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Quasilinear theory of interchange modes 

 in a closed field line configuration 

A. Kouznetsov, J.P. Freidberg and J. Kesner 

Plasma Science and Fusion Center, Massachusetts Institute of Technology, 

Cambridge, MA, 02139 

 

ABSTRACT 

Two important issues for any magnetic fusion configuration are the maximum achievable 

values of beta and energy confinement time when ideal magnetohydrodynamic (MHD) 

modes are excited. It is well known that the excitation of the MHD unstable modes 

typically can lead to violent restructuring of the plasma profiles. The particle and energy 

transport associated with these modes normally dominates all other transport mechanisms 

and can lead to plasma disruptions and a rapid loss of energy. This paper analytically 

investigates the transport of particle density, energy and magnetic field due to the ideal 

MHD interchange mode in a closed line system using the quasilinear approximation.  The 

transport equations are derived for a static plasma in a hard core Z-pinch configuration 

and generalized to an arbitrary axisymmetric toroidal closed poloidal filed line 

configuration. It is shown that violation of the marginal stability criterion leads to rapid 

quasilinear transport that drives the pressure profile back to its marginal profile and 

forces the particle density to be inversely proportional to /dl B∫v . The applicability of the 

quasilinear approximation is numerically tested for the hard core Z-pinch magnetic 

configuration using a full nonlinear code.  

_______________________________________________________________________ 
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I. Introduction 

The goal of this paper is to derive a model for plasma transport in an axisymmetric 

closed-line poloidal field line systems when the plasma is weakly unstable to the 

interchange mode. The primarily experimental application of the analysis is to the 

Levitated Dipole Experiment (LDX) [1-2].  LDX, a joint MIT and Columbia University 

experiment, has a plasma confined in a poloidal field created by superconducting current 

ring, which is magnetically levitated in a large vacuum chamber.   

There is a key difference between the LDX and tokamak approaches to stabilize a 

plasma against interchange modes. The tokamak approach requires an appropriately 

chosen magnetic shear profile. The shear stabilizes the interchange mode, which for a 

tokamak is an incompressible mode.  LDX, on the other hand, has only a poloidal field, 

and stability is provided by plasma compressibility, since there is no shear (i.e. 0q = ).  

As with any magnetic configuration, it is desirable that LDX be operated in a regime 

that is magnetohydrodynamically (MHD) stable. The linear MHD stability of a plasma in 

a hard core Z-pinch (the cylindrical analog to the LDX configuration), a point dipole 

configuration, and the actual toroidal LDX configuration has been extensively studied by 

several authors [3-6].  Each of these studies show that MHD stable profiles do indeed 

exist at relatively high values of β .  Qualitatively, stability requires a pressure profile 

that decreases sufficiently gradually beyond the peak pressure.  

However, even though interesting stable profiles exist theoretically, the natural 

profiles arising from heating a plasma governed by classical transport are almost always 
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driven into a region that is unstable to MHD interchange modes.  It then becomes 

important to carry out a nonlinear analysis to determine whether the plasma has a “soft 

landing” returning to its marginal state but with enhanced transport or a “hard landing” 

corresponding to a disruption.   

The usual approach to determine the nonlinear evolution involves large scale 

numerical simulations, often involving lengthy, time consuming studies since they must 

track the evolution of the system on the Alfven time scale.  A different approach 

employed in this study involves the derivation of an analytical model based on the ideas 

of quasilinear transport.  The model ultimately predicts the nonlinear energy and particle 

transport of the plasma in a region of weakly unstable interchange modes.  The 

assumption of weak instabilities is motivated by the idea that heating occurs slowly 

compared to the ideal MHD time scale.  Thus, during a normal time evolution the plasma 

starts off stable, becomes weakly unstable as it heats up, and because of rapid quasilinear 

transport, the profiles re-adjust themselves before the modes can grow to a large enough 

amplitude where the full nonlinear effects dominate.  

To put the present results in perspective, it is useful to revisit several previous efforts 

aimed at studying the nonlinear dynamics of MHD unstable systems. A state of the art 

3-D  code that solves the multi-dimensional system of nonlinear MHD equations is 

NIMROD [7].  This code is actively used by tokamak community and produces valuable 

insights into the MHD dynamics of a plasma. As might be expected such simulations 

require significant computational resources.  One such study for LDX required days of 

computing time.  The results were interesting and in a qualitative sense were consistent 



 4

with the present results.  Even so, it was difficult to carry out a large number of studies to 

determine the critical scaling relations required for experimental predictions. 

In general the simulation of a closed field line system is likely to be more efficient 

than that of a tokamak because of the simpler geometry.  There are, nevertheless, several 

additional complications. D. Ryutov has showed that the numerical viscosity and 

diffusivity necessary for proper numerical conversion can lead to error accumulation 

which is more severe in a closed line system than a tokamak [8].  This can change the 

nonlinear self-consistent saturated plasma profiles.  Another concern with any nonlinear 

simulation that requires a substantial numerical viscosity and resistivity for convergence 

is the preferential damping of the small-scale turbulences in favor of the global modes.  

This is particularly important for the interchange instability in which the fastest growing 

modes occur for k⊥ → ∞ .  Finally, in order to save computing time, many nonlinear 3-D 

simulations start with a plasma that is either strongly unstable initially, or else is heated at 

a very rapid raid to quickly generate strong instabilities.  This is not the typical 

experimental situation and almost by definition minimizes the effect of quasilinear 

transport. 

A simpler task for numerical simulations involves the hardcore Z-pinch, which is the 

large aspect ratio limit of a toroidal dipole.  Both magnetic configurations represent 

closed filed line systems with the interchange mode imposing the most restrictive MHD 

stability condition.  The simplification arises because the hard core Z-pinch interchange 

mode requires a 2-D rather than a 3-D simulation.  Pastukhov and Chudin modeled the 

system of reduced MHD equations for an unstable hard core Z-pinch plasma [9-10]. The 

key result was that violation of the marginal stability did not lead to a disruption, but 
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resulted in non-local anomalous transport through the global plasma motion. A large-

scale convective motion of the plasma enhanced the energy transport to balance the 

heating source, thus keeping the system close to marginal stability.  Anomalous transport 

due to macroscopic convective cells was also separately reported by Makhnin et al. [11] 

and Adler and Hassam [12].  Adler and Hassam forced the convective cells by the 

asymmetric energy and particle sources, while Makhnin reported short-lived random 

convective cells that were later replaced by a chaotic turbulence.  

Summarizing, the numerical codes do provide valuable insights into the dynamics of 

an MHD unstable system, but often require significant computational resources and have 

internal numerical limitations, which may affect the results.  These limitations have 

prevented the determination of detailed scaling relations for the energy confinement time 

and plasma β  which are of great practical importance to experiments. 

An alternative approach, employed in this study, is to create an analytical model, 

which predicts the energy and particle transport of a plasma in the region weakly unstable 

to the interchange mode. It is shown that an excitation of MHD instabilities creates new 

type of transport, seen in quasilinear approximation. We have employed this 

approximation to derive transport equations in the MHD unstable region and have shown 

that the quasilinear transport relaxes the system back to marginal stability. 

