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Full f gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other
for electrons, and quasineutrality to obtain the ion and electron distribution functions and the
electrostatic potential. This article shows with several examples that the long wavelength radial
electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron
density since small deviations in density give rise to large, non-physical deviation in the conservation
of toroidal angular momentum. For typical tokamak values, a relative error of 10−7 in the ion or
electron densities is enough to obtain the incorrect toroidal rotation. Based on the insights gained
with the examples in this article, three simple tests to check transport of toroidal angular momentum
in full f simulations are proposed.

PACS numbers: 52.30.Gz, 52.65.Tt

I. INTRODUCTION

Gyrokinetic δf simulations [1–4] have proven very use-
ful in the study of micro-turbulence. In these simulations,
the lowest order distribution function is a slowly evolv-
ing Maxwellian, and only the fluctuating piece, small in
a gyroradius over scale length expansion, is solved for.
This separation is advantageous because the time deriva-
tives of the two pieces of the distribution function are
of very different order. The fluctuating piece, f tb

i , is of
order δifMi, where fMi is the zeroth order Maxwellian,
and δi = ρi/a ¿ 1 is the ratio of the ion gyroradius ρi

over the tokamak minor radius a. Its time derivative is
of the order of the drift wave frequency that for wave-
lengths comparable to the ion gyroradius is ω∗ ∼ vi/a,
with vi =

√
2Ti/M the ion thermal speed, giving

∂f tb
i

∂t
∼ ω∗f tb

i ∼ δifMi
vi

a
. (1)

On the other hand, the time derivative of the slowly
evolving Maxwellian is related to the transport time
scale. Assuming that the transport is of gyroBohm or-
der, ∂/∂t ∼ DgB/a2 ∼ δ2

i vi/a, where DgB ∼ δiρivi is the
gyroBohm diffusion coefficient. Then,

∂fMi

∂t
∼ δ2

i fMi
vi

a
¿ ∂f tb

i

∂t
∼ δifMi

vi

a
, (2)

where we have used the estimate in Eq. (1). Any equation
that includes both the slow Maxwellian fMi and the fast
fluctuating piece f tb

i at the same time must treat terms
that differ by δi = 0.5× 10−2 in most relevant tokamaks.
Then, we need at least 3 digits of accuracy to solve a full
f equation that contains both pieces of the distribution
function. This problem is avoided in δf simulations by
not evolving fMi. The density and temperature of fMi

can be calculated using conservation equations [5].
The problem of full f simulations becomes even more

acute with the transport of toroidal angular momentum.

It was realized 40 years ago [6, 7] that neoclassical trans-
port in axisymmetric devices is intrinsically ambipolar,
i.e., quasineutrality is independent of the long wavelength
radial electric field to a very high order. We recently
proved that intrinsic ambipolarity also applies to tur-
bulent tokamaks [8]. Due to the weak dependence on
the radial electric field, any small error in the calcula-
tion of the charge density leads to large, non-physical
deviations in the radial electric field. These deviations
lead to a toroidal rotation profile that does not satisfy
the correct conservation equation for the toroidal an-
gular momentum. In Ref. 8 we showed that the radial
current density must be good to order δ3

i (Vi/vi)enevi to
obtain the correct transport of momentum by employ-
ing the quasineutrality equation. The required accuracy
depends on the size of the ion mean velocity Vi that
in tokamaks ranges from being of the order of the ion
thermal speed vi with neutral beam injection, to the low
flow ordering Vi ∼ δivi without external momentum in-
put. In terms of accuracy in the gyrokinetic equation,
we need to keep ion flows niVi to order δ3

i (Vi/vi)nivi

that correspond to ion density time derivatives of order
∂ni/∂t = −∇ · (niVi) ∼ δ3

i (Vi/vi)ni(vi/a). Thus, in
the gyrokinetic Fokker-Planck equation it is necessary to
keep terms of order

fMi

ni

∂ni

∂t
∼ δ3

i

Vi

vi
fMi

vi

a
¿ ∂f tb

i

∂t
∼ δifMi

vi

a
, (3)

where we have employed the estimate in Eq. (1). Notice
that in a full f simulation with δi = 0.5× 10−2, we need
5 digits of accuracy to obtain the correct transport of
toroidal angular momentum if Vi ∼ vi, and 7 digits if
Vi ∼ δivi.

