη

h ω0

√

ε0

µ0

λ0Re

{

iree
iω∆tE0E∗

LO

∫

V

n(r, t)u0(r)u∗
LO(r)e−ik·rd3r

}

, (24)

where E∗
LO and E0 hereafter are to be considered as scalars since the laser field and the LO

field are assumed to have identical polarization.

We introduce a shorthand notation for the spatial Fourier transform

(n(t)U)k =

∫

V

n(r, t)U(r)e−ik·rd3r

U(r) = u0(r)u∗
LO(r), (25)

where U is called the beam profile.29,34 We note that
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∫

V

n(r, t)U(r)e−ik·rd3r =

∫

n(k′, t)U(k − k′)
d3k′

(2π)3
= n(k, t) ? U(k)

n(k, t) =

∫

V

n(r, t)e−ik·rd3r

U(k) =

∫

V

U(r)e−ik·rd3r, (26)

where ? denotes convolution.31,35 We arrive at

ik(t) = 2
eη

h ω0

√

ε0

µ0

λ0Re[iree
iω∆tE0E∗

LO(n(t)U)k] (27)

Defining

γ =
eη

h ω0

√

ε0

µ0

λ0reE0E∗
LO, (28)

Eq. (24) in its final guise is

ik(t) = i[γeiω∆t(n(t)U)k − γ∗e−iω∆t(n(t)U)∗k] (29)

Note that the e−ik·r term in (n(t)U)k constitutes a spatial band pass filter (k is fixed).

Three scales are involved:36

• Fluctuations occur at scales r much smaller than λ = 2π/k ⇒ k · r � 1 ⇒ e−ik·r ≈ 1.

The Fourier transform becomes the mean value of the density fluctuations, which is

zero.

• Fluctuations occur at scales r similar to λ = 2π/k; this leads to the main contribution

to the signal.

• Fluctuations occur at scales r much larger than λ = 2π/k ⇒ k · r � 1 ⇒ e−ik·r is

highly oscillatory. The mean value will be roughly equal to that of e−ik·r, which is

zero.

The scattered power Pk resulting from the interference term can be written by defining

a constant

ξ =

√

ε0

µ0

λ0reE0E∗
LO (30)
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and replacing γ with this in Eq. (29)

Pk(t) =
h ω0

eη
ik(t) =

i[ξeiω∆t(n(t)U)k − ξ∗e−iω∆t(n(t)U)∗k] =

2Re[iξeiω∆t(n(t)U)k] (31)

If E0 and ELO are real numbers (meaning that ξ is real) we can go one step further and

write

Pk(t) = 2ξRe[ieiω∆t(n(t)U)k] =

8
λ0re

πw2

√

P0PLORe[ieiω∆t(n(t)U)k] (32)

assuming that P0/LO = πw2

4

√

ε0

µ0
|E2

0/LO| (for a given U , see section II G 2).

E. Demodulation

The task now is to extract real and imaginary parts of (n(t)U)k. We construct two signals

that are shifted by π/237

j1(t) = Re[eiω∆t] = cos(ω∆t)

j2(t) = Re[ei(ω∆t+π/2)] = sin(ω∆t) (33)

Now two quantities are constructed using Eqs. (29) (divided into two equal parts) and

(33)

id,1 =
ik(t)

2
j1(t) =

i

4
[γei2ω∆t(n(t)U)k + γ(n(t)U)k −

γ∗(n(t)U)∗k − γ∗e−i2ω∆t(n(t)U)∗k]

id,2 =
ik(t)

2
j2(t) =

i

4
[γei2ω∆teiπ/2(n(t)U)k + γe−iπ/2(n(t)U)k −

γ∗eiπ/2(n(t)U)∗k − γ∗e−i2ω∆te−iπ/2(n(t)U)∗k] (34)

14



Low pass filtering (LPF) of these quantities removes the terms containing the fast 2ω∆

expression.38 The result is that

id,complex = [id,2 − iid,1]LPF =

1

2
(Re[γ(n(t)U)k] − i(−Im[γ(n(t)U)k])) =

γ

2
(n(t)U)k (35)

Now we have (n(t)U)k and can analyze this complex quantity using spectral tools. The

alternative to heterodyne detection is called homodyne detection. There are two advantages

that heterodyne detection has compared to homodyne detection:36

1. The LO beam provides an amplification factor to the detected signal (see Eq. (32)).

2. It leaves the complex (n(t)U)k intact multiplied by a wave having frequency ω∆; in

homodyne detection the electric field complex number is transformed into a real num-

ber and the phase information is lost. The frequency sign of the scattered power tells

us in which direction the fluctuations are moving.

