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Abstract 

 

Dramatic progress in the scope and power of plasma simulations over the past decade has 

extended our understanding of these complex phenomena. However, as codes embody imperfect 

models for physical reality, a necessary step towards developing a predictive capability is 

demonstrating agreement, without bias, between simulations and experimental results. While 

comparisons between computer calculations and experimental data are common, there is a 

compelling need to make these comparisons more systematic and more quantitative. Tests of 

models are divided into two phases, usually called verification and validation. Verification is an 

essentially mathematical demonstration that a chosen physical model, rendered as a set of 

equations, has been accurately solved by a computer code. Validation is a physical process which 

attempts to ascertain the extent to which the model used by a code correctly represents reality 

within some domain of applicability, to some specified level of accuracy. This paper will cover 

principles and practices for verification and validation including lessons learned from related 

fields. 
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I. Introduction and Background 

 

There is a strong motivation to develop and utilize ever more powerful computational models for 

magnetic fusion energy.  Codes capable of making reliable predictions already have enormous 

practical value for designing experimental scenarios in existing or planned devices and for 

interpreting experimental results.  In addition to their immediate uses, these codes can 

demonstrate and embody our state of knowledge for complex and dynamic plasma systems. 

Since predictions and, more particularly, errors in predictions can have far reaching 

consequences, it is critical to assess our models in a systematic and rigorous way as we move 

beyond purely empirical predictive approaches in meeting programmatic goals.  Other related 

fields have already begun to address these issues.  For example, Computational Fluid Dynamics 

(CFD) codes are used for design of commercial airplanes,  fission reactor cooling systems and 

skyscrapers (where wind loads are critical).  In these fields, with impacts on public safety, the 

environment and the economy, tests of code reliability can be part of regulatory regimes and 

professional engineering standards [1, 2] as well as editorial policy statements from prominent 

engineering journals.  With the construction of ITER, a licensed nuclear facility, fusion will be 

confronting a similar set of concerns.  Overall, the challenge is to assess and improve the 

confidence in predictions derived from complex simulations. 

 

The challenges to theory are well known.   Governed by the Boltzmann-Maxwell equations, 

plasma physics encompasses a huge range of temporal and spatial scales, with essential 

nonlinearities and with extreme anisotropies arising from the imposed magnetic field and 

complex three-dimensional geometry.  Exact analytic solutions are possible only for a few 
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isolated classes of highly simplified problems, while direct numerical integration over the full 

range of scales is far out of reach.  Despite the challenges, dramatic progress has been achieved.  

These are due to advances in theory, improved algorithms and numerical methods, new 

generations of powerful computers and improved comparisons with experiments, paced by 

increasingly sophisticated measurement systems. Still, “virtual reality” from simulations is 

nowhere in sight and for the foreseeable future, we must rely on approximate solutions to 

approximate equations.   The equations, algorithms, approximations and assumptions comprise a 

conceptual (or physical) model for a particular problem.  For plasmas, typically the 

approximations involve temporal or spatial domain decomposition.  The main branches of 

plasma models can be categorized principally by the range of temporal scales that they cover, 

running from the shortest: RF (Radio Frequency) models through turbulence, MHD and 

transport, the longest.  Spatial domain decomposition for a confined plasma would typically 

address the plasma core, pedestal scrape-off layer (SOL), divertor and wall as separate, but 

coupled problems.    

 

It is worth considering formal definitions for the term model in this context. From Eykhoff [3] 

we have “a representation of the essential aspects of an existing system (or a system to be 

constructed) which presents knowledge of that system in usable form”. In as similar vein, from 

Huber we have “a model can be defined as “a representation of the essential aspects of some real 

thing, in an idealized or exemplary form, ignoring the inessential aspects”.  In both definitions 

the challenge is to identify and demonstrate what is essential and what is not.  Model testing is 

meant to demonstrate that developers have correctly understood the underlying physics and have 

made the right set of choices.  This paper is about how that testing might be done.   The issues 
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raised when considering the reliability of computer simulations are pragmatic versions of a more 

general question of epistemology, “how do we know what we know”.   Historically, what we 

now call theory, on the one hand, and experiments, on the other were embodiments of two 

opposed schools of philosophy.  Rationalism, championed by Plato, Descartes and Spinoza, was 

based on the logical development of a model based on indisputable axioms – pure logic.  They 

believed that knowledge gained through the senses is always confused and impure.  In contrast, 

