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 Abstract 

The effect of magnetic topology on ion and impurity flows in a tokamak is considered by 

investigating the consequences of (i) the reversal of toroidal and poloidal magnetic fields 

and currents, (ii) a switch from lower to upper X-point operation, (iii) poloidal magnetic 

field or plasma current reversal, and (iv) toroidal magnetic field reversal. The general 

symmetries associated with magnetic topology changes in tokamaks are employed to 

demonstrate that the flux surface flows inside and outside the separatrix observed in 

Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] can be used to 

determine the flow features, including neoclassical and turbulent effects and in the 

presence of charge exchange. 

I. INTRODUCTION 

It is has probably been recognized ever since tokamaks were first constructed that 

they possess rather general symmetry properties with respect to magnetic field and 

plasma flow reversals. It is clear, for example, that turning over an up-down symmetric 

tokamak gives the same configuration as that obtained by reversing all currents and 

flows. Symmetry properties of up-down asymmetric tokamaks are more complicated. In 

particular, there has been a general recognition that the power balance between the outer 

and inner divertor plates in single null configurations is sensitive to magnetic topology [1 

- 3]. However, to the best of our knowledge no orderly treatment existed until recently. 

Cohen and Ryutov [4] appear to be the first to systematically observe that 

magnetic confinement devices with axisymmetric applied magnetic fields, conducting 

walls, and sources and sinks possess rather general symmetry properties with respect to 

reversals in the signs of the poloidal and/or toroidal magnetic fields. Associated with 

these symmetry properties are prescribed changes in the plasma flows since reversing 

poloidal and/or toroidal magnetic fields corresponds to reversing toroidal and/or poloidal 
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currents and therefore flows. Cohen and Ryutov showed rigorously that simultaneously 

reversing all toroidal flows and currents and, therefore, poloidal magnetic fields, leaves a 

tokamak of arbitrary poloidal cross-section physically unchanged. The same pertains to 

simultaneously reversing toroidal magnetic field and poloidal flows and currents in an 

up-down symmetric tokamak. 

We extend Cohen and Ryutov’s formalism by investigating the response of the 

flow on a flux surface of arbitrary cross-section to magnetic field reversals. More 

importantly, we generalize their results to determine the toroidal and poloidal flow 

response associated with switching from lower to upper X-point operation. In addition, 

we demonstrate that understanding changes in the flows provides a means of measuring 

the radial electric field and the parts of the flow that are symmetric or asymmetric with 

respect to the equatorial plane. 

The changes in magnetic topology that we consider herein alter the flows and 

radial electric field through reversal of (i) toroidal and poloidal magnetic fields (or 

equivalently poloidal and toroidal currents and flows), (ii) the X-point from lower single 

null to upper single null, (iii) the poloidal magnetic field (or equivalently all toroidal 

currents and flows), and (iv) the toroidal magnetic field (or equivalently poloidal currents 

and flows). Sensitivity to magnetic topology is observed in both the core [5, 6] and in the 

scrape-off layer [7, 8] flows of Alcator C-Mod.  

In the next section we briefly review and extend the arguments of Cohen and 

Ryutov. The results given there hold in the presence of impurities (even with poloidal 

asymmetries due to toroidal rotation [9]), turbulence, and neutrals. Section III presents a 

neoclassical relation between flows of collisional high-Z trace impurities and background 

ions. Most core measurements are from the Doppler shifts of Argon or some other heavy 

trace impurities. Neoclassical theory provides the only means known for relating impurity 

and background ion flows. The expression given is obtained following the procedures of 

Refs. [10 - 12], with the details presented in the Appendix. In Sec. IV we demonstrate 

how the up-down symmetric and asymmetric portions of the flows can be measured by 

examining the flow changes with magnetic topology in both the core and scrape-off layer 

of Alcator C-Mod [5 - 8]. These flows can then be used to evaluate the radial electric 
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field and determine the configuration with the optimum flow shear. We finish with a brief 

discussion of results and conclusions in Sec. V. 

 

II. EFFECTS OF MAGNETIC TOPOLOGY ON ION FLOWS 

We begin by introducing our tokamak conventions. We employ a coordinate 

system ( ψ, ϑ , ζ) fixed in space, with ψ the flux function associated with the poloidal 

magnetic field, and ζ  and ϑ  are the toroidal and poloidal angle variables, respectively. 

We define the axisymmetric portion of the magnetic field by 

t pB I B B= ∇ζ + ∇ζ × ∇ψ ≡ +
G G G

 or equivalently by B ( q )= ∇ ζ − ϑ × ∇ψ
G

, where tB
G

 and pB
G

 

are the toroidal and poloidal magnetic fields, respectively, q 

=  (
G
B ⋅∇ζ) /(

G
B ⋅∇ϑ) =  I/(R2G

B ⋅∇ϑ) is the safety factor, and I= tI( ) RBψ =  with R the 

cylindrical radial distance from the tokamak axis of symmetry and t tB | B |=
G

. We choose 

ζ  in such a way that it increases in the clockwise direction when the tokamak is viewed 

from above. Normal operation corresponds to I > 0, toroidal magnetic field and toroidal 

plasma current in the same direction, and the poloidal angle ϑ  increasing in the ∇ζ ×∇ψ  

direction, with the magnetic drift towards a lower X-point. 

