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Abstract 

Recent advances in gyrokinetic simulation have allowed for quantitative predictions of core 

turbulence and associated transport. However, numerical codes must be tested against 

experimental results in both turbulence and transport. In this paper, we present recent results 

from ohmic plasmas in the Alcator C-Mod tokamak using phase contrast imaging (PCI) 

diagnostic, which is capable of measuring density fluctuations with wave-numbers up to 55 cm-1. 

The experiments were carried out over the range of densities covering the "neo-Alcator" (linear 

confinement time scaling with density, electron transport dominates) to the "saturated ohmic" 

regime. We have also simulated these plasmas with the gyrokinetic code GYRO and compared 

numerical predictions with experimentally measured turbulence through a synthetic PCI 

diagnostic method. The key role played by the ion temperature gradient (ITG) turbulence has 

been verified, including measurements of turbulent wave propagation in the ion diamagnetic 

direction. It is found that the intensity of density fluctuations increase with density, in agreement 

between simulation and experiments. The absolute fluctuation intensity agrees with simulation 

within experimental error (+/-60%). In the saturated ohmic regime, the simulated ion and 

electron thermal diffusivities also agree with experiments after varying the ion temperature 

gradient within experimental uncertainty. However, in the linear ohmic regime, GYRO does not 

agree well with experiments, showing significantly larger ion thermal transport and smaller 

electron thermal transport. Our study shows that although the short wavelength turbulence in the 

electron temperature gradient (ETG) range is unstable in the linear ohmic regime, the nonlinear 

simulation with kθρs up to 4 does not raise the electron thermal diffusivity to the experimental 

level, where kθ is the poloidal wavenumber and ρs is the ion-sound Larmor radius. At the present 
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time, it is not known if even shorter wavelength turbulence would account for the measured 

electron transport.  

1. Introduction 
Early experiments in the Alcator C tokamak observed the “neo-Alcator” scaling of confinement 

in ohmically heated plasmas, where the energy confinement time ( Eτ ) is proportional to the line-

averaged electron density ( en ). As the density increases, Eτ  saturates and shows a weak 

dependence on en  [ 1 ]. This saturation of confinement was interpreted as evidence of the 

importance of unstable ion temperature gradient (ITG) turbulence when the ion and electron 

channels are coupled by collisions at high densities.  

 

Previous studies in the Texas Experimental Tokamak (TEXT) [2] and DIII-D [3] presented 

experimental evidence for the ITG turbulence in the saturated ohmic regime. Although some 

nonlinear turbulence calculations were based on the DIII-D conditions, there were no 

quantitative comparisons of simulated and measured turbulence. In addition, the physics of the 

neo-Alcator scaling in the linear ohmic regime, where the electron transport dominates, is still 

not well-understood. A few theoretical transport models based on the finite- eβ  universal-mode 

turbulence [4], the principle of profile consistency [5], or the extreme dissipative trapped 

electron (DTE) transport scaling [6-8] show a linear relationship between the confinement time 

and electron density. The theoretical modeling of TEXTOR plasmas suggests the linear ohmic 

regime is dominated by the dissipative trapped electron mode (TEM), while the saturated ohmic 

regime is dominated by the ITG mode [9-12]. This interpretation is consistent with the fact that 

the TEM is stabilized by higher collisionality at a higher density, while the ITG mode is only 

weakly affected by collisionality. An analogous analysis in ASDEX Upgrade provides results 

consistent with the above interpretation [13]. Moreover, turbulence measurements in ASDEX 

Upgrade indicate a transition from TEM to ITG as collisionality increases [14].  However, 

complete nonlinear gyrokinetic simulations are still necessary for a more quantitative 

comparison between theory and experiment. As a result, revisiting these ohmic plasmas with 

experimental turbulence measurements and advanced gyrokinetic simulations is essential in 

quantitatively understanding electron transport, as well as validating the numerical codes.  
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In this paper, we report the numerical and experimental studies of turbulence and transport in 

Alcator C-Mod ohmic plasmas. The phase contrast imaging (PCI) diagnostic [15,16] is used to 

measure the turbulent density fluctuations. Recent advances in gyrokinetic simulation allow us to 

quantitatively simulate core turbulence and associated transport [ 17 - 22 ]. Moreover, the 

development of a synthetic PCI diagnostic [23, 24] for GYRO allows for direct and quantitative 

comparisons between the PCI measurements and numerical predictions. The plasma regimes 

studied cover both the linear and saturated ohmic regimes, with the goal of resolving a 

longstanding mystery in transport physics in tokamaks. 

  

This paper is arranged as follows: in Sec. 2, the discharges under study are overviewed; in Sec. 3, 

the transport analysis with TRANSP are discussed; in Sec. 4, the fluctuation measurements are 

presented; in Sec. 5, a comparison is given between fluctuation measurements and GYRO 

predictions; in Sec. 6, a comparison in transport is given between GYRO simulation and 

TRANSP calculation. Finally, in Sec. 7 the conclusions are presented. 
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2. Target Plasma Parameters   
Our experiments were carried out over a range of densities in the Alcator C-Mod Tokamak [25] 

covering the "neo-Alcator" (also known as “linear ohmic”) to the "saturated ohmic" regime. As 

shown in Fig. 1, when the line-averaged electron density ( en ) is below 20 -30.7 10  m× , the global 

confinement time ( Eτ ) is linearly proportional to the average density, i.e. E enτ ∝ .  After en  

increases above 20 -30.8 10  m× , Eτ  saturates and shows a weaker dependence on en . The 

experiments were conducted with the on-axis toroidal magnetic field ( Bφ ) at 5.2 T and the 

plasma current ( pI ) at 0.8 MA. As examples, the electron density and temperature profiles at 

