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Abstract

Zonal �ow helps reduce the turbulent transport level in tokamaks. Rosenbluth and Hinton have

shown that zonal �ow damps to to a non-vanishing residual level in collisionless and collisional

banana regime plasmas Recent zonal �ow advances are summarized including the evaluation of the

e¤ects on this zonal �ow residual of plasma cross section shaping, shorter wavelengths including

those less than an electron gyroradius, and aritrary collisionality relative to the zonal low frequency.

In addition to giving a brief summary of these new developments, the analytic results are compared

with GS2 numerical simulations to demonstarte their value as benchmarks for turbulence codes.

1



I. INTRODUCTION

Recent discoveries in plasma turbulence show that zonal �ow is an important mechanism

for suppressing ion temperature gradient (ITG) [1][2][3] and trapped electron mode (TEM)

[4][5] turbulence. As a result, it is important to understand the damping mechanisms that

act on zonal �ow. The original Rosenbluth-Hinton (R-H) study showed that zonal �ow

is modi�ed by the collisionless neoclassical polarization, with a signi�cant residual �ow

surviving due to the smallness of this polarization [6]. Later, Hinton-Rosenbluth (H-R)

found that in the large radial wavelength limit collisional e¤ects signi�cantly reduce the

residual zonal �ow to a level much smaller [7] than the collisionless kinetic theory predicts

[6]. Both of these analytical studies are based on a large aspect ratio circular �ux surface

tokamak model.

These classical studies on the linear damping of zonal �ow have been extended in many

aspects recently. First of all, in the large radial wavelength limit, the original R-H collision-

less residual zonal �ow calculation [6] has been extended to more realistic �ux surface shapes

that allow elongation, triangularity and Shafranov shift to be retained in the equilibrium

model [8]. Secondly, the original R-H collisionless calculation has been extended to cover ar-

bitrary radial wavelength zonal �ow [9], including in particular shorter wavelength e¤ects for

ITG and TEM modes and even the short wavelengths associated with electron temperature

gradient (ETG) turbulence. Finally, a new method has been developed to study collisional

zonal �ow damping [10]. This new analytical approach is valid for arbitrary collisionalities

and long wavelengths, and therefore a useful extension of the original H-R collisional work

[11][12].

These new developments in the R-H and H-R zonal �ow studies provide not only new

insights on the physics of residual zonal �ow, but also new opportunities to crosscheck

numerical simulations. Some of these checks for the well-known continuum turbulence code

GS2 are presented here. The GS2 code had previously successfully benchmarked the well-

know R-H collisionless residual zonal �ow calculation [13]. This code also discovered the

increase of residual zonal �ow for short radial wavelength zonal �ow [14] driven by ETG,

ITG and TEM turbulence. Moreover, a recent GS2 study on shaping e¤ects [15] has given

results similar to our analytical theory. Therefore, it is desirable to make a more thorough

and careful comparison between the new analytical developments [8][9][10] and the numerical
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simulations using the GS2 code under common circumstances and parameters.

This paper is organized as follows. Sections II and III review the linear gyrokinetics of

zonal �ow and the recent extensions of the R-H and H-R zonal �ow models. In Sec. IV, we

brie�y summarize the new analytical results for plasma shaping e¤ects and compare them

to the GS2 numerical simulations. Section V brie�y reviews the recent analytical calcu-

lation of collisionless residual zonal �ow for the arbitrary radial wavelength and compares

it to the GS2 simulation result. In Sec. VI, we compare the collisional damping of zonal

�ow from the GS2 code to the recent analytical result. Finally, Sec. VII provides a brief

discussion highlightening the newly discovered results including the comparisons discussed

in the preceding sections.

II. LINEAR GYROKINETICS DRIVEN BY ZONAL FLOW

The linearized gyrokinetic equation can be employed to study the linear response of the

plasma to an axisymmetric zonal �ow potential caused by turbulence[6]. The distribution

function is assumed to be composed of two parts: the unperturbed and the perturbed part.

