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In subsonic tokamak pedestals the radial scale of plasma profiles can be comparable

to the ion poloidal Larmor radius, thereby making the radial electrostatic field so

strong that the E×B drift has to be retained in the ion kinetic equation in the same

order as the parallel streaming. The modifications of neoclassical plateau regime

transport – such as the ion heat flux, and the poloidal ion and impurity flows –

are evaluated in the presence of a strong radial electric field. The altered poloidal

ion flow can lead to a significant increase in the bootstrap current in the pedestal

where the spatial profile variation is strong because of the enhanced coefficient of the

ion temperature gradient term near the electric field minimum. Unlike the banana

regime, orbit squeezing does not affect the plateau regime results.

I. INTRODUCTION

It is desirable that future fusion devices operate in an enhanced confinement mode [1]

– including an H-mode pedestal [2]. One of the most important open questions of fusion

plasma theory is the physics of pedestal and internal transport barriers. Although it

is commonly assumed that turbulent transport dominates in tokamak plasmas, some

neoclassical effects [3] are also significant in the pedestal. Long wavelength shear (non-

zonal) flows within the flux surfaces play an important role in the suppression of turbulence

in transport barriers [4], and the relation between the parallel ion flow and the global

radial field, is expected to be neoclassical with a negligible turbulent contribution [5].

Furthermore, the bootstrap current [3] is modified and it plays crucial role in reactor

relevant operation of fusion devices.

Experimental results show that in subsonic tokamak pedestals the radial scale of

plasma profiles can be as small as the ion poloidal Larmor radius [6] of the main ion

species. Accordingly, the radial electrostatic field is so strong ( ∼ 100 kV/m, up to

300 kV/m on Alcator C-mod) that the contribution of the E×B drift to the poloidal ion

motion is comparable to that of the parallel streaming. Therefore, these two components

of the poloidal motion have to be retained in the ion kinetic equation in the same order.
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The conventional way of solving the drift kinetic equation by expressing the cross field

magnetic drifts in terms of a parallel gradient has to be modified, since this method cannot

be applied to the E×B drifts.

The kinetic description of plasmas has recently been extended for pedestals with

strong electric fields and short scale lengths by making use of the fact that the canonical

angular momentum is a constant of the motion, and using it as the radial coordinate

instead of the poloidal flux[7]. By adopting this approach herein modifications to neo-

classical plateau regime transport [8, 9] are evaluated in pedestal regions. These results

are relevant in existing fusion devices such as Alcator C-mod [10]. The calculation allows

for O(1) values of the normalized electric field U = vE×BB/(viBpol), where vE×B is the

E × B velocity, vi is the ion thermal speed, and B and Bpol are the magnitudes of the

total and poloidal magnetic fields respectively, with Bpol ≪ B.

We find that the ion heat diffusivity is reduced for large values of U , as the resonance

causing plateau regime transport is shifted towards the tail of the distribution, but it is

enhanced if U ≈ 1. Moreover, the poloidal ion and impurity flows are modified. The

altered poloidal ion flow can lead to an increase in the bootstrap current in the pedestal

where the radial profile variation is strong because of the enhanced coefficient of the ion

temperature gradient term near the electric field minimum. Unlike the banana regime

[11], orbit squeezing does not affect the plateau regime results.

In the next section, the perturbed ion distribution function is derived and the ion

heat flux is calculated together with the parallel ion flow and the poloidal impurity rota-

tion. The bootstrap current is evaluated in Sec. III. Finally the results are summarized

in Sec. IV.

II. ION TRANSPORT AND PARALLEL ION FLOW

The magnetic field is represented as B = I∇ζ +∇ζ ×∇ψ, where ζ is the toroidal

angle and 2πΨ is the poloidal flux. The radial electric field Er is assumed to be of the

magnitude ∼ Bpvi/c, so the E × B drift is kept in the ion kinetic equation in the same

order as the parallel streaming since we assume Bp ≪ B. Throughout the calculation we

assume a quadratic electric potential well

Φ(Ψ) = Φ(Ψ∗) + (Ψ−Ψ∗)Φ
′(Ψ∗) +

1

2
(Ψ−Ψ∗)

2Φ′′(Ψ∗), (1)

where the preceding convenient representation makes use of

Ψ∗ = Ψ− Mc

Ze
Rv · ζ̂ = Ψ−

Iv∥
Ω

+
v × b · ∇Ψ

Ω
, (2)

where M is the mass and Ze is the charge of the particle, R is the major radius, Ω =

ZeB/Mc is the cyclotron frequency and b = B/B. Within a constant multiplier the

canonical angular momentum is Ψ∗, and it is a constant of the motion due to axisymmetry.
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The ratio of the last two terms on the right side of Eq. (2) is B/Bp ≫ 1, so we take

Ψ∗ ≈ Ψ− Iv∥/Ω.