20 30.34 10  men −= × , 20 30.62 10  men −= × , and 20 30.93 10  men −= ×  are shown in Fig. 2, where 

the smoothed profiles are obtained by fitting the experimental measurements from the Thomson 

scattering ( en , eT ) and electron cyclotron emission ( eT ) diagnostics [26]. It is seen that the 

experimental uncertainty of the electron density and temperature measurements is typically 

~15%. To further reduce the statistical uncertainty in the data analysis and processing, large data 

sets are used from steady discharges. All the data, including the plasma equilibrium and 

fluctuation measurements used in the paper, are averaged over the steady phase (~0.4 sec) of the 

discharge. These averaged profiles, as shown in Fig. 3, are used in the following transport 

analyses and gyrokinetic simulations.  
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Figure 1. Energy confinement time Eτ  versus line-averaged density en . The shaded 
region represents the transition between the linear ohmic and saturated ohmic regime.  
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Figure 2. Electron density and temperature profiles at 20 -30.34 10  men = × ,  
20 -30.62 10  men = ×  and 20 -30.93 10  men = × . (a)-(c) are electron density profiles and 

(d)-(f) are electron temperature profiles, where the electron density profiles are measured 
by the Thompson (TS) diagnostic and the electron temperature profiles are measured by 
the TS and electron cyclotron emission (ECE) diagnostics. The solid curve is a fit to the 
experimental measurements using FiTs. Two vertical dashed lines on each plot 
correspond to the magnetic axis and the last closed flux surface (LCFS), respectively.   
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Figure 3. Electron density (a) and temperature (b) profiles at different densities, where 
the line-averaged density en  of each profile is labeled.  
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3. Transport Analysis with TRANSP  
In our studies, the thermal transport characteristics are determined with the TRANSP [27] code, 

which calculates the local thermal diffusivities from the energy balance equations. TRANSP is 

also used to determine these unmeasured plasma parameters, such as ion temperature profiles, 

which are necessary in the gyrokinetic simulation. In Alcator C-Mod, the high resolution X-ray 

spectrometer (Hirex) [28] was used to measure ion temperature profiles but these measurements 

were not always available. Thus, the ion temperature profiles used here are calculated from the 

neutron measurement. TRANSP uses experimental electron density and temperature profiles and 

a multiplier on the electron diffusivity eχ  to obtain an ion temperature profile consistent with the 

neutron measurement [29]. This modeling is based on two assumptions: first, the ion temperature 

profile is Gaussian with a width similar to that of the electron temperature profile; second, the 

ion density is calculated from the electron density using a flat effZ  profile. In the TRANSP 

analysis presented in this paper, the input effZ  is calculated from the neoclassical resistivity [30].  

To estimate the uncertainty of the modeled ion temperature iT  and its gradient iT∇ , the 

calculated  effZ  and measured neutron rate is varied by ±15%. The resulting changes of the 

modeled iT  and  iT∇  are as much as 10% and 30%, respectively. The resulting change on the 

dimensionless parameter / ( / )( / )Ti i ia L a T dT dr= −  is as much as 30%. 

 
Approaching the center of the plasma column, the heat flux Q  goes to zero, which implies that 

the temperature gradient goes to zero, i.e. 0T∇ → . Consequently, it is difficult to compute the 

thermal diffusivity ( χ ), since /Q Tχ ∝ ∇ . Near the plasma edge, the errors in the electron 

density and temperature profiles are especially large. Therefore, the focus of the TRANSP 

analysis is the plasma core, which is taken to be in the range of / [0.2,0.8]r a ∈  in this paper. The 

thermal diffusivities from the TRANSP analysis at low ( 20 30.34 10  men −= × ), medium 

( 20 30.62 10  men −= × ), and high ( 20 30.93 10  men −= × ) density plasmas are shown in Fig. 4, 

where the lowest density plasma corresponds to the linear ohmic regime where Eτ  is linearly 

proportional to en . The highest density plasma corresponds to the saturated ohmic regime where 

Eτ  is saturated. The medium density plasma represents the transition from the linear to saturated 
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ohmic regime. As the density increases, the electron thermal diffusivity eχ  decreases, but the ion 

thermal diffusivity iχ  increases slowly; the effective thermal diffusivity 

e e e i i i
eff

e e i i

n T n T
n T n T
χ χχ ∇ + ∇

≡
∇ + ∇

 

also decreases. We also note that iχ  is much lower than eχ  in the linear ohmic regime and 

becomes comparable to  eχ  in the saturated ohmic regime. This indicates that the electron and 

ion transport channels are decoupled at the low density and the ohmic power is lost mainly 

through the electron channel. 
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Figure 4. TRANSP calculated thermal diffusivities for ohmic plasmas at the line-
averaged density of (a) 20 -30.34 10  men = × , (b) 20 -30.62 10  men = ×  and (c) 

20 -30.93 10  men = × .  
 
 
 
 
 
 
 
 
 
 
 
 
 



 9

4. Fluctuation Measurements 
To study the change in turbulent transport as the density varies in ohmic plasmas, it is of great 

importance to measure the change in turbulent fluctuations. In Alcator C-Mod, the phase contrast 

imaging (PCI) diagnostic has been used to monitor these fluctuations. The PCI diagnostic 

measures the line-integrated density fluctuations along the 32 vertical chords of the CO2 laser 

beam as shown in Fig. 5. The signals are detected by 32 photoconductive HgCdTe linear 

detectors. A more detailed discussion of the PCI diagnostic can be found in Refs. [15, 16,31,32]. 