F. Phase separation

Since the theory behind phase separation is extensively described in section 2 of Ref. 39,

we will here only give a brief recapitulation of the basics.

The observed signal is interpreted as being due to a large number of ’electron bunches’,

each moving in a given direction. An electron bunch is defined as a collection of electrons

occupying a certain region of the measurement volume V . This definition is motivated by

the fact that even though the measurement volume includes a large number of cells (V/λ3)40

(typically ∼ 3000 in W7-AS), the amplitude of the signal consists of both large and small

values separated in time. The demodulated photocurrent id,complex is a complex number; it

can be written

id,complex(t) =

Nb
∑

j=1

aje
iφj = AeiΦ, (36)

where Nb is the number of bunches, while aj and φj is the amplitude and phase of bunch

number j, respectively. The criterion for determination of direction is

15



∂tΦ > 0 ⇒ k · U > 0 ⇒ fluctuations ‖ k

∂tΦ < 0 ⇒ k · U < 0 ⇒ fluctuations ‖ −k, (37)

where Φ = k · Ut and U is the average bunch velocity. The phase derivative sign reflects

the bunches with highest intensities occurring most frequently.

G. Density fluctuations

1. Derivation

The current frequency spectral density measured is

Ik(ω) =
|ik(ω)|2

T

ik(ω) =

∫ t2

t1

eiωtik(t)dt =

∫ T

eiωtik(t)dt, (38)

where T = t2 − t1 is a time interval. Using Eq. (29) this can be written

Ik(ω) =
|γ2|
T

{|(n(ω)U)k|2 + |(n(−ω)U)k|2}

(n(ω)U)k =

∫

d3r

∫ T

n(r, t)U(r)ei(ωt−k·r)dt

n(k, ω) =

∫ T

n(k, t)eiωtdt, (39)

assuming that n(k, ω) and n(k,−ω) are independent (i.e. no mixed terms).29 Note that

we have dropped the ω∆ terms; it has previously been explained how we filter these high

frequencies away. Now we are approaching an analytical expression for the weighted mean

square density fluctuation. The time fluctuating part of n(r, t) is

δn(r, t) = n(r, t) − 1

T

∫ T

n(r, t) dt (40)
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When δn is written without a subscript, it is taken to refer to the electron density

fluctuations. Eq. (40) enables us to express the weighted mean square density fluctuation

as

〈δn2〉UT =

∫ T
dt
∫

δn2(r, t)|U(r)|2d3r

T
∫

|U(r)|2d3r
(41)

The subscript means averaging over the beam profile U(r) and a time interval T. We can

transform this via Parseval’s theorem

∫ T

dt

∫

|δn(r, t)U(r)|2d3r =

∫

dω

2π

∫

d3k

(2π)3
|(δn(ω)U)k|2 (42)

to the wave vector-frequency domain

〈δn2〉UT = n0

∫

dω

2π

∫

d3k

(2π)3
SU(k, ω)

SU(k, ω) =
|(δn(ω)U)k|2

n0T
∫

|U(r)|2d3r
, (43)

where n0 is the mean density in the scattering volume. SU(k, ω) is the measured spectral

density also known as the form factor. Conventionally, this is given as

S(k, ω) =
|δn(k, ω)|2

n0V T

δn(r, t) =

∫

dω

2π

∫

d3k

(2π)3
δn(k, ω)e−i(ωt−k·r) (44)

Combining Eqs. (43) and (39) (replacing n by δn) we get

SU(k, ω,−ω) = SU(k, ω) + SU(k,−ω) =
Ik(ω)

n0|γ2|
∫

|U(r)|2d3r
(45)

The term with positive frequency corresponds to density fluctuations propagating in the

k-direction, while negative frequency means propagation in the opposite direction.16

The wavenumber resolution width is

∆k3 =

[
∫

|U(r)|2d3r

]−1

(46)

We have now arrived at the goal; replacing SU(k, ω) by SU(k, ω,−ω) in the first line of

Eq. (43), our final expression for the mean square density fluctuations is
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〈δn2〉UT =

∫

d3k

(2π)3

〈δn2〉k
∆k3

〈δn2〉k =
1

|γ2|
[∫

|U(r)|2d3r
]2

∫ ∞

−∞

dω

2π
Ik(ω) (47)

The frequency integration is done numerically, while a wavenumber integration can be

done by measuring Ik for different wavenumber values.

2. An example

When the beam profile U(r) is known, quantitative expressions for the density fluctuations

can be calculated.29 The following assumptions are made:

• Antenna beam corresponds to LO beam.

• Beams have Gaussian profiles.

• Beams are focused in the measurement region with identical waists w.

• Forward scattering.