It is convenient to introduce u = cIΦ′/B, the poloidal projection of the E × B

drift velocity that competes with the poloidal component of the parallel streaming and

u∗ = cIΦ′
∗/B, where Φ′

∗ = Φ′(Ψ∗). We assume B is slowly varying with Ψ, so that

B(Ψ∗, θ) ≈ B(Ψ, θ). The orbit squeezing factor S = 1 + cI2Φ′′
∗/(BΩ) is considered to be

constant except for its B dependence. Using the preceding notation the poloidal motion

of the particles is given by

θ̇ =
(
v∥b+ vE×B

)
· ∇θ = (v∥ + u)b · ∇θ ≈

(
Sv∥ + u∗

)
/(qR), (3)

where θ is the poloidal angle, and q is the safety factor. To find the final form of Eq (3)

we use equation (1) to obtain

u∗(Ψ∗) =
cI

B
[Φ′(Ψ) + (Ψ∗ −Ψ)Φ′′(Ψ)] = u(Ψ)−

cI2v∥Φ
′′(Ψ)

BΩ
= u+ (1− S)v∥. (4)

We adopt the treatment of Ref. [7] and use Ψ∗ as radial coordinate, rather than

the poloidal flux function Ψ, thereby allowing for the handling of strong gradients in

the plasma profiles and the electrostatic potential. A convenient energy variable is then

defined as

E =
v2

2
+
Ze

M
[Φ(Ψ)− Φ(Ψ∗)] = E − Ze

M
Φ(Ψ∗) = S

v2∥
2

+ µB + v∥u∗, (5)

where E = v2/2 + ZeΦ/M is the total energy and µ = v2⊥/2B is the magnetic moment.

Note that E is conserved by the Vlasov operator dt ≡ ∂t+v·∇+(Ωv × b− Ze∇Φ/M)·∇v

since dtE = 0, because E and Ψ∗ are constants of the motion.

In Ref. [7] it is shown that the lowest order solution of the electrostatic gyrokinetic

equation must be a Maxwellian even in the pedestal where the density and potential can

vary on the scale of the poloidal ion Larmor radius. Proceeding to higher order we write

the gyro-averaged distribution function as

f̄ = f∗(Ψ∗, E) + h(Ψ∗, E , µ, θ, t), (6)

where f∗ is a stationary near Maxwellian that is only a function of the constants of the

motion E and Ψ∗. Upon Taylor expanding the slowly varying functions η and Ti as in

Ref. [7] we obtain

f∗ = η(Ψ∗)

(
M

2πTi(Ψ∗)

)3/2

e
− mE

Ti(Ψ∗)

≈ fMi

{
1−

Iv∥
Ωi

[
∂ ln pi
∂Ψ

+
Ze

Ti

∂Φ

∂Ψ
+

(
mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

]
+ . . .

}
, (7)

where

η(Ψ∗) = η(Ψ) + (Ψ∗ −Ψ)
∂η(Ψ)

∂Ψ
+ . . . , (8)
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η(Ψ) = ni(Ψ) exp

[
ZeΦ(Ψ)

Ti(Ψ)

]
, (9)

and the stationary Maxwellian on a flux surface is

fMi = ni(Ψ)

(
M

2πTi(Ψ)

)3/2

e
− Mv2

2Ti(Ψ) . (10)

We consider subsonic flows, so that in the pedestal ∂Ψ lnni ≈ −(Ze/Ti)∂ΨΦ. The gov-

erning equation for a time independent perturbed ion distribution, in accordance with

Ref. [7], is

θ̇
∂h1i
∂θ

− C l
ii

{
h1i −

Iv∥fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

}
= 0, (11)

where C l
ii is the linearized ion-ion collision operator, which is momentum conserving, and

the θ derivative is taken keeping E , Ψ∗ and µ fixed. The kinetic equation Eq. (11) can be

rewritten as(
Sv∥ + u∗

)
b · ∇

[
Hi +

Iv∥fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

]
− C l

ii {Hi} = 0, (12)

where we have introduced

Hi = h1i −
Iv∥fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

. (13)

In the plateau regime, the form of the collision operator cannot affect the transport

when the kinetic equation is written in the form of (12). Therefore we can use a simple

Krook operator to model the collisions. However, the replacement C l
ii {Hi} → −νHi

destroys the momentum conserving property of the operator. This defect is remedied by

adding a homogeneous solution to Hi, and then determining its free coefficient by making

use of the fact that C l
ii{v∥fM} = 0 [3, 9, 12]. This addition modifies the ion flow, thus it

should be done so that the resulting flow is divergence free. Accordingly, we adopt the

following replacement

Hi → Hi +
MBkv∥fMi

Ti
, (14)

where the unknown k is to be determined by requiring that the solution gives no radial

particle flux.