Empiricism, espoused by  John Locke and Francis Bacon among others, required that every 

axiom, deduction, assumption or outcome be empirically confirmed.   The empiricists only 

trusted knowledge gained through the senses.  In the early days of CFD simulation, this 

dichotomy was sharpened into a debate over whether experiments (wind tunnels) would soon be 

obsolete [4]. 

 

The scientific method, though usually associated with empiricism, defines an approach which 

tries to combine the best features of both schools.  Theory, now augmented with modern 

computation, can provide predictive capabilities and fundamental understanding with near 

perfect diagnostics – that is, with all of its internal states exposed.  Computation offers a high 

degree of flexibility and is often cheap and fast (to run, if not to develop).  However, for complex 

problems it can provide only imperfect models and solutions.  Experiments work with a 

“perfect” model, that is reality itself, though measurements of that reality are necessarily 

imperfect and incomplete.  Experiments invariably discover unpredicted phenomena and for 

fusion energy, are the only method to demonstrate concretely the required levels of performance.  

(To quote from a 2002 presentation by Bill Nevins, “Achieving ignition with pencil and paper 
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doesn’t count, achieving ignition in a computer doesn’t count”.) The two approaches are clearly 

complementary rather than competitive. 

 

 

II. Verification And Validation 

 

The particular terms verification and validation were adopted by the CFD community to describe 

two distinguishable sets of model-testing activities [5, 6 7, 8]. Verification assesses the degree to 

which simulations correctly implement a physical (conceptual) model while validation assesses 

the degree to which a physical model captures “reality” through comparison with experimental 

measurements. These words are almost synonyms in ordinary usage and their use for the specific 

activities described here is arbitrary, but not unimportant.   Model testing is a collective activity, 

using a common vocabulary allows us to interact more effectively and share knowledge gained 

more effectively.  Verification and validation (V&V) can be seen as a logical extension of 

standard scientific method,  called out as distinct processes to emphasize a more rigorous, 

systematic and quantitative approach to model testing than had previously been applied.  As a 

practical matter, verification and validation can be viewed as essential confidence building 

activities – an accumulation of evidence that codes are correct and useful. Strictly speaking we 

do not verify and validate codes.  Technically we verify a set of calculations, then draw 

inferences about the validity of a code.  Similarly, one validates a set of simulations, then draws 

inferences about the underlying model. 
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Several other terms are worth discussing at 

this point.  Qualification can be defined for 

our purposes as the theoretical specification 

for the expected domain of applicability for 

a model. This is critical since extensive 

model testing outside of this domain is 

generally not useful.  Calibration is  the 

adjustment of parameters in a 

computational model in order to improve 

agreement with data.   Calibration may be 

justified only to account for physics beyond 

the scope of the model; it should never be used to obscure essential errors in a model or its 

implementation.    Finally, we can define prediction as the use of a code outside its previously 

validated domain to foretell the state of a physical system, or more generally as a simulation 

result for any specific case that is different from cases that have been validated.   The most 

reliable sort of prediction is where the application is entirely inside the validation domain.  In 

this case predictions is equivalent to interpolation and is the basis for sound engineering practice 

[1].  The interpolation is not trivial however, since the domains involved are typically of high 

dimensionality (in various parameters of interest) with validation data only available sparsely 

throughout.   Estimating prediction uncertainties from validation error is relatively 

straightforward.  For fusion applications, there is interest in extrapolating into new parameter 

ranges.  In this case, the application domain would only partially overlap the validation domain.  

One must be cautious since large errors could arise from transitions or bifurcations or any other 

Figure 1. This figure shows the relationship 
between models and experiments and the 
verification and validation processes. It is 
modified from [5] (color online).
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unanticipated change in behavior.  Accuracy of prediction is not proven, but inferred from V&V 

activities.   Figure 1 shows the relationship between these various activities in graphical form.  A 

key point, and one that we will return to, is that the processes described are elements in a 

continuous cycle of improvement. 