Changes in the magnetic field correspond to changes in the current density and 

therefore the flows. The flow on a flux surface is most conveniently written in the form 

   
G
V = ωR2∇ζ + u

G
B = (ωR2+ uI)∇ζ + u∇ζ×∇ψ.  (1)  

In our notation a positive   V|| =
G
B ⋅

G
V /B = (ωI /B) + uB indicates a parallel flow in the 

direction of   
G
B . Our convention means that if   

G
B  and   

G
V  change sign together, V|| does not 

change sign. Moreover, the toroidal flow is given by   Vζ = R
G
V ⋅ ∇ζ = ωR + (uI /R). 

Summarizing Cohen and Ryutov [4] observations, and extending them to include 

X-point reversal and poloidal flow we find the following four cases for the impact of 

magnetic topology changes on ion flows. 

(i) Total magnetic field reversed:   
G
B = I∇ζ +∇ζ×∇ψ → −I∇ζ − ∇ζ×∇ψ ≡

G
B i. 

If we first consider an up-down symmetric tokamak and turn it over (by rotating 

about a radial axis in the equatorial plane to make ζ  and all currents reverse directions, 
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along with the axis of symmetry), then with respect to the fixed coordinate system both 

the magnetic field and the flux surface flow must reverse, giving 
2 2 2

iV R uB R uB R uB= ω ∇ζ + → −ω ∇ζ − = −ω ∇ζ +
G G G G

 

or ω → −ω  and u u→ , where   
G
B i = −I∇ζ − ∇ζ×∇ψ. The sign of u is unchanged because 

  
G
B →-  

G
B . 

If a tokamak is not up-down symmetric we cannot simply turn it over. To reverse 

the total magnetic field the currents generating both the symmetric and asymmetric parts 

of   
G
B  must be reversed so that the up-down symmetric and asymmetric parts of the flow 

also reverse while keeping the shape of the flux surface fixed to give 

   
G
V =ωR2∇ζ+u

G
B → −ωR2∇ζ+u

G
B i=

G
V i. (2) 

An initially co-current toroidal flow (ωR2+ uI > 0) remains co-current upon field reversal 

since currents and flows reverse together. In addition, the poloidal flow and poloidal 

magnetic field reverse together. 

 Not surprisingly, the sum and difference of the two flows in terms of the original 

magnetic field are simply 

   
G
V +

G
V i = 0 (3) 

and 
   

G
V −

G
V i = 2ωR2∇ζ + 2u

G
B . (4) 

A vanishing sum flow means that all currents and magnetic fields have been reversed in 

the presence of turbulence, heating, and/or neutrals. The difference expression is no more 

useful than Eq. (2). 

(ii) X-point location reversed:   
G
B =

G
B s +

G
B a. 

Next, we consider the more interesting and subtle case where, for example, a lower 

single null configuration is changed to an upper single null without changing the 

direction of the toroidal or poloidal magnetic field and while maintaining the same mirror 

image cross sectional shape by letting ψ(R,Z) → ψ(R,−Z) where Z = 0 is the equatorial 

plane defined by the magnetic axis. In this case it is convenient to view the magnetic field 

as generated by symmetric (subscript s) and asymmetric (subscript a) toroidal currents so 

it contains symmetric and asymmetric portions,   
G
B =

G
B s +

G
B a, as does the flow in a flux 

surface,   
G
V =

G
V s +

G
V a =(ωs+ωa)R2∇ζ+(us+ua)

G
B , where ω = ωs+ωa and u = us+ua. In an 
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up-down symmetric tokamak in the presence of up-down symmetric turbulence, neutrals, 

and heating ωa = 0 = ua. 

To switch from lower to upper null only the up-down asymmetric part of the toroidal 

current densities and flows are reversed to reverse the direction of the asymmetric part of 

the magnetic field. This case is equivalent to first letting   
G
B → −

G
B  to reverse all flows, and 

then turning the tokamak over to reverse   
G
B  again along with the X-point, so that only the 

asymmetric portions of the flow are reversed. As a result, this case isolates the 

asymmetric parts of the flow by giving 

   
G
V =(ωs+ωa)R2∇ζ+(us+ua)

G
B → (ωs−ωa)R2∇ζ+ (us−ua)

G
B ii =

G
V ii, (5) 

where   
G
B ii =

G
B s −

G
B a , with   

G
B s and   

G
B a the up-down symmetric and asymmetric portions of 

the magnetic field. The fields   
G
B s and   

G
B a represent the double and single null portions of 

  
G
B , respectively. If the two flux surfaces ψ(R,Z) and ψ(R,−Z) of interest are labeled by 

the same value of ψ, then only ∇ψ(R,Z) and ∇ψ(R,−Z) differ in   
G
B  and   

G
B ii . Therefore, 

  
G
B =

G
B s+

G
B a=I(ψ)∇ζ +∇ζ×∇ψ(R,Z) and   

G
B ii =

G
B s−

G
B a=I(ψ)∇ζ +∇ζ×∇ψ(R,−Z) give 

   
G
B s =I∇ζ + (1/2)∇ζ×∇[ψ(R,Z) + ψ(R,−Z)] ≡ I∇ζ + ∇ζ×∇ψs  

and 

   
G
B a =(1/2)∇ζ×∇[ψ(R,Z) − ψ(R,−Z)] ≡ ∇ζ×∇ψa , 

and we see that   
G
B s⋅ ∇ζ = I /R2  and   

G
B a⋅ ∇ζ = 0 . 

