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Abstract

Groups of frequency chirping modes observed between sawtooth crashes in the Alcator C-Mod

tokamak are interpreted as reversed shear Alfvén eigenmodes near the q=1 surface. These modes

indicate that a reversed shear q profile is generated during the relaxation phase of the sawtooth

cycle. Two important parameters, qmin and its radial position, are deduced from comparisons of

measured density fluctuations with calculations from the ideal MHD code NOVA. These studies

provide valuable constraints for further modeling of the sawtooth cycle.
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The sawtooth cycle has long been recognized as a robust feature of tokamak plasmas

[1]. The cycle is composed of an abrupt crash in the central electron temperature and a

relaxation, or reheat, phase (see Fig. 1, t ≥ 0.25 s). The sawtooth crash is a process whereby

the magnetic field lines interior to the q=1 surface (where q = rBφ/R0Bθ is the magnetic

safety factor, r is the minor radial coordinate, Bφ is the toroidal magnetic field, R0 is the

tokamak major radius and Bθ is the poloidal magnetic field) reconnect to lines outside of the

q=1 surface. In this process the magnetic field ”frozen-in” laws are broken leading to rapid

radial transport wherein the temperature, density, and current profiles are flattened [2–4].

Following the cessation of magnetic reconnection the plasma relaxation phase is characterized

by a nearly linear increase in the central electron temperature and an inward diffusion of

parallel current formerly displaced by the reconnection. Understanding the evolution of the

current profile and its relation to sawtooth phenomena is important, especially for future

burning plasma experiments such as ITER, where an accurate model of the physics of

the crash event and the subsequent relaxation process is crucial for developing predictive

capability for sawtooth control. In this Letter we report observations of frequency chirping

Alfvénic modes excited during the sawtooth cycle in Alcator C-Mod tokamak plasmas, herein

identified as reversed shear Alfvén eigenmodes (RSAEs, also Alfvén cascades) located near

the q=1 surface. RSAEs should be of great interest for future burning plasma experiments

both for their use as a form of MHD spectroscopy and because Alfvénic modes may negatively

impact the confinement of the energetic ions in the plasma core [5]. Importantly, the presence

of RSAEs near the q=1 surface is interpreted as evidence of a hollow current profile during

the sawtooth cycle.

The phase contrast imaging (PCI) diagnostic [6], a type of internal reference beam inter-

ferometer, is an outstanding tool for the study of core localized Alfvénic activity. The out-

put signal of the PCI system is a 1-d image, decomposed into 32 elements of approximately

4.5mm chord separation in the direction of the major radius, which is linearly proportional

to the line integral of the electron density perturbations along the beam path. The reporting

of q=1 RSAEs in Alcator C-Mod, and also in JET [7, 8] (see also comment [9]), is due to

the availability of diagnostics sensitive to small perturbations in the plasma core. In a few

Alcator C-Mod experiments the amplitude of the q=1 RSAEs was large enough allow for

mode number identification with the magnetic pickup (Mirnov) coils.

Typical plasma parameters in Alcator C-Mod (R0 = 0.68 m, a = 0.22 m, κ ≤ 1.85) in
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which these modes are seen are Bφ = 5.4 T, Ip = 600-800 kA and ne0
<∼ 1.5 × 1020m−3.

Up to 5 MW of auxiliary heating is provided by ion-cyclotron resonance heating (ICRH) at

the fundamental cyclotron frequency of the H+ minority species in a deuterium majority

plasma (nH/nD ≈ 0.05), creating central electron temperatures in the range of 3-6 keV [6].

Analysis of many experiments shows that q=1 RSAE activity is seen in about a third of all

sawtoothing L-mode shots with central electron densities below about 1.5×1020m−3 and on-

axis ICRH, with a strong positive correlation with electron temperature. The experiments

presented here were optimized for the investigation of RSAEs during the current-ramp phase

of the discharge (t < 0.25 sec), where a maximum in the current density exists transiently

off-axis as the ohmic current diffuses toward the plasma core [10]. Application of early ICRF

(turned on at 0.08 seconds after plasma creation) was used to heat the plasma to retard

the current penetration and create a fast ion population to drive the RSAEs at the q=2

and higher surfaces. By extending the ICRH pulse to the current flattop phase, multiple

groups of frequency chirping modes similar to the RSAEs excited during the current ramp

were observed following the second sawtooth crash and continued, at varied amplitudes, for

many cycles thereafter.