The present approach involves the derivation of a set of quasilinear transport 

equations where the perturbations are driven by the ideal MHD interchange instability. 

The analysis is carried out for both the hard core Z-pinch and toroidal dipole geometries. 

We show that while the quasilinear transport coefficients depend on the saturated 

amplitudes of the perturbations, it is not necessary in practice to explicitly calculate these 
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amplitudes in order to deduce the values of Eτ  and β .  The key results of the analysis are 

as follows.  First, we prove the often made conjecture that the plasma pressure will relax 

to its marginal profile.  Second, the quasilinear theory makes a specific prediction 

concerning the density profile - ( ) 1

/n dl B
−

∫∼ v .  This allows us to predict the peak 

temperature.  Third, specific scaling relations are derived for Eτ  and β  in the 

accompanying paper. 

The paper is organized as follows: Section 2 discusses the basics issues of the 

quasilinear approach.  In Section 3 the full quasilinear transport equations are derived for 

the hard core Z-pinch geometry.  Section 4 presents the derivation of the steady state 

transport model for the hard core Z-pinch. The full quasilinear transport equations are 

rewritten in a more transparent form which can then be reduced using the assumption that 

quasilinear transport is the dominant transport mechanism.  A simple model is used to 

illustrate the validity of the approximations.  In Section 5, the quasilinear transport 

equations are generalized to a toroidal axisymmetric closed-field line magnetic 

configuration. Finally, Section 6 presents non-linear numerical simulations of the 

evolution of an unstable plasma in a hard-core Z-pinch configuration. We test the 

applicability of the ideal MHD quasilinear model derived earlier and discuss the 

implications for predicting plasma profiles. 

 

II. MHD quasilinear transport – basic issues 

 

In this section we discuss the basic issues arising in the formulation of MHD 

quasilinear transport arising from ideal MHD interchange modes in an axisymmetric, 
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closed line, toroidal configuration.  This configuration includes the levitated dipole 

configuration as well as its large aspect ratio limit, the hard core Z-pinch.   

For the system under consideration the primary unknowns to be determined are the 

pressure p , density ρ , poloidal magnetic field pB , and the diffusion velocity v .  

Following the standard procedures used in the quasilinear theory of kinetic instabilities 

[13] we expand all unknowns as 

 ( , ) ( , ) ( , , , )Q t Q t Q tψ ε ψ χ φ= +r �  (1) 

Note that we have introduced flux coordinates where the “radial” coordinate ψ  is tied to 

the background magnetic field, χ  is an arbitrary poloidal angle, and φ  is the standard 

toroidal angle.   The various quantities ( , )Q tψ ε  represent the background state of the 

plasma.  These are one-dimensional functions which are allowed to vary slowly with time 

due to the quasilinear plus classical evolution of the system.  It is the evolution of the 

( , )Q tψ ε  with respect to the background flux that is the primary goal of the analysis.   

The quantities ( , )Q tr�  represent the perturbations away from equilibrium due to MHD 

instabilities and are responsible for driving the quasilinear transport.  Their amplitudes 

are assumed to be small enough (e.g. Q Q� � ) so that nonlinear effects can be neglected, 

but still large enough that the resulting quasilinear diffusion dominates classical transport.  

Mathematically, the perturbed quantities represent a sum over the unstable linear 

eigenmodes of the system with each mode calculated by neglecting the slow variation of 

the background state.  In the analysis the perturbations are assumed to arise solely from 

interchange instabilities.   
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Collisional effects, such as resistivity and thermal conductivity also lead to transport 

of energy and particles as well as affecting the growth rates and eigenmodes of the MHD 

perturbations.  These effects are considered in detail Section V.  Qualitatively, these 

effects are important in regions of the pressure profile where localized interchange modes 

are stable.  In these regions collisional effects then represent the only source of transport.  

In the unstable regions, the ideal MHD modes typically have a much faster time scale 

than any collisional transport contributions.  Therefore, we assume that collisional effects 

do not significantly alter the growth rates or change the eigenfunctions of the unstable 

perturbations.   

An important conclusion from the analysis, applicable in the interesting regime where 

the quasilinear transport coefficients are much larger than those due to classical transport, 

is the following: The final steady state profiles can be uniquely determined and are 

independent of the value of the quasilinear transport coefficients.  There is no need to 

explicitly calculate the saturated amplitudes of the unstable MHD modes.   

With this as background we are now ready to begin the detailed analysis of 

quasilinear transport in the MHD model. 

 

III. Quasilinear transport in a hard core Z-pinch 

 

The first geometry of interest is the hard core Z-pinch, a cylindrically symmetric 

configuration for which the analysis is highly simplified.   The analysis separates into two 

contributions, one from the MHD stable region that is assumed to obey the laws of 

classical transport, the other from the region that is unstable to MHD interchange modes.  
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A general 1-D transport equation is derived that is valid in both regions, followed by a 

simple calculation that shows how the two regions can be separated and then connected 

across the marginal stability boundary. 

 

• The general 1-D transport equations 

 

It is well known [14] that a hard-core Z-pinch is potentially unstable to only two ideal 

MHD modes: the 0m =  interchange mode and the 1m =  helical mode.  Here, m  is the 

azimuthal wave number.  The interchange mode imposes the strictest limitations on the 

plasma profile and sets the value of the maximum achievable local pressure gradient.  

The fastest growing interchange modes are localized in space and occur for large 

longitudinal wave numbers (i.e. k → ∞ ).   For the LDX configuration the outer portion 

of the profile, beyond the location of the pressure peak, is the region likely to be unstable 

to interchange modes.  See Fig.1.  The inner region, where the pressure gradient is 

positive, is stable to interchange modes.  It is in this region that classical transport is 

assumed. Our goal here is to derive a set of 1-D transport equations valid in both regions.  

The starting point for the analysis is a simplified, nonlinear single fluid model that 

includes thermal conductivity, resistivity, and the thermal force, but for simplicity 

neglects viscosity.  The starting model is thus given by 
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( )

2

) 0

1

3
2

i

n (n
t

m n p
t

d p n T S
dt n n

n T
t B

γ γ
γ

η

∂ + ∇ ⋅ =
∂

∂⎛ ⎞+ ⋅∇ = × − ∇⎜ ⎟∂⎝ ⎠
−⎛ ⎞ = ∇ ⋅ ⋅∇ +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

∂ × ∇⎡ ⎤⎛ ⎞= ∇ × × − −⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

v

v v v J B

B Bv B J

Iχ
 (2) 

Here ( , )S tεr  is the heating source.  Note that we have included the thermal force in 

Ohm’s law in order to prevent the simple, but physically unrealistic result that the 

pressure in the MHD stable region is driven to be uniform in space; that is, the pressure 

would be unconfined if the thermal force is neglected.  Also, although the thermal 

diffusivity is written as a tensor, the analysis shows that only the cross-field component 

enters into the analysis.   

The model is reduced as follows.  The background quantities ( , ),r tρ ε  ( , ),p r tε  

( , )B r tθ ε , and ( , )r tεrv  are the primary unknowns to be determined.  For simplicity, we 

assume that the velocity of the background state of the plasma is due solely to transport.  