The requirements on the gyrokinetic Fokker-Planck
equation are much reduced if instead of using gyroki-
netic quasineutrality to obtain the long wavelength radial
electric field, we employ the conservation equation for
toroidal angular momentum. Under these circumstances,
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the gyrokinetic Fokker-Planck equation need only be cor-
rect to order δi(Vi/vi)fMivi/a. This result is well known
in drift kinetic theory [9], where it is used for both high
flow, Vi ∼ vi [10–13], and low flow, Vi ∼ δivi [14–20].

In this article, we propose a series of tests to validate
transport of momentum in full f simulations. Unless
these tests are passed satisfactorily, the rotation profiles
obtained in full f simulations will remain unreliable.

The remainder of this article is organized as follows.
First, in section II we revisit the derivation in Ref. 8
where we showed that, in order to recover the transport
of toroidal angular momentum from quasineutrality, it
is necessary to obtain the gyrokinetic equation to order
δ3
i (Vi/vi)fMivi/a. We rederive the same result using a

more general procedure to help the reader understand
the next sections. Then, in sections III and IV we work
out several examples that we consider relevant cases in
simulations. In section III we show that even in the sim-
ple drift kinetic ordering, problems arise with momentum
transport. It is possible to prove that employing the most
common drift kinetic equation for ions and electrons in
combination with quasineutrality is equivalent to includ-
ing a non-physical momentum source in the plasma. In
section IV we study the gyrokinetic Fokker-Planck and
quasineutrality equations in a slab. We have already
shown in Ref. 21 that the classic formulation by Dubin et
al [22] is equivalent to introducing a non-physical source
of momentum. We now explore a different case where
the non-physical momentum source is eliminated, but the
problem is now that the momentum transport is incor-
rect. Finally, based on these examples, we propose three
checks for full f simulations in section V.

II. TRANSPORT OF TOROIDAL ANGULAR
MOMENTUM

In this section, we derive an equation for the flux sur-
face averaged charge density employing the full Fokker-
Planck equation. This equation will explicitly show that
imposing quasineutrality leads to a momentum conserva-
tion equation. It will also give the order to which the time
derivative of the charge density must be obtained so that

transport of toroidal angular momentum is recovered.
We assume that the magnetic field is axisymmetric,

i.e.,

B = I∇ζ +∇ζ ×∇ψ. (4)

We use magnetic coordinates, with ψ the poloidal flux
function, ζ the toroidal angle and θ the poloidal angle.
The gradient ∇ζ = ζ̂/R, where ζ̂ is the unit vector in
the toroidal direction and R is the distance to the axis of
symmetry of the tokamak.

We prove now that there is a relation between the
quasineutrality equation and the transport of toroidal
angular momentum. First, we write the relation of the
flux surface averaged charge density with the radial cur-
rent. Then, we use the total momentum conservation
to obtain the radial current as a function of the trans-
port of toroidal angular momentum. Importantly, we will
not use the quasineutrality equation in the derivation be-
cause we want to show the relation between charge den-
sity evolution and toroidal angular momentum conserva-
tion. This relation, crucial to obtain the correct radial
electric field, will only be satisfied if the Fokker-Planck
equation is solved to high enough order.

Integrating the ion and electron full Fokker-Planck
equations over velocity space, subtracting, and flux sur-
face averaging gives

∂

∂t
〈Zeni − ene〉ψ = − 1

V ′
∂

∂ψ
V ′〈J · ∇ψ〉ψ, (5)

where J is the current density, 〈. . .〉ψ =
(V ′)−1

∫
dθdζ(. . .)/(B · ∇θ) is the flux surface av-

erage, and V ′ ≡ dV/dψ =
∫

dθdζ(B · ∇θ)−1 is the
volume of the flux surface. Here Ze and e are the ion
and electron charge magnitude.