After the replacements the kinetic equation becomes(
Sv∥ + u∗

)
b · ∇Hi + νHi (15)

= −
(
Sv∥ + u∗

)
b · ∇

{
Iv∥fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

+
MBkv∥fMi

Ti

}
.

The spatial derivatives can be performed by recalling the B dependence of u∗ and S to

find (
Sv∥ + u∗

)
b · ∇|E,µ,Ψ∗v∥ =

[
−µB + v∥u∗ + 2(S − 1)

v2∥
2

]
b · ∇ lnB, (16)
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which then follows from b · ∇|E,µ,Ψ∗E = 0. Employing Eq. (16) we find the relations(
Sv∥ + u∗

)
b · ∇|E,µ,Ψ∗

(
v∥
Ωi

)
=

1

2Ωi

[
2v2∥ + v⊥

]
b · ∇ lnR, (17)

(
Sv∥ + u∗

)
b · ∇|E,µ,Ψ∗

(
v∥B

)
=
B

2

[
v2⊥ − (4S − 2) v2∥ − 4v∥u∗

]
b · ∇ lnR. (18)

The plateau regime only exists for large aspect ratio (ϵ ≪ 1, where ϵ = r/R0 with the

minor radius r) and requires ϵ1/2 ≪ νiqR/vi ≪ 1. As a result, we can approximate

b · ∇ lnR by −ϵ sin θ/(qR) to obtain(
Sx∥ +

u∗
vi

)
∂Hi

∂θ
+
νqR

vi
Hi = Qi sin θ, (19)

where x = v/vi = (x2⊥ + x2∥)
1/2 is the velocity normalized to the ion thermal speed

vi = (2Ti/M)1/2, and

Qi = ϵvifMi

{
2x2∥ + x2⊥

2Ωi

I

(
x2 − 5

2

)
∂ lnTi
∂Ψ

+
MBk

2Ti

[
x2⊥ − (4S − 2)x2∥ − 4x∥

u∗
vi

]}
. (20)

Due to the simple model for collisions the kinetic equation Eq. (19) can easily be solved

to find

H = Qi

νqR
vi

sin θ −
(
Sx∥ +

u∗
vi

)
cos θ(

Sx∥ +
u∗
vi

)2

+
(

νqR
vi

)2 ≈ Qi

[
πδ

(
Sx∥ +

u∗
vi

)
sin θ − cos θ

Sx∥ +
u∗
vi

]
, (21)

since most passing ions are nearly collisionless. The trapped and barely passing ions are

collisional, thus collisions only enter to resolve the singularity at Sx∥ + u∗/vi = 0.

The full gyro-averaged perturbed distribution f̄1i = ⟨fi − fMi⟩φ is given by

f̄1i = hi −
Iv∥
Ω

∂fMi

∂Ψ
= Hi +

MBkv∥fMi

Ti
−
Iv∥fMi

Ωi

(
∂ ln pi
∂Ψ

+
Ze

Ti

∂Φ

∂Ψ

)
. (22)

Note that from all the terms in f̄1i only the ∝ sin θ part of Hi has a finite contribution

to the cross-field transport fluxes, and it does not depend on the radial electric field, in

accordance with the requirement of intrinsic ambipolarity.

In order to determine the unknown k, we now make the radial ion particle transport

vanish

0 = ⟨Γi · ∇Ψ⟩ =
⟨∫

d3vf̄1ivd · ∇Ψ

⟩
≈ −

⟨
Iϵ

2ΩqR

∫
d3v(2v2∥ + v2⊥)Hi sin θ

⟩
, (23)

where vd is the magnetic drift velocity. The velocity integral is to be performed holding Ψ

constant, thus Hi(Ψ∗) needs to be transformed back to flux surfaces. The orbit squeezing

factor S is not affected by the transformation, since Φ′′ is considered to be constant, while

from (4) we see that u∗(Ψ∗) is replaced by u(Ψ) + (1− S)v∥. Accordingly,

δ

(
Sx∥ +

u∗
vi

)
→ δ

(
x∥ + U

)
and x2⊥− (4S − 2)x2∥− 4x∥

u∗
vi

→ x2⊥− 2x2∥− 4x∥U, (24)
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where we introduced U = u/vi. Equation (24) shows that the resulting transport is

insensitive to the orbit squeezing. Substituting Eqs. (21) and (20) into Eq. (24) the

integrals can be evaluated yielding

⟨Γi · ∇Ψ⟩ ≈ −
√
π

2

I2ϵ2ni

Ω2
i qR0

(
Ti
M

)3/2

(25)