Furthermore, the beam profile U(r) is assumed to be

U(r) = u0(r)u∗
LO(r) = e−2(x2+y2)/w2

for |z| < L/2

U(r) = 0 for |z| > L/2, (48)

where L is the measurement volume length and the beams are along z.

The wavenumber resolution width ∆k3 becomes 4/(πw2L) and we find the wavenumber

resolution itself by calculating

U(k) =
∫

V

U(r)e−ik·rd3r =

∫ L/2

−L/2

e−ikzzdz

[
∫ ∞

−∞

e−( 2
w2 x2+ikxx)dx

] [
∫ ∞

−∞

e−( 2
w2 y2+ikyy)dy

]

=

2

kz

sin

(

kzL

2

)[
√

π

2
we−

k2
xw2

8

] [
√

π

2
we−

k2
yw2

8

]

, (49)
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allowing us to define the transverse wavenumber resolutions ∆kx,y = 2/w (e−1 value34) and

a longitudinal wavenumber resolution ∆kz = 2π/L (sine term zero).16 We further obtain an

expression for the main (and LO) beam power

P0 =

√

ε0

µ0

∫ ∞

−∞

|E2
0 |e−

4(x2+y2)

w2 dxdy =

πw2

4

√

ε0

µ0

|E2
0 |, (50)

In = e2ηPLO

h ω0
and PLO = πw2

4

√

ε0

µ0
|E2

LO|.
Using Eq. (47) for this example we get

〈δn2〉k =
1

(2π)3

(

h ω0

eη

)2
1

λ2
0r

2
eL

2

1

P0PLO

∫ ∞

−∞

dω

2π
Ik(ω) =

1

(2π)3

h ω0

η

1

λ2
0r

2
eL

2

1

P0

∫ ∞

−∞

dω

2π

Ik(ω)

In

(51)

This example concludes our section on the theory of collective light scattering. In section

II D we derived the analytical expression for the photocurrent, enabling us to interpret the

signal as a spatial Fourier transform of density multiplied by the beam profile. In the present

section this result was used to deduce an equation for δn2 (Eq. (47)).

III. SPATIAL LOCALIZATION

In this section we first investigate the geometry of the measurement volume (section

III A). Thereafter we explore the possibilities of obtaining localized measurements; first using

a simple method directly limiting the volume length (section III B) and then by assuming

that the density fluctuations have certain properties (section III C).

A. The measurement volume

1. Geometrical estimate

A measurement volume is created by interference between the incoming main (M) beam

(wave vector k0) and the local oscillator (LO) beam (wave vector ks), see Fig. 2.
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The angle between the LO and M beams is called the scattering angle θs. The distance

between the interference fringes38 is

λgeom =
λ0

2 sin
(

θs

2

) ≈ λ0

θs

(52)

The scattering angle determines the measured wavenumber16

k = 2k0 sin

(

θs

2

)

≈ k0θs

λ =
2π

k

k � k0 (53)

The approximations above are valid for small scattering angles. Assuming that the beams

have identical diameters 2w, the volume length can be estimated as

Lgeom =
2w

tan
(

θs

2

) ≈ 4w

θs

(54)

The fringe number, i.e. the number of wavelengths that can be fitted into the measure-

ment volume, is

M =
2w

λ
=

wk

π
(55)

2. Exact result

The time-independent field from each of the two Gaussian beams creating a measurement

volume can be written

u(r) = u(x, y, z) =

√

2P

πw2(z)
e
−x2+y2

w2(z)
+ik0z

(

1+ x2+y2

2(z2
R

+z2)

)

+iφ(z)

(56)

Here, P is the beam power,

w(z) = w0

√

1 +

(

z

zR

)2

(57)

is the beam radius at z and zR is the Rayleigh range
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zR =
πw2

0

λ0

, (58)

which is the distance from the waist w0 to where the beam radius has grown by a factor
√

2.

Note that we have introduced the beam waist w0 and the Rayleigh range explicitly for the

following calculations. The phase is given by

φ(z) = arctan
(zR

z

)

(59)

We use the complete Gaussian description here instead of the simple form used in section

II.

