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ABSTRACT 
Energy deposition of MeV electrons in dense plasmas, critical for fast ignition in 

inertial confinement fusion (ICF), is modeled analytically. It is shown that classical 

stopping and scattering dominate electron transport and energy deposition when the 

electrons reach the dense plasmas in the cores of compressed targets, while “anomalous” 

stopping associated with self-generated fields and micro instabilities (suggested by 

previous simulations) might initially play an important role in the lower-density plasmas 

outside the dense core. We calculate the energy deposition of MeV electrons in pre-

compressed deuterium-tritium (DT) fast-ignition targets, rigorously treating electron 

energy loss from scattering, longitudinal straggling and transverse blooming. We 

demonstrate that, while the initial penetration of electrons in a compressed target results 

in approximately uniform energy deposition, the latter stages involve mutual couplings of 

energy loss, straggling, and blooming that lead to enhanced, non-uniform energy 

deposition. These results are critically important for quantitatively assessing ignition 

requirements for fast ignition. 
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I. INTRODUCTION 
Fast ignition,1 an alternative approach to inertial confinement fusion (ICF), has 

recently attracted significant attention.  In this scheme, different from the conventional 

approach to central hot-spot ignition, a pre-compressed deuterium-tritium (DT) target 

will be ignited by an external “spark”. Since it separates capsule compression from hot 

spot formation, fast ignition may potentially relax the conditions on target compression 

and reduce the total energy requirements for ICF ignition, leading to higher target gain.1-3   

Successful realization of fast ignition requires understanding and controlling of 

the transport and energy deposition of MeV electrons in the target. Energetic electrons 

are generated by an ultrahigh-intensity (≥ 1018 W/cm2), short-pulse (≤ 10-12 s) laser 

interacting at the critical surface of a pre-compressed target. During a time period of ~10 

ps, a total energy ~ 10 kJ needs to be delivered to the compressed core; fast ignition then 

occurs in response to electron energy deposition, with DT alphas bootstrapping a fusion 

burn wave that propagates to the surrounding dense fuel. 1-3 

As illustrated schematically in Fig. 1, the generated electron beam is typically 

characterized by a radius ~10 µm and current ≥3×108 A.  As it propagates over a distance 

~ 100 µm to the core, such an electron beam experiences a tremendous dynamic range of 

plasma conditions, from the initial critical surface (nc ~1021/cm3) to the highly 

compressed core (ne ~1026/cm3). Return currents and associated self fields are generated. 
1-3 Numerical simulations 4-6 suggest that the electron transport is highly filamented due 

to self fields and microscopic instabilities,7 which occur at early times when beam 

density, nb, is comparable to or larger than the critical density nc.  In these simulations 

plasma heating is dominated by “anomalous” stopping which may be largely 

characterized by collective beam stopping, possibly due to coalescence of current 

filaments and related ion dynamics. Return-current Ohmic heating also plays an 

important role due to the relatively low plasma temperature.3 Subsequently, however, as 

these electrons enter the dense plasma region where nb/ne << 1 and plasma Te ~ keV, 8,9 

classical Coulomb collisions will dominate electron transport and energy deposition (as 

will be discussed in the next section).  

This paper is organized as follows. Section II discusses interaction regimes for 

MeV electrons in dense plasmas. An analytic model, which links electron energy loss 
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with range straggling and beam blooming, is presented in Section III. Section IV 

discusses some fundamental dependences and consequences of these calculations, while 

Section V summarizes our major results. 

 
II. ELECTRON TRANSPORT AND ENERGY DEPOSITION IN THE DENSE 
CORE 

 While numerical simulations have suggested that microscopic instabilities and 

anomalous stopping might initially play an important role in the outer region of low-

density plasma, we argue that the interaction of the electrons with dense plasma in the 

core is dominated by classical Coulomb collisions and that the effects of scattering will 

ultimately determine the electron transport and energy deposition.8,9 To illustrate this, we 

consider a 1-MeV electron beam (beam radius rb=10 µm) in a compressed DT target 

(ρ=300 g/cm3 and Te=5 keV). The maximum field Bmax= µ0Ib/(2πrb) occurs at the beam 

surface, where  

)Amp(10
)ps()MeV(

)kJ( 92 ×==
b

b
bbb tE

revnI επ                             (1) 

is the beam current calculated in terms of electron energy E, beam energy εb, and the 

beam pulse duration tb. 