(i.e. there is no large background flow velocity).  This implies that we can neglect inertial 

effects in the momentum equation for the background state.   

Consider next the perturbations.  For 0m =  interchange modes, the perturbations are, 

by definition, functions only of ( , , )r z t .  Also, the perturbed magnetic field has only a 

parallel component: ( , , )B r z tθ θ=B e� � .  In contrast, the perturbed velocity has no parallel 

component: ( , , ) ( , , )r zr z t r z t= +v e e� �� r zv v .  All perturbed quantities are assumed to be a 

sum over unstable interchange eigenfunctions: 

 ( , , ) ( )exp( )n n n
n

Q r z t Q r i t ik zω= − +∑�  (3) 
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where 0/k n R=  and 0R  is the major radius of the equivalent torus. 

Under the above assumptions the starting equations reduce to 

 

( )

( ) ( )1

2
0

2 2

0 0

0

1

3( )
2

2i

n n
t
s s n T S
t n

B B nrB T
t r r r rB

B Bm n p
t r

γ

θ θ
θ

θ

θ θ

γ

η η
µ

µ µ

−

∂ + ∇ ⋅ =
∂
∂ −+ ∇ ⋅ = ∇ ⋅ ⋅ ∇ +⎡ ⎤⎣ ⎦∂

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞+ ∇ ⋅ = ∇ ⋅ ∇ + ∇⎜ ⎟ ⎜ ⎟ ⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
⎛ ⎞∂⎛ ⎞+ ⋅ ∇ = −∇ + −⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

v

v

v

v v v

Iχ

 (4) 

Here, 1/s p nγ −=  is a function related to the entropy per unit volume and ∇  represents 

the two dimensional operator / /r zr z∇ = ∂ ∂ + ∂ ∂e e . 

 

• The magnetic field equation 

 

To proceed we focus on the magnetic field equation.  The various quantities are 

substituted and after a short calculation we obtain the unexpanded but cumbersome 

equation given by 

 
( ) ( ) ( )

( )
0

3        
2

B B B B B B B B
t r z

n TrB
r r r B r

θ θ θ θ θ θ θ θ

θ
θ

η η
µ

∂ ∂ ∂+ + + + + + +
∂ ∂ ∂

⎡ ⎤∂ ∂ ∂= +⎢ ⎥∂ ∂ ∂⎣ ⎦

� � � �� � � �r r r r z zv v v v v v
 (5) 

Note that both background and perturbation contributions have been included on the left 

hand side of the equation.  However, the perturbations have been neglected on the right 

hand side since the classical transport terms are already assumed to be small compared to 

the MHD terms. 
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The next step is to average the equation over z  to obtain the governing equation for 

the background magnetic field.  The averaging procedure is defined as 

 
2

0

1
2

L
Q Q d z

L
π

π
= ∫  (6) 

where 12 /L kπ=  is the longest wavelength of the unstable perturbations and by 

definition 0Q =� .  After averaging, Eq. (5) reduces to 

 ( ) ( )
3/ 4

1/ 42B TB B nT
t r r B r
θ

θ θ
θ

η⎡ ⎤∂ ∂ ∂ ∂+ = − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
� �r rv v  (7) 

In deriving Eq. (7) we have used the background pressure balance relation 

 ( )
0

0p B rB
r r r

θ
θµ

∂ ∂+ =
∂ ∂

 (8) 

obtained by averaging the momentum equation and neglecting inertial effects for the 

slowly evolving background state.  Observe that the first term on the right hand side 

represents quasilinear transport while the second term corresponds to classical transport. 

Equation (7) can be further simplified by introducing the background flux function 

( ),r tψ ε  as follows 

 B
rθ
ψ∂=

∂
 (9) 

This allows us to integrate the equation yielding 

 ( )
3/ 4

1/ 42 TB nT
t r B rθ

θ

ψ ψ η∂ ∂ ∂+ = − −
∂ ∂ ∂

� �r rv v  (10) 

Here, the free integration function has been set to zero under the assumption that there is 

no external zE  field driving the toroidal current.  
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• Flux coordinates 

 

Equation (10) describes the evolution of the magnetic flux.  It is useful because it 

allows us to introduce flux coordinates that define the reference frame with respect to 

which transport can be measured.  The flux surface transformation is defined by  

 ( , )r t
t

ψ ψ
τ

=
=

 (11) 

The critical relations required to carry out the analysis are easily calculated and are given 

by 

 
                

1                         t

B B r
r t

r r
B B

θ θ τ

ψ τ
θ θ

ψ τ ψ
ψ

∂ ∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂ ∂

= = −
 (12) 

When the coordinate transformation is substituted into the flux evolution equation, 

the result is an explicit expression for the diffusion velocity measured with respect to the 

reference coordinate system. 

 

 ( )
3/ 4

1/ 42B Tr nT
B B
θ

τ
θ θ

η
ψ
∂− = − −

∂

� �r
r

v
v  (13) 

This equation contains the essential information required to determine the transport 

evolution of the plasma particles and energy. 

 

• Particle and energy transport 
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The particle and energy transport equations are determined in a manner completely 

analogous to the derivation of the magnetic field equation.  The expansions are 

substituted into the nonlinear equations which are then averaged over z .  The resulting 

equations are further simplified by eliminating the radial velocity by means of Eq. (13).  

After a straightforward but slightly lengthy calculation we obtain the following evolution 

equations for n  and s . 

 

1

4

4

1

C

C

C

rn n n n Tr n B D B
B B T

rs s D B s n n Tr s B
B B n T

r STrnB
n B

θ θ
θ θ

θ
θ

θ θ

θγ
θ

τ ψ ψ ψ

τ ψ ψ ψ

γ χ
ψ ψ−

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪= − − − +⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪= − − − +⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞− ∂ ∂+ +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

�� ��

�� ��

r r

r r

v v

v v  (14) 

Here, 2 22 / /C e eiD nT Bθη ρ τ= ∼  and 2 22 / /C i ci ii i iiT mχ ω τ ρ τ= ∼ . 

The final step in the derivation is to substitute for the perturbed quantities in order to 

obtain the quasilinear transport coefficients.  This is easily accomplished by noting that 

the equations for the perturbed quantities are obtained by subtracting the z  averaged 

equations from the exact nonlinear equations.  As in the standard quasilinear procedure 

the nonlinear terms are neglected in the equations for the perturbed equations.  

Furthermore, as stated previously, the time scale for MHD instabilities is much faster 

than for classical transport.  The implication is that it is a good approximation to neglect 

the classical transport terms in the perturbation equations.  The net result of these 

considerations is that the perturbations satisfy the equations of ideal MHD.  Specifically 

from the conservation of mass and the conservation of flux we obtain 
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nn n
r

B B B
r r r r
θ θ θ

ξ

ξ

∂= − − ∇ ⋅
∂

⎛ ⎞∂= − − ∇ ⋅⎜ ⎟∂ ⎝ ⎠

�

� � �

ξ

ξ
 (15) 

where ( )r z zi iω ω ξ ξ≈ − +v e e� ξ = − . 