An excellent treatment of the measurement volume has been given in Ref. 38; therefore

we will here restrict ourselves to simply quoting the important results and approximations

in sections III A 2 a and III A 2 b.

a. Intensity We now want to find an expression for the interference power in the mea-

surement volume. Since the full angle between the LO and M beams is θs, we will construct

two new coordinate systems, rotated ± θs/2 around the y-axis. We define the constants

c = cos

(

θs

2

)

s = sin

(

θs

2

)

(60)

and use them to construct the two transformations from the original system

x0 = cx − sz

y0 = y

z0 = sx + cz (61)

and

xLO = cx + sz

yLO = y

zLO = −sx + cz (62)
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This enables us to use Eq. (56) for each beam in the rotated systems. The intensity

distribution in rotated coordinates can be written

|u0u
∗
LO| =

2
√

P0PLO

πw (z0) w (zLO)
e
−

w2(zLO)[x2
0+y2

0]+w2(z0)[x2
LO+y2

LO]
w2(z0)w2(zLO) (63)

The intensity distribution in the original coordinate system can now be found by inserting

the transformations (61) and (62) into Eq. (63). A few approximations lead to the following

expression

|u0u
∗
LO| =

2
√

P0PLO

πw2
0

(

1 +
c2z2

z2
R

)−1

×

e
−

2(1+c2z2/z2
R)(c2x2+y2+s2z2)+8(csxz/zR)2

w2
0(1+c2z2/z2

R)
2

(64)

Here, the terms including zR are due to beam divergence effects. Eq. (64) can be

integrated over the (x, y)-plane to obtain the variation of the interference power as a function

of z

P (z) =

∫ ∫

dxdy|u0u
∗
LO| =

√
P0PLO

c

(

1 + c2z2/z2
R

1 + (1 + 3s2)z2/z2
R

)1/2

e
− 2s2z2

w2
0(1+c2z2/z2

R) (65)

For small scattering angles,

c ≈ 1

s ≈ θs

2
, (66)

meaning that the z-dependent pre-factor in Eq. (65) is close to unity for z ≤ zR. Therefore

the behaviour of P (z) can be gauged from the exponential function. We define the position

za where the power has fallen to a times its maximum value

P (za) = aP (0) (67)

The za-position is now inserted into the exponential function of Eq. (65)
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a = e
−

2s2z2
a

w2
0(1+c2z2

a/z2
R)

za = ±
√

ln(1/a)

2

w0

s

(

1 +
ln a

2

(

cw0

szR

)2
)−1/2

(68)

The measurement volume length can now be defined as

Lexact =

2|ze−2 | =

2w0

s

(

1 −
(

cw0

szR

)2
)−1/2

≈

4w0

θs

(

1 −
(

4

πM

)2
)−1/2

(69)

The correction from the geometrical estimate (54) can be estimated by assuming that

M ≥ 2; this means that the correction factor

(

4

πM

)2

≤ 4

π2
(70)

The increase of the measurement volume length from the geometrical estimate is due to

the divergence of the Gaussian beams.

As a final point, we can compare the beam divergence angle θd to the scattering angle θs

θd =
λ0

πw0

=
w0

zR

=
2θs

πM
(71)

A large M means that θd � θs, so that the beams will separate as one moves away from

z = 0.

b. Phase The phase of the interference in rotated coordinates is given by

e

[

ik0

(

z0−zLO+
z0[x2

0+y2
0]

2[z2
R

+z2
0]

−
zLO[x2

LO+y2
LO]

2[z2
R

+z2
LO]

)

+i(φ(z0)−φ(zLO))

]

(72)

Neglecting the (φ(z0) − φ(zLO))-term and inserting the original coordinates, the fringe

distance is
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λexact =
λ0

2s[1 + δ(z)]
≈ λ0

θs[1 + δ(z)]

δ(z) =
(1 − 3c2)z2

Rz2 − (1 + c2)c2z4

2 (z2
R + c2z2)

2 ≈ − z2

z2
R + z2

(73)

The exact expression for the fringe distance has a correction term δ(z) compared to the

geometrical estimate in Eq. (52). For example, if z = zR/2, δ is equal to -0.2, meaning a

25% increase of the fringe distance. But of course the power in the interference pattern P (z)

decreases rapidly as well.

B. Direct localization

From Eq. (54) we immediately see that spatial localization along the measurement volume

can be achieved by having a large scattering angle (large k). We will call this method direct

localization, since the measurement volume is small in the z direction.

To localize along the beams, the measurement volume length Lgeom must be much smaller

than the plasma diameter 2a, where a is the minor radius of the plasma.

Assuming that a = 0.3 m, w = 0.01 m and that we want Lgeom to be 0.2 m, the scattering

angle θs is 11◦ (or 199 mrad). This corresponds to a wavenumber k of 1180 cm−1.

However, measurements show that the scattered power decreases very fast with increas-

ing wavenumber, either as a power-law or even exponentially. This means that with our

detection system, we have investigated a wavenumber range of [14, 62] cm−1. For this inter-

val, the measurement volume is much longer than the plasma diameter, meaning that the

measurements are integrals over the entire plasma cross section.