The signal of each chord takes the form of ( , )j js n R z dz= ∫ , where n  is the electron density 

fluctuation, z  is the vertical coordinate, jR  is the major radius coordinate of each vertical chord, 

and j  is the channel number. Through the Fourier decomposition, both the frequency and 

wavenumber of the measured fluctuations can be extracted. In general, the Alcator C-Mod PCI 

system is capable of measuring turbulent density fluctuations in the wavenumber range of 0.5-55 

cm-1 and in the frequency range of 2 kHz to 5 MHz. An absolute calibration has been obtained 

by using the PCI system to measure the density perturbations induced by calibrated sound waves 

[33].  
PCI
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Figure 5. Laser beam path in the Alcator C-Mod PCI system. The sign convention of 
wavenumber in this paper is also indicated at the bottom, where the positive (negative) 
wavenumber corresponds to the mode propagating toward high (low) field side. 
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The frequency spectra of a single chord PCI measurement are shown in Fig. 6, where the 

density fluctuation intensity decays as the frequency increases. A linear fit 

log logf f fP A f B= − +  is used to estimate the decay rate, where fP  is the fluctuation 

intensity of the frequency spectra. The decay rate in the lower frequency range of 20-80 

kHz, where 1.5 0.3fA ≈ ± ,  is smaller than that in the higher frequency range of 100-250 

kHz, where 4.2 0.7fA ≈ ± , depending on densities. We also note a knee exists in the 

frequency spectrum when the density is above 20 30.7 10 m−× . As the density decreases, 

the location of this knee in frequency tends to move toward higher frequency. However, 

the knee feature becomes less pronounced when the density is below 20 30.7 10 m−× . 

Currently, the cause and influence of this feature is not well understood. 
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Figure 6. Frequency spectra of a PCI core channel (14) at different densities. The spectra 
are averaged over 400 ms and shown with a 5 kHz frequency resolution.  

 
 
As shown in Fig. 5, although the turbulent wave propagates only in one direction (electron or ion 

diamagnetic direction), it intersects with the PCI laser beam twice (once at the top and once at 

the bottom) and is measured as two oppositely propagating waves on the PCI wavenumber 

spectra. Since the conventional PCI configuration measures the line-integrated density 

fluctuations evenly along the vertical chord, it cannot differentiate contributions from the top or 
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bottom. Consequently, the conventional PCI configuration cannot resolve the direction of 

propagation of the measured turbulence. Recent upgrades have enabled the Alcator C-Mod PCI 

system to partially localize the longer wavelength turbulence in the ion temperature gradient 

(ITG) and trapped electron mode (TEM) regimes. This localizing technique relies on a masked 

phase plate, which introduces a weight function ( )w z  to the PCI signal in the line integration, i.e., 

( ) ( , )jw z n R z dz∫ . As a result, the localizing PCI can differentiate contributions from the top or 

bottom by setting 0 0z zw w> <>  (preferentially top view) or 0 0z zw w> <<  (preferentially bottom 

view), thereby resolving the direction of propagation. [16] In the studies presented in this paper, 

the PCI system is set to view the bottom column plasma preferentially, i.e. 0 0z zw w< >> . 

According to the sign convention of wavenumbers shown in Fig. 5, the positive wavenumber 

corresponds to the turbulent waves propagating in the ion diamagnetic direction, while the 

negative wavenumber corresponds to those propagating in the electron diamagnetic direction in 

the laboratory frame. Figure 7 shows the frequency/wavenumber of the PCI measurement at 
20 30.93 10  men −= ×  in the saturated ohmic regime. The measurement shows that the fluctuations 

in the higher frequency range of 80-250 kHz propagate in the ion diamagnetic direction in the 

laboratory frame, where the experimentally measured frequency ( labf ) equals to the mode 

frequency ( modef ) plus the Doppler shift due to E×B drift velocity ( ExBf ), i.e. mode E Blabf f f ×= + . 

Although the radial electric field is not well measured for the considered plasmas, the available 

measurements indicate that the background Doppler rotation is not enough to reverse the mode 

propagating direction of the turbulence with the wavenumbers in the ITG and TEM regime. 

Therefore, this measurement also shows that the fluctuations in the higher frequency range of 80-

250 kHz propagate in the ion diamagnetic direction in the plasma frame. 

 



 12

-5-10 5 100
10

50

100

150

200

250
Shot: 1070713009

Fr
eq

ue
nc

y 
[k

H
z]

Wavenumber [cm-1]

[1
032

m
- 4

/c
m

-1
/H

z] 10-4

10-6

10-8Positive k
Negative k

BPCI

i+

e-

 

Figure 7. Frequency/wavenumber spectra of the PCI measurement at 20 -30.93 10  men = ×  
in the saturated ohmic regime. The PCI diagnostic is set to preferentially view the bottom 
plasma.  
 