The unperturbed part is assumed to be a radially slowly varying Maxwellian F0. The

perturbed part is driven by the zonal �ow potential, and has the form f = � e�
T
F0 + g,

where the adiabatic response has been separated out for convenience. Here we assume all

the perturbed quantities take an eikonal form � =
P
k

�ke
iS with the eikonal S = S ( ) and

the radial wave vector k? = rS. Then in the Fourier space, the guiding center distribution
gk satis�es the following gyrokinetic equation, [6][16][17]

@gk
@t

+ (vqb � r+ i!D) gk � C fgkg = �
e

Ti
F0J0

@�k
@t
, (1)

where C is the gyroaveraged collision operator, J0 is the zeroth order Bessel function, J0 =

J0
�
k?v?



�
, and !D = k? � vd = vqb � rQ with Q = IS 0vq=
 coming from the magnetic drift

vd =
b


� (�rB + v2kb � rb) since vd � r = vqb � r

�
Ivq



�
. Notice Q � k?�p, where �p is

the poloidal gyroradius. The independent velocity variables used in the preceding equation

are kinetic energy E = v2=2 and magnetic moment � = v2?=2B. For simplicity, hereinafter

we assume hydrogenic ions in the plasma.

Since the zonal �ow frequency ! considered here is far below the transit frequency of

thermal particles !t = vT=qR0, the equation can be solved perturbatively by expanding in
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!=!t � 1 [6] by letting gk = g0k+g
1
k+ :::. The leading order equation in this expansion gives

vqb � rg0k + ivqg
0
kb � rQ = 0, (2)

whose solution has the form g0k = hke
�iQ with b � rhk = 0. Then next order equation gives

vqb � rg1k + ivqg
1
kb � rQg1k = �

@g0k
@t

+ C
�
g0k
	
'
� e

Ti
F0J0

@�k
@t
. (3)

The transit average of the product of this equation and eiQ gives

@hk
@t

� eiQC fhke�iQg = �
e

T
F0J0eiQ

@�k
@t
, (4)

where the transit average is de�ned as, A =
H
d�A=

H
d� , with d� = d�= (vqb � r�). For

trapped particles, this average is over a full bounce; while for passing particles, it is over one

complete poloidal circuit. Speci�cally, for a large aspect ratio circular cross section tokamak,

d� �= qR0d�=vq, where q is the safety factor. In this case the transit average becomes

A =

H
d�
vq
AH
d�
vq

. (5)

When calculating the perturbed particle density in a �ux surface, we utilize

~nk =

�Z
d3vJ0hke

�iQ
�
� e�k

T
n0, (6)

where h i represents the �ux surface average hAi =
H
dl
B
A=
H
dl
B
.

If the time scale of interest is much shorter than a typical collision time, the plasma can

treated as collisionless; otherwise collisions must be retained. For the collisionless case, the

solution to the transit average kinetic equation, Eq. (4), is straightforward

hk =
e�k
T
F0J0eiQ. (7)

Hence, the perturbed particle density in Eq.(6) can be expressed as

~nk =
e�k
T
n0

�
1

n0

�Z
d3vJ0e

�iQJ0eiQF0

�
� 1
�
, (8)

where the classical gyro-motion e¤ect (�nite Larmor radius) on polarization is retained in

J0, and the e¤ect of magnetic drift (�nite poloidal gyroradius) is retained in eiQ.

For the collisional case, the transit average kinetic equation (4) can only be solved for

large radial wavelength zonal �ow where k?�pi � 1. The ITG and TEM mode driven zonal

�ows fall into this category. Expanding Eq. (4) and (6) to order Q2 [7][10], we �nd

~nk = �
e�k
T
n0

"

k2?�

2
�
+
1

n0

*Z
d3vF0

 
Q2 +

iQTh
(1)
k

e�kF0

!+#
. (9)
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where the distribution function h(1)k satis�es

@h
(1)
k

@t
� C

n
h
(1)
k

o
= iQ

e

T
F0
@�k
@t
. (10)

We de�ne the gyroradius as � =
p
T=m=
 with the gyro frequency 
 = eB=mc.

Next we will review the Rosenbluth-Hinton zonal �ow physics and its relationship to the

current linear density calculation.