C. Indirect localization

We stated above that the measured fluctuations are line integrated along the entire plasma

column because the scattering angle is quite small (of order 0.3◦ or 5 mrad). However, the

possibility to obtain localized measurements still exists, albeit indirect localization. For this

method to work, we use the fact that the density fluctuation wavenumber κ is anisotropic

in the directions parallel and perpendicular to the local magnetic field in the plasma. This
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method was experimentally demonstrated in the Tore Supra tokamak using the ALTAIR

diagnostic.16

The section is organized as follows: In section III C 1 we introduce the dual volume

geometry and the definition of the magnetic pitch angle. Thereafter we derive an analytical

expression for the crosspower between the volumes and finally describe issues concerning

the correlation between spatially separated measurement volumes. In section III C 2 we

describe the single volume geometry and present a simplified formula for the autopower. A

few assumptions are introduced, allowing us to simulate the expression for the autopower.

In section III C 3 we compare the dual and single volume localization criteria found in the

two initial sections.

1. Dual volume

a. Dual volume geometry The geometry belonging to the dual volume setup is shown

in Fig. 3. The left-hand plot shows a simplified version of the optical setup and the right-

hand plot shows the two volumes as seen from above. The size of the vector d connecting

the two volumes is constant for a given setup, whereas the angle θR = arcsin(dR/d) can

be varied. The length dR is the distance between the volumes along the major radius R.

The wave vectors selected by the diagnostic (k1 and k2) and their angles with respect to

R (α1 and α2) have indices corresponding to the volume number, but are identical for our

diagnostic.

b. The magnetic pitch angle The main component of the magnetic field is the toroidal

magnetic field, Bϕ. The small size of the magnetic field along R, BR, implies that a magnetic

field line is not completely in the toroidal direction, but also has a poloidal part. The

resulting angle is called the pitch angle θp, see Fig. 4.

The pitch angle is defined to be

θdef
p = arctan

(

Bθ

Bϕ

)

, (74)

which for fixed z (as in Fig. 4) becomes

θp = arctan

(

BR

Bϕ

)

(75)
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As one moves along a measurement volume from the bottom to the top of the plasma

(thereby changing z), the ratio BR/Bϕ changes, resulting in a variation of the pitch angle

θp. The central point now is that we assume that the fluctuation wavenumber parallel to

the magnetic field line (κ‖) is much smaller than the wavenumber perpendicular to the field

line (κ⊥)

κ‖ � κ⊥ (76)

This case is illustrated in Fig. 4, where only the κ⊥ part of the fluctuation wave vector

κ is shown. It is clear that when θp changes, the direction of κ⊥ will vary as well.16

c. Localized crosspower Below we will derive an expression for the scattered crosspower

between two measurement volumes (Eq. (95)). The derivation is based on work presented

in Ref. 37. We will ignore constant factors and thus only do proportionality calculations to

arrive at the integral. This equation will prove to be crucial for the understanding of the

observed signal and the limits imposed on localization by the optical setup.

The wave vectors used for the derivation are shown in Fig. 5. The size and direction of

the wave vectors k1 and k2 are allowed to differ. The positions of the measurement volumes

are r (volume 1) and r′ (volume 2). We assume that d is zero (see Fig. 3); effects associated

with a spatial separation of the volumes are discussed after the derivation.

We introduce a few additional definitions that will prove to be useful; the difference

between the two measured wave vectors kd, the vector R and the difference in volume

position ρ

kd = k1 − k2 = (kd cos β, kd sin β, 0)

R = r = (X,Y, Z)

ρ = r − r′ = (x, y, z) (77)

∗ ∗ ∗

Our starting point is the current spectral density (Eq. (39))

I12(k1,k2, ω) ∝
∫

dr

∫

dr′〈n(r, ω)n∗(r′, ω)〉U1(r)U ∗
2 (r′)eik1·re−ik2·r′ , (78)
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where 〈·〉 is a temporal average. Since

k1 · r − k2 · r′ = kd · R + k2 · ρ (79)

we can rewrite Eq. (78) using the substitution ρ = r − r′ to become

I12(k1,k2, ω) ∝
∫

dR

∫

dρ〈n(R, ω)n∗(R − ρ, ω)〉U1(R)U ∗
2 (R − ρ)eikd·Reik2·ρ (80)

We define the local spectral density of the density fluctuations to be

S(k2,R, ω) =

∫

dρ〈n(R, ω)n∗(R − ρ, ω)〉eik2·ρ, (81)

where the inverse Fourier transform yields

〈n(R, ω)n∗(R − ρ, ω)〉 ∝
∫

dκe−iκ·ρS(κ,R, ω) (82)

This allows us to simplify Eq. (80)

I12(k1,k2, ω) ∝
∫

dR

∫

dρ

∫

dκS(κ,R, ω)U(R)U(R − ρ)ei(k2−κ)·ρeikd·R, (83)

where we have assumed that the two beam profiles U1 and U ∗
2 are identical and equal to U .