To obtain the radial current 〈J · ∇ψ〉ψ, we employ the
total momentum conservation equation. Taking the Mv
and mv moments of the ion and electron Fokker-Planck
equations, with M and m the ion and electron masses,
adding, dotting by Rζ̂ and flux surface averaging gives
total conservation of toroidal angular momentum to be

〈J · ∇ψ〉ψ = c

〈
(Zeni − ene)

∂φ

∂ζ

〉

ψ

+ c

(
∂

∂t
〈RniMVi · ζ̂〉ψ +

1
V ′

∂

∂ψ
V ′

〈
Rζ̂· ↔πi ·∇ψ

〉
ψ

)
, (6)

where niVi =
∫

d3v vfi is the ion flow, and
↔
πi=

M
∫

d3v fi[vv − (v2
⊥/2)(

↔
I −b̂b̂) − v2

||b̂b̂] is the ion vis-
cosity that includes Reynolds stresses, gyroviscosity and
perpendicular viscosity. Notice that we have neglected
the electron viscosity and the time derivative of the elec-

tron momentum because they are smaller than the other
terms by a mass ratio m/M . We also employ that
∇(Rζ̂) = ∇Rζ̂ − ζ̂∇R is antisymmetric and we use
Eq. (4) to write R(J × B) · ζ̂ = J · ∇ψ. Substituting
Eq. (6) into Eq. (5) finally gives
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∂

∂t
〈Zeni − ene〉ψ +

1
V ′

∂

∂ψ
V ′

〈
c
∂φ

∂ζ
(Zeni − ene)

〉

ψ

= − c

V ′
∂

∂ψ
V ′

(
∂

∂t
〈RniMVi · ζ̂〉ψ +

1
V ′

∂

∂ψ
V ′

〈
Rζ̂· ↔πi ·∇ψ

〉
ψ

)
.

(7)

In this equation, the second term in the left side corre-
sponds to the E×B transport of charge.

Equation (7) shows that imposing quasineutrality
Zni = ne in the ion and electron full Fokker-Planck equa-
tions leads to conservation of toroidal angular momentum

∂

∂t
〈RniMVi · ζ̂〉ψ = − 1

V ′
∂

∂ψ
V ′〈Rζ̂· ↔πi ·∇ψ〉ψ. (8)

Also, from Eq. (7) we can estimate the accuracy needed
to recover the correct momentum transport (8). Assum-
ing that the transport of toroidal angular momentum
is gyroBohm, ∂〈RniMVi · ζ̂〉ψ/∂t ∼ (DgB/a2)RniMVi,
giving

∂

∂t
〈RniMVi · ζ̂〉ψ ∼ δ2

i RniMVi
vi

a
, (9)

where we have used the gyroBohm diffusion coefficient
DgB = δiρivi. Using this estimate in Eq. (7), we
find that ∂〈Zeni − ene〉ψ/∂t must be obtained to order
δ3
i (Vi/vi)enevi/a. This justifies the estimate in Eq. (3)

of section I.
In general, the ion and electron full Fokker-Planck

equations are asymptotically expanded in the small pa-
rameter δi = ρi/a ¿ 1 to obtain the gyrokinetic equa-
tions for ions and electrons. This expansion usually ne-
glects terms of order δ2

i fMivi/a, although terms of this
order can be retained in simplified geometries. Thus,
most gyrokinetic simulations will not be high enough or-
der to recover the correct transport of toroidal angular
momentum.