 

III. Verification Issues and Approaches 

 

As a more formal definition, we can state that Verification is the substantiation that a 

computerized model and its solution represent a conceptual model within specified limits of 

accuracy.  Figure 2 shows the relation between a conceptual model, computational model and a 

computational solution.  Verification assesses the computational model (code) to determine if it 

correctly embodies the conceptual model and determines the reliability and accuracy of 

particular solutions.  (An assessment of whether the approximations and assumptions that make 

up the conceptual model correspond to a real-world physical problem, is left to the validation 

process.) Verification is essentially a problem in applied math and logic, though generally not 

one with a rigorous solution. For practical problems of interest, it is not possible to prove 

Figure 2. The steps from conceptual model to computational model to computational solution 
are illustrated.  Verification concerns itself with the correctness of the computational model and 
solution (color online). 
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mathematically that a code is “correct”, rather we rely on extensive testing to demonstrate the 

absence of proof that the code is “incorrect”.  Since the absence of proof is easy to come by 

through inaction, this rather unsatisfactory state of affairs requires considerable discipline on the 

part of practitioners. There are two general sources of error that must be addressed by 

verification: problems with the code and problems with the solution.  The first arise from errors 

in implementing the conceptual model including those in algorithms or numerical methods as 

well as simple coding errors or compiler bugs.  Solution errors can arise from the spatial or 

temporal gridding (that is discretization errors which are inevitable for a digital calculation); 

convergence difficulties; numerical noise, the accumulation of round-off errors and problems or 

uncertainties in boundary or initial conditions. 

 

A set of formal and informal methodologies have emerged to address the potential problems 

listed above.  At their heart is the question of whether the continuum mathematics of the model 

has been correctly solved by the discrete mathematics of the computer code [8]. The first step is 

to follow good software engineering and software quality assurance practices throughout the 

development process [9, 10].  These practices would cover design, coding, testing, source 

control, version management and release.  The goal is to produce software that is error-free, 

through testing and design. (Studies have shown that “typical” scientific software has mistakes at 

the discomforting rate of about one error per hundred lines of code [11].) Since scientific 

software is usually under continuous development, designing for testability and maintainability 

are critical, though often overlooked requirements.  Regression testing, that is the regular 

execution of a set of well-defined problems, can help ensure that new errors are not introduced 

over time.  The ideal tool for solution verification is comparison between simulations and highly 
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accurate solutions – either analytic or well known numeric benchmarks, if they exist.  

Comparison with analytic solutions is not always possible since they are often obtained in the 

extremes of parameter ranges where codes can have numeric problems.  Even if the comparison 

is satisfactory for simplified problems, strong physics coupling, which may put analytic solutions 

out of reach, are often exactly the problems for which the codes are designed.  Additional 

methods for verification are employed including formal convergence tests to assess spatial and 

temporal discretization errors along with conservation and symmetry tests [1, 8].  The latter two 

methods test whether the solutions obey the same conservation and symmetry properties as the 

underlying equations and geometry.   The method of manufactured solutions [1] can be applied 

to some problems of interest to fusion.  In this method, a made-up (manufactured)  analytic 

solution is constructed for the set of equations used in a code.  This solution is then evaluated 

and all excess terms grouped into a pseudo-source.   This source term is then added to the 

simulation which, if the algorithms and numerics are correct, should return the manufactured 

solution.  This method is rarely in fusion codes, but is in wider use for CFD simulations [12, 13].    

 

An approach which is in common use in plasma physics is code to code comparisons, sometimes 

called benchmarking.  It is entirely plausible that successful comparison between calculations 

solving the same set of equations, with the same set of initial and boundary conditions can build 

confidence in the codes [14].  It is argued that this is particularly true if the calculations 

implement very different methods.  In a very well documented example [15] thermal diffusivity 

calculated with PIC and continuum codes were compared in detail.  While valuable, these 

exercises must be built on systematic verification studies of individual codes (as they were in 

Reference 15 above) – code benchmarking should not be viewed as a substitute for more basic 

9 
 



verification activities [16].  Disagreement demonstrates that at least one of the codes under 

consideration are wrong, but by itself, agreement does not prove that all are correct. 