Further, we assume that they have the functional form that was used in section II, so that

U(R)U(R − ρ) = e−
2

w2 (2X2+2Y 2+x2+y2−2xX−2yY ) (84)

We note that

kd · R = Xkd cos β + Y kd sin β (85)

and we assume that the local spectral density only varies along (and not across) the mea-

surement volumes

S(κ,R, ω) = S(κ, Z, ω) (86)

Inserting Eqs. (84) - (86) into Eq. (83) we arrive at
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I12(k1,k2, ω) ∝
∫

dZ

∫

dκS(κ, Z, ω)

∫

dxdydzei(k2−κ)·ρ

∫

dXdY e−
2

w2 (2X2+2Y 2+x2+y2−2xX−2yY )ei(Xkd cos β+Y kd sin β) ∝
∫

dZ

∫

dκS(κ, Z, ω)

∫

dxdydzei(k2−κ)·ρ

e−
x2

w2 +
ikdx cos β

2 e−
y2

w2 +
ikdy sin β

2 e−
k2
dw2

16 , (87)

where we have used that

∫ ∞

−∞

e−(ax2+bx+c)dx =

√

π

a
e(b2−4ac)/4a

∫

dXe−( 4
w2 X2+(− 4

w2 x−ikd cos β)X+ 2
w2 x2) =

√
π

w

2
e−

x2

w2 +
ikdx cos β

2
−

k2
dw2 cos2 β

16

∫

dY e−( 4
w2 Y 2+(− 4

w2 y−ikd sin β)Y + 2
w2 y2) =

√
π

w

2
e−

y2

w2 +
ikdy sin β

2
−

k2
dw2 sin2 β

16 (88)

From geometrical considerations (see Fig. 5) we find that

i(k2 − κ) · ρ = i(k2 cos α2 − (κ⊥ cos θp − κ‖ sin θp))x

+i(k2 sin α2 − (κ⊥ sin θp + κ‖ cos θp))y

−iκ⊥zz (89)

Since the measurement volume length L is much longer than the plasma minor radius a

we find that

∫ L/2

−L/2

dze−iκ⊥z z ≈ δ(κ⊥z) (90)

Inserting Eqs. (89) and (90) into Eq. (87) and performing the integrations over x, y and

z we arrive at

I12(k1,k2, ω) ∝
∫

dZ

∫

dκS(κ, Z, ω)e−
k2
dw2

16 e−
w2

4
(c21+c22)

c1 =
kd

2
cos β + k2 cos α2 − κ⊥ cos θp + κ‖ sin θp

c2 =
kd

2
sin β + k2 sin α2 − κ⊥ sin θp − κ‖ cos θp, (91)
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where we have used that

∫ ∞

−∞

e−(ax2+bx)dx =

√

π

a
e(b2)/4a

∫ ∞

−∞

e−( 1
w2 x2−ic1x)dx =

√
πwe−

c21w2

4

∫ ∞

−∞

e−( 1
w2 y2−ic2y)dy =

√
πwe−

c22w2

4 (92)

To perform the integration over κ we assume that κ‖ � κ⊥

S(κ, Z, ω) = S(κ⊥, Z, ω)δ(κ‖)

dκ = dκ⊥dκ‖, (93)

so that

I12(k1,k2, ω) ∝
∫

dZS(k1,k2, Z, ω)e−
k2
dw2

16 e−
w2

4
(c21+c22)

c1 =
kd

2
cos β + k2(cos α2 − cos θp)

c2 =
kd

2
sin β + k2(sin α2 − sin θp)

c2
1 + c2

2 =
k2

d

4
+ 2k2

2(1 − cos(α2 − θp))

+k2kd [cos(β − α2) − cos(β − θp)] (94)

We can reorganize the above equation to

I12(k1,k2, ω) ∝
∫

dZS(k1,k2, Z, ω)

e−
w2k2

2
2

(1−cos(α2−θp))e−
w2

4
(

k2
d
2

+k2kd[cos(β−α2)−cos(β−θp)]) (95)

The following relations exist

kd =
√

k2
1 + k2

2 − 2k1k2 cos(α2 − α1)

β = arccos

(

k1 cos α1 − k2 cos α2

kd

)