From these expressions it follows that 

 

2

2

Q

Q

n B rnn B D
B r B

s B rss B D
B r B

θ
θ

θ θ

θ
θ

θ θ

ψ

ψ

⎛ ⎞∂− = − ⎜ ⎟∂ ⎝ ⎠
⎛ ⎞∂− = − ⎜ ⎟∂ ⎝ ⎠

�� ��

�� ��

r r

r r

v v

v v

 (16) 

where QD  is the quasilinear diffusion coefficient given by 

 ( ) 2,Q n n
n

D ψ τ γ ξ=∑  (17) 

The final transport equations are obtained by substitution of Eq. (16) into Eq. (14).  

Also, since ( )1/ 2/C e i CD m m χ∼ , it is a good approximation to neglect the CD  terms in 

the energy equations.  This leads to 

 

2

2
1

4

1

Q C

Q C

rn rn n n TD B rD B
B B T

r Srs rs TD B r nB
B B n B

θ θ
θ θ

θ θγ
θ θ θ

τ ψ ψ ψ ψ

γ χ
τ ψ ψ ψ ψ−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ − ∂ ∂= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

 (18) 

where for simplicity of notation the over-bars have been suppressed on the background 

variables.  These are the desired quasilinear transport equations.  The basic unknowns are 

( , ), ( , ),  and ( , )p n rψ τ ψ τ ψ τ .  The relationships to the variables appearing in Eq. (18) are 

as follows: 1p n sγ −= , 2 / 2T n sγ −= , and 1/B rθ ψ= .  One more equation is needed to 
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close the system and this is the pressure balance relation for the background state.  This 

equation determines ( )r ψ  and in flux coordinates reduces to 

 
2 32

2

1r r p r
rψ ψ ψ ψ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (19) 

 The derivation of the 1-D quasilinear transport equations is now complete. 

 

IV. One dimensional steady state transport 

 

• Reduction of the equations 

 

One practical application of the quasilinear transport equations is to determine the 

steady state profiles of a hard core Z-pinch in which one portion of the profile is stable to 

interchange modes while another is unstable.  The formulation of multi-region problem is 

carried out in this Section.  It is also shown, by means of a model problem, how the 

formulation can be substantially simplified in the interesting regime where Q CD χ� .  

Interestingly, the final results are closely coupled to the results of linear MHD stability 

although in the derivation of the quasilinear transport equations described above only the 

linearized mass and magnetic field equations have been used – no use has been made of 

the linearized momentum equation. 

In steady state (i.e. / 0τ∂ ∂ = ) the quasilinear equations can be simplified by 

reverting back to radial rather than flux coordinates since there is a one-to-one relation 

between ψ  and r : ( , ) ( )r t rψ ψ→ .   The steady state equations are thus given by 
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1

0
4

1 0

Q C

Q C

rn n n TD B rD
r r B r T r

rs TD B r n r S
r r B n r r

θ
θ

θ γ
θ

γ χ−

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂ − ⎡ ∂ ∂ ⎤⎛ ⎞+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦

 (20) 

Equation (20) can be written in a slightly different form that more closely shows the 

connection between the quasilinear transport terms and MHD interchange stability.  By 

making use of the background radial pressure balance relation it can be shown that Eq. 

(20) can be rewritten as  

 

( )

0
2

0
1 2 1

0
4

11 1 0

Q n p C

Q p n C

p n n TD n K K rD
r B r T r

pp TD K K r n r S
r n B n r r

θ

γ γ
θ

µ
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⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞+ + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
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 (21) 

where 

 

2

2
0

2

2
0

2( )

2( )

p

n

Br dpK r
p dr B p

Br dnK r
n dr B p

θ

θ

θ

θ

γ
µ γ

µ γ

= +
+

= +
+

 (22) 

Observe that the condition for stability against localized interchange modes, as first 

derived by Kadomstev [14], is given by ( ) 0pK r > .  Intuitively we see that in the limit of 

quasilinear diffusion dominance (i.e. /Q CD D → ∞ ) the plasma profiles must relax to a 

state corresponding to 0pK →  and 0nK → .  In other words, the profiles relax so as to 

just hover around the point of marginal stability. 

It is also worth emphasizing that QD  is large only in regions that are unstable to 

interchange modes.  For a hard core Z-pinch only the outer portion of the pressure profile 
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is potentially unstable.  The implication is that to take this stable-unstable transition into 

account QD  must be of the form 

 ( ) ( )Q Q pD D r H K= −  (23) 

where H  is the Heaviside step function. 

Consider next the solution to the steady state transport equations for large but finite 

QD .  In principle, we must solve the equations separately in the stable and unstable 

regions and then match the density and temperature plus the particle flux and energy flux 

across the critical radius corresponding to marginal stability.  We show below, by means 

of a model problem, that for large QD , the solutions and the matching procedure are 

greatly simplified if  our main goal is to calculate certain average quantities such as the 

plasma β  or the energy confinement time Eτ .  

 

• Model problem 

 

A model problem that captures the essential physics of the quasilinear transport 

analysis is as follows 

  

 1 2 0C Q
d dp dp prD rD S

r dr dr dr r
⎡ ⎤⎛ ⎞+ + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (24) 

subject to boundary conditions (0) 0,  (1) wp p p′ = = .  For simplicity we assume that 

, ,  and C QD D S  are constants.  The condition to excite an MHD instability, in analogy 

with the quasilinear model, is taken to be 
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 2 0dp p
dr r

+ ≤  (25) 

 

As a reference case we can easily calculate the solution for purely classical transport 

(i.e. 0QD =  everywhere).  The solution is given by 

 ( )2
0 1p p rε= + −  (26) 

where 0 / 4 Cp S D=  and 0/wp pε = .  The heating power is assumed to be sufficiently 

large so that the edge pressure is much less than the central pressure: 0/ 1wp p ε= � . 

It can easily be shown that the classical solution would be MHD unstable in the 

region 2 2 1sr r< <  where 2 (1 ) / 2 1/ 2sr ε= + ≈ .  Lastly, our end goal is to calculate the 

volume averaged pressure defined by 

 
1

0
2p p rdr= ∫  (27) 

A short calculation shows that for the case of classical transport 

 0 0(1 2 )
2 2

p pp ε+= ≈  (28) 

Consider now the model problem including quasilinear transport.  We obtain the 

desired solutions by solving in the inner stable region 2 20 sr r< <  using only classical 

transport (i.e. 0QD = ).  In the unstable region 2 2 1sr r< <  we use the full equation with 

0QD ≠ .  Note that at this point the marginally stable transition point 2
sr  is still an 

unknown quantity to be determined. 

The solutions in each region are easily obtained and can be written as 
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( )2 2 2

0 1

2 2 23
0 2 2

Classical:                                            0

Quasilinear:                      1
1

s

s

p p c r r r

cp p c r r r
r α

δ
δ

= − < <

⎛ ⎞= + − < <⎜ ⎟+⎝ ⎠

 (29) 

Here, the jc  are free integration constants, / 2 1C QD Dδ = � , and 1/(1 2 )α δ= + .   