From Eq. (5) we see that an initially co-current toroidal flow ( ωR2+ uI > 0) only 

remains co-current upon the X-point location reversal if (ωs − ωa)R2+ (us− ua)I > 0, and 

the poloidal flow and poloidal magnetic field are (mis)aligned before and after the 

reversal if us+ ua > 0 (< 0) and us− ua > 0 (< 0), respectively. For the outboard or low 

field side poloidal flow to change direction from into a lower X-point ( us+ ua < 0) to into 

an upper X-point ( us− ua > 0) outside the separatrix, requires that ua dominates over us 

and ua < 0. 

 Equation (5) indicates for case (ii) that the ωa and ua portions of the toroidal 

flow and the ua part of the poloidal flow reverse. Of course, the symmetric parts of the 

flow are unchanged. The sum and difference flows near the equatorial plane and on the 

same flux surface for the X-point switch to become 
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G
V +

G
V ii = 2ωsR2∇ζ + 2us

G
B s + 2ua

G
B a  (6) 

and 

   
G
V −

G
V ii = 2ωaR2∇ζ + 2us

G
B a + 2ua

G
B s, (7) 

and can be used to isolate the contributions to the flows. 

(iii) Poloidal magnetic field reversed:   
G
B = I∇ζ +∇ζ ×∇ψ → I∇ζ − ∇ζ×∇ψ =

G
B iii.  

If we reverse all toroidal currents (including those in vertical and shaping coils) 

and flows while keeping the shape of the flux surfaces fixed, then the poloidal magnetic 

field must reverse:   
G
B p →−

G
B p. Cohen and Ryutov [4] demonstrate that this corresponds 

to reflection across a poloidal plane by which ζ → - ζ , vζ →- vζ , BR →- BR , BZ →- BZ, 

and E ζ →- E ζ , leaving the Maxwell equations and equations of motion (including the 

Fokker-Planck and Boltzmann equations) for each charged and neutral species 

unchanged. 

Reversing the toroidal current reverses the toroidal flow so that ω → −ω  and 

u → −u. As a result, reversing the poloidal magnetic field yields 

   
G
V =ωR2∇ζ+u

G
B → −ωR2∇ζ−u

G
B iii=

G
V iii  (8) 

where   
G
B iii = I∇ζ − ∇ζ×∇ψ  is the new magnetic field having   

G
B p reversed. Notice that the 

poloidal flow direction is unchanged, becoming opposed to the poloidal magnetic field. 

 The sum and difference flows for poloidal magnetic field reversal become 

   
G
V +

G
V iii = 2u

G
B p (9) 

and 

   
G
V −

G
V iii = 2(ωR2+ uI)∇ζ , (10) 

giving poloidal or toroidal results, respectively, that isolate the poloidal and toroidal 

components of the flow.  

(iv) Toroidal magnetic field reversed:   
G
B = I∇ζ +∇ζ×∇ψ → −I∇ζ + ∇ζ×∇ψ ≡

G
B iv .  

Reversing the toroidal magnetic field has to be equivalent to reversing the total 

magnetic field as in (i) and then reversing the poloidal magnetic field as in (iii). 

Therefore, in response to toroidal magnetic field reversal the poloidal flow reverses 

giving 

   
G
V =ωR2∇ζ+u

G
B → ωR2∇ζ−u

G
B iv=

G
V iv , (11) 
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where   
G
B iv = −I∇ζ + ∇ζ×∇ψ is the magnetic field with its toroidal component reversed. 

We get the same result by noting that to reverse the toroidal magnetic field we must 

reverse the poloidal current density and flow velocities. From Eq. (11) we see that the 

poloidal flow reverses to oppose the poloidal magnetic field, while an initially co-current 

toroidal flow ( ωR2+ uI > 0) remains co-current. 

 In this toroidal magnetic field reversal case the sum and difference flows are 

   
G
V +

G
V iv = 2(ωR2+ uI)∇ζ  (12) 

and 

   
G
V −

G
V iv = 2u

G
B p, (13) 

thereby isolating the toroidal and poloidal contributions to the flow. Notice that the sum 

and difference expressions in this case are the same as the difference and sum expressions 

for case (iii).  

 Before closing this section we remark that in the absence of island formation any 

magnetic fluctuations are expected to be very small compared to the axisymmetric 

tokamak magnetic field   
G
B =I∇ζ+∇ζ×∇ψ . As a result, to a very good approximation the 

perpendicular ion flow is   
G
E ×

G
B  plus ion diamagnetic in the axisymmetric magnetic field, 

giving only toroidal and parallel flow components on a flux surface. Consequently, the 

toroidal rotation frequency ω  is expected to be of the form 

 ω = −c[∂Φ/∂ψ + (en)−1∂pi /∂ψ] , (14) 

with Φ the electrostatic potential, pi the ion pressure, n the plasma density, e the 

magnitude of the charge of an electron (we assume singly charged background ions), and 

c the speed of light. As a result, knowing ω = ωs + ωa, the plasma density, and the ion 

pressure profile allows the radial electric field to be determined. 