It is very tempting to seek correlation between the overall fluctuation intensities measured by 

PCI and the global confinement time. The PCI measurements can be normalized to the line-

integrated density for an estimated fluctuation level. The results are shown in Fig. 8. Here the 

normalized density fluctuation is shown in arbitrary units, since we only focus on its variation as 

the density changes. Currently, the experimental error of the PCI measurements mainly comes 

from the uncertainty of calibration, which provides a conversion factor to express fluctuation 

intensity (
2

en dl∫ ) in the scale of 4m− . When the measurements are expressed in the real scale, 

the uncertainty is +/-60%. However, when the comparison is performed in arbitrary units 

between measurements with the same diagnostic performance, the uncertainty is typically below 

10%. As shown in Fig. 8(a), in the linear ohmic regime 20 30.7 10  men −< × , the relative density 

fluctuation intensity in the frequency range of 20-80 kHz decreases as density increases; this 

shows some correlation with the confinement time scaling where E enτ ∝ . However, there is no 

significant difference for relative density fluctuation in the electron and ion diamagnetic 

direction in the laboratory frame. This suggests the PCI measurement below 80 kHz might be 

localized at the plasma edge, where the turbulence propagating in the ion and electron 

diamagnetic directions may be comparable. An alternative explanation is that low frequency 

modes coming from the plasma core and the edge are mixed together in a way we cannot 
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separate them. The masked PCI has resolved that fluctuations above 80 kHz are dominated by 

the mode propagating in the ion diamagnetic direction in both the linear and saturated ohmic 

regimes, as shown in Fig. 8(b). This dominance becomes more apparent in the saturated ohmic 

regime as density increases, which indicates that ITG becomes more significant as density 

increases where electrons and ions are more coupled.  
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Figure 8. Relative density fluctuation intensity level vs. the line-averaged density (red 
dot: integrated over the wavenumber range of [2, 6] cm-1, corresponding to the mode 
propagating in the ion diamagnetic direction for the preferentially bottom view 
configuration of PCI; blue open circle: integrated over the wavenumber range [-6, -2] cm-

1 corresponding to the mode propagating in the electron diamagnetic direction for the 
preferentially bottom view configuration of PCI) (a) integrated over the frequency range 
of 20-80 kHz; (b) integrated over the frequency range of 80-250 kHz 

 

We also want to point out that the above comparison between the estimated density fluctuation 

level and confinement time as the density varies is limited for two reasons. First, PCI measures 

line-integrated electron density fluctuations (including both plasma core and edge) and phase 

cancellation might be important in the line-integration of density fluctuations, which makes it 

difficult to directly relate the PCI measurement to the local transport. Second, since turbulence- 

driven transport also depends on other unknown plasma parameters and their correlations (such 

as potential and temperature fluctuations), large density fluctuations do not always correspond to 

large thermal transport. To provide better understanding of experimental measurements, we have 
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also simulated turbulence with the GYRO code [17, 18], which quantitatively relates the 

fluctuation spectra to transport.  

5 Turbulence Studies with GYRO 
To further explore the nature of turbulence and the drive mechanism of thermal transport, we 

have used GYRO to simulate turbulence and transport. GYRO is a physically comprehensive 

global code which solves the nonlinear 5-D gyrokinetic-Maxwell equations for both ions and 

electrons in a local (flux-tube) or ‘global’ radial domain [17, 18]. The input file is prepared from 

the output of TRANSP [27] using the data translator (trgk) developed at PPPL. The electrostatic 

approximation is assumed for all the simulations presented in this paper, since we verified that 

the contributions from electromagnetic fluctuations are negligible in our simulation of the low-β 

( 0.1%β < ) C-Mod plasmas.  

 

It is apparent that the unprocessed simulated density fluctuations cannot be directly compared 

with the PCI measurements, since PCI measures the line-integrated density fluctuations which is 

heavily influenced by the phase cancellations and the variation of plasma profiles along the 

integrating line. This makes the synthetic PCI crucial when comparing simulations with 

experimental measurements[23]. The synthetic PCI post-analyzes the output of the global GYRO 

simulations and emulates the PCI measurements by line-integrating the electron density 

fluctuation along the PCI beam path, where the system response is also included. After obtaining 

a synthetic PCI signal, the same analysis package as the experimental data is used for spectral 

analysis.  

 

All simulations are performed with the real mass ratio ( / 3600i em m ≈ ) and kinetic electrons. 

Unless otherwise specified, the nonlinear global GYRO simulations in this paper cover the 

plasma domain of 0.4 / 0.8r a< <  and include 16  modes evenly spaced between 

0.0 1.0skθ ρ< <  at the center of the simulated domain, where kθ  is the wavenumber in the 

poloidal direction, /s s icρ = Ω  is the ion-sound Larmor radius, 1/ 2( / )s e ic T m=  is the ion sound 

speed, /( )i ieB m cφΩ =  is the ion cyclotron frequency,  and im  is the ion mass. Figure 9 shows 

the synthetic PCI spectra from the GYRO simulation of the plasma at 20 30.93 10  men −= ×  in the 
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saturated ohmic regime. As shown in Fig. 9(a) where the Doppler shift corresponding to the 

average poloidal flow is not accounted for, the fluctuation with the positive wavenumber 

dominates, consistent with the ITG turbulence. Here, an average poloidal flow ExBv 2 km/sec=  

is chosen to match the phase velocity of the broadband turbulence above 80 kHz in the PCI 

measurements. This value corresponds to 10 kV/mrE  , which gives a typical Doppler shifted 

frequency of ~ 64 kHz  for 1~ 2 cmkθ
− . With the assumed Doppler shift the synthetic spectra, as 

shown in Fig. 9(b), are similar to the experimental measurements (see Fig. 7). 
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Figure 9.  Synthetic PCI spectra at 20 -30.93 10  men = × : (a) no Doppler shift; (b) adding 

E Bv 2 km/sec× =  for Doppler shift. 
 