 

An activity closely related to verification is uncertainty quantification (sometimes referred to in 

the literature as UQ) [6, 8, 17, 18].  Uncertainty quantification is the quantitative assessment of 

the degree to which a computed solution differs from an exact one.  This is obviously a 

challenging problem, since the exact solution is not known.  Since numeric solutions are always 

approximate, the distinction between verification and uncertainty quantification is really a matter 

of emphasis; many of the same tools are employed.  Convergence studies through grid 

refinement, comparison of different grid geometries, comparison of low and high-order solutions 

on the same grid as well as conservation and symmetry tests are all used to estimate the probable 

errors.  Methods of quantitative analysis using traditional or Bayesian statistical techniques [19] 

have been developed and employed. An entirely separate source of solution error arises from 

uncertainties in the boundary or initial conditions used for a particular calculation.  These errors 

may arise from measurement uncertainties when particular physical cases are being run or from 

uncertainties in other codes coupled to the simulation under consideration.  Examples might 

include the MHD equilibrium used as input for stability calculation, or the temperature and 

density gradients used in a turbulence code.  A common method for evaluating the resulting 

uncertainty is ensemble computing, the execution of a set of code runs which encompass the 

possible range of errors in the boundary or initial conditions imposed [20, 21].  In a multi-

dimensional parameter space, a very large number of runs might be required.  The art in this 

method is to reduce the computation of the full uncertainty space by a huge factor to something 

computationally tractable.  Carrying this out requires a careful sensitivity analysis of reduced 
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spaces and finer sampling in the important parameters.  It is worth noting that taken together, 

verification, uncertainty quantification and validation consume substantial computational (and 

human) resources – this needs to be taken into account when simulation projects are planned. 

 

 

IV. Validation Issues and Approaches 

 

Validation is the process of determining the degree to which a conceptual model is an accurate 

representation of the real world from the perspective of its intended uses.  Validation is an 

essentially physical problem, one that can be as difficult and complex as the underlying science 

itself.  Despite the implications from the standard English usage for the word, validation should 

not be viewed as a one-time, binary process where codes are accepted for all time or rejected and 

discarded.  Validation is instead part of a cyclic process, whereby models are continuously 

improved. Validation failures should not be seen as personal failures but rather a normal part of 

scientific development.  In fact, even relatively early in a model’s development, where physics 

elements are known to be deficient, comparison with experiments can be valuable.  Developers 

may be able to identify and concentrate on improving the most important or uncertain elements 

of a model based on solid evidence rather than guesswork.   The conditional nature of the 

definitions of both verification and validation should be noted. To avoid unbounded 

philosophical questions, verification and validation are best defined 1. for a targeted class of 

problems and applications, 2. for a set of specified variables and 3. at a specified level of 

accuracy. Together, the goal of validation and verification is an assessment of the extent to which 
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a simulation represents true system behavior sufficiently to be useful. Both should be viewed as 

ongoing, open-ended processes.  

 

A critical element of validation is to confront the significance of the comparisons made.  What 

constitutes agreement? And what inferences can we draw from the level of agreement observed?  

We are particularly interested in parameters which are important discriminators between models.  

A well-known results is that for some parameters, very different models may predict essentially 

the same values.  A related characteristic is sensitivity.  Some measureable quantities vary more 

strongly with input parameters than others and variation in some input parameters  cause more 

variation in the results of a simulation than others.  As example consider the relation between the 

normalized temperature gradient R/LT and the energy flux. Experiments and simulations follow a 

marginal stability behavior where the flux increases dramatically when the gradient is raised 

above some critical level. Thus it is easy to predict the gradient from the flux, but hard to predict 

the flux from the gradient. We want to take advantage of these varying sensitivities to improve 

the assessment of models and to avoid less meaningful tests. 