 

III. NEOCLASSICAL RELATION BETWEEN IMPURITY AND ION FLOWS  

Alcator C-Mod has toroidal flow measurements both inside [5, 6] and outside [7, 

8] the separatrix for cases (i) and (ii). The core flow measurements in C-Mod are from 

the Doppler shifts of Argon (Ar16+ and Ar17+) X-ray transitions. Therefore, it is the flow 

of the trace Argon impurity that is determined. The flows of the trace impurity and the 

main plasma ions are quite different. However, for Pfirsch-Schlüter high-Z trace 
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impurities they can be related to each other by the following simple neoclassical formula 

[10 - 12] (the applicability conditions and some details of the derivation are given in the 

Appendix): 

 
  

G 
V z =

G 
V + (k −1)u

G 
B + c

e
1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ −

I
G
B 

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (15) 

where Ze, zn , and zp  are the charge, density, and pressure of the impurity, respectively. 

The constant k and the flow coefficient u depend on the collisionality regime of the main 

plasma ions. For Pfirsch-Schlüter ions k=1, while for banana regime ions 

k =1+ 0.59(ft /fc) , with tf  and cf  denoting the trapped and circulating particle fractions, 

respectively. The neoclassical expressions for u inside the separatrix are well known [10, 

13]. In the Pfirsch-Schlüter and banana regimes they are given approximately by  

 u ps ≈ −1.8(cI /e〈B2〉)∂Ti/∂ψ      and      u b ≈
1.2(cI /e〈B2〉)∂Ti/∂ψ

1+ 0.46(ft /fc)
,  (16) 

with Ti the ion temperature,   B= |
G
B | , and 〈...〉  denoting the flux surface average. These 

neoclassical forms for u only change sign when I does, that is, for cases (iii) and (iv). The 

impurity flow must change with magnetic topology in the same way as the ion flow. The 

impurity pressure gradient term is approximately Z >> 1 times smaller than the ion 

pressure gradient term, so can sometimes be neglected (depending on the localization of 

the impurity). If the background ions are also in the Pfirsch-Schlüter regime, then the 

toroidal ion and impurity flows are approximately equal when the 1− I2/R2〈B2〉  factor 

multiplying the pressure terms is small. Neoclassical expressions for an arbitrary tokamak 

cross section are available for both the symmetric and asymmetric contributions to ω  in 

the Pfirsch-Schlüter regime inside the separatrix [14]. In the banana regime, neoclassical 

up-down symmetric large aspect ratio expressions for ω  for subsonic plasma flows [15] 

or general neoclassical expressions for ω  valid when the flow is on the order of the 

sound speed [16] are available inside the separatrix. 

The impurity flow given by Eq. (15) changes with magnetic topology (as 

described in Sec. II) for measurements near the equatorial plane and on the same flux 

surface in the following ways: 
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G 
V zi =

G 
V i + (k −1)u

G 
B i −

c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ +

I
G
B i

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (17a) 

 
  

G 
V zii =

G 
V ii + (k −1)u

G 
B ii +

c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ −

I
G
B ii

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (17b) 

 
  

G 
V ziii =

G 
V iii − (k −1)u

G 
B iii −

c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ −

I
G
B iii

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (17c) 

and 

 
  

G 
V ziv =

G 
V iv − (k −1)u

G 
B iv +

c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ +

I
G
B iv

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (17d) 

Only for topology change (i) is it possible to obtain an impurity flow sum (or 

difference) expression in which the impurity characteristics do not enter explicitly: 

   
G
V z +

G
V zi =

G
V +

G
V i. (18a) 

In all other cases the ion and impurity pressure profiles and densities enter: 

 
  

G 
V z −

G 
V zi =

G 
V −

G 
V i + 2(k −1)u

G 
B + 2c

e
1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ −

I
G
B 

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (18b) 

 
  

G 
V z +

G 
V zii =

G 
V +

G 
V ii + 2(k −1)u

G 
B s +

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2∇ζ −

I
G
B s

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (18c) 

 
  

G 
V z −

G 
V zii =

G 
V −

G 
V ii + 2(k −1)u

G 
B a −

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

I
G
B a

〈B2〉
 , (18d) 

 
  

G 
V z +

G 
V ziii =

G 
V +

G 
V iii + 2(k −1)u

G 
B p −

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

I
G
B p

〈B2〉
 , (18e) 

 
  

G 
V z −

G 
V ziii =

G 
V −

G 
V iii + 2(k −1)uI∇ζ +

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2 −

I2

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇ζ  , (18f) 

 
  

G 
V z +

G 
V ziv =

G 
V +

G 
V iv + 2(k −1)uI∇ζ +

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R2 −

I2

〈B2〉

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇ζ  , (18g) 

and 

  

G 
V z −

G 
V ziv =

G 
V −

G 
V iv + 2(k −1)u

G 
B p −

2c
e

1
n

∂pi
∂ψ

−
1

Znz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

I
G
B p

〈B2〉
 . (18h) 
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In some cases either Z >> 1 or 1− I2/R2〈B2〉  << 1 may be used to try to justify the 

neglect of the localized impurity contribution or all pressure gradient modifications, 

respectively. 