It is useful to integrate the frequency/wavenumber spectra (as shown in Fig. 9b) over a frequency 

range for a quantitative comparison between experiments and simulations. The integrating 

frequency range is chosen to be 80-250 kHz, where the PCI measurement is dominated by the 

core turbulence (see Sec. 4). As shown in Fig. 10, the wavenumber spectrum of density 
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fluctuations in the 80-250 kHz range quantitatively agrees with GYRO simulation in the core 

( 0.4 / 0.8r a< < ). The convergence studies with different mode grid number nN  and toroidal 

mode separation nΔ  are shown in Fig. 10(a): (1) 16nN = , 10nΔ = ; (2) 10nN = , 12nΔ = ; (3) 

20nN = , 10nΔ = . These simulations agree with experimental measurements within the 

experimental uncertainty (+/-60%). The simulations with different ion temperature profiles at 
20 -30.93 10  men = ×  are shown in Fig. 10(b). Three ion temperature profiles are used: (1) 

Modeled iT  with TRANSP to match the neutron measurement; (2) 0.8i eT T= × ; (3) i eT T= . The 

simulated wavenumber spectra with different ion temperature profiles all agree with each other, 

as well as experimental measurements.  
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Figure 10. (a) Comparison of PCI measurements with GYRO simulations with different 
set of toroidal mode numbers at 20 -30.93 10  men = × . (b) Comparison of PCI 
measurements with GYRO simulations with different ion temperature profiles at 

20 -30.93 10  men = × :. 
 

The measured turbulence in the 50-80 kHz range propagates in the ion diamagnetic direction (see 

Fig. 7). After including the contribution of turbulence in the 50-80 kHz range, the simulated 

wavenumber spectra in the core ( 0.4 / 0.8r a< < ; Fig. 9b) still agrees with the measured spectra 

within the experimental uncertainties (+/-60%) although the agreement is not as good as in Fig. 

10. However, the PCI is a line-integrated density fluctuation diagnostic, where both core and 
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edge turbulence contributes to the measured spectra. The induced ExB Doppler shift is relatively 

smaller since the turbulence in the 50-80 kHz range has lower wavenumbers than those above 80 

kHz (see Fig. 7); thus, the core turbulence below 80 kHz is still mixed together with the edge 

turbulence.  

 

Simulations of ohmic plasmas at other densities and similar analysis have been carried out. At 

lower densities, similar spectral shapes were obtained but with progressively lower intensities. A 

summary of the results as a function of density is shown in Fig. 11. It is seen that the integrated 

density fluctuation intensities in the frequency range of 80-250 kHz are quantitatively consistent 

with a series of GYRO global simulations.  
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Figure 11. Comparison of the simulated fluctuation intensity (
2

en dl∫ ) in the 
frequency range of 80-250 kHz with experimental measurements at various 
densities, where the fluctuation intensity is shown in the scale of 1032m-4.  
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For the line-integrated fluctuation measurements, the background density is characterized 

by a profile instead of a constant. Thus, it is difficult to relate the PCI measurements to 

the local relative fluctuation intensity. However, it is still tempting to deduce the density 

fluctuation level ( /e en n ) from the fluctuation intensity (
2

en dl∫ ) as shown in Fig. 11 

through / ~ /( )e e en n n dl n L∫ . Considering a reasonable integration length of ~ 5 cmL , 

we find that / ~ 0.2%en n  (see Fig. 11). However, the deduced /e en n  through the above 

approaches does not provide the right local value of /e en n  or contain meaningful physics. 

The reasons are twofold. First, the PCI diagnostic measures the line-integrated density 

fluctuation. The phase cancellation during the line-integration will cause 

| | | | |e en dl n dl∫ < ∫ . Thus, the actual value of /e en n  is likely to be much larger than the 

estimated one. Second, the integrating frequency band in Fig. 11 is selected to be 80-250 

kHz, where the measured fluctuations are dominated by the core-localized turbulence. A 

proper calculation of /e en n  should include the contribution of the fluctuations below 80 

kHz. However, the measured fluctuations below 80 kHz are mixed together with the 

edge-localized turbulence and therefore the core contribution cannot be properly 

distinguished. However, we can state from the GYRO simulations that locally, 

/ ~ 1 3%e en n −  depending on densities in the range of Fig. 11.  
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6. Simulated Transport with GYRO 
GYRO also simulates the thermal transport due to the turbulent fluctuations. It is well known 

that / ( / )( / )Ti i ia L a T dT dr= −  is a crucial parameter in transport analysis (see e.g. [18, 34, 35]). 

To quantitatively investigate the impact of / Tia L  on thermal transport, we have carried out 

extensive sensitivity studies at the higher density ( 20 30.93 10  men −= × ), the medium density 

( 20 30.62 10  men −= × ) and the lower density ( 20 30.34 10  men −= × ). The most relevant nominal 

input parameters at the center of the global simulations are summarized in Table 1. For each 

density, the key parameter / ( / )( / )Ti i ia L a T dT dr= −  is reduced by a factor of 0.1ε = , 0.2 , and 

0.3 . The nonlinear global GYRO electrostatic simulations include 16  modes evenly spaced 

between 0.0 1.0skθ ρ< <  at the center of the simulation domain and cover the plasma of 

0.4 / 0.8r a< <  with the real mass ratio ( / 3600i em m ≈ ) and kinetic electrons. In addition, we 

have also estimated the uncertainties of the experimental thermal diffusivities by scaling the 

electron temperature and ion temperature profiles by ±15% ( 0.85i iT T→ , 0.85e eT T→ ; 