, (96)

meaning that Eq. (95) is fully determined by k1, k2 and ω.
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d. Spatially separated measurement volumes Eq. (76) means that turbulence in real

space consists of elongated structures extended along the magnetic field lines. Since κ⊥ is

large, the structure size perpendicular to the magnetic field (i.e. cross-field) is modest. This

in turn indicates that the cross-field correlation length L⊥ is small, experimentally found to

be typically of order 1 cm.41 The angle θR of the vector connecting the two measurement

volumes is fixed, whereas θp varies with z. Letting d and B coincide at one volume, the

difference between the two angles leads to the volumes being either connected or unconnected

at the other volume, see Fig. 6. An approximate threshold criterion for the fluctuations in

the volumes being correlated is

sin(|θR − θp(z)|) =
w + L⊥/2

d
, (97)

or

θ⊥(z) = |θR − θp(z)| ≈ w + L⊥/2

d
(98)

for small angles (in Ref. 2 we used θ⊥(z) ≈ L⊥/d). This last formula allows us to distinguish

between three cases:

1. θ⊥(z) < w+L⊥/2
d

for all z: The fluctuations in the volumes are correlated along the

entire path.

2. w+L⊥/2
d

< θ⊥(z) for some z and θ⊥(z) < w+L⊥/2
d

for other z: The fluctuations are

correlated for a section of the path.

3. θ⊥(z) > w+L⊥/2
d

for all z: The fluctuations in the volumes are uncorrelated along the

entire path.

For experimental settings where case 2 is true, some localization can be obtained by

calculating the crosspower spectrum between the volumes. In Ref. 4 we demonstrate this

technique for a situation where w = 4 mm and d = 29 mm. This along with L⊥ = 1 cm

means that w+L⊥/2
d

× 180
π

= 18◦. The final issue is how to incorporate the measurement

volume separation into the local spectral density S(k1,k2, Z, ω) from Eq. (95). Assuming

that we work with frequency integrated measurements we can drop ω; further, we assume

that S is independent of the wave vector. The remaining dependency is that of Z, the
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vertical coordinate along the measurement volumes. For the single volume case below, S is

simply assumed to be proportional to δn2, see Eq. (105). In the present case, however, we

need to treat the correlation between the volumes. A plausible expression for the correlation

function is

C⊥(z) = exp

[

−
( |θR − θp(z)|d

w + L⊥/2

)2
]

, (99)

which is a Gaussian-type function. All quantities are known and independent of z except

θp(z); but we should note that L⊥ could depend on z. The correlation function C⊥(z)

possesses the expected limits:

• C⊥(z) = 1 for |θR − θp(z)| = 0

• C⊥(z) = 1 for d = 0

• limw→∞ C⊥(z) = 1

• limL⊥→∞ C⊥(z) = 1

For actual calculations we would replace S by C⊥(z)× δn2 in Eq. (95) and use Eq. (107)

for the density fluctuation profile. For the single volume simulations in the following we do

not need to include C⊥(z).

One could argue that the pitch angle θp in the two spatially separated measurement

volumes is different, so that the exponential functions in Eq. (95) would have to be modified.

However, the actual distance between the volumes is small and therefore the pitch angles

are almost identical.

2. Single volume

The material in this section is based on work presented in Ref. 42.

a. Single volume geometry Fig. 7 shows the geometry associated with the single vol-

ume setup. The definitions are completely analogous to the ones in Fig. 3.

b. Localized autopower The current spectral density (or autopower) for a single volume

can be found from Eq. (95) by assuming that kd = 0 and that we only have a single wave

vector k

31



I11(k, ω) ∝
∫

dZS(k, Z, ω)e−
w2k2

2
(1−cos(α−θp)) (100)

Assuming that the angles α and θp are small, we can expand the function in the exponent

of Eq. (100) as

2k2[1 − cos(α − θp)] ≈ 2k2[(α − θp)2]/2 = k2(α − θp)2 (101)

We introduce the instrumental selectivity function

χ = e
−
(

α−θp
∆α

)2

, (102)

where ∆α = ∆k
k

= 2
kw

is the transverse relative wavenumber resolution. Using this instru-

mental function, the scattered power can be written

I11(k, ω) ∝
∫

dZS(k, Z, ω)e
−
(

α−θp
∆α

)2

=
∫

dZS(k, Z, ω)χ (103)

We will use this simplified equation to study how spatial resolution can be obtained

indirectly. To make simulations for this purpose we need to assume a pitch angle profile and

an expression for the frequency integrated local spectral density S(k, Z).

c. Modelled magnetic pitch angle For our simulations we will take the pitch angle to

be described by

θp(r) = arctan

(

Bθ

Bϕ

)

=
r

qaR0

(

2 − 2ρ2 + ρ4
) (

2 − ρ2
)

, (104)

an analytical profile constructed by J.H.Misguich,42 see Fig. 8. Here, ρ = r/a is the

normalized minor radius coordinate, qa is the magnetic field winding number at r = a and

R0 is the major radius of the plasma. The total pitch angle variation ∆θp,tot is seen to be

about 15◦.

d. Fluctuation profiles The frequency integrated local spectral density is assumed to

be independent of the selected wave vector

S(k, r) = S(r) = δn2, (105)
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where we have replaced the beam coordinate Z by the radial coordinate r. The normalized

density profile is assumed to be

n(r)

n0

= 0.1 + 0.9
√

(1 − ρ2), (106)

see Fig. 9.