III. GENERALIZED ROSENBLUTH-HINTON ZONAL FLOW PHYSICS

Quasineutrality of the plasma requires that the linear perturbed charge density be com-

pensated by the nonlinear turbulent charge source, i. e., e~n(i)k � e~n
(e)
k = ��NLk . In the

Rosenbluth-Hinton zonal �ow model, turbulence produces a constant initial charge source

within a time that is much shorter than one transit time but much larger than one gyrope-

riod. Therefore, drift and collisional e¤ects can be ignored (Q = 0 = C) on such short time

scales and the initial zonal �ow potential is given by�
�

�
1

n0

�Z
d3vJ0i

2
F0i

�
� 1
�
+

�
1

n0

�Z
d3vJ0e

2
F0e

�
� 1
��

n0e
2

Te
�k (t = 0) (11)

= �NLk (0) , (12)

according to Eq.(8) and quasineutrality, where � = Te=Ti. For the long wavelength ITG

and/or TEM zonal �ow cases k?�pi � 1, this equation simpli�es considerably to become

n0e
2

Ti
�k (t = 0)



k2?�

2
i

�
= �NLk (0) . (13)

After several transit periods, drift e¤ects become important. In the collisionless limit,

the long time zonal �ow is then given by�
�

�
1

n0

�Z
d3vJ0ie

�iQiJ0ieiQiF0i

�
� 1
�
+

�
1

n0

�Z
d3vJ0ee

�iQeJ0eeiQeF0e

�
� 1
��

n0e
2

Te
�k (t =1)

= �NLk (0) . (14)

Therefore, the zonal �ow residual, that is customarily �k (t =1) =�k (t = 0), has the form
�k (t =1)
�k (t = 0)

=
�
�
1
n0

DR
d3vJ0i

2
F0i

E
� 1
�
+
�
1
n0

DR
d3vJ0e

2
F0e

E
� 1
�

�
�
1
n0

DR
d3vJ0ie�iQiJ0ieiQiF0i

E
� 1
�
+
�
1
n0

DR
d3vJ0ee�iQeJ0eeiQeF0e

E
� 1
� (15)
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In the long wavelength limit k?�pi � 1, the collisionless zonal �ow residual reduces to

�k (t =1)
�k (t = 0)

=
hk2?�2i i

hk2?�2i i+ 1
n0

DR
d3vF0i

�
Q2i �Qi

2
�E . (16)

When the time scales of interest are comparable to a typical collision time, the collisional

e¤ects becomes signi�cant. At present, the collisional case is only tractable for the large

wavelength zonal �ow. In this case, the bounce average drift kinetic equation, Eq. (10),

must be solved to evaluate the linearized particle density in Eq.(9). It is generally more

convenient to solve Eq. (10) in the frequency domain,

h
(1)
k (p)� 1

p
C
n
h
(1)
k (p)

o
= iQ

e

T
F0�k (p) , (17)

which comes from the Laplace transform of Eq. (10). The Laplace transforms of �k and h
(1)
k

are de�ned by �k (p) =
1R
0

dte�pt�k (t) and h
(1)
k (p) =

1R
0

dte�pth
(1)
k (t), where p is the frequency

variable. In the frequency domain, the quasineutrality condition becomes

n0e
2

Ti
�k (p)

"

k2?�

2
i

�
+
1

n0

*Z
d3vF0i

 
Q2i +

iQiTih
(1)
k (p)

e�kF0

!+#
=
�NLk (0)

p
, (18)

where the distribution h(1)k (p) satis�es Eq. (17) for ions. The electron perturbed charge

density is normally ignored because it is a mass ratio smaller than the ion part for the ITG

and TEM zonal �ow. This equation together with Eq. (13) give the frequency response of

the zonal �ow to be

�k (p)

�k (t = 0)
=

hk2?�2i i =p

hk2?�2i i+ 1
n0

�R
d3vF0i

�
Q2i +

iQiTih
(1)
k (p)

e�kF0

�� . (19)

The inverse Laplace transform of this equation gives the time evolution of zonal �ow

�k (t)

�k (t = 0)
=

1

2�i

Z
dpept

hk2?�2i i =p

hk2?�2i i+ 1
n0

�R
d3vF0i

�
Q2i +

iQiTih
(1)
k (p)

e�kF0

�� . (20)

Therefore, the long time behavior of zonal �ow or the zonal �ow residual is determined by

the zero frequency response of Eq.(19), and the damping rate of the zonal �ow is determined

by the zeroes of the term hk2?�2i i+ 1
n0

�R
d3vF0i

�
Q2i +

iQiTih
(1)
k (p)

e�kF0

��
.