The problem as it now stands has four unknown constants: 2
1 2 3, , ,  and sc c c r .  These 

are determined by the following four conditions: (1) the wall condition (1) wp p= , (2) the 

requirement that the classical solution be marginally stable at sr r−= , which is equivalent 

to [ ]2 / 0
sr r

p p r −=
′ + = , (3) continuity of the pressure across the marginal stability 

transition point a b 0
r r

p
=

= , and (4) continuity of the flux across the marginal stability 

transition point a b 0
sr r

p
=

′ = .  Note that the last condition is simplified because sr  

corresponds to the point of marginal stability as dictated by condition (2).  After a short 

calculation the unknown constants can be determined and substituted back into Eq. (29), 

yielding 

 
( )2 2 2 2

0

2 2
2 2 2

0 2

Classical:         2                                    0

1 2Quasilinear:                  1
1 1

s s

s
s

p p r r r r

rp p r r r
r

α

α
δ δ

δ δ

+

= − < <

⎛ ⎞+= − < <⎜ ⎟+ +⎝ ⎠

 (30) 

where 

 
1

12 (1 )
1 2sr

αε δ δ
δ

++ +⎡ ⎤= ⎢ ⎥+⎣ ⎦
 (31) 

The final quantity of interest is the average pressure which, when evaluated, has the 

following somewhat complex form 

 ( ) ( )
2 4

2 2 4
0

1 2 1
2 (1 ) 1 2

s
s s

rp p r rαδ δ
δ δ δ

+
⎡ ⎤+ −= − −⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 (32) 
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In the interesting physical limit of large quasilinear diffusion, corresponding to 

1δ ε� � , the expressions become independent of δ  and simplify to  

 
( )

2 1/ 2

0 3 ln
2

sr
pp

ε

ε ε ε

≈

≈ −
 (33) 

The key point of the model problem is to show how Eq. (33) can be obtained by a 

much simpler procedure by taking the small δ  limit at the beginning, rather than the end 

of the calculation.  The simpler procedure consists of solving the classical transport 

equations for the inner part of the profile and using the marginal stability condition to 

determine the pressure in the outer part of the profiles.  Specifically, we need to solve 

 

2 2

2 2

1 0             0

2 0                             1

C s

s

d dprD S r r
r dr dr
dp p r r
dr r

⎛ ⎞ + = < <⎜ ⎟
⎝ ⎠

+ = < <
 (34) 

The boundary conditions are (1) (0) 0p′ =  and (2) (1) wp p= .  The marginal stability 

point is again determined by requiring that the classical solution satisfy 

[ ]2 / 0
sr r

p p r −=
′ + = .  The main simplification that occurs involves the jump conditions.  

In this case only one jump condition is required a b 0
sr r

p
=

= .  The problem is now 

completely specified.  The solution is found to be 

 

( )

1/ 2 2 2 1/ 2
0

2 1/ 2 2
0

0

(2 )            0

/                       1

3 ln
2

p p r r

p p r r
pp

ε ε
ε ε

ε ε ε

= − < <

= < <

= −

 (35) 

We see that the simplified calculation leads to the same value of p  as that obtained 

from the small δ  limit of the full quasilinear solution.  A comparison of the radial 
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profiles corresponding to classical transport, the full quasilinear transport, and the 

simplified quasilinear transport are illustrated in Fig.2 for the case 210ε −=  and 410δ −= .  

Observe the similarity between the simple and full quasilinear profiles and the large 

reduction in peak pressure with respect to the classical profiles. 

 

• Final form of the cylindrical quasilinear transport equations 

 

Based on the results from the model problem we can now simplify the formulation for 

the cylindrical quasilinear analysis.  A key result is that in the limit of large quasilinear 

diffusion the final results are independent of the value of QD .  There is no need to 

evaluate the nonlinear saturated amplitudes.  The model simplifies as follows. 

 

Classical region: 

 

( )0                0
4

0                     ( ) 0

c
C

C c

n n T n rrD
r r T r r

Tr n r S T r
r r

χ

∂ ∂ ∂ ∂⎡ ⎤⎛ ⎞+ = =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂⎛ ⎞ + = =⎜ ⎟∂ ∂⎝ ⎠

 (36) 

Quasilinear region: 

 

2

2
0

2

2
0

2( ) 0            ( )

2( ) 0             ( )

p w w

n w w

r dp BK r p r p
p dr B p

r dn BK r n r n
n dr B p

θ

θ

θ

θ

γ
µ γ

µ γ

= + = =
+

= + = =
+

 (37) 

Here, cr  is the coil radius and wr  is the wall radius.  The boundary conditions on the coil 

correspond to a perfect heat sink and 100% recycling of particles.  On the wall we 

assume the temperature and density are specified.  The formulation of the problem is 
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completed by (1) requiring that the classical solutions satisfy the marginal stability 

criterion at sr r−= , corresponding to , ( ) 0p sK r− =  and (2) matching the solutions across 

the stability interface which requires a b 0
sr r

n
=

=  and a b 0
sr r

p
=

= .   

Once the solutions are obtained it is then a straightforward task to evaluate critical 

experimental parameters such as the average β  and the energy confinement time Eτ .  

This calculation is carried out in detail in the accompanying paper. 

 

V. Quasilinear transport in a toroidal dipole configuration 

 

The analysis of quasilinear transport in a cylinder can be generalized to the toroidal 

case in a relatively straightforward manner.  In a torus two additional features must be 

taken into account in the analysis, but these are not overly difficult tasks.  First, the 

equilibrium geometry becomes two dimensional because of coupling to the poloidal 

angle.  This difficulty is resolved by introducing flux coordinates.  Second, because of the 

poloidal coupling the definition of an interchange mode is not as transparent as in a 

cylinder.  To address this issue we focus attention on the fastest growing modes, 

corresponding to n → ∞  where n  is the toroidal mode number.  These are the 

interchange modes and in this limit the definition becomes unambiguous. 

For mathematical simplicity the analysis is carried out by taking the large QD  limit at 

the outset.  There are three steps in the procedure: (1) introduce flux coordinates, (2) 

derive the transport equations in the classical region, and (3) derive the transport 

equations in the quasilinear region. 
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• Flux coordinates 

 

For a closed line axisymmetric toroidal configuration it is convenient to carry out the 

analysis in terms of flux coordinates defined by (1) a “radial” coordinate ( , )R Zψ  

corresponding to the flux, (2) a “poloidal” coordinate ( , )l R Z  corresponding to arc 

length, and (3) a “toroidal” coordinate ζ  corresponding to the usual polar angle.  The 

coordinates are tied to the slowly varying, background magnetic flux.  Clearly, by 

construction, the coordinates are orthogonal.  Also, in the flux coordinate system time is 

denoted by τ .  Thus the coordinate transformation is given by 

 

( )
( )

, ,

, ,

R Z t

l l R Z t

t

ψ ψ

ζ φ
τ

=

=
= −
=

 (38) 

Note that ( , , )lψ ζ  is a right-handed system.  Next, the flux is defined by again 

neglecting inertial effects in the momentum equation for the background quantities.  The 

implication is that ψ  satisfies the Grad-Shafranov equation 

 2 2
02

( , )p tR R
R
ψ ψµ

ψ
∇ ∂⎛ ⎞∇ ⋅ = −⎜ ⎟ ∂⎝ ⎠

 (39) 