× e−U2

{(
1

2
− U4 + 2U6

)
∂ lnTi
∂Ψ

+
[
1 + 2

(
U2 + U4

)] Zek⟨B2⟩
ITic

}
,

where ni is the ion density. The ambipolarity condition requires that

k = −J(U
2)

2

∂ lnTi
∂Ψ

ITic

Ze⟨B2⟩
, (26)

with

J(U2) =

[
1− 2U4 + 4U6

1 + 2 (U2 + U4)

]
, (27)

which is consistent with the usual (U = 0) plateau result. As illustrated in Fig. 1, J(U)

has minimum of ≈ 0.39 at |U | ≈ 0.76, and J → 2U2 − 3+O(U−2) as |U | goes to infinity.

The preceding calculation of J is based on the observation that if we artificially set

k = 0 in Eq. (25) the resulting ion particle flux would be much higher than the electron

particle flux (given in Appendix A for completeness). For U = 0 these fluxes are separated

by the square root of the electron to ion mass ratio. However, for higher values of U the

exp(−U2) factor appearing in the expression for the ion particle flux (25) reduces it to

the level of neoclassical electron transport. Therefore, our ambipolarity assumption (23)

must be modified to include the electrons. As this does not happen until around U = 3.5

it need not concern us here.

Having calculated the full Hi distribution, we are in the position to evaluate the

radial ion heat flux

⟨qi · ∇Ψ⟩ =
⟨∫

d3v
Mv2

2
f̄1ivd · ∇Ψ

⟩
≈ −

⟨
Iϵ

2ΩqR

∫
d3v

Mv2

2
(2v2∥ + v2⊥)Hi sin θ

⟩
. (28)

We find

⟨qi · ∇Ψ⟩ ≈ −3

√
π

2

I2ϵ2pi
Ω2

i qR0

(
Ti
M

)3/2
∂ lnTi
∂Ψ

L(U2), (29)

with

L(U2) = e−U2 1 + 4 {U2 + 2U4 + [(4U6 + U8)/3]}
1 + 2(U2 + U4)

. (30)

The preceding reduces to the standard plateau result [3, 9, 13] in the U → 0 limit. The

function L(U) is plotted in Fig. 2 to show that plateau ion heat flux is almost 50% higher

when the parallel projection of the poloidal component of the ion E×B drift velocity is

close to the ion thermal speed [L(|U | ≈ 0.91) ≈ 1.46], but it rapidly drops off for higher

values of U , as the resonance causing the plateau transport is shifted towards the tail of

the ion distribution.
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To calculate the electron transport and the bootstrap current the ion parallel flow

needs to be evaluated. Neglecting the small local contribution from Hi we obtain

niV∥i =

∫
d3vv∥f̄1i ≈ − Ipi

MΩi

[
∂ ln pi
∂Ψ

+
Ze

Ti

∂ϕ

∂Ψ
+
J(U2)

2

B2

⟨B2⟩
∂ lnTi
∂Ψ

]
. (31)

To relate the poloidal flow of a collisional trace impurity to the poloidal flow of a

background ion in the plateau regime we note that the flux surface average of B times their

parallel flows must be related by ⟨BV∥i⟩ = ⟨BV∥Z⟩ [14, 15]. Using radial pressure balance

for the ions and impurities along with the preceding result for V∥i gives the impurity

poloidal flow to be

VZ,θ =
cITiBθ

eZi⟨B2⟩

[
TzZi

TiZZ

∂ ln pZ
∂Ψ

− ∂ ln pi
∂Ψ

− J(U2)

2

∂ lnTi
∂Ψ

]
. (32)

The preceding expression can be used in C-Mod when the background ions are in the

plateau regime [10].

III. BOOTSTRAP CURRENT

Even if the radial electric field is high enough to modify the ion transport and flows,

i.e. U = O(1), electron orbits are practically unaffected by the strong radial electric field

due to their large thermal speed. However, because electron-ion collisions depend on the

ion mean flow, the electron distribution indirectly experiences this friction and is thereby

influenced by the presence of the electric field. To evaluate this ion flow effect we next

consider the electron problem.

We start with the electron kinetic equation [3]

v∥b · ∇h1e +
e

Te
fMev∥EI = C(1)

e

{
f̄1e

}
, (33)

where the spatial derivatives are performed holding E and µ fixed, the parallel induced

electric field is denoted by EI = b · ∇(E+∇Φ),

f̄1e = h1e −
Iv∥
Ωe

∂fMe

∂Ψ
, (34)

and

C(1)
e

{
f̄1e

}
= C(1)

ee

{
f̄1e

}
+ Lei

{
f̄1e −

m

Te
V∥iv∥fMe

}
(35)

is the full linearized electron collision operator, with C
(1)
ee the linearized electron-electron

collision operator and Lei the Lorentz operator (the operators are given in Appendix B).