The failure to reproduce the correct toroidal rotation
manifests itself in the long wavelength radial electric field.
There is a strong relation between the toroidal rotation
and the long wavelength radial electric field found by
using the radial and parallel momentum balance [8, 23]
to write

niVi · ζ̂ = −cniR

(
∂φ

∂ψ
+

1
Zeni

∂pi

∂ψ

)
+ IU(ψ). (10)

In up-down symmetric tokamaks, the flux function U(ψ)
is given by neoclassical theory [24, 25] if the ion-ion colli-
sion frequency νii satisfies qRνii/vi À δ2

i [8, 23], valid in
most tokamaks. Relation (10) will be satisfied in gyroki-
netic simulations at long wavelengths if the simulations
are run for times longer than the collisional time ν−1

ii .
However, the long wavelength radial electric field, calcu-
lated using the quasineutrality equation, will be incor-
rect, resulting in a toroidal velocity that does not satisfy
the momentum conservation equation.

In the next two sections, we work out several examples
that are illustrative of the problems of quasineutrality.

In Ref. 21, we employed the classic gyrokinetic model for
a slab by Dubin et al [22] to show that gyrokinetic equa-
tions may introduce non-physical sources of momentum.
In section III, we use the most common drift kinetic equa-
tions to show that a similar problem arises in tokamaks
due to the magnetic geometry. After that, in section IV,
we analyze again gyrokinetics in a slab with a different
model derived from a variational method [26, 27]. We
will show that this approach has its own problems.

III. DRIFT KINETIC EXAMPLE

In this section, we examine a system composed of two
drift kinetic equations, one for ions and the other for
electrons, and quasineutrality. This is not a complete
model of the drift wave turbulence in tokamaks, but it is
a good example in which we can demonstrate the short-
comings of quasineutrality. First, in subsection III A, we
obtain the correct transport of toroidal angular momen-
tum in the low flow ordering, Vi ∼ δivi, in the limit
Bp/B ¿ 1, where Bp = |∇ψ|/R is the poloidal compo-
nent of the magnetic field [23]. Then, in subsection III B,
we show that using quasineutrality along with the most
common drift kinetic equation is equivalent to introduc-
ing a non-physical momentum source. At the end of sub-
section III B we will discuss a drift kinetic equation that
does not have this problem.

A. Toroidal angular momentum transport in drift
kinetics

In this subsection, we calculate the off-diagonal com-
ponent 〈Rζ̂· ↔πi ·∇ψ〉ψ of the stress tensor to the nec-
essary order. We make two crucial assumptions so that
the drift kinetic model remains valid. We obviously need
to assume that the turbulence has characteristic wave-
lengths much longer than the ion gyroradius. Addition-
ally, we work in a magnetic field with Bp/B ¿ 1. This
assumption is needed for several reasons, but the main
one is that in this limit the toroidal rotation is deter-
mined exclusively by the parallel mean velocity. It is
then possible to neglect the gyrophase dependent piece
of the distribution functions. Requiring wavelengths to
be much longer than the ion gyroradius is not physically
relevant, but this example is only meant to illustrate the
problems with quasineutrality.

We follow the orderings in Ref. 23, where the low flow,
Bp/B ¿ 1 limit was carefully studied. We assume that
the ion and electron lowest order distribution functions,
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fMi and fMe, are Maxwellians that spatially depend only
on ψ. We allow turbulent fluctuations in the potential
such that the perpendicular gradient is ∇⊥φ ∼ Te/ea,
whereas the parallel gradient is smaller, b̂·∇φ ∼ δiTe/ea.
Then, ∂φ/∂ζ = Rζ̂ · ∇φ ∼ (R/a)(Bp/B)Te/e.

In Ref. 23, we argued that to first order in δi there are
two pieces of the ion distribution function that scale dif-
ferently with Bp/B, namely the neoclassical long wave-
length piece, fnc

i1 ∼ (B/Bp)δifMi, and the turbulent
short wavelength components, f tb

i1 ∼ δifMi. Based on
this distinction, it is possible to show that the lowest
order gyrokinetic equation (and hence the lowest order
drift kinetic equation) is accurate enough to find the
next order corrections in δi, including the neoclassical
piece fnc

i2 ∼ (B/Bp)2δ2
i fMi, and the turbulent contribu-

tion f tb
i2 ∼ (B/Bp)δ2

i fMi. For Bp/B ∼ 1, a higher order
gyrokinetic or drift kinetic equation would be needed to
obtain the higher order contributions fi2 ∼ δ2

i fMi.