RSAEs are known to exist near the minimum of the q profile (qmin) in a reversed shear

equilibrium and are driven unstable by the spatial gradient of the fast ion density from

neutral beams, fusion born alpha particles, or in the case of Alcator C-Mod, an ICRH

driven minority ion species [11, 12]. RSAEs and other Alfvénic modes have been used for

”MHD spectroscopy”, that is, the inference of equilibrium parameters such as qmin or q on

axis (q0) from frequency spectra [12, 13]. The characteristic frequency sweep of the RSAEs

has been well qualified in previous experimental [11, 12], computational [14], and theoretical

[15, 16] studies. An approximate dispersion relation for the RSAEs can be found in Ref.

[16],
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where R0 is the tokamak major radius, Mi the majority ion mass, VA = B/
√

µ0niMi is

the Alfvén velocity, B is the modulus of the magnetic field, ni(≈ ne) is the ion density,

m is the poloidal mode number, n the toroidal mode number, and the ω∆ term includes

corrections for fast ion pressure and finite pressure gradients and can be neglected in the
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current experiments because these terms are small near the q=1 surface. It should be noted

that though Eq. 1 was derived in the limit of high q and high n, comparison with the

ideal MHD code NOVA [17] has shown that it is accurate within 5%, and for the analysis

presented here Eq. 1 is sufficient to determine mode numbers from the rate of the frequency

chirping. The first term in brackets in Eq. 1 derives from the geodesic deformation of the

Alfvén continuum and provides the minimum frequency offset (fmin). The Alfvénic nature of

the RSAEs is represented by the second term in brackets, and being inversely proportional

to qmin it is largely responsible for the frequency sweep as the equilibrium evolves and

qmin decreases. The maximum frequency of the RSAEs is set by the toroidicity-induced

Alfvén eigenmode (TAE) frequency, fTAE = VA/4πqR0. The minimum frequency and TAE

frequency (taking q = qmin) are plotted in Fig. 1 for reference. Toroidal mode numbers of

2-5 in the ion-diamagnetic direction have been directly measured by magnetic pick-up coils,

shown in Fig. 2. The n=6-9 mode numbers are inferred through their frequency spectra and

rate of frequency chirp, which is expected to scale approximately proportional to n when

the Alfvénic contribution is dominant (see Eq. 1).

The ideal MHD code NOVA, employing a non-variational method for solution of the

eigenmode equations in full toroidal geometry, is used to model RSAEs with qmin ≈ 1. NOVA

has been used formerly to explain a range of observations, including TAE behavior during

sawteeth in JT-60 [18], the anti-balooning structure of RSAEs in TFTR [19], and mode

coupling in DIII-D [20]. The analysis presented in this paper is an extension of the MHD

spectroscopy technique which shows how both the value of qmin, its radial position (rmin),

and to some extent the value of q0 (q at the magnetic axis), can be deduced from the spatial

structures of the q=1 RSAEs. When possible, experimental data are used in the NOVA

analysis. The electron temperature profiles are taken from the electron cyclotron emission

(ECE) diagnostic, the deuterium majority ion temperature is calculated from the neutron

flux (Ti/Te ≈ 0.8), and electron density profiles from the Thomson scattering system. The

q profile is derived from a combination of edge constraints using the equilibrium code EFIT

[21], which is based on edge magnetic measurements, determination of the q=1 surface by

the sawtooth inversion radius in the soft x-ray data, and a core solution determined through

analysis of the PCI data. Within the ideal MHD framework NOVA has produced q=1

RSAE solutions for toroidal mode numbers from 2 through 9 whose spectra are in good

agreement with the PCI observations, shown in Fig. 3 as the dashed overlay. NOVA shows
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that qmin decreases to approximately 0.92 prior to the third sawtooth crash, and a linear

extrapolation to the beginning of the sawtooth period estimates q to be 1.02, suggesting a

complete reconnection process has occurred. In the present case the RSAEs are not observed

in the first half of the sawtooth cycle and hence we have no quantitative information on the

q profile during this time (t = 0.262 to 0.270 sec in Fig. 3). The stability of these modes

is calculated with the kinetic extension of the NOVA code, NOVA-K [22], which shows that

the n=3 RSAE solution can be unstable for fast ion distributions with tail temperatures

above 100 keV with a central βH of 0.5%, βH/β0 ≈ 0.2 (where β0 = 2µ0p0/B
2 is the ratio

of the kinetic pressure to magnetic pressure and the subscript ”H” refers to the ”hot” ion

component), all reasonable values for the heating scheme used [23]. An example of a possible

core q profile based on this analysis and the associated n=3 eigenmode are presented in Fig.