0.85i iT T→ , 1.15e eT T→ ; 1.15i iT T→ , 0.85e eT T→ ; 1.15i iT T→ , 1.15e eT T→ ) and feeding the 

scaled profiles into the TRANSP. The variations of the calculated diffusivities are used to 

estimate the experimental uncertainties. The comparison between the experimental effχ   and 

simulated effχ  with GYRO averaged over / [0.4,0.8]r a ∈  is shown in Fig. 12. The simulated 

effχ  agrees with the experimental measurements after a ~20% reduction of / Tia L , where the 

simulated fluctuation intensities still agree with experiments within the experimental uncertainty 

(+/-60%). 
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Table 1. The input parameters at  the center ( / 0.63r a = ) of the global simulations. 
en  [ 20 -310  m ] 0.34 0.62 0.93 

Aspect Ratio /R a  3.115097 3.118168 3.128948 

Elongation κ  1.221334 1.233673 1.203849 

( / ) /s r rκ κ κ= ∂ ∂  0.164005 0.172129 0.097774 

Triangularity δ  0.085349 0.091244 0.061823 

/s r rδ δ= ∂ ∂  0.182362 0.194366 0.109060 

Safety factor q  1.410419 1.494749 1.152875 

ˆ ( / ) /s r q q r= ∂ ∂  1.625332 1.585791 1.097617 

/( / )ei sc aν  0.050849 0.161528 0.194468 

/
iTa L  3.612313 3.617833 2.370893 

/
eTa L  3.451792 3.139384 2.559236 

/
ina L  0.850856 1.171108 0.904540 

/
ena L  0.850856 1.171108 0.904540 

/i eT T  0.385030 0.595595 0.727208 
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Figure 12. Comparison between the simulated and experimental effective thermal 
diffusivities ( effχ ), where ε  is the reduction factor of / ( / )( / )Ti i ia L a T dT dr= −  in 
simulations.  

 
 

At the lowest density, TRANSP shows that experimental eχ  is well above iχ ; hence, we can 

analyze eχ  and iχ   separately instead of effχ . The comparisons between the simulated and 

experimental eχ  and iχ  are shown in Fig. 13. At the highest density ( 20 30.93 10  men −= × ) in the 

saturated ohmic regime, both simulated eχ  and iχ  agree with experimental measurements after 

reducing / Tia L  by 20%. However, at the lower density 20 30.62 10  men −= ×  and 

20 30.34 10  men −= ×  in the linear ohmic regime, the simulated eχ  and iχ  do not agree with 

experimental measurements.  
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Figure 13. Comparison between the simulated and experimental thermal diffusivities: (a) 
electron thermal diffusivity eχ ; (b) ion thermal diffusivity iχ , where ε  is the reduction 
factor of / Tia L  in simulations and ,e iχ  is averaged over the domain of 

[ ]/ 0.4,0.8r a ∈ . 
 
 

The simulated ion thermal diffusivity can be reduced to the experimental level by further 

reducing / Tia L  and/or adding E B×  shear [36], but by doing so we find that the simulated 

electron thermal diffusivity is further reduced below the experimental level.  

 

It is well known that the steep density gradient can further destabilize the TEM turbulence. Thus, 

we have also numerically studied the impact of varying the density gradient, at the lowest density 

plasma 20 -30.34 10  men = × . The nonlinear global GYRO simulations include 16  modes evenly 

spaced between 0.0 1.0skθ ρ< <  and cover the plasma domain of 0.4 / 0.8r a< <  with the real 

mass ratio ( / 3600i em m ≈ ) and kinetic electrons. The value of the dimensionless parameter 

/ ( / )( / )ne e ea L a n dn dr= −  at / 0.63r a =  is used to quantify the variation of the density gradient. 

The value of  / ( / )( / )ni i ia L a n dn dr= −  is varied together with / nea L , i.e. / /ni nea L a L= . To 

also study the impact of the temperature gradient as the density gradient varies, two extra 

simulations in addition to the base case are performed for each /
ena L , where /

iTa L  is reduced by 

a factor of 0.2  and 0.4 . The comparison between the experimental ,e iχ   and simulated ,e iχ  with 
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GYRO averaged over / [0.4,0.8]r a ∈  is shown in Fig. 14. It is found that the density gradient 

variation has a weak impact on turbulent transport.  The simulated electron thermal diffusivity 

eχ  can only be raised to the experimental level after increasing /
ena L  by at least a factor of 2 

where the TEM turbulence becomes significant. The simulated ion transport iχ  always remains 

above the experimental level. The impact of the variation of the ion temperature gradient /
iTa L  

on the turbulent transport becomes weaker when the TEM turbulence gets stronger. Since an 

increase of /
ena L  by a factor of 2 is beyond the experimental uncertainty, significant thermal 

transport contribution from the TEM turbulence is not likely for the measured temperature and 

density profiles.  
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Figure 14. Impact of varying a correction factor applied to the measured density 
gradient on the simulated thermal diffusivities at 20 30.34 10  men −= × : (a) electron; 
(b) ion, where ε  is the reduction factor of / Tia L  used in the simulations. Both eχ  
and iχ  are averaged over the domain of [ ]/ 0.4,0.8r a ∈ . The shaded regime 
corresponds to the experimental level of eχ  and iχ , respectively. 