The higher order contributions fnc
i2 and f tb

i2 are needed
to obtain the correct momentum transport in the low
flow ordering. In Refs. 8 and 23, we argued that the fast
time averaged, long wavelength piece of 〈Rζ̂· ↔πi ·∇ψ〉ψ
must be of order R|∇ψ|δ3

i pi in the low flow ordering [this
result can also be obtained from Eq. (9)]. To obtain
〈Rζ̂· ↔πi ·∇ψ〉ψ, we use a moment approach developed in
drift kinetics [28]. The final result is presented in Eq. (37)
of Ref. 23. Using Bp/B ¿ 1 to write Rv · ζ̂ ' (I/B)v||,
it simplifies to

〈〈
Rζ̂· ↔πi ·∇ψ

〉
ψ

〉

T

= Mc

〈〈
I

B

∂φ

∂ζ

∫
d3v f iv||

〉

ψ

〉

T

+
M2c2

2Ze

1
V ′

∂

∂ψ
V ′

〈〈
I2

B2

∂φ

∂ζ

∫
d3v f iv

2
||

〉

ψ

〉

T

+
Mc

2Ze

〈
I2

B2

〉

ψ

∂pi

∂t
− M2c

2Ze

〈
I2

B2

∫
d3v 〈Cii{f i}〉Tv2

||

〉

ψ

− M3c2

6Z2e2

1
V ′

∂

∂ψ
V ′

〈
I3

B3

∫
d3v 〈Cii{f i}〉Tv3

||

〉

ψ

. (11)

Here f i is the gyrophase independent piece
of the distribution function, and 〈. . .〉T =
(∆t∆ψ)−1

∫
∆t

dt
∫
∆ψ

dψ(. . .) is the “transport” or
coarse grain average that averages over a radial dis-
tance longer than the radial correlation length of the
turbulence and over times longer than the turbulence
correlation time. Since we are using the drift kinetic
equation, we have assumed that k⊥ρi is small enough
that the contribution of the gyrophase dependent piece
of the ion distribution function to Eq. (11) can be
neglected. Notice that in Eq. (11), the first and fourth
term are formally of lower order in δi [23], thus requiring
the second order pieces f tb

i2 and fnc
i2 .

Equation (11) is the correct expression for the trans-
port of toroidal angular momentum in the drift kinetic
limit. Any result obtained from the quasineutrality equa-
tion must be compared to this result.

B. Toroidal angular momentum transport from
drift kinetic quasineutrality

In this subsection, we calculate the ion and electron
gyrophase independent pieces of the distribution func-
tion, f i(r, εi, µ0, t) and fe(r, εe, µ0, t), using two drift ki-
netic equations. Here εi = v2/2 + Zeφ/M and εe =
v2/2 − eφ/m are the ion and electron total energies,
and µ0 = v2

⊥/2B is the lowest order magnetic moment.
The drift kinetic equations that we will use are accurate
enough to obtain the second order pieces of the ion distri-
bution function in the limit Bp/B ¿ 1 and consequently

they are good enough to evaluate Eq. (11). Nevertheless,
we will show that for the most common version of the
drift kinetic equation the long wavelength electric field
obtained by imposing Z

∫
d3v f i = e

∫
d3v fe is incor-

rect. In this case, employing quasineutrality is equiva-
lent to introducing a non-physical source of momentum
and a modification to the transport of toroidal angular
momentum. At the end of this section, we will briefly dis-
cuss a slightly modified version of the drift kinetic equa-
tion that gives the correct radial electric field in the limit
Bp/B ¿ 1 by employing the quasineutrality equation.