 

IV. FLOW OBSERVATIONS IN ALCATOR C-MOD 

 When all the magnetic fields are reversed in Alcator C-Mod (the toroidal and 

poloidal magnetic fields have not been reversed separately to date), as in case (i), the core 

toroidal rotation reverses to lowest order to remain co-current in Ohmic and radio 

frequency heated high confinement mode (H mode) discharges [5]. This behavior appears 

to be in broad agreement with the prediction of Eqs. (3) and (18a). The absence of 

complete reversal is presumably due to differences in the time dependence of stored 

energy and heating power levels (see Fig. 1 of Ref. [5]). 

 If the flow is assumed neoclassical with the background ions in the banana regime 

so that u b < 0 may be employed, then to determine ω  and thereby the radial electric 

field, we require the ion pressure and temperature profiles, the impurity pressure profile, 

and the plasma and impurity densities, as can be seen by recalling Eqs. (16) and (18b). To 

obtain some information we consider the toroidal components of Eqs. (4) and (18b). 

Assuming 1− I2/R2〈B2〉 << 1 for these on-axis measurements, we obtain 

 Vζz − Vζzi ≈ Vζ − Vζi + 2(k −1)uI /R = 2[ωR + (kuI /R)] . (19) 

Notice the impurity and ion difference flows differ in the banana regime since 

k =1+ 0.59(ft /fc) . If the neoclassical expression for u is employed, then Eq (19) 

provides a measure of ω  and, upon using Eq. (14), the radial electric field. 

In Ref. [6] the topology in Alcator C-Mod was changed from lower single null 

(LSN) to upper single null (USN) during the same Ohmic low confinement mode (L 

mode) discharges to find that the core toroidal flow became more strongly counter-

current (see Fig. 3 of Ref. [6]). In the absence of up-down asymmetry in ω  and u, Eqs. 

(7) and (18d) give the obvious result that the flows are unchanged. The fact that they do 

change indicates the presence of an asymmetry in ω  and/or u, which is consistent with 

the discharges being single null. Equations (7) and (18d) along with   
G
B s⋅ ∇ζ = I /R2  and 

  
G
B a⋅ ∇ζ = 0  require Vζz−Vζzii =Vζ −Vζii = 2[ωaR + (uaI /R)] > 0 to be consistent with Fig. 
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3. This expression and the results from Fig. 3 allow the asymmetric contribution to the 

radial electric field to be estimated if the ion pressure profile and the density are known 

and u is assumed to be neoclassical so that au 0=  and s bu u=  as given by Eq. (16). 

To estimate the symmetric contribution to the radial electric field we must use 

Eqs. (6) and (18c) to determine ωs . Assuming 1− I2 /R2〈B2〉  << 1 we obtain 

 Vζz +Vζzii ≈Vζ +Vζii +2(k −1)usI /R = 2[ωsR + (kusI /R)] . (21) 

Knowing the ion pressure and temperature profiles and the density, Eq. (21) allows the 

symmetric contribution to the radial electric field to be determined if s bu u=  is again 

assumed. 

The results shown in Fig. 3 of Ref. [5] provide convincing evidence that 

asymmetric flows are present in single null configurations. Some idea of the neoclassical 

asymmetry can be found by considering the Pfirsch-Schlüter regime [14] where the 

normalized asymmetry factor A plotted in Fig. 1 and given by 

 

  
A = −

R0
3〈R2

G
B ⋅∇AnB〉

B0 R2Bp2B−4 R2B2+ 3I2( )
 (22) 

for LSN operation in C-Mod acts as a part of the drive for ωa. In Eq. (22) R0 and B0 are 

the on axis values of R and B. Notice that the corresponding asymmetric contribution to 

the flow does not necessarily vanish in the core of C-Mod, even though the numerator of 

A becomes small, because the poloidal field dependence of the denominator also causes it 

to become small. 

 The ion flow measurements in the scrape-off layer (SOL) are simpler to deal with 

because impurities are not involved so only the background ions need be considered 

when analyzing measurements of the parallel ion velocity and/or its projection onto the 

toroidal direction. On the other hand SOL flows are more complicated because 

neoclassical results do not hold [although Eq. (14) is still expected to be valid] outside the 

separatrix and neutrals can be playing a role as well as turbulence and heating. 

 The SOL measurements for all fields reversed, case (i), indicate that the low field 

side flows do not quite reverse in C-Mod as seen by Fig. 10 of Ref. [7]. Presumably the 

discrepancy is related to the asymmetries introduced by the scanning probes being 

located above the equatorial plane or small differences in the profiles. The difference 
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measurements from Eq. (4) give V|| − V||i = (2ωI /B) + 2uB, but the relative sizes of ω  and 

u cannot be determined unless measurements are made at another location on the same 

flux surface. 

 The SOL measurements for switching from lower to upper single null, case (ii), 

are available on both the low and high field side [7, 8] so one can determine all four 

quantities sω , aω , su , and au . To illustrate this, we first form the parallel flows from 

Eq. (5) to find 
 V|| = (ωs + ωa)(I /B) + (us+ ua)B 

and  

 V||ii = (ωs − ωa)(I /Bii) + (us− ua)Bii . 