The following sections will brie�y discuss three di¤erent recent developments that extend

the R-H and H-R zonal �ow calculations, and brie�y present comparisons to the correspond-

ing GS2 simulations.
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IV. PLASMA SHAPING EFFECTS ON ZONAL FLOW RESIDUAL

The shaping factors of magnetic �ux surfaces, like elongation � and triangularity �, are

important ingredients in suppressing turbulent transport in tokamaks [18]. Recent numerical

[15] and analytical [8] studies show that shaping also a¤ects the collisionless residual zonal

�ow level. Although these two approaches are based on di¤erent equilibrium models, they

show similar dependences on plasma shaping. Here we provide a more careful comparison

between the analytical formula and GS2 numerical simulation.

The analytical approach applies a global equilibrium[19], whose �ux surface in the large

aspect ratio limit can be simpli�ed as [8]

R = R0

�
1 + " cos � ��cos2 � � �2

4E2
"2 sin2 �

�
, (21)

Z = R0�" sin �, (22)

while keeping the important shapings, such as elongation �, triangularity �, and Shafranov

shift � in the model. For a large aspect ratio tokamak, an " expansion can be applied to

calculate the zonal �ow residual in Eq. (16) to obtain

�k (t =1)
�k (t = 0)

=
1

1 + Sq2=
p
"
, (23)

with the shaping function S given by

S =
1

1 + �2
(3:27 +

p
"+ 0:722"� 1:443� � 2:945�

"

+
0:692�2 � 0:722

q2
"). (24)

This analytical result can be compared to GS2 simulations, as shown in Figs. 1 and 2. In

Fig. 1, the elongation dependence of the zonal �ow residual are compared to GS2 simulation,

and showing very good agreement. In Fig. 2, � = 1:8, and the triangularity dependence of

the zonal �ow residual is compared to GS2 simulation. The slope of these two curves are

the same, telling us that the coe¢ cient of the dependence of � in the shaping function are

the same. The small di¤erence is due to the di¤ering " dependence of the global analytical

and local numerical equilibrium models.

We see that the leading order e¤ect of shaping is due to elongation, which comes from

the increase of the poloidal �eld Bp with elongation � when keeping the safety factor q �xed.

The triangularity � e¤ect is due to the change of the trapped-passing boundary location and

therefore the change in the ratio between the trapped and passing particles.
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FIG. 1: Zonal �ow residual dependence on elongation �, for q = 1:4; � = 0; � = 0. The solid line

is the analytical result. The dashed line is the GS2 simulation result.

0 0.1 0.2 0.3
0.15

0.16

0.17

0.18

Triangularity δ

FIG. 2: Zonal �ow residual dependence on elongation �, for q = 1:4; � = 1:8; � = 0. The solid

line is the analytical result. The dashed line is the GS2 simulation result.

V. SHORT WAVELENGTH EFFECTS ON ZONAL FLOW RESIDUAL

The pioneering calculation of R-H [6] focused on ITG mode driven zonal �ow in the large

wavelength limit satisfying k?�pi � 1. However, both experiments [20] and simulations [21]
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show that these zonal �ows can have radial wavelength comparable to the ion poloidal gyro-

radius. Moreover, sources of anomalous transport such as the trapped electron mode (TEM)

[4][5] and electron temperature gradient (ETG) mode [11][12] can also drive zonal �ows at

shorter radial wavelengths than the ion gyroradius. Indeed, for ETG turbulence wavelengths

as shorter than the electron gyroradius must be considered. Such short wavelength zonal

�ows weren�t considered by the original R-H calculation. Here we brie�y summarize a recent

study of the short wavelength e¤ects collisionless zonal �ow damping [9].

Before doing so we recall that when the radial wavelength is much larger than the ion

poloidal gyroradius, k?�pi � 1, Eq.(16) leads to the R-H value of the zonal �ow residual

�k (t =1)
�k (t = 0)

=
1

1 +
DR

d3vF0i

�
Q2i �Qi

2
�E

=n0 hk2?�2i i

=
1

1 + q2

"2
(1:6"3=2 + 0:5"2 + 0:36"5=2)

, (25)

which doesn�t depend on the radial wavenumber k?. The higher order terms retained in

the preceding expression make the result more accurate for the �nite size " values than the

original R-H coe¢ cient 1:6"3=2 [9].