The magnetic field is related to the flux by the relation 

 1
R φψ= ∇ ×B e  (40) 

The poloidal coordinate is chosen to be arc length, defined as 

 l B⋅ ∇ =B  (41) 

Three useful relations for the analysis resulting from these definitions are given by 



 25

 ( ) 1
n

t t

d dl dR dR dZ d
B

AA
B RA

l B R

l
t l

ζ

ψ ζφ

ψ ζ

ψ
τ ψ

=

∂⎡ ⎤∂ ∂ ⎛ ⎞∇ ⋅ = + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

A &  (42) 

where ( ) /nA RBψ= ∇ ⋅ A  and A = ⋅b A&  with / B=b B .  Lastly, we need an expression 

for the volume contained within a given flux surface ( )ψv .  We define 

( )1/ 2 /V d dπ ψ= v  from which it follows that 

 
0

( ) 2

( )

dld
B

dlV
B

ψ
ψ π ψ

ψ

′=

=

∫ ∫

∫

v

v

v
 (43) 

We are now ready to derive the transport equations. 

 

• Classical region 

 

In the classical region the analysis is purely two dimensional (i.e. , lψ ) since by 

definition no perturbations exist which would introduce ζ  dependence.  The derivation 

begins by focusing on the equation for the toroidal flux function.  As for the cylindrical 

case we write ( )/ R φψ⎡ ⎤= ∇ × ⎣ ⎦B e  and then integrate Faradays law (Eq. 2), evaluating the 

φe  component from the resulting integrated expression.  This yields 

 2 3
2

p n TR
t

ψ ψ η
ψ ψ

⎛ ⎞∂ ∂ ∂+ ⋅∇ = − −⎜ ⎟∂ ∂ ∂⎝ ⎠
v  (44) 
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Note that ( ),T T tψ= .  It does not depend on l  because of the large parallel thermal 

conductivity. 

Next, we introduce flux coordinates into this relation, which yields an explicit 

expression for the normal component of velocity with respect to the coordinate velocity. 

 ( )
3/ 4

1/ 42t RT nT
RB Bψ
ψ η

ψ
∂+ = −

∂
v  (45) 

Following the cylindrical analysis, we write the conservation of mass and energy 

relations in flux coordinates and then average over both ζ  and l .  After a slightly 

lengthy but nonetheless well-established procedure we obtain two evolutionary equations 

for the background particle density and entropy related function given by 

 
( )

( )

1/ 4
3/ 4

1 1

1 1

C

C

nTnV D T

TsV n S V
n nγ γ

τ ψ ψ

γ γχ
τ ψ ψ− −

⎛ ⎞∂ ∂ ∂= ⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ − ∂ ∂ −= +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (46) 

where 

 2 2 2

2 2

 

2

 

C C

C C

dlQ
BQ dl

B
D nTV R V R B D

V R B

η

χ χ

=

= =

=

∫

∫

v
v

 (47) 

As for the cylindrical case we have neglected particle diffusion as compared to thermal 

diffusion in the entropy equation. 

 

• Quasilinear region 
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The analysis in the quasilinear region is in general three dimensional since the 

unstable perturbations are of the form ( ) ( ) ( ), , , , expQ l Q l i inψ ζ τ ψ ωτ ζ= − +� � .  However, 

previous analysis of the MHD stability of closed line systems [4] has shown that the most 

unstable modes, in terms of thresholds, are high n  interchanges.  This recognition, 

combined with the fact that quasilinear transport drives the profiles close to marginal 

stability, substantially simplifies the analysis.  In this limit we can introduce a small 

parameter / 1naδ γ= �Tiv .   Here nγ  is the MHD growth rate which is small since the 

system hovers near marginal stability.  For small δ  the form of the MHD perturbations 

simplifies as follows. 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

2
1

2
1

2
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, , ,
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l l l

l l l

n l n n l

p l p p l

l l l

ψ ψ δ ψ

ψ ψ δ ψ

ψ ψ δ ψ

ψ ψ δ ψ

ψ ψ δ ψ

⊥

⊥

⊥

≈ +

≈ +

≈ +

≈ +

≈ +

v v v

B B B

&

&

&

� � �

� � �

� � �
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ξ ξ ξ

 (48) 

Furthermore, for an interchange mode in toroidal geometry the “radial” component of the 

normalized displacement vector is nearly constant along a field line; that is 

 ( ) ( ) ( )2
1, ,l X X lψ ψ ψ δ ψ∇ ⋅ ≈ +ξ  (49) 

The next step is to recall that as QD → ∞  the perturbations in the quasilinear region 

satisfy the ideal MHD equations.  All transport effects can be neglected because of the 

fast time scale associated with quasilinear diffusion.  

Under this set of assumptions it is straightforward to show, in analogy with Eq. (13), 

that the magnetic field can be expressed in terms of a flux function.  This equation, when 
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rewritten in flux coordinates, yields an expression for the relative motion of the 

background fluid velocity with respect to the background flux coordinate. 

 1 B
RB t B

ψ
ψ

ψ∂+ = −
∂

��v
v  (50) 

Here the subscript “ψ ” denotes normal component and B = B&
� �  

The quasilinear equations describing the evolution of the background state are now 

obtained by averaging the density and energy equations over l  and ζ , and then 

substituting Eq. (50), yielding 

 
( )

( )

2

0

2

0

1
2

1
2

nnV d dl R n B
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τ π ψ
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τ π ψ

⎧ ⎫∂ ∂ ⎡ ⎤⎛ ⎞= − −⎨ ⎬⎜ ⎟⎢ ⎥∂ ∂ ⎝ ⎠⎣ ⎦⎩ ⎭
⎧ ⎫∂ ∂ ⎡ ⎤⎛ ⎞= − −⎨ ⎬⎜ ⎟⎢ ⎥∂ ∂ ⎝ ⎠⎣ ⎦⎩ ⎭
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∫ ∫

�� �

�� �

v

v

v

v

 (51) 

The final step in the analysis is to eliminate , ,  and n sψ� � �v  using the linearized equations of 

ideal MHD stability.  Only the conservation of mass and energy relations are required.  

Consistent with the assumptions made above we find that 

 

( ) ( )1 1 expn n n
n

X X in
RB RB

nn X n

ss X s

ψ γ ψ γ τ ζ
τ

ψ

ψ

⊥

⊥

∂≈ = +
∂

∂≈ − − ∇ ⋅
∂
∂≈ − − ∇ ⋅
∂

∑�

�

�

v

ξ

ξ

 (52) 

The quasilinear evolution equations reduce to 

 
( ) ( )

( ) ( )

Q

Q

nV D nV

sV D sV

τ ψ ψ

τ ψ ψ

⎡ ⎤∂ ∂ ∂= ⎢ ⎥∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂= ⎢ ⎥∂ ∂ ∂⎣ ⎦

 (53) 

where  
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 2
Q n n

n

D Xγ=∑  (54) 

These are the desired equations.  Note that as in the cylindrical case no use has been 

made of the linearized momentum equation. 