 

 

 

The collisions also play an important role in TEM, since the pitch angle scattering can scatter the 

trapped particles into the passing domain and vice versa. To explore the impact of the 
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collisionality, we have a series of linear stability runs in the plane of / Tia L - /( / )ei sc aν , where 

eiν  is the electron-ion collisional frequency and sc  is the ion sound speed. The other input 

parameters are taken from / 0.63r a = at the lowest density plasma with 20 -30.34 10  men = ×  as in 

Table 1. These linear runs cover 0.0 / 4.0Tia L≤ ≤  and 0.0 /( / ) 0.1ei sc aν≤ ≤ . Because linear 

GYRO uses an initial value approach, it is restricted to only resolve the fastest growing (or least 

damped) eigenmode. The results are shown in Fig. 15. As shown in Fig. 15(a), for the 

experimental collisionality ( /( / ) ~ 0.05ei sc aν ), TEM becomes the most unstable mode when 

/ 1.8Tia L ≤ , which corresponds to a 50% reduction of the experimental base case. As shown in 

Fig. 15(b), the collisionality shows a strong stabilization of the TEMs but only a weak impact on 

the ITG modes. For the experimental collisionality ( /( / ) ~ 0.05ei sc aν ), the growth rate 

( 3 1~ 320 10  sec−× ) of the ITG mode at / ~ 3.6Tia L  is larger than the growth rate of the TEMs 

3 1~ 200 10  sec−×  at / ~ 0Tia L . Thus, the thermal transport from the TEMs is expected to be less 

significant than the ITG modes. For illustrative purposes, a nonlinear flux-tube simulation has 

been performed at / ~ 0.72Tia L  (well below the experimental value) and /( / ) ~ 0.05ei sc aν  

where the TEM is the most unstable mode. The flux-tube simulation includes 20 modes up to 

2.0skθ ρ =  with the real mass ratio ( / 3600i em m ≈ ) and kinetic electrons. The simulated 

electron thermal diffusivity eχ  is 20.08 m / sec , which is significantly below the experimental 

level of 21.5 0.5 m / sec± .  

 

To quantitatively study the impact of collisionality on the simulated thermal transport, we have 

performed nonlinear local simulations with different eiν  input. Three cases are considered: 

/( / ) 0.01ei sc aν = , /( / )ei sc aν 0.05= , and /( / ) 0.10ei sc aν = , where /( / )ei sc aν 0.05=  

corresponds to the experimental measurements at / 0.63r a = . The other input parameters are 

taken from / 0.63r a =  at the lowest density plasma with 20 -30.34 10  men = ×  as in Table 1. The 

local simulation includes 20 modes up to 2.0skθ ρ =  with the real mass ratio ( / 3600i em m ≈ ) 

and kinetic electrons. The results of the nonlinearly simulated thermal diffusivities at various eiν  

are summarized in Table 2, where both eχ  and iχ  increase as eiν  decreases. The simulated 
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electron thermal diffusivity eχ  remains below the experimental level of 21.5 0.5 m / sec±  as eiν  

varies, while the simulated ion thermal diffusivity iχ  remains well above the experimental level 

of 20.4 0.1 m / sec± .  

 

Table 2: Simulated eχ  and iχ  at various eiν , where /( / ) 0.05ei sc aν =  
corresponds to the calculated eiν  based on the experimental measurements. The 
other plasma parameters are taken from / 0.63r a =  at the lowest density plasma 
with 20 30.34 10  men −= × , where / =3.452Tea L , / =3.612Tea L , 

/ = / =0.851ne nia L a L ,  and / 0.385i eT T = .  

/( / )ei sc aν  2[m / sec]eχ  2[m / sec]iχ  

0.01 0.67 2.97 

0.05 0.56 2.67 

0.10 0.48 2.32 

 

 

 

Similar linear stability analyses are performed in the planes of / Tia L - / Tea L  and / Tia L - /i eT T . 

The result in the planes of / Tia L - / Tea L   are shown in Fig. 16, where ITG remains the most 

unstable mode even after varying / Tia L  and / Tea L  by 50%. The results in the planes of / Tia L - 

/i eT T  are shown in Fig. 17, where ITG also remains the most unstable mode in the range of 

/ 1.6Tia L ≥  and 0.2 / 1.0i eT T≤ ≤ . 
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Figure 15: Contour plots of the frequency (a) and the growth rate (b) in the 

/ Tia L - /( / )ei sc aν  plane. The other plasma parameters are taken from / 0.63r a =  
at the lowest density plasma with 20 -30.34 10  men = × , where / =3.452Tea L , 

/ = / =0.851ne nia L a L , and / 0.385i eT T = . The linear stability calculation is 
performed at ~ 0.8skθ ρ . The experimental values / Tia L  and /( / )ei sc aν  are 
marked on the contour plot of the frequency, where the dashed line corresponds to 
the separation between the ITG mode ( 0)f <  and the TEM ( ( 0)f > ). 
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Figure 16: Contour plots of the frequency (a) and the growth rate (b) in the 

/ Tia L - / Tea L  plane. The other plasma parameters are taken from / 0.63r a =  at 
the lowest density plasma with 20 -30.34 10  men = × , where / = / =0.851ne nia L a L , 

/ 0.385i eT T = , and /( / ) 0.051ei sc aν = . The linear stability calculation is 
performed at ~ 0.8skθ ρ . The experimental values / Tia L  and  / Tea L  are marked 
on the contour plot of the frequency, where the dashed line corresponds to the 
separation between the stable regime, the ITG mode ( 0)f < , and the TEM 
( ( 0)f > ). 
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Figure 17: Contour plots in the / Tia L - /i eT T  plane of the frequency at the 
maximum growth rate (a) and the maximum growth rate (b) in the wavenumber 
range of 0.4 1.2skθ ρ≤ ≤ . The other plasma parameters are taken from 