Since C
(1)
ee

{
fMev∥

}
= 0, the V∥iv∥fMe term under L(1)

ei can be added to f̄1e under C
(1)
ee .

Introducing fS, the solution of the Spitzer problem

C(1)
e {fS} =

e

Te
EIv∥fMe, (36)
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the kinetic equation (33) can be rewritten as

v∥b · ∇He − C(1)
e {He} = −v∥b · ∇

(
Iv∥
Ωe

∂fMe

∂Ψ
+
m

Te
V∥iv∥fMe + fS

)
= A1v∥b · ∇

(
v∥
Ωe

)
+ A2v∥b · ∇

(
v∥B

)
, (37)

where

He = h1e −
Iv∥
Ωe

∂fMe

∂Ψ
− m

Te
V∥iv∥fMe − fS, (38)

A1 = −IfMe

[
1

pe

∂pe
∂Ψ

+
1

ZniTe

∂pi
∂Ψ

+

(
mv2

2Te
− 5

2

)
1

Te

∂Te
∂Ψ

]
, (39)

and

A2 = −J(U
2)fMi

2ZTe

∂Ti
∂Ψ

IB

Ωe⟨B2⟩
− fS
v∥B

. (40)

To get A2, we used that the Spitzer function has the form

fS = −
eEIv∥
νeTe

D(xe)fMe, (41)

and that EI is approximately proportional to B. In our notation νe =

4(2π)1/2nee
4 ln Λ/(3m1/2T

3/2
e ) is the electron-electron collision frequency, and D is a di-

mensionless function of xe = v/ve, which is parametrically dependent on the ion charge.

The function D(xe) is calculated in the Appendix B in terms of generalized Laguerre

polynomials, L
(λ)
n , using a variational method to find

D(xe) ≈
√
2
(
a0L

(3/2)
0 (x2e) + a1L

(3/2)
1 (x2e)

)
, (42)

where the coefficients are a0 = (8 + 13
√
2Z)/

[
4Z(2

√
2 + 2Z)

]
and a1 =

−3/
[
2(2 +

√
2Z)

]
.

To evaluate the bootstrap current we begin by noting that the parallel current can

be written as

j∥ =
B⟨j∥B⟩
⟨B2⟩

− cI

B

∂p

∂Ψ

(
1− B2

⟨B2⟩

)
, (43)

where the second term is the Pfirsch-Schlüter current, and the first term is defined in

terms of

⟨j∥B⟩ = e

⟨
B

∫
d3v v∥

(
Zf̄1i − f̄1e

)⟩
. (44)

Recall that ⟨j∥B⟩ is the sum of the ohmic current ⟨jOHB⟩ = −e⟨B
∫
d3v v∥fS⟩ =

e2ne⟨EIB⟩
√
2a0/(νeme) and a current contribution from He, the bootstrap current

⟨jBSB⟩ = −e
⟨
B

∫
d3v v∥He

⟩
. (45)

Note that the ∂Ψϕ terms from f̄1e and f̄1i cancel in the integrand of Eq. (44).
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The seemingly straightforward procedure for evaluating the bootstrap current would

be to solve Eq. (37) for He and substitute it into Eq. (45). However, He is not accurate

enough to give the correct bootstrap current Instead, it is convenient to use an adjoint

method to find ⟨jBSB⟩. The adjoint equation that must be solved is given by

v∥b · ∇G+ C(1)
e {G} =

e

Te
EIv∥fMe. (46)

In terms of G, the bootstrap current can be calculated by the adjoint method as

⟨jBSB⟩ = BTe
EI

⟨∫
d3v

G

fMe

[
A1v∥b · ∇

(
v∥
Ωe

)
+ A2v∥b · ∇

(
v∥B

)]⟩
, (47)

This relation is obtained by adding ⟨
∫
d3v Eq. (37)G/fMe⟩ to ⟨

∫
d3v Eq. (46)He/fMe⟩

and using the self-adjoint property of the linearized collision operator [16, 17]. Writing

G = fS + g, the unknown part g gives the only non-zero contribution to Eq. (47). It is

determined by solving

v∥b · ∇g + C(1)
e {g} = − fS

Bv∥
v∥b · ∇(v∥B). (48)

Letting C
(1)
e {g} → −νg, we find the plateau solution

g ≈ ϵ
eEID(xe)

νeTe
fMe

1

2v
(v2 − 3v2∥)

[
πδ

(v∥
v

)
sin θ +

v cos θ

v∥

]
, (49)