When the radial wavelength becomes close to the ion poloidal gyroradius, the �nite

poloidal gyroradius e¤ect tries to increase the residual zonal �ow level,

�k (t =1)
�k (t = 0)

=
1

1 + q2

"2

�
(1:6"3=2 + 0:5"2 + 0:36"5=2)� 2:44"5=2k2?�2pi

� . (26)

This result is valid for k?�i � 1 and k?�pi approaching unity [9].

As the radial wavelength gets even shorter, Eq. (15) needs to be numerically evaluated to

obtain the collisionless zonal �ow residual. When the radial wavelengths are small compared

to an ion gyroradius, but comparable to or less than a poloidal electron gyroradius, electron

polarization becomes important. The zonal �ow residual �rst decreases with k? due to

electron neoclassical polarization. Then the zonal �ow residual recovers and increases due

to �nite electron poloidal gyroradius e¤ects. Finally, as the radial wavelengths becomes

much less than an electron gyroradius, the zonal �ow residual ultimately approaches unity.

The preceding behavior is what Jenko et. al. observed in GS2 simulations for ETG modes

[14], but for a slightly di¤erent driving source function. A careful comparison between the

predictions of Eq. (15) and GS2 for the same source functions and parameters has now
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0.4
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0.8

1
q = 1.4, ε = 0.3
q = 2.0, ε = 0.2

FIG. 3: The zonal �ow residual �k (t =1) =�k (t = 0) varies with normalized radial wavelength

k?�i. The discrete shapes are from GS simulation. The solid lines are based on Eq.(15) and from

Ref. [9].

been performed to obtain the plots shown in Fig. 1. The agreement between these two

independent calculations is excellent and provides a useful benchmark of the zonal �ow

residual for arbitrary radial wavelengths.

Based on this �gure, we expect ETG turbulence to saturate at a low level if short wave-

lengths are generated by the parasitic turbulence associated with ETG, ITG, and/or TEM

modes. The high level of ETG turbulence sometimes observed in codes may indicate that

the parasitic instabilities associated with ETG modes are not as e¤ective in generating zonal

�ow as those associated with ITG and TEM modes [14][22].

VI. COLLISIONAL ZONAL FLOW DAMPING FOR LARGE WAVELENGTH

ZONAL FLOW

When the time scale of interest is on the order of the ion-ion collisional time �ii, the

collisional damping of zonal �ow becomes important. The original H-R calculation considers

two asymptotic limits: the short time limit "p�ii � 1 and the long time limit p�ii � 1.

However, to obtain an improved estimate of the decay rate it is desirable to obtain the

frequency response of Eq. (19) for arbitrary values of p�ii. A new method based on an
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FIG. 4: A comparison of collisional zonal �ow damping from both analytical theory and GS2

simulation.

eigenfunction expansion of the pitch angle scattering operator has been developed to solve

this problem [10]. It �nds that in the large wavelength limit, Eq. (19) can be approximated

as
�k (t)

�k (t = 0)
� "2

q2

�
1 +

�
1

1:6"3=2
� 1
�
e
� �1t

1:6"3=2�1�ii

�
, (27)

where �1 = 1 + 1:46
p
" and �1 = 1:16=

p
" + 5:38. This analytical result can now be

compared to the GS2 numerical simulation. For small ", such as " = 0:05, our analytical

result captures the main feature of the decay curve from the GS2 simulation. As " becomes

larger, our analytical result becomes more approximate.

VII. DISCUSSION AND CONCLUSION

This paper provides a systematic review of the R-H collisionless and H-R collisional zonal

�ow damping and their recent extensions in three di¤erent directions. These three important

extensions have been carefully tested by GS2 simulation. In the collisionless regime, the

shaping e¤ects, like elongation and triangularity, have been con�rmed by GS2 simulation.

Elongation, or the increase of poloidal �eld, is seen to substantially increase the zonal �ow

residual, and may have important consequences in regulating turbulence. Short wavelength

e¤ects on the zonal �ow residual are also evaluated analytically and by GS2 simulation
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and found to be in agreement to great accuracy. The increase of zonal �ow residual for

short wavelengths may indicate there is a strong impact on ETG turbulence provided that

instabilities produces the same amount of zonal �ow as the ITG and TEM modes. Finally

we provide a preliminary study of the collisional damping of zonal �ows between the GS2

simulation and the analytical result from our new approach, that by comparing improves on

the H-R result. Good consistency is achieved in the large aspect ratio limit.
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