 

One successful strategy to deal with these issues is to compare simulations to several 

measurements at different levels on what has been termed the primacy hierarchy [22].  The 

primacy hierarchy ranks the degree to which parameters of interest are basic or derived from 

other quantities.  For example, in transport the lowest level on the primacy would be the rapidly 

fluctuating turbulent quantities, perhaps characterized by their spectra or other characteristics of 

their time series.  At the next level are quantities like fluxes, which can be derived from the 

fluctuation amplitudes, cross-phase and coherence.  The highest level would be profiles, which 
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come from transport analysis using the fluxes. (see Figure 3)   Another example comes from RF 

physics where the lowest level would be computed and measured wave fields, the second level 

would be the perturbed particle distribution functions and the third level would be local heating 

(or current drive) profiles.  In general, discrimination between models is reduced as one goes up 

the primacy hierarchy, though comparison at several levels in the hierarchy is best practice.  

Through analysis, it may be possible to identify ways in which physics cause uncertainties and 

errors to cancel.  One should note that the form of the hierarchy is not necessarily unique – the 

important thing is to come to grips with the associated issues. 

Figure 3. The primacy hierarchy [22] for turbulent transport is illustrated.  In this case, 
fluctuating quantities combine to produce fluxes and fluxes combine with profiles into a 
transport model (color online). 

 

High quality diagnostics are fundamental to the validation process.   Fortunately there has been 

significant process in the scope and accuracy of measurement techniques including measurement 

of most important 1D profiles, along with advances in fluctuation and imaging techniques [23, 
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24].   A more recent advancement, which has improved our capabilities for quantitative 

comparisons with simulations, is the development of synthetic diagnostics.  Validation requires 

comparison of identical quantities and diagnostics often can’t make fully resolved, local 

measurements of fundamental quantities.  Mathematical inversions may be impossible or may 

introduce artifacts.  To solve this problem, synthetic diagnostics have been developed as post-

processors for several important code-diagnostic combinations, for example [25, 26].  The 

synthetic diagnostic attempts to replicate numerically, in all its detail, the physical processes 

including viewing geometry, temporal, spatial and spectral averaging that characterize the actual 

measurement [27].    Afterwards comparison with the real measurements is direct. Development 

of each synthetic diagnostic is essential a complex exercise in matching phase-space geometries 

requiring thorough and careful characterization of the physical diagnostic.  The synthetic 

diagnostic code may be quite complex and must be carefully tested.  

 

As noted above, comparison of time series data provide some of the most fundamental validation 

tests.  Mathematics has provided a large tool-box which we have only begun to exploit for these 

purposes.  The most commonly used, the auto-power or spectral density function is easy to 

compute, even with limited amounts of data, but often does not discriminate sufficiently between 

competing models.  This is not unsurprising perhaps, since the underlying mathematical 

assumption is that the time series can be described as a superposition of statistically uncorrelated 

waves.  For many problems of interest in fusion plasma physics, nonlinear wave interactions 

dominate and linear spectral analysis will be of limited use.  In these cases, higher order spectral 

analysis like the bispectrum or bicoherence have been shown to be applicable [28, 29, 30].    A 

variation of these traditional linear methods, the fractional fourier transform may be useful for 
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studies of RF wave coupling and propagation.  This function can be thought of as an oblique 

slice in the time, frequency plane and has been applied to optics and signal processing.  Wavelet 

analysis has been successfully applied to problems in fluid turbulence [31] allowing for a 

compact mathematical description of simulated flow fields. With this expansion, it has been 

shown that virtually all coherent structures can be described by less than 1% of the computed 

wavelet coefficients [32].  A distinctly different set of tools come under the heading of chaotic 

analysis.  These include calculation of the fractal (or correlation) dimension, recurrence or cyclic 

analysis and computation of Lyapunov exponents [33, 34].  It seems likely that more complete 

exploitation of powerful time series analysis methods may provide better sensitivity and 

discrimination.  

 

 

V. Quantitative Analysis 

 

Validation requires careful quantitative consideration of uncertainties and errors.  These can be 

divided broadly into two categories as random or systematic .  Random errors, also referred to as  

irreducible or aleatory uncertainty, arise from inherent statistical properties of the physical 

system.  Systematic errors, also known as reducible or epistemic uncertainty, are due to 

incomplete knowledge.  The former can be estimated and treated by classical statistical methods.  