Relevant to fast ignition (E=1 MeV and tb =10 ps), Fig. 2 plots the Ib and 

associated Bmax as a function of the beam energy. For example, for ignition energy εb=15 

kJ, Ib ~ 109 A and Bmax ~ 1011 Gauss are expected. The maximum electron gyro radius 

(rg) associated to Bmax is Gauss)()MeV(1038.2)cm( 3 BEeBcvmr eg ×== . Figure 3 

shows rg as a function of beam energy for different beam radii; it is consistently larger 

than plasma Debye length λD. This suggests that an electron does not feel the magnetic 

field locally but is subjected to Coulomb collisions. In addition, while ωceτ  >>1 in this 

region, one has L⎜⎜ >> λ and L⊥ >> grλ (ωce is the electron gyro frequency; λ=vτ  is the 

mean free path and τ  is the collision time; L⎜⎜ is the longitudinal plasma scale length and 

L⊥ lateral scale length). This is the typical collisional transport regime. 10-12 Furthermore, 

as is illustrated in Fig. 4, the resistivity of a compressed core is shown to be very small13 

due to the relative high plasma temperature 10 resulting from shock heating and capsule 
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compression; consequently, the interaction of the electron with dense plasma is well 

characterized by classical Coulomb collisions and the effects of the scattering will 

dominate the electron transport and energy deposition. 

Thus a criterion for distinguishing the interaction regimes and for illustrating their 

relative importance 9 is approximately established based on above physics arguments as 

be

eb

re

b

Tr

Emt
n
n

Dg
εµ

π
ζ

λ 0
2
0

32 24
=≡

=
 ,                                               (2) 

where r0 is the classic electron radius. Figure 5 shows this ratio as a function of the beam 

energy for the case of 1 MeV electrons with tb=10 ps in a DT plasma at 5 keV: when 

ζ≥eb nn  the effects of self fields and associated instabilities are important, while when 

ζ<eb nn the effects of classical Coulomb scattering are dominant.  

We summarize and restate the above discussions from a different point of view in 

Fig. 6: when energetic electrons travel farther into the rapidly increased density portions 

of the capsule (nb/ne < 10-2), Weibel-like instabilities7 are stabilized and the electrons are 

subject primarily to scattering processes. This stabilization can be understood since the 

gyro radius associated with the self-generated fields of the beam current is much larger 

than λD . Thus in this regime, the interaction can be envisioned as the linear superposition 

of individual, isolated electrons interacting with plasma.8,9  Hence these scattering 

processes, which involve energy loss, straggling and beam blooming, become the 

dominant mechanism that determines the details of energy deposition, whether in the 

dense core or outside, and therefore ultimately determine the effectiveness of capsule 

ignition. 8,9 

 
III. THE MODEL OF ELECTRON ENERGY DEPOSITION 

In the context of fast ignition, an analytic model8,9 has recently been developed to 

address the energy deposition of energetic electrons in the dense core. Country to 

previous work,14 this model rigorously treats the effects of the energy loss due to electron 

scattering and delineates the inextricable relationship of straggling and blooming with 

enhanced electron energy deposition. Specifically, the linear energy stopping power is 

given8,9 
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ds
dE

dx
dE 1cos −>=< θ   .                                               (3) 

where dE/ds is plasma stopping power (continuous slowing down)  
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taken from Ref. 8, and  
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The effects of the scattering are manifested by the macroscopic transport cross sections of 

various orders (ℓ) which are all a function of the energy loss, 
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In particular, when ℓ=1,8,9 
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which relates to the slowing down cross section and characterizes the loss of directed 

velocity (momentum) in the scattering 11; and when ℓ=2,9                         
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which relates to the deflection cross section and represents mean-square increment in the 

transverse electron velocity during the scattering process.11 From Eq. (3), dE/dx is 

effectively enhanced over dE/ds due to the effects of the scattering (<cosθ> ≤ 1).  