/ 0.63r a =  at the lowest density plasma with 20 -30.34 10  men = × , where 
/ = / =0.851ne nia L a L , / =3.452Tea L , and /( / ) 0.051ei sc aν = . The experimental 

values / Tia L  and  /i eT T  are marked on the contour plot of the frequency, where 
the dashed line corresponds to the separation between the ITG mode ( 0)f <  and 
the TEM ( ( 0)f > ). 
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To further investigate the discrepancy at the lower density in the linear ohmic regime, we have 

also performed nonlinear GYRO simulations in the shorter wavelength length ( 1.0skθ ρ > ) 

regime. The linear stability analysis shows the unstable ETG with the growth rate spectra 

peaking at  ~ 25skθ ρ  across the domain of / 0.63r a = . The nonlinear GYRO simulations 

include 16 modes up to 4skθ ρ =  at 20 -30.34 10  men = ×  with the real mass ratio ( / 3600i em m ≈ ) 

and kinetic electrons. The wavenumber spectra of the simulated electron and ion thermal 

transport are shown in Fig. 18. The contribution of the short wavelength turbulence in the range 

of 4.0 2.0skθ ρ> >  to the electron thermal transport is only 5.0% and its contribution to the ion 

thermal diffusivity is negligible.  

 

Recent simulations with characteristic parameters of DIII-D core plasmas by Candy and Waltz 

[37 , 38] shows that 10-20% of the total electron transport can arise from the ETG scale 

( 1.0skθ ρ > ) where the ion-scale instabilities are not suppressed. They also showed that if the 

ion-scale instabilities are suppressed, by removal of the ion free energy [37] or by the presence 

of ExB shear suppression [38], this fraction can increase significantly. This result was also 

confirmed by Goerler and Jenko [39]. However, since the case we are considering has significant 

ITG drive, it seems unlikely that the ETG scale ( 1.0skθ ρ > ) turbulence can significantly 

contribute to the electron thermal transport. This has been partially verified by our simulations 

up to 4.0skθ ρ = , which shows that only 12.5% of the electron transport arises from the short 

wavelength  turbulence in the range of 4.0 1.0skθ ρ> > . Nevertheless, in the future, it may be 

interesting to explore the role of even shorter wavelength turbulence in the range of 4.0skθ ρ >  

under our experimental conditions and profiles to resolve this issue. Currently, we have not had 

access to expensive computer capabilities that are necessary for nonlinear GYRO simulation of 

such turbulence. 
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Figure 18. Fractional contribution per mode to thermal energy diffusion: (a) electron; (b) 
ion. The simulation is performed at 20 -30.34 10  men = ×  in the linear ohmic regime. 

7. Summary and Discussion 
In this paper, we reported numerical and experimental studies of turbulence and transport in 

Alcator C-Mod ohmic plasmas. The studies were carried out over the range of densities covering 

the "neo-Alcator” (linear confinement time scaling with density, electron transport dominates) to 

the saturated ohmic regime.  Quantitative comparisons in both turbulence and thermal transport 

between experimental measurement and simulation were performed.  

 

At high densities in the saturated ohmic regime, the key role played by the ITG turbulence has 

been verified, including measurements that the turbulent waves propagate in the ion diamagnetic 

direction. It is also found that the intensity of density fluctuations increases with density, in 

agreement between simulation and experiments. The absolute fluctuation wavenumber spectrum 

agrees with simulation within experimental error (+/-60%). Agreement in eχ , iχ , and effχ  

between experiment and theory is obtained after taking a 20% reduction of / Tia L  , all within the 

experimental uncertainty. 

 

At the low density in the linear ohmic regime, where the electron transport dominates ( e iχ χ ), 

the GYRO simulation of the longer wavelength turbulence ( 1skθ ρ < ) shows i eχ χ>  although 

the simulated effχ  agrees with experiments after reducing the ion temperature gradient by 20%. 
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Our nonlinear simulation including the shorter wavelength turbulence up to ~ 4skθ ρ  does not 

raise the simulated electron thermal diffusivity to the experimental level. Although it is possible 

that measurements and simulations at even shorter wavelengths may be necessary to explain 

transport in this regime, measurements to date by PCI indicate very low levels of high-k 

turbulence, falling into the background noise level. While the TEM modes are linearly unstable, 

under our experimental conditions their growth rates are smaller than the ITG modes. The 

nonlinear simulations of TEM turbulence would become important only for significantly steeper 

density gradients, namely / na L  greater than about 2.5. Hence according to our nonlinear GYRO 

simulations, a significant thermal transport contribution from the TEM turbulence is not likely in 

the C-Mod low density ohmic regime. Our simulations including electromagnetic effects also 

show that the contribution from electromagnetic fluctuations is negligible in these low-β plasmas. 

Therefore, at the present time we are unable to determine the cause of the dominant electron 

transport in the linear ohmic regime. One possibility is turbulent energy exchange between 

electrons and ions;40 this may be important in the low-density linear ohmic regime but has not 

been explored in our studies. Another possibility, not included in gyrokinetic simulations, is that 

the electron drift velocity associated with the "ohmic toroidal plasma current" drives electron 

drift waves which may be more unstable at the lower densities where the electron drift velocity 

can be a non-negligible fraction of the electron thermal speed and can even exceed the ion 

acoustic speed. To explore this would require a modification of present day gyrokinetic codes in 

use.   
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