The latter, by their nature are more difficult to quantify. Bayesian statistical approaches ,with its 

concepts of prior probability distributions and subjective probabilities, offer some means to 

incorporate systematic uncertainty into a quantitative framework [19, 35]. In the experimental 

measurements, uncertainties can arise through conceptual errors with the measurement 
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techniques, statistical or counting errors, difference arising from (unaccounted) temporal,  spatial 

or spectral averaging, calibration errors, electronic noise, data acquisition errors or data 

reduction.  Characterization of the errors can also be important.  For example, are the errors 

provided normally distributed, uniformly distributed, or are they confidence intervals or 

maximum errors? 

 

Validation metrics address a key challenge by making quantitative rather than qualitative 

assessments of the comparison between simulations and experiments [22. 36. 37. 38].  There is 

no “correct” or unique way to define these metrics; as we will see, there are various methods to 

construct them.  The goal is not mathematical rigor, but rather an attempt to identify salient 

elements of the models under testing and to confront disagreement in detail. Validation metrics 

should take account of uncertainties in both measurements and simulations and account for the 

breadth of the comparisons. When constructing validation metrics, it is important to identify and 

to reduce the impact of quantities that have sensitivity to poorly measured parameters used by 

the models. 

 

The mathematics of the metric can take many forms.  In the examples below, yi will represent a 

set of n simulated values and Yi will be the corresponding set of experimental measurements.   

As simple metric using the L1 norm, V,  could take the form [8]: 

 

1

11 tanh
n

i i

i i

y YV
n Y=

−
= − ∑ 
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The tanh function results in a metric which takes the value 1 if agreement is perfect and 

decreases exponentially as experiment and simulation diverge.  If a sufficient set of data is 

available, the experimental values could be replaced by their mean . îY

 

1

ˆ11 tanh ˆ
n

i i

i i

y YV
n Y=

−
= − ∑

 

Following this line farther, we can account for experimental errors.  Here is the estimated 

standard error. 
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Estimated errors in the simulations could be accounted for in a similar manner.  Another 

approach to metrics uses the chi-squared statistic.  In this case, lower values of V indicate better 

agreement.  Here, the σ’s are the standard deviations for the simulations and measurements.   
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A non-trivial point is estimation of the number of degrees of freedom.  Typically selection of 

simulation and experimental data is not “random” in the statistical sense so that the degrees of 

freedom do not necessarily equal the number of observations.  Making the same measurements 

on the same system over and over again does not reduce all types of errors.  Mathematical 

techniques to account for this include bootstrap or jackknife techniques[39]. Confidence intervals 

can be used to construct a metric.  Using E y Y≡ − to represent the estimated error, the 

confidence interval for the true error is given by  

 
0.05, 0.05,(true error)

DOF DOFN N
s sE t E E t
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− < < +
 

17 
 



Where t is from Student’s t statistic for N degrees of freedom, leading to a validation metric 

 

 
0.05,2 N

sE t
nV

Y

+
=

In some situations, average errors are less important than the maximum error. In this case the L∞ 

norm would be appropriate, defining  

 

 
max iE yV

Y Y
−

= =
Y

Classical hypothesis testing, which returns a binary answer, is probably not appropriate for 

validation which seeks to inform the development cycle [36]. 

 

Composite metrics attempt to assess an overall comparison across several parameters [22].  As 

with the examples above, these can be constructed in various ways.  The combination should rate 

the validation higher when more quantities are compared, when more experiments or more tests 

are performed and when measures of sensitivity and uniqueness are high.   While the emphasis 

here is on quantitative methods, the power of good graphical techniques should not be 

underestimated – especially for data exploration.  Best practices probably combine both 

approaches. 

 

 

VI. Validation Hierarchy 

 

It’s generally not sufficient to implement model validation only on the most complex problems,  

there are usually too few opportunities to test the basic physical phenomena which underlie the 
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full system behavior.  Consider as an 

example, the field of aerodynamics 

[8].  Codes are first tested against the 

simplest wind tunnel experiments – 

say laminar flow around a sphere.  