Furthermore, in our calculations, the longitudinal straggling is9 

22)( 〉〈−〉〈= xxEΣR ,                                                   (9) 

and the beam blooming is9 

      〉〈= 2yEΣ B )(  ,                                                  (10) 
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(since azimuzal symmetry: <y> = <z> = 0). Both ΣR(E) and ΣB(E) are calculated by 

evaluating basic moments required for the calculation of the longitudinal and lateral 

distributions:   
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Figure 7 shows both ΣR(E) and ΣB(E) as a function of electron energy loss 

[∆E=(E0-E)/E0] for 1-MeV electrons in a DT plasma (ρ=300/cm3, Te=5 keV). As a 

consequence of the effects of energy loss upon the scattering, it is shown that the energy 

deposition, towards the end of the penetration, is transferred to an extended region about 

the mean penetration of 13.9 µm, specifically ~ ±3 µm longitudinally and ~ ±5 µm 

laterally. 9 Further illustrated in Fig. 8, the stopping power is now seen effectively 

enhanced in the extended region in which straggling and blooming are important. Such 

enhancement forms an effective “Bragg peak”. In contrast, the traditional electron 

stopping Bragg peak15,16 occurs at energies ~ 50 eV or less for Z=1, which results solely 

from the velocity match between the incident electron and plasma electrons and included 

no scattering at all.17 The combined effects of blooming and straggling will result in an 

asymmetric energy deposition region about the mean penetration.9 

Figure 9 further shows the details of the energy deposition in a compressed target. 

Notable is the fact that little straggling or blooming occurs until the 1-MeV electrons 

have traversed a significant portion of the final penetration (~ 60%, corresponding to only 

~ 40% energy loss). We can see that the assumption of uniform energy deposition, used 
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in some previous calculations and also plotted in Fig. 9, has some approximate 

justification only for the first ~ 40% of the energy loss. For energy loss greater than 40%, 

both straggling and blooming expand linearly with the square root of the penetration, an 

effect associated with the enhanced energy loss of the effective Bragg peak.  As a direct 

consequence of these multiple scattering effects, these results demonstrate the 

inextricably linkage between enhanced energy loss, straggling, and blooming.9 

 
IV. DISCUSSIONS 

To further delineate the basic features and applications of this model, the 

fundamental dependence of the scattering effects on plasma Z, density, temperature, and 

electron energy are discussed in this section. However, because of the non-linear 

coupling of energy loss, straggling, and blooming, as is reflected in the complex 

integrands and limits in the double and triple integrals [for example, Eqs. (11) - (14)], 

there is no simple analytic reduction for these results. Thus, we will evaluate these effects 

and their dependences, albeit numerically, in the context of the fast ignition. 

 

A. Dependence of scattering on plasma Z  
The strong Z–dependence of scattering is directly reflected in the penetration, 

blooming and straggling. To explicitly illustrate this, both <x> and ΣB (ΣB / <x>) are 

evaluated numerically for Z=1, 4, 13, and 29, and the results are plotted in Fig. 10. For 

facilitating the comparison, we have assumed that these plasmas all have the same 

electron density (ne=7.2×1025 and Te= 5 keV). With this assumption, the total path length 

( ( ) dEdsdER eT

E

1

0

−

∫=
~

),8,9,18 which doesn’t include at all the effects of scattering, should 

be identical for all these plasmas because energy loss to plasma electrons is the only 

mechanism for electron stopping. However, as shown in Fig. 10(a), including the effects 

of scattering significantly decreases the penetration. In particular, with increasing Z, the 

penetration, but not the total path length, rapidly drops and blooming effects (ΣB/<x>) 

notably increase [Fig. 10(a) and 10(b)]. This strong Z-dependence results directly from 

the macroscopic transport cross sections, Eqs. (7) and (8), where the scattering scale as Z2 

and will play an overwhelmingly dominant role for higher Z plasmas. 
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B. Dependence of scattering on plasma density  