The most common ion and electron drift kinetic equa-
tions are

∂

∂t
(Jjf j) +∇j ·

(
Jjf j ṙj

)
+

∂

∂εj

(
Jjf j ε̇j

)
= JjCj{f j},

(12)
with j = i, e. Here ∇j is the gradient holding εj , µ0 and t
fixed, and Jj = B/|v||| is the lowest order velocity space
Jacobian, giving d3v = 2πJjdεjdµ0. The lowest order
drifts are

ṙj = v||b̂ + vdj , (13)

where the parallel velocity is obtained by using v|| =√
2(εi − µ0B − Zeφ/M) =

√
2(εe − µ0B + eφ/m), and

the perpendicular drifts are usually written as

vdi =
µ0

Ωi
b̂×∇B +

v2
||

Ωi
b̂× κ− c

B
∇φ× b̂

=
v||
Ωi
∇i × (v||b̂)−

v2
||

Ωi
b̂b̂ · ∇ × b̂ (14)



5

and

vde = −µ0

Ωe
b̂×∇B −

v2
||

Ωe
b̂× κ− c

B
∇φ× b̂

= − v||
Ωe
∇e × (v||b̂) +

v2
||

Ωe
b̂b̂ · ∇ × b̂. (15)

Here, Ωi = ZeB/Mc and Ωe = eB/mc are the ion and
electron gyrofrequencies, κ = b̂ · ∇b̂ is the curvature of
the magnetic field line, and in the second equalities, the
curl ∇j×(. . .) is taken holding εj , µ0 and t fixed. Finally,
the time derivatives of the total energies are

ε̇i =
Ze

M

∂φ

∂t
(16)

and

ε̇e = − e

m

∂φ

∂t
. (17)

The quasineutrality condition in drift kinetics is

Zni ≡ Z

∫
d3v f i =

∫
d3v fe ≡ ne. (18)

Notice that the polarization density is not included be-
cause this is a drift kinetic limit. It can be neglected
because we are assuming that Bp/B ¿ 1 and the effect
of the polarization density on the transport of toroidal
angular momentum will be small by that factor.

We will study the time derivative of Eq. (18) up to
order δ4

i enevi/a, as required by a low flow ordering. The
time evolution of the flux surface average ion density is
obtained from Eq. (12), giving

∂

∂t
〈ni〉ψ +

1
V ′

∂

∂ψ
V ′

〈∫
d3v f ivdi · ∇ψ

〉

ψ

= 0. (19)

The equation for ne is similar. Subtracting one from the
other, imposing quasineutrality Zni = ne and integrating
once in ψ, we find

0 = M

〈∫
d3v f iv||b̂ · ∇i

(
Iv||
B

)〉

ψ

+m

〈∫
d3v fev||b̂ · ∇e

(
Iv||
B

)〉

ψ

. (20)

where we have used Eqs. (14) and (15) to write vdi ·
∇ψ = v||b̂ ·∇i(Iv||/Ωi)+c(∂φ/∂ζ) and vde ·∇ψ = −v||b̂ ·
∇e(Iv||/Ωe)+c(∂φ/∂ζ). Equation (20) must be found to
order δ3

i Rpi/a to obtain the relevant physics, i.e., the
gyroBohm transport of momentum. The details of the
derivation are in Appendix A. The final result is

∂

∂t

〈
RniMVi · ζ̂

〉
ψ

+
1
V ′

∂

∂ψ
(V ′Π) = Fζ , (21)

where we have “transport” or coarse-grain averaged,
〈. . .〉T = (∆t ∆ψ)−1

∫
∆t

dt
∫
∆ψ

dψ(. . .). The transport
of momentum is given by

Π =

〈〈
MI

B

∫
d3v f iv||vdi · ∇ψ

〉

ψ

〉

T

=
〈
〈Rζ̂· ↔πi ·∇ψ〉ψ

〉
T

+ Π̃, (22)

and there is a non-physical torque

Fζ = M

〈〈∫
d3v f ivdi · ∇i

(
Iv||
B

)〉

ψ

〉

T

. (23)

Notice that the transport of momentum Π differs from
the real transport of momentum 〈〈Rζ̂· ↔πi ·∇ψ〉ψ〉T given
in Eq. (11) by the quantity