Figure 2 of Ref. [7] is for LSN operation. At about 2.5 mm beyond the separatrix the low 

and high field side flows are roughly equal, which is compatible with the assumption that 

ω  and u are flux functions (thereby keeping the flow incompressible) since 

(ωI /Bhi) + uBhi ≈ (ωI /Blo) + uBlo ≈15km/sec can be satisfied as long as ω  > 0 and u > 

0 (giving parallel and poloidal flows at the equatorial plane on the low field side away 

from the lower X-point, but into the X-point on the high field side). For the estimates 

here we assume Bp << B. Considering the USN operation results of Fig. 3 of Ref. [7] 

next, we observe that on the low field side the flow vanishes at about 2.5 mm beyond the 

separatrix giving (ωs − ωa)(I /Bii
lo) + (us− ua)Bii

lo ≈ 0. Using these results, noting from Fig. 

3 that the high field side flow is strongly counter-current (giving a parallel or poloidal 

flow into the upper X-point on the high field side) such that 

(ωs− ωa)(I /Bii
hi) + (us− ua)Bii

hi≈ −40 km/sec, taking Bii
hi ≈ Bhi ≈ 2Blo ≈ 2Bii

lo, and solving 

these equations gives in km/sec: ωsI /Blo ≈18, ωaI /Blo ≈ −8, usBlo ≈ −11, and 

uaBlo ≈16. These estimates indicate that asymmetry is playing an important role. Notice 

that the high field side poloidal flows are towards the X-points, but weaker for a lower X-

point than for an upper one. In addition, for a lower X-point the ion flow is onto the inner 

target on the high field side and will reverse to be onto the outer target if the magnetic 

field is reversed as might be expected from Ref. [3] (presumably flux surface heat flows 

will have a similar behavior). 
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Recalling Eq. (14), we see that the flow makes symmetric and asymmetric 

contributions to the radial electric field. By evaluating the flow components throughout 

the SOL the toroidal and poloidal flow shears can be determined and possibly related to 

the L to H mode power threshold.  

 

V. DISCUSSION 

 In the preceding sections we have investigated the effect of magnetic topology on 

the flows in the core and scrape-off layer of a tokamak for (i) reversal in the direction of 

toroidal and poloidal magnetic fields, (ii) switching between lower single and upper 

single null operation, (iii) reversal of the poloidal magnetic field, and (iv) reversal of the 

toroidal magnetic field. We have demonstrated how the changes in the flows with 

magnetic topology can be used to measure the up-down symmetric and asymmetric 

portions of the flows and radial electric field, and thereby gain insight into the flows and 

flow shear associated with each configuration. 
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APPENDIX: RELATION BETWEEN ION AND IMPURITY NEOCLASSICAL 

FLOWS 

This appendix derives Eq. (15) and discusses its applicability conditions. The 

derivation is based upon classical Refs. [10 - 12] and is given here mainly to make the 

paper self-contained. 

Dotting by B
G

, both the vG  and 2v vG  moments of the species (a) kinetic equation, 

flux surface averaging, and assuming that the characteristic time scales and flow 

velocities are on the main plasma ion diamagnetic drift frequency and diamagnetic 

velocity scales, respectively, we obtain 

 (A)
a a a1 a(Z e n E F )B B ( ) ,〈 + 〉 = 〈 ⋅ ∇ ⋅ π 〉&

GG I     a2 aF B B ( ) ,〈 〉 = 〈 ⋅ ∇ ⋅ θ 〉
IGG

 (A1) 

where 2 3
a a aM (v v I v / 3) f d vπ = −∫

II G G , 2 2 3
a a a a aM (v v I v / 3) (M v / 2T 5/ 2)f d vθ = − −∫

I IG G , 

3
a1 a aF B M vC d v= ⋅ ∫

G G , 2 3
a2 a a a aF B M v(M v / 2T 5/ 2)C d v= ⋅ −∫

G G , and aZ e , an , aM , af , 

and aC  are the species (a) charge, density, mass, distribution function, and collision 

operator, respectively. In deriving Eq. (A1) we take into account the fact that an , aT , and 

Φ are flux functions to leading order (which can be demonstrated a posteriori), so that in 

particular (A)
a a a aZ e n E B Z e n E B〈 ⋅ 〉 ≈ 〈 〉&

G G
, where (A) 1E B c B A / t−≡ − ⋅∂ ∂&

GG
, with A

G
 the 

electromagnetic vector potential. 