As illustrated in Fig. 11, the scattering effects (ΣR/<x> and ΣB/<x>) and ρ<x> are 

insensitive to the plasma density. This insensitivity results from the effective cancellation 

of the density in these calculations. (For example, ρ ∝ ni while <x>∝ ni
-1. The slight 

increase in ρ<x> with density simply reflects the slight decrease in the Coulomb 

logarithm of the stopping power as the density increases8,9). The significance of these 

results is that the overall effect of the scattering is solely determined by the areal density 

that these electron travel through. Consequently, the plasma density gradients, such as 

would occur towards the core region of an actual fast ignition experiment, will not impact 

the general scope or the final results of these calculations.  

 

C. Dependence of scattering on plasma temperature 
The temperature dependence is shown to be weak; As illustrated in Fig. 12, a 

factor of 10 reduction in temperature results in only a ~ 10% reduction in the penetration.  

This is because the projectile electrons are so energetic compared to the background 

plasmas that plasma temperature dependence is weak.8,9 However, as the initial electron 

energy decreases, the effect of scattering becomes more pronounced (this is similar to 

what is seen in the scattering of energetic electrons in metals19).  For a given electron 

energy, scattering effects slightly decrease as the target plasma temperature decreases, i.e. 

the path of an electron slightly straightens as the target plasma temperature drops.   For 

example, when the target plasma temperature changes from 5.0 to 0.5 keV (ρ=300 

g/cm3), the ratio R/<Xp> is reduced by ~ 5% for 1-MeV electrons.   

 

D. Dependence of scattering on electron energy  
Finally, the dependence of scattering on projectile electron energy is explicitly 

illustrated in Fig. 13:  while electrons with higher energy penetrate farther, the scattering 

effects (ΣR/<x> and ΣB/<x>) are significantly enhanced as the electron energy decreases 

from 10 to 0.1 MeV. These effects are also important for the electron preheat 

problem,20,21 even for regimes of lower energy and much lower density.  
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V. SUMMARY 
In summary, we have analytically modeled the energy deposition of MeV 

electrons in dense plasmas in the context of ICF fast ignition. It is found that the effects 

of classical stopping and scattering dominate the electron transport and energy deposition 

in the region of dense plasmas. The calculations presented in this article rigorously treat 

the effects of the energy loss due to multiple electron scattering, as well as the effects of 

longitudinal straggling and transverse blooming, and their inextricable relationship with 

enhanced electron energy deposition. The penetration of 1-MeV electrons is reduced 

from 0.54 to 0.41 g/cm2. In particular, it has been demonstrated that, while the initial 

penetration results in approximately uniform energy deposition, the latter penetration has 

mutual couplings of energy loss, straggling, and blooming that lead to an extended region 

of enhanced, non-uniform energy deposition. These results are critically important for 

quantitatively assessing ignition requirements of fast ignition. 
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1-MeV electron 
 tp~10ps 

rb~10 µm  

 
Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1. The fast ignition scheme is schematically illustrated in this diagram: ~MeV 

electrons generated by high intensity, shot-pulse laser at the critical surface need to 

transport to the pre-compressed target core. These electrons interact with, and deposit 

energy to, the background plasma whose density evolves from 1021 to 1026 /cm3. 

Typically, the electron beam has a pulse length ~10 ps and beam radius ~10 µm. 
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Fig. 2 
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FIG. 2. The beam current Ib and associated Bmax are plotted as a function of the beam 

energy εb, for E=1 MeV and tb =10 ps, a typical case relevant to fast ignition. 
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Fig. 3 
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FIG. 3. The maximum electron gyroradius rg as a function of beam energy for the cases 

where beam radius rb=10, 20, 30, 40 µm, and the plasma Debye length λD in the 

compressed target (a DT plasma with ρ=300 g/cm3 and Te=5 keV). It is seen that for the 

cases we are considering rg’s are all consistently larger than the λD. Only for very large 

energy deposition and very small deposition regions does rg approach λD.  
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Fig. 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 4. The resistivity of a compressed core is shown to be several orders of magnitude 

smaller than that of a plasma generated by a short pulse laser on a solid target such as Al 

(for which case the resistivity plays an important role in plasma heating).13  
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Fig. 5 
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FIG. 5. The ratio defined by Eq. (2) is plotted as a function of the beam energy for the 

case of 1-MeV electrons with tb=10 ps in plasma at 5 keV: when ζ≥eb nn the effects 

of self fields and associated instabilities are important while when ζ<eb nn the effects of 

classical Coulomb scattering are dominant. It is the later that the ignition occurs and the 

ignition conditions are determined. 8,9 
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Fig. 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 6. Schematic illustration of MeV electron transport and energy deposition in a pre-

compressed target. Two distinct regions for electron transport are illustrated: First, when 

nb/ne > 10-2, electron transport is highly filamented due to Weibel-like instabilities which 

dominate energy loss and beam blooming; however, for nb/ne < 10-2, for which λD is 

clearly smaller than the energetic electron gyro radius associated with the beam current, 

the Weibel-like instabilities7 are stabilized and the electrons are then subject to the 

scattering, straggling, and blooming processes described herein. 8,9   
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Fig. 7 
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FIG. 7. The calculated range straggling ΣR(E) and beam blooming ΣB(E) as a function of 

electron residual energy for 1-MeV electrons in a DT plasma (ρ=300/cm3, Te=5 keV).  
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Fig. 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 8. The stopping power plotted as a function of the electron penetration for 1-MeV 

electrons in a DT plasma (ρ=300g/cm3 and Te=5 keV).  The heavy solid line represents 

the mean energy loss, while the two dashed lines schematically indicate  the straggling 

range over which energy is effectively spread.9 The thin line illustrates the continuous 

slowing-down approximation, 15-17 and is directly related to R, the total path length. 
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Fig. 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 9. Schematic illustration of the energy deposition profile for 1-MeV electrons in a 

DT plasma of 300g/cm3 at 5 keV.  After considering the mutual coupling between 

stopping, straggling and blooming, we find that the energy deposition towards the end of 

the penetration occurs in an extended, non-uniform region about the mean penetration of 

13.8 µm, specifically~ ±5 µm laterally, and longitudinally > 3 µm in the backward 

direction and < 3 µm in the forward direction.  
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Fig. 10 
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FIG. 10. The total path length (R), penetration (<x>) and blooming  (ΣB / <x>) are 

evaluated for interactions of 1 MeV electrons with DT, beryllium, aluminum and copper 

plasmas, assuming plasma Te= 5 keV and ne=7.2×1025 in every cases. For Cu plasma, 

bremsstrahlung loses are about 5%, and are ignored. 
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Fig. 11 
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FIG.11. The scattering effects (ΣR/<x> and ΣB/<x>) and the areal density (ρ<x>) for 1 

MeV electrons in DT plasmas, plotted as a function of the plasma density. The 

dependence of scattering are shown to be relative insensitive to the densities in this 

regime.8,9 
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Fig. 12 
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FIG. 12 The calculated penetration of 1-MeV electrons as a function of plasma 

temperature in a DT plasmas with ρ =300g/cm3. It is seen that ρ<x> is relatively 

insensitive to plasma temperature. 
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Fig. 13 
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FIG. 13. Illustration of the enhancement of scattering effects (ΣR/<x> and ΣB/<x>), as 

well as the electron penetration, as the electron energy decreases from 10 to 0.1 MeV in a 

DT plasma of 300g/cm3 at 5 keV. 

 

 
 
 

 
 