 

• Final form of the toroidal quasilinear transport equations 

 

The formulation of the steady state quasilinear transport equations can now be easily 

obtained by setting / 0τ∂ ∂ =  and specifying boundary and jump conditions as outlined 

in the cylindrical model problem.  The results are as follows. 

 

Classical region: 

 

1/ 4
3/ 4 ( )0                     0

0                   ( ) 0

c
C

C c

nT nD T

Tn S V T

ψ
ψ ψ ψ

χ ψ
ψ ψ

⎛ ⎞∂ ∂ ∂= =⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ + = =⎜ ⎟∂ ∂⎝ ⎠

 (55) 

Quasilinear region: 

 
1

1

0                                   ( )

1 0         ( ) /
( )

w w

w w w

nV n n

sV pV s p n
nV

γ
γ

γ

ψ
ψ

ψ
ψ ψ

−
−

∂ = =
∂
∂ ∂= = =
∂ ∂

 (56) 

Jump conditions: 

 
a b
a b

0

0
s

s

n

p
ψ

ψ

=

=
 (57) 

Definition of sψ : 



 30

 0
s

pV γ

ψψ −

∂ =
∂

 (58) 

As in the cylindrical case the quasilinear energy equation coincides with the marginal 

stability criterion for interchange modes: / 0pV γ ψ∂ ∂ ≥ .   

Lastly, note that the equations in the quasilinear region can be rewritten in forms 

more closely analogous to the cylindrical results.  A short calculation yields 

 
2

0

2
0

1 1 2 0
/ 1 1/

1 1 2 0
/ 1 1/

n
RB n p B

p
RB p p B

κ ψ µ γ

γ
κ ψ µ γ

⎛ ⎞∂− + =⎜ ⎟∂ +⎝ ⎠

⎛ ⎞∂− + =⎜ ⎟∂ +⎝ ⎠

 (59) 

where ( ) 0κ = ⋅ ⋅∇ <n b b  is the normal component of the curvature.  

The quasilinear toroidal dipole problem is now fully specified.  When solved it leads 

to a prediction of both the steady state pressure and density profiles from which it is then 

straightforward to calculate macroscopic quantities of interest such as  and Eβ τ . 

 

VI. Numerical simulations 

 

We next attempt to verify the conclusions of the quasilinear transport model by 

means of a nonlinear simulation.   To understand the numerical simulations recall that the 

validity of the quasilinear transport model requires that several assumptions be satisfied.  

These assumptions can be quantified in terms of four characteristic time scales that 

appear in the problem.  The longest time scale 2 /C Caτ χ�  corresponds to classical heat 

diffusion.  Next in the hierarchy is the heating time /H p Sτ � .  The assumption is that 
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the plasma is heating up faster than it can lose energy by classical heat conduction.  The 

third time scale 2 /Q Qa Dτ �  is the quasilinear diffusion time.  By definition quasilinear 

diffusion should dominate energy transport, preventing the plasma from reaching the high 

temperatures that would result from purely classical transport.  The fastest time scale 

/M aτ � Tiv  corresponds to the characteristic growth rate of MHD instabilities and enters 

into the expression for QD .  Thus, for quasilinear theory to be valid we require that 

 M Q H Cτ τ τ τ� � �  (60) 

  An equivalent interpretation in terms of perturbation amplitudes is as follows.  The 

amplitudes of the MHD perturbations and the corresponding growth rates should be large 

enough so that quasilinear diffusion dominates the particle and energy transport but must 

be small enough so that the non-linear terms are unimportant.  

The numerical simulations described in this Section have two primary objectives: (1) 

demonstrate that in appropriate parameter regimes of experimental interest the quasilinear 

model accurately predicts plasma transport, and (2) determine the time evolution of the 

profiles and demonstrate the existence of the self-consistent steady state plasma profiles 

predicted by the quasilinear model.  A key additional point is to assess the validity and 

accuracy of the numerical codes used for the simulations.  This last point, as we shall see, 

is problematic because of the highly localized structure of the interchange eigenfunctions.  

Because of this the simulation results are only partially satisfactory in achieving our 

objectives. 

 

• The numerical model 
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The code used to simulate the evolution of the plasma is a modified version of the 

earlier one-fluid code developed at University of Maryland [15].  The code solves the 

following system of equations   

( )

( )

( )

2

Mass:              ) 0

Ohm's law:      
t

Momentum:    

2Energy:          
3 E

ρ (ρ
t

ρ p
t

d p S T T
dt ρ ργ γ

η

µρ

ρχ ρχ⊥ ⊥

∂ + ∇ ⋅ =
∂
∂ = ∇ × × + ∇
∂

∂⎛ ⎞+ ⋅∇ = × − ∇ − ∇ ⋅ ∇⎜ ⎟∂⎝ ⎠
⎛ ⎞ ⎡ ⎤= + ∇ ⋅ ∇ + ∇⎜ ⎟ ⎣ ⎦⎝ ⎠

v

B v B B

v v v J B v

& &

 (30) 

The geometry corresponds to a 2-D cylindrical hard core Z-pinch.  The parameters 

µ ,η , χ⊥ and χ&  are viscosity, resistivity, cross-field and parallel classical conduction 

coefficients respectively, with χ χ⊥& � .  Each of these coefficients is held constant 

during the simulation.  As is characteristic of virtually all MHD fluid codes the transport 

coefficients are substantially larger than their actual physical values in order to insure 

good numerical convergence.  This convergence requirement, we shall see, is the main 

feature that makes the interpretation of the numerical results problematic. 

In the simulations the plasma is confined in a perfectly conducting cylindrical shell of 

radius 1.1 wr m= .  The plasma is stabilized by an inner coil (i.e. the hard core) carrying a 

10 kA current.  The coil radius is 0.1 cr m= .  

All functions are assumed to be periodic in the z-direction (i.e axial) with the length 

of the box 3.0 L m= .  Typical simulations were carried out with a grid resolution of 

100 300r z× = × .  The temperature boundary conditions on the wall and coil walls 

assume that these surfaces are maintained at a constant temperature 0.1 c wT T eV= = . The 
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number of particles in the simulated volume is held fixed, so the plasma neither looses 

nor gains any additional mass.  Finally, the energy source is modeled by a relatively 

broad Gaussian function ( )2 2exp / 2E hS r r r⎡ ⎤∝ − − ∆⎣ ⎦  located 20 cm  away from the coil: 

30 hr cm= and 7 r cm∆ ≈ .  

 

• Weak heating simulation 

 

The starting point for the simulations corresponds to a cold plasma with a flat density 

profile and the background temperature equal to the wall temperature ( )0 wT t T= = .  The 

first numerical experiment involves a low-energy heating source (i.e. S is small) that 

slowly heats the plasma to a level that is just slightly unstable against interchange modes.  

The z-averaged density and pressure profiles for the barely overheated plasma are 

illustrated in Fig. 3. Observe that the particle density is lowered in the plasma core due to 

both the frozen-in law, which carries particles within the magnetic flux tubes and slow 

collisional transport; that is, the finite resistivity creates a slow collisional particle flux, 

which drives particles into the regions of low temperature ( ) /p
cD nT rΓ ∝ − ∂ ∂ .   