Π̃ = −M2c

2Ze

〈〈∫
d3v f ivdi · ∇i

(
I2v2

||
B2

)〉

ψ

〉

T

. (24)

The size of both the non-physical torque Fζ and the
non-physical transport of momentum Π̃ can be estimated
to be Fζ ∼ δ2

i Rpi/a and Π̃ ∼ δ2
i piR|∇ψ|. To obtain these

estimates it is enough to realize that vdi · ∇i(Iv||/B) ∼
δiv

2
i (R/a). Then, Fζ ∼ δ2

i Rpi/a because the lowest order
Maxwellian contribution vanishes (the integrand is odd in
v||). In Π̃, the lowest order Maxwellian piece contributes
giving Π̃ ∼ δ2

i piR|∇ψ|. According to their order of mag-
nitude estimate, Fζ and Π̃ will not only contribute to the
transport of momentum equation (21) but they will be
the dominant terms, larger by a factor δ−1

i , determining
an incorrect radial electric field and hence the incorrect
toroidal rotation. We must point out that these terms
will tend to be smaller than their formal order of mag-
nitude because they are small in β, the ratio between
the plasma pressure and the magnetic field pressure. In-
deed, employing Eq. (14) and using the expression (see
Appendix B)

v||
Ωi
∇i × (v||b̂) · ∇i

(
Iv||
B

)
= −cv||

B
b̂ · ∇ × b̂

∂φ

∂ζ
, (25)

we find that vdi ∝ b̂ ·∇× b̂ ∝ β. However, even with the
extra factor of β these non-physical contributions will be
at least comparable to the rest of the terms in Eq. (21).

Interestingly, it is possible to rewrite the drift kinetic
equation in a form that prevents this problem. Instead
of using the Jacobian Ji and the drift motion ṙi, we can
employ J∗i = B∗

i /|v||| and

ṙi =
v||
B∗

i

B + v∗di, (26)

with

v∗di =
Mcv||
ZeB∗

i

∇i × (v||b̂) (27)
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and

B∗
i = B +

Mcv||
Ze

b̂ · ∇ × b̂. (28)

The modified expressions for the electrons are obvious.
Using these new drift kinetic equations, and following
the same procedure as in Appendix A, we find that the
transport of momentum derived from quasineutrality is
now given by the correct equation (8), with 〈〈Rζ̂· ↔πi

·∇ψ〉ψ〉T as in Eq. (11). To obtain this result, use v∗di ·
∇ψ = (v||/B∗

||)B · ∇i(Iv||/Ωi) + (cB/B∗
||)(∂φ/∂ζ), and

v∗di · ∇i(Iv||/B) = (Ze/MB∗
||)(B −B∗

||)(∂φ/∂ζ) [this last
expression is easily derived from Eq. (25)].

Finally, even though we were able to find a drift ki-
netic formulation where quasineutrality would reproduce
the correct behavior of the radial electric field at long
wavelengths when Bp/B ¿ 1, we still see two problems
with this procedure. First, we are not aware of any gy-
rokinetic formulation that has been proven satisfactory
even in the simpler Bp/B ¿ 1 limit. Including finite gy-
roradius effects complicates the calculations enormously.
Second, even if such a formulation is found, there is still
the numerical problem. For such a formulation to work,
it would be necessary to achieve 5 digit accuracy for the
high flow regime, and 7 digit accuracy for the low flow
ordering with δi = 0.5×10−2. ITER would be even more
challenging. On the other hand, the evaluation of trans-
port of toroidal angular momentum via Eq. (11) is much
less sensitive to numerical noise and resolution.

IV. GYROKINETIC EXAMPLE

In slab gyrokinetics, the magnetic field B is constant.
We assume that the lowest order ion and electron dis-
tribution functions, fis and fes, and the lowest order
potential, φs, only vary spatially in x (one of the di-
rections perpendicular to B) with a characteristic length
of variation L much larger than the