4.

A synthetic PCI signal can be created from the two dimensional density perturbation

calculated by NOVA by integrating the perturbations along a PCI viewing chord and con-

volving it with the system response function. A complex pattern of peaks and nodes is seen

in the PCI signal and is attributed to integration through regions of positive and negative

density fluctuations which tend to cancel. The spacing of the peaks has been studied in the

synthetic PCI signal and varies linearly with the value of rmin used in the simulation. It

is the dominance of the value of rmin in determining the spatial structure of the synthetic

diagnostic signal that allows this parameter to be determined. The dependence of the value

of q0 has also been explored using parameter scans in NOVA. Our studies suggest that very

low shear, represented here by the quantity δq ≡ q0− qmin, is required to generate the range

of observed RSAEs. The n=4,5,6 RSAEs appear to be especially sensitive to this parameter

and cease to exist when the δq exceeds 0.02. At this time there is no additional experimen-

tal measurement of the value of q0 in Alcator C-Mod. Two free parameters are used in the

comparison of the experimental and synthetic PCI signals. Though the channel to channel

spacing of the PCI signal is known very accurately the position of the array in major radius

is known only to ±1cm. To account for this the experimental data are shifted in major

radius when comparing to the synthetic diagnostic signal to minimize the RMS difference

and find the best fit. The second free parameter is the absolute value of the synthetic di-

agnostic signal which accounts for the fact that NOVA calculates relative fluctuation levels.

The best-fit solution is found by scanning the synthetic diagnostic signal amplitude until
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the RMS difference with the experimental data is minimized.

A comparison of the synthetic and experimental PCI signals is presented in Fig. 5 for

an n=3 RSAE, where the synthetic PCI signal represents the best-fit solution. Similar

calculations have been performed for n = 4, 5, 6 and together determine rmin/a to be near

0.20. The magnitude of the central shear (δq) was scanned over the range δq = 0.01 to 0.05

for each of the modes and at each value of rmin. The conclusion from this study is that that

RSAE solutions are found only for δq ≤ 0.02 at rmin/a = 0.20 and exist up to δq = 0.04

for larger rmin/a. Larger values of shear force the RSAEs into the continuum which causes

them to become heavily damped. As a final note we would like to mention that the presence

of q > 1 following the sawtooth crash may allow for down-chirping RSAEs to exist. This

possibility has been explored with NOVA with the result that relatively undamped and

unstable solutions have been discovered [24]. The existence of the down-chirping solutions

seems to require a local maximum in q near the core, equivalent to a peak in the Alfvén

continuum, around which the RSAEs form.

In summary, we have shown that the frequency chirping modes excited during the saw-

tooth cycle are consistent with the behavior of q=1 RSAEs. Calculations performed with

the code NOVA, using a weakly reversed shear q profile with q0 − qmin
<∼ 0.02 are able

to produce RSAE solutions for the range of mode numbers identified in the experiments.

Calculations of the growth rates show that the RSAEs can be unstable in the presence of an

energetic hydrogen ion tail produced with minority ion cyclotron resonance heating. Using

the measured frequency spectra of the RSAEs as a diagnostic for q, the NOVA calculations

show that q is likely greater than unity immediately following the crash and may decrease to

values in the range of 0.92 to 0.95. The constraints derived from the analysis of the RSAEs

show remarkable agreement with with recent results using equilibrium reconstructions from

MSE constrained EFIT for the sawtoothing phase of plasmas in the DIII-D tokamak [25].

Future experiments would benefit from multiple core perturbation diagnostics and energetic

ion loss detectors to study the relation between the energetic ions, Alfvén eigenmodes and

sawteeth.
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FIG. 1: (color online) PCI spectrogram showing the range of modes observed in the current-ramp

and early sawtoothing phase. The numbers below the Te0 trace denote the sawtooth crash number

relative to the beginning of the shot. Ti/Te = 0.8 has been used for the calculation of fmin.
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