Using the vG  and 2v vG  moments of the species (a) kinetic equation to evaluate the 

first order [in a a / L 1⊥δ ≡ ρ �  with aρ  the (a) species gyroradius] perpendicular flow 

and heat flux, and employing the results in the species continuity and energy conservation 

equations, respectively, we obtain for the first order parallel flow and heat flux 

 a a aV ( )I / B u ( )B= ω ψ + ψ& ,    a a a aq (5/ 2)p [s ( )I / B g ( )B]= ψ + ψ& , (A2) 

so that 
2

a a aV ( )R u ( )B= ω ψ ∇ζ + ψ
G G

,    2
a a a aq (5/ 2)p [s ( )R g ( )B]= ψ ∇ζ + ψ

GG , (A3) 

where 

 1
a a a ac[ / (Z e n ) p / ]−ω = − ∂Φ ∂ψ + ∂ ∂ψ ,    a a as (c / Z e) T /= − ∂ ∂ψ , (A4) 

and the flux functions au ( )ψ  and ag ( )ψ  are to be determined from Eqs. (A1). 
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To determine these two flux functions we notice that in neoclassical theory the 

distribution function af  is a Maxwellian Maf  to lowest order. After expanding af  in 

powers of aδ , (1) (2)
a Ma a af f f f= + + + ⋅⋅ ⋅ , we may next expand (1)

af  in generalized 

Laguerre polynomials (3/ 2) 2
ajL (x ) , j=0,1,2,· · ·, 2 2 2

a ax v / v≡ , 1/ 2
a a av (2T / M )≡ : 

 (3/ 2)(1) 2
a Ma tha aj ajj 0f 2f v / v C L (x )+∞

=
⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦∑

GG , (A5) 

 (3/ 2) (3/ 2)2 (1) 3 2 2 3
aj a a a aj jC 3 L (x )f v d v / 2 [L (x ) x ] d v≡ ∫ ∫

G G , 

with a0 aC V=
G G

, a1 a aC 2q / 5p= −
G G . It turns out that the infinite series (A5) can be safely 

truncated after j=1. Substituting this truncated expansion (A5) into definitions of a1F  and 

a2F  we obtain 

 ab ab
a1 11 b 12 b abF [ V (2q / 5p )]= −∑ & &A A ,    ab ab

a2 21 b 22 b abF [ V (2q / 5p )]= − +∑ & &A A ,  (A6) 

where the coefficients ab
ijA , i=1,2, j=1,2, are independent of collisionality regime and are 

derived in Ref. [10] for a plasma consisting of electrons and multiple ion species. For a 

plasma consisting of electrons, singly-charged (hydrogen) ions, and a single high-Z 

impurity species the matrices 

 
ab ab
11 12

ab ab ab
21 22

L
⎛ ⎞−
⎜ ⎟≡
⎜ ⎟−⎝ ⎠

I A A

A A
 

are given by 

 e e
ee

ei

1 3/ 2M nL (1 )
3/ 2 13/ 4 2 /(1 )

−⎛ ⎞
= − + α ⎜ ⎟τ − + + α⎝ ⎠

I
, e e

ei
ei

1 0M nL
3/ 2 0

⎛ ⎞
= ⎜ ⎟−τ ⎝ ⎠

I
, ez eiL L= α

I I
, 

i i
ii

iz

1 3/ 2M nL
3/ 2 13/ 4 2 /

−⎛ ⎞
= − ⎜ ⎟τ − + α⎝ ⎠

I
, e e

ie
ee

1 3/ 2M nL
0 0

−⎛ ⎞
= ⎜ ⎟τ ⎝ ⎠

I
, i i

iz
iz

1 0M nL
3/ 2 0

⎛ ⎞
= ⎜ ⎟−τ ⎝ ⎠

I
, 

i i
zz

iz i z z i

1 0M nL
0 (T / T )[15/ 2 2 v / v ]

⎛ ⎞
= − ⎜ ⎟τ + α⎝ ⎠

I
, i i

zi
iz

1 3/ 2M nL
0 0

−⎛ ⎞
= ⎜ ⎟τ ⎝ ⎠

I
, ze ieL L= α

I I
, 

where 2 3 2 2 4
ab a a b a b(3/16 )(M v / n Z Z e ln )τ ≡ π Λ  with the Coulomb logarithm ln Λ  

assumed to be the same for all species, 2
eff z eZ 1 Z n / nα ≡ − =  with Z>>1 but 
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z eZn / n 1<< , and the zero entries in the matrices denoting quantities of order 

1/ 2
e i(M / M ) 1� , 1/ 2

e z(M / M ) 1� , or 1/ 2
i z(M / M ) 1� . 

Finally, it can be shown [10] that 

 2
a a1 a a2 aB ( ) 3 (B ln B) [ u g ]〈 ⋅ ∇ ⋅ π 〉 = 〈 ⋅∇ 〉 μ + μ

G GG GI , (A7) 

2
a a2 a a3 aB ( ) 3 (B ln B) [ u g ]〈 ⋅ ∇ ⋅ θ 〉 = 〈 ⋅∇ 〉 μ + μ

IG GG G
, 

where the coefficient a1μ , a2μ , and a3μ  are functions of the collisionality regime of 

species (a) only [10]. Introducing the matrix of viscosity coefficients 

a1 a2
a

a2 a3
M

μ μ⎛ ⎞
≡ ⎜ ⎟μ μ⎝ ⎠

I
 

for a plasma consisting of electrons, singly-charged ions, and a single high-Z impurity, 

we find that for the Pfirsch-Schlüter regime 

 PS i ii
i 2

1.36 1.91 2.19 4.27pM
2.19 4.27 6.92 12.131 2.39 1.08

+ α + α⎛ ⎞τ
= ⎜ ⎟+ α + α+ α + α ⎝ ⎠

I
, 

PS e ee
e 2

0.73 0.43 1.45 0.96pM
1.45 0.96 4.26 2.721 1.02 0.24

+ α + α⎛ ⎞τ
= ⎜ ⎟+ α + α+ α + α ⎝ ⎠

I
, 

PS 1
z z zz z zz i z z i

1.36 2.19
M p p O( M / M T / T )

2.19 6.92
−⎛ ⎞

= τ + τ α⎜ ⎟
⎝ ⎠

I
, 

and for the banana regime 

2
b t i i
i 2

c ii

0.53 0.63 1.50f n M BM
0.63 1.50 1.39 4.25f 3 (B ln B)

+ α − − α⎛ ⎞〈 〉
= ⎜ ⎟− − α + ατ 〈 ⋅∇ 〉 ⎝ ⎠

I
GG , 

2
b t e e
e 2

c ee

0.53 (1 ) 0.63 1.50(1 )f n M BM
0.63 1.50(1 ) 1.39 4.25(1 )f 3 (B ln B)

+ + α − − + α⎛ ⎞〈 〉
= ⎜ ⎟− − + α + + ατ 〈 ⋅∇ 〉 ⎝ ⎠

I
GG , 

2
b t z z
z 2

c zz

0.53 0.63f n M BM
0.63 1.39f 3 (B ln B)

−⎛ ⎞〈 〉
= ⎜ ⎟−τ 〈 ⋅ ∇ 〉 ⎝ ⎠

I
GG , 

where 
1

maxB2 1/ 2 1
c 0

f (3/ 4) B (1 B) d
−

−≡ 〈 〉 λ〈 − λ 〉 λ∫  is the fraction of circulating particles with 

λ the pitch angle variable and maxB  the maximum value of B on the flux surface, and 

t cf 1 f≡ − . 
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Substituting expressions (A6) and (A7) into Eqs. (A1) and employing Eqs. (A2) 

to simplify the result, we arrive at the following system of equations for au ( )ψ  and 

ag ( )ψ : 

 2 1 2
a a ab b b ab3 B (B ln B) M U L (U S ) E−〈 〉 〈 ⋅∇ 〉 ⋅ = ⋅ + +∑

G GG I G I G G
, (A8) 

where a a aU (u ,g )=
G

, 2 1
a a aS I B ( ,s )−= 〈 〉 ω

G
, and (A)2 1

a a aE (Z e n B E B ,0)−= 〈 〉 〈 〉&
G

. The 

last term on the right-hand side of Eq. (A8) is assumed small and so it will be neglected 

in what follows. 

Next, we evaluate the quantities iu  and zu  by solving Eqs. (A8) in the banana 

and Pfirsch-Schlüter regimes. While doing so we assume that the impurity is merely a 

trace impurity (i.e. α<<1) and is always in the Pfirsch-Schlüter collisionality regime. To 

simplify the calculation we will follow Ref. [11] and consider the situation when the 

electron effects (both the viscosity and friction) can be neglected, i.e. when 
1/ 2 3/ 2

e i i e(M / M ) (T / T )α � . We also assume that impurity viscosity is negligible 

compared with impurity-impurity and impurity-ion friction forces, requiring that both 
b 2 2 2 2 1/ 2 5/ 2 4 1

i ii z i z i(3/ 2)[v (B ln B) / B ](M / M ) (T / T ) ( Z ) 1−κ ≡ τ 〈 ⋅∇ 〉 〈 〉 α
GG

�  and 

PS 1/ 2 5/ 2 4
z i z i(M / M ) (T / T ) Z 1−κ ≡ � . To neglect the impurity viscosity in the Pfirsch-

Schlüter regime we have to also assume that 1/ 2 1/ 2
i z z i(M / M ) (T / T )α � . 

Solving Eqs. (A8) in the banana and Pfirsch-Schlüter regimes of collisionality of 

the main hydrogen ions and electrons we obtain 

 b i
i 2

t c

cI 1.18 Tu
1 0.46(f / f )e B

∂
=

+ ∂ψ〈 〉
, (A9) 

b z i t c i
z 2

z i t c

cI 1 p 1 p 1.18 0.70(f / f ) Tu
Zn n 1 0.46(f / f )e B

⎡ ⎤∂ ∂ + ∂
= − +⎢ ⎥∂ψ ∂ψ + ∂ψ〈 〉 ⎣ ⎦

, 

and 

PS i
i 2

cI Tu 1.62
e B

∂
= −

∂ψ〈 〉
, PS z i i

z 2
z i

cI 1 p 1 p Tu 1.62
Zn ne B

⎡ ⎤∂ ∂ ∂
= − −⎢ ⎥∂ψ ∂ψ ∂ψ〈 〉 ⎣ ⎦

, (A10) 
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respectively. Expressions for b
iu  and b

zu  for α∼1 are given in Ref [12]. A slightly more 

accurate calculation gives -1.69 rather than -1.62 in Eq. (A10) [10]. 

Employing Eqs. (A9) and (A10) to rewrite zu  in terms of iu  and using the results 

obtained in Eq. (A3) we arrive at Eq. (15). 
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FIGURE CAPTION 

 

The asymmetry factor A(ψ) for a lower single null equilibrium in Alcator C-Mod. 