Substituting the full G into Eq. (47), evaluating the velocity integrals and performing the

flux surface average, we obtain

⟨jBSB⟩ = −
√
π

2

ϵ2cIpeve
νeqR0

√
2 + 4Z

Z(2 +
√
2Z)

{
1

pe

∂p

∂Ψ
+

√
2 + 13Z

2
(√

2 + 4Z
) 1

Te

∂Te
∂Ψ

+
J(U2)

2ZTe

∂Ti
∂Ψ

}
,(50)

where p = pe + pi and we ignore ϵ2ve/(qRνe) ≪ 1 corrections to the Spitzer current. In

calculating the bootstrap current we have kept only two terms in the Laguerre polynomial

expansion. It is shown in the Appendix B that keeping more terms or using a different

expansion – as in Ref. [18] and [19] – would not give significant improvement to the

preceding result.

IV. CONCLUSIONS

In subsonic tokamak pedestals having Bpol ≪ B, due to the strong (∼ 100 kV/m)

radial electric field, the contribution of the E×B drift to the poloidal ion motion can be

comparable to that of the parallel streaming. Thus, these contributions have to be kept

in the ion kinetic equation in the same order. In the preceding sections the modifications

of the neoclassical plateau regime transport are evaluated, and expressed in terms of

the normalized electric field U = vE×BB/(viBpol) which is allowed to be order unity.
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Orbit squeezing effects are also taken into account but – unlike in the banana regime, –

the plateau transport is found to be unaffected by them. Although the strong electric

field has practically no effect on the electron orbits due to their large thermal speed, the

electron dynamics is indirectly affected, since the electron-ion collisions depend on the

ion mean flow. The bootstrap current is evaluated by an adjoint method that relies on

the knowledge of the Spitzer function which we approximate with a truncated Laguerre

polynomial series. We find that to it is unnecessary to keep more than two terms in this

expansion to get reasonably accurate results. Of course, all of our results are consistent

with conventional U = 0 plateau regime calculations.

As the electric field increases, the resonance causing the plateau transport, which

would be at v∥ ≈ 0 for U = 0, is now shifted towards the tail of the distribution. For strong

electric field this leads to an exponential reduction of the ion heat flux for U ≫ 1. However,

for moderate values of U the ion heat diffusivity is enhanced [L(|U | ≈ 0.91) ≈ 1.46]. The

shift of the resonance sets the upper limit of validity of the calculations presented at about

U = 3.5 (we note that these higher normalized electric fields are unlikely in experiments).

The temperature gradient driven part of parallel ion flow – corresponding to the

poloidal ion rotation – is multiplied by a U -dependent factor J(|U |) that decreases until
J(|U | ≈ 0.76) ≈ 0.39 then it starts to increase approaching an asymptote of 2U2 − 3.

The same factor appears also in the expressions for the poloidal impurity rotation and

the bootstrap current multiplying the ion temperature gradient term. It modifies these

quantities for experimentally relevant values of the radial electric field. In particular,

finite-U modifications might account for the discrepancy found in recent experimental

comparison to neoclassical predictions [10]. However, extremely precise measurements

are required for quantitative comparisons in the plateau regime because of the flatness of

the J(|U |) curve below |U | ∼ 1.5.
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APPENDIX A: ELECTRON TRANSPORT

The ion flow modified by the finite poloidal Larmor radius effects appears in the

drift kinetic equation (33) through the electron-ion collision operator (35). Accordingly,

we expect modifications in the electron transport. Starting with the kinetic equation for

He [Eqs. (37)-(40)], after the replacement C
(1)
e (He) → −νHe (noting that the electron
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collision operator is not momentum conserving) we find that the equation to solve is

vξ∂θHe + νqRHe = Qe sin θ, (A1)

where we introduce ξ = v∥/v and

Qe =
ϵfMev

2

Te

{
I (1 + ξ2)

2Ωe

[
1

ne

∂p

∂Ψ
+

(
mv2

2Te
− 5

2

)
∂Te
∂Ψ

]
(A2)

+
B (1− 3ξ2)

2

[
J(U2)

2Z

IB

Ωe⟨B2⟩
∂Ti
∂Ψ

− eEI

νeB

√
2D(xe)

]}
,

and we use quasineutrality ne = Zni. We obtain the plateau solution

He ≈
Qe

v

(
πδ(ξ) sin θ − cos θ

ξ

)
. (A3)

The particle transport is calculated from the electron version of (23) to find

⟨Γe · ∇Ψ⟩ ≈ −
⟨

Iϵ

2ΩeqR

∫
d3vv2(1 + ξ2)He sin θ

⟩
= −

√
π

2

I2ϵ2ne

Ω2
eqR0

(
Te
me

)3/2

(A4)

×
{

1

pe

∂p

∂Ψ
+

1

2

∂ lnTe
∂Ψ

+
J(U2)Ti
2ZTe

∂ lnTi
∂Ψ

− eEIΩe

ITeνe

√
2
(
a0 −

a1
2

)}
,

This expression reduces to the usual plateau result [3] in the U → 0 and EI → 0 limits.

Similarly, the electron heat flux is

⟨qe · ∇Ψ⟩ ≈ −
⟨

Iϵ

2ΩqR

∫
d3v

mev
4

2
(1 + ξ2)He sin θ

⟩
− 5Te

2
⟨Γe · ∇Ψ⟩ (A5)

= −
√
π

8

I2ϵ2pe
Ω2

eqR0

(
Te
me

)3/2{
1

pe

∂p

∂Ψ
+

13

2

∂ lnTe
∂Ψ

+
J(U2)Ti
2ZTe

∂ lnTi
∂Ψ

− eEIΩe

ITeνe

√
2

(
a0 −

13a1
2

)}
.

APPENDIX B: SPITZER FUNCTION

Considering the Ansatz given in Eq. (41) for the Spitzer problem defined by Eq. (36),

the problem to solve is

C(1)
e

{
−
v∥
νe
D(xe)fMe

}
= v∥fMe, (B1)

where

C(1)
e {δf} = C(1)

ee {δf}+ Lei {δf} (B2)

is the linearized electron collision operator with C
(1)
ee {δf} = Cee {δf, fMe}+Cee {fMe, δf},

Cee is the full Fokker-Planck operator [3], and Lei{δf} = (3
√
2π/4)νeZ(Te/me)

3/2∇v ·
[∇v∇vv · ∇v(δf)] is the Lorentz operator.
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An approximate solution to (A1) can be constructed variationally by maximizing

the functional

Λ =
νeme

2pe

[∫
d3v ηC(1)

e {ηfMe} − 2

∫
d3v ηv∥fMe

]
, (B3)

where η = −v∥
νe
D(xe) and we approximate the xe dependent part of η by a truncated

generalized Laguerre polynomial series expansion

D(xe) ≈
√
2
(
a0L

(3/2)
0 (x2e) + a1L

(3/2)
1 (x2e) + a2L

(3/2)
2 (x2e) + . . .

)
. (B4)

By direct substitution of Eq. (B4) into Eq. (B3), using the orthogonality of the Laguerre

polynomials
∫∞
0
dζe−ζζαL

(α)
j (ζ)L

(α)
k (ζ) = δjkΓ(k + α+ 1)/k!, we obtain

Λ = −2
∑
j,k

ajak

(
M e

jk√
2

+ ZM i
jk

)
+
√
2a0, (B5)

where we introduce the matrix elements [13]

M e
jk = −

√
2

νene

∫
d3vx∥eL

(3/2)
j (x2e)C

(1)
ee

{
x∥eL

(3/2)
k fMe

}
=


0 0 0

0 1 3
4

· · ·
0 3

4
45
16

...
. . .

 , (B6)

and

M i
jk = − 1

νene

∫
d3vx∥eL

(3/2)
j (x2e)Lei

{
x∥eL

(3/2)
k fMe

}
=


1
2

3
4

15
16

3
4

13
8

69
32

· · ·
15
16

69
32

433
128

...
. . .

 , (B7)

where j, k = 0, 1, 2, . . . . Keeping the first three terms in the expansion in Eq. (B3),

maximization of Λ by using the solution of the equations ∂Λ/∂aj = 0, gives

a0 =
(
576 + 1028

√
2Z + 434Z2

)
/
(
8
√
2Zγ

)
, (B8)

a1 = −3
(
30 + 11

√
2Z

)
/ (2γ) ,

a2 = −3
(
4−

√
2Z

)
/γ,

γ = 72 + 61
√
2Z + 16Z2,

which is numerically equal to the result of Ref. [18]. If we neglect the third term in (53)

as well, the results are simply

a0 =
(
8 + 13

√
2Z

)
/
[
4Z

(
2
√
2 + 2Z

)]
, (B9)

a1 = −3/
[
2
(
2 +

√
2Z

)]
.
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Denoting the approximate Spitzer function keeping n polynomials in the Laguerre

polynomial expansion by f
[n]
S , we can estimate the error between f

[2]
S and f

[3]
S for low Z by

comparing some of their moments to those of f
[4]
S . For Z = 1 the relative error of a0 (i.e.

the error of the ohmic current) is around 1.5 % for f
[2]
S and 0.7 % for f

[3]
S . The error of the

pressure and ion temperature gradient parts of the bootstrap current [∼
∫
dxex

5
efS(xe)]

is less than 0.6 % for f
[3]
S (Z = 1) and happens to be even smaller for f

[2]
S .

In the Z → ∞ limit, electron-electron collisions can be neglected compared to

electron-ion collisions, and the Spitzer problem can be solved exactly. The result has the

form of Eq. (41) with D(xe) = 4x3e/(3
√
πZ). In the high Z limit the relative error of

the ohmic current remains below 4.5 % for f
[2]
S , while it is less than 0.15 % for f

[3]
S . The

bootstrap current for f
[3]
S has the same asymptotic limit as the exact solution, however

the form of the Spitzer function is different. The relative error for f
[2]
S remains below 9 %.

The error introduced by the uncertainty of the Coulomb logarithm (that is the ultimate

error of any Fokker-Planck theory) is usually higher than the error of the two-polynomial

approximation (B9), so it seems unnecessary to keep three polynomials in the variational

calculation of fs for the plateau regime.

The Laguerre polynomial expansion contain only even powers of xe. Thus they

cannot reproduce the ∝ x3e behavior expected in the high Z limit. For this reason in

Ref. [19] a simple 4th order polynomial approximation is constructed. Although this

polynomial is correct asymptotically as Z → ∞, the resulting Spitzer function is not

smooth at xe = 0 due to the non-vanishing linear term in the polynomial, as can be

seen in Fig. 3. The figure shows four approximations of the Spitzer function, and the

integrand of their 5th moment that appears in the bootstrap current calculation. The

difference between the approximations of fS is conspicuous for low values of the normalized

velocity, however the difference between the low-order (< 10) moments of fS – which have

a physical relevance – is negligibly small.
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E. J. Doyle, A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T. C. Hender, W. Houlberg,

S. Ide, Y. Kamada, A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, V. Mukhovatov,

T. H. Osborne, A. Polevoi and A. C.C. Sips, Nucl. Fusion 47, S1 (2007).

[2] F. Wagner, Plasma Phys. Control. Fusion 49, B1-B33 (2007).

[3] P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas, Cambridge

University Press (2001).

[4] P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

[5] F. I. Parra and P. J. Catto, Plasma Phys. Control. Fusion 51, 095008 (2009).



14

[6] R. M. McDermott, B. Lipschultz, J. W. Hughes, P. J. Catto, A. E. Hubbard, I. H. Hutchin-

son, M. Greenwald, B. LaBombard, K. Marr, M. L. Reinke, J. E. Rice, D. Whyte, and the

Alcator C-Mod Team, Phys. Plasmas 16, 056103 (2009).

[7] G. Kagan and P. J. Catto, Plasma Phys. Control. Fusion 50, 085010 (2008).

[8] A. A. Galeev and R. Z. Sagdeev, Sov. Phys. JETP 26, 233 (1968).

[9] F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).

[10] ”Comparison of neoclassical predictions with measured flows and evaluation of a poloidal

impurity density asymmetry”, K. D. Marr, B. Lipschultz, P. J. Catto, R. M. McDermott,

M. L. Reinke and A. N. Simakov, to appear in Plasma Phys. Control. Fusion.

[11] G. Kagan and P. J. Catto, Plasma Phys. Control. Fusion 52, 055004 (2010).

[12] M. N. Rosenbluth, R. D. Hazeltine and Fl. L. Hinton, Phys. Fluids 15, 116 (1972).

[13] A. A. Galeev, Zh. Eksp. Teor. Fiz. 59, 1387 (1970) [Sov. Phys. JETP 32, 752 (1971)].

[14] S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).

[15] P. Helander, Phys. Plasmas 8, 4700 (2001).

[16] T. M. Antonsen and K. R. Chu, Phys. Fluids 25, 1295 (1982).

[17] P. Helander and P. J. Catto, Phys. Plasmas 8, 1988 (2001).

[18] S. P. Hirshman, Phys. Fluids 21, 1295 (1978).

[19] S. P. Hirshman, Phys. Fluids 23, 1238 (1980).



15

FIG. 1: The J(|U |) factor multiplying the ion temperature gradient term in the ion flow.

FIG. 2: The L(|U |) factor multiplying the plateau ion heat diffusivity.
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FIG. 3: Different approximations of the Spitzer function for Z = 1. The curves with the maxi-

mum below xe = 1 represent e−x2
eD(x2), the ones centered around xe = 2 are (x5e/4)e

−x2
eD(x2).

Solid – three Laguerre polynomials, Eq. (B8) and Ref. [18] (not plotted separately since they

would be indistinguishable). Dash-dotted – two Laguerre polynomials, Eq. (B9). Dashed – 4th

order polynomial, Ref. [19].
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