They would then move on to more 

complex flow regimes and more 

complicated shapes.  Once 

successful, would be followed by 

analysis of the full airframe and 

finally to the full system including control surfaces, control actuators and engines.  This stepwise 

approach is often called the validation hierarchy and is illustrated in Figure 4 [40].    As we 

move from the simplest unit problems to subsystem cases to complete systems, the degree of 

realism along with the complexity and coupling all increase.  At the same time, the quality and 

quantity of experimental data, the information on initial and boundary conditions and the number 

of code runs all decrease.  Cases at the bottom of the hierarchy provide opportunities for more 

complete testing of less realistic problems while cases near the top have the opposite 

characteristic.  Prudence would suggest at least as much effort on the bottom of the hierarchy as 

to the bottom, but this has not been the case in our field historically, where by far the most 

attention is lavished on the most complex (typically highest performance) devices at the top of 

the hierarchy.  While many basic linear processes were originally observed on low temperature 

devices (in both linear and toroidal plasmas), we have not validated many of the basic nonlinear 

phenomena that are critical elements of newer simulations.  There are admirable exceptions 

Figure 4. The validation hierarchy running from the 
most basic problems with simplified physics and 
geometry to the most complex [2, 40] (color online). 
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fortunately which should be emulated [43, 44, 45, 46, 47, 48].  This effort requires configuring 

codes to work in simpler geometry and in unfamiliar parameter ranges and require significant 

effort to diagnose the experiments, but may be the only way to put our more advanced models on 

a solid footing. 

 

VII. Best Practices for Validation 

 

While much can be learned from mining databases of previous experiments, the most useful 

comparisons are carried out in experiments designed and dedicated to the purpose.  Older data is 

often not well enough documented or characterized and in any event direct interaction with 

experimentalists is essential to the process.  Principles for the design and execution of these 

experiments have been thoroughly discussed [8, 47, 48, 49].  To paraphrase, these would 

include: 

1. Verify codes first. 

2. Plan a hierarchy of experiments beginning with the simplest physics and geometry. 

3. Design experiments jointly by experimentalists and computationalists.   

4. Design experiments to test crucial features of the model, especially its assumptions or 

important simplifications.   Perturbing effects should be minimized. Geometry, boundary 

and initial conditions must be well characterized and documented.  Critical measurements 

should be defined and limitations, uncertainties, and sources of error discussed with 

openness and candor. 

5. Document code predictions in advance including estimates of uncertainties. 

6. While they are jointly designed, carry out experiments and code runs independently.   
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7. Make as complete measurements as possible when carrying out experiments.  Multiple 

diagnostics to measure the same quantities are desirable.  Statistically sufficient data sets 

should be collected, repeating runs as required.  It can be valuable to conduct experiments 

at more than one facility if this is practical. 

8. Pay special attention to analysis of errors and uncertainties. Use modern statistical 

techniques to design experiments and to identify random and bias errors. 

9. When analyzing results, don’t paper over differences. The goal is not to prove that a code 

is correct, but to assess its reliability and point the way towards improvement. 

10. Document the process and results including data reduction techniques and error analysis. 

 

 

VIII. Summary 

 

Despite dramatic advances in computational plasma physics, we are still far from solving the 

critical problems required to achieve practical fusion energy.  The science benefits from a 

continuous and ongoing collaboration between experiments and simulation, which need to be 

seen as complementary rather than competitive approaches. Verification and Validation can 

provide a framework for carrying out the collaboration in a methodical and systematic way with 

the goals of increasing confidence in the predictive capability of computer simulations.  This will 

require new modes of interaction, especially a greater openness about uncertainties, errors and 

limitations of methods.  
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Figures 

 

1. This figure shows the relationship between models and experiments and the verification and 

validation processes. It is modified from [5] (color online).  

2. The steps from conceptual model to computational model to computational solution are 

illustrated.  Verification concerns itself with the correctness of the computational model and 

solution (color online). 

3. The primacy hierarchy [22] for turbulent transport is illustrated.  In this case, fluctuating 

quantities combine to produce fluxes and fluxes combine with profiles into a transport model 

(color online). 

4. The validation hierarchy running from the most basic problems with simplified physics and 

geometry to the most complex [2, 40] (color online). 
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