Further, the relative density fluctuation profile is assumed to have the following structure

δn(r)

n(r)
= b + c |ρ|p , (107)

where b, c and p are fit parameters. At present we will assume the following fit parameters:

b = 0.01, c = 0.1 and p = 3, see the left-hand plot of Fig. 10.

e. Simulations Above we have introduced spatially localized expressions for all external

quantities entering Eq. (103). We set the wavenumber k to 15 cm−1 and the beam waist

w to 2.7 cm. This means that the transverse relative wavenumber resolution ∆α is equal

to 2.8◦. Fig. 11 shows χ for α = 0◦ (left) and 5◦ (right). We observe that by changing the

diagnostic angle α, χ changes position in the plasma.

Fig. 12 shows the integrand of Eq. (103) for the two cases shown in Fig. 11. We see that

the 0◦ case corresponds to a signal originating in the central part of the plasma, while the

5◦ case detects edge fluctuations.

Fig. 13 shows figures corresponding to Figs. 11 and 12, but now for a mini α-scan: [-5◦,

-2.5◦, 0◦, 2.5◦, 5◦].

Fig. 14 shows the integrands in Fig. 13 integrated along ρ (= I11).

Finally, Fig. 15 shows the effect of increasing the transverse relative wavenumber resolu-

tion ∆α from 2.8◦ to 28.0◦. The instrumental selectivity function (left) becomes extremely

broad, leading to the total scattered power having no significant variation with α.

What we have demonstrated with the above simulations is that for localization to be

possible, the following has to be true

∆θp,tot[degrees] � ∆α[degrees] =
2

kw
× 180

π
(108)

For examples where this technique was used to measure turbulence profiles see Refs.

5,42,43.
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3. Discussion

We end the section with a brief discussion on the dual and single volume localization

criteria. The single volume criterion has already been written in Eq. (108). To discuss the

dual volume criterion in more detail, we introduce ∆θ⊥,tot, which is the maximum absolute

difference between θR and θp(z) assuming that they are equal at some z (case 2 in section

III C 1). The dual volume localization condition for this situation is

∆θp,tot[degrees] ≥ ∆θ⊥,tot[degrees] � w + L⊥/2

d
× 180

π
(109)

Alternatively, even if this criterion is not fulfilled (case 1), some localization can be

obtained using case 3: If θR is set so that it is outside the plasma (does not coincide with

θp(z) for any z), measurements weighted towards the top and bottom of the plasma can be

made.4

IV. CONCLUSIONS

In section II, we derived an expression for the detected photocurrent from first princi-

ples. Thereafter demodulation was explained, phase separation of the detected signal was

interpreted and an expression for the density fluctuations squared was presented. Finally, a

simple example illustrated this density fluctuation formula for Gaussian beams.

In section III, the measurement volume was treated in detail. The simple geometrical

estimate was compared to a more elaborate treatment. Following this, direct and indirect

localization was discussed, and general expressions for auto- and crosspower were derived.

A discussion ensued, and finally simulations assisted in the interpretation of localized au-

topower from a single measurement volume.
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wave vector k.
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FIG. 8: Modelled pitch angle in degrees versus ρ. We have used qa = 3.3, R0 = 2.38 m and a =

0.75 m (Tore Supra parameters, see Ref. 42).

45



1

0
-1 1r

normalized

density

FIG. 9: Modelled normalized density versus ρ.

46



0.12

0.0
-1 1r

dn/n [a.u.]

0.002

0.0

dn [a.u.]
2

-1 1r

FIG. 10: Left: δn/n versus ρ, right: δn2 versus ρ.
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FIG. 11: Left: χ versus ρ for α = 0◦, right: χ versus ρ for α = 5◦ (k = 15 cm−1, w = 2.7 cm).
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FIG. 12: Left: Integrand for α = 0◦, right: Integrand for α = 5◦ (k = 15 cm−1, w = 2.7 cm).
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FIG. 13: Left: χ for five α values, right: Corresponding integrands (k = 15 cm−1, w = 2.7 cm).
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FIG. 14: Total scattered power (I11) versus α (k = 15 cm−1, w = 2.7 cm).
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FIG. 15: Left: χ for α = 0 degrees versus ρ, right: Total scattered power (I11) versus α (k = 15

cm−1, w = 0.27 cm).
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