The stability condition is first violated close to the outer wall causing the plasma to 

develop a small-scale convective motion as illustrated on Fig. 4.  The amplitudes of the 

perturbations are quite small implying that quasilinear diffusion should dominate 

nonlinear effects.  However, the growth rates of the modes are also quite small, implying 

that the quasilinear diffusion coefficient is small.  In other words the additional 
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quasilinear transport does not dominate classical conduction (for the numerical values 

used in the simulations) and therefore does not noticeably change the plasma profiles.  

The conclusion is that when S is too small quasilinear transport occurs but is too weak 

to dominate over classical transport. 

 

• Strong heating simulation 

 

The second set of numerical experiments involves a stronger external heating source (i.e. 

S is large), which deposits 10 times the maximum energy allowed by classical heat 

conduction that would not violate the MHD stability criterion.  As the instabilities 

develop, the plasma undergoes a macroscopic transformation, leading to the formation of 

fast moving convective cells.  Such behavior can be analyzed only in a non-linear model. 

The interchange instabilities and corresponding non-linear transport dominate over 

collisional transport (i.e. only about 10% of the energy flux is due to collisional transport) 

and leads to an equilibration of the number of particles on any given flux tube. Several 

different snapshots in the evolution of the particle density are illustrated in Fig. 5.   

The eventual density profile is close to ( ) 1
1/ /V dl Bρ

−

∫∼ ∼ v in the MHD unstable 

region, though it never reaches the exact “target” profile given by Eq. (37) due to the 

presence of collisional transport.  The density profile in the MHD stable region is also 

seen to undergo significant changes on a fast time scale due to the small volume of the 

region and the strong velocity changes in the convective cells, which bring particles in or 

out of the inner region of plasma. A comparison of  density and pressure profiles at the 

time 4t t=  and the “target” profiles is illustrated in Fig. 6.  
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The pressure profile evolves to its marginally stable form in the outer region, 

governed by Eq. (37) except in a narrow boundary layer at the outer wall, where viscosity 

plays an important role. This type of self-organization and redistribution of plasma 

profiles towards the marginally stable ones has also been reported by V.Makhnin et.al. 

[11].  

The major mechanism of energy transfer in the present simulations is the large-scale 

convective cell motion of the plasma, as seen in Fig.7.  This behavior coincides with that 

seen by Pastukhov [9] in the quasi-stable state, while Makhnin reported smaller scale 

incoherent turbulence. Also, the development of large-scale convective cells in the non-

linear regime is supported by the theoretical analysis presented by Yoshizawa et.al.[16]. 

 The existence of the global convective cells protects the plasma against disruptions 

by providing a mechanism to disperse the excessive heat from the plasma core.  At the 

same time, during the formation of the convective cells and reorganization of the plasma 

profiles, a large radial velocity is observed only a few grid points away from the outer 

wall.  That suggests that the rapid overheating of the plasma and the creation of strong 

non-linear perturbations may lead to large energy transport into the wall if a less ideal 

and more realistic boundary condition were used in the simulations.  

 

• Summary of simulation results 

 

Quasilinear transport has not been seen to play the dominant role in energy transport 

in the present numerical studies.  It was observable for the case of a weak energy source, 

but its magnitude was not large enough to dominate classical transport.  For the high 
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power heat source, quasilinear transport was present and large but was quickly replaced 

by the non-linear stage. A similar finding was reported by Pastukhov [9]. He observed 

that the quasilinear transport started to smooth the profiles, but was not dominant and was 

replaced by non-linear global plasma motion. The conclusion is that we do not have clear 

numerical evidence that demonstrates a regime where quasilinear energy and particle 

diffusion are the dominant transport mechanisms although, interestingly, the nonlinear 

results yield the same steady state profiles.  However, as discussed below, the difficulties 

may well be due to the limitations of the simulations rather than the quasilinear theory 

Specifically, the absence of quasilinear dominated transport may simply point out the 

difficulties of the numerical codes to describe fine scale perturbation, even if their 

theoretical growth rates are large. One factor is that the numerical grid restricts the entire 

spectra of the unstable perturbations to only the longer scale perturbations with the 

minimum allowable wavelength equal to 5-7 grid points.  This reduces the quasilinear 

diffusion coefficient to only a few slower growing modes, thereby invalidating some of 

the assumptions for the validity of the theory. A finer resolution may partially improve 

the situation by including shorter wavelength modes, but even this may not be sufficient 

to capture the true micro-structure of the modes, which may well make the largest 

contribution to quasilinear transport.  

A second numerical problem is that in order to keep the run time reasonably short, the 

initial conditions and heating source amplitude are chosen so that when instabilities are 

excited, they have significant amplitudes, which are closer to the threshold of nonlinear 

behavior than might be expected by the slower, weak amplitude evolution required by 

quasilinear theory.  In other words the larger mode amplitudes required by the 
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simulations essentially preclude, by definition, the possibility of a weak amplitude 

quasilinear evolution. 

Thus, while both the nonlinear and quasilinear results lead to the same final profiles it 

is not yet clear which model most closely models the actual experimental situation.  This 

remains an area of future research. 

 

VII. Conclusions 

 

It has been analytically shown that the excitation of interchange modes leads to a 

quasilinear transport of both energy and particles transport.  The quasilinear transport is 

independent of collisional mechanisms.  Its major contribution comes from the mixing of 

short wavelength perturbations. This micro turbulence transport effectively restores 

pressure profile to its marginally stable form and causes the density profile to evolve to 

1
/dl Bρ

−
⎡ ⎤
⎣ ⎦∫∼ .  

The exact transport equations are derived for a hard core Z-pinch magnetic 

configuration.  The transport equations are generalized to an axisymmetric closed-field 

line toroidal geometry under the assumption of including only short-wavelength 

perturbations.   

The quasilinear transport analysis has been derived under the assumption of weakly 

unstable plasma profiles. To test the applicability of initial assumption, a set of nonlinear 

numerical simulations has been carried out.  The simulations were unable to show that 

the quasilinear transport can be sufficiently dominant to significantly change plasma 

profiles.  Instead, the major transport mechanism observed in the strongly unstable case 
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was nonlinear global convective cells. The convection reorganized the pressure and 

density profile to the same steady-state profiles predicted by quasilinear theory, although 

the mechanisms were different.  This somewhat unsatisfactory result may well be 

explained by the natural limitations of the numerical codes, which involve grid resolution 

and incompatible initial conditions. 

In any event, the overlap of the results allows us to make a prediction for the steady 

state β  and Eτ  for LDX, two parameters of experimental performance.  This anaylsis is 

carried out in the accompanying paper. 
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Figure Captions 

1. The LDX schematic profile 

2. Radial pressure profiles for classical, full quasilinear and simplified quasilinear 

transport models. 

3. The pressure and density profiles of a slowly heated plasma 

4. Convective cells in a slowly heated plasma. Plasma velocity field. 

5. The snapshots of the "self-organizations" process. Time 1t - before an instability is 

excited; 2 4t t− : different stages of self-organization 

6. Comparison of (a) density and (b) pressure profiles at time 4t  with the quasilinear 

idealistic profiles given by Eq. (37) 

7. Typical velocity field profile in a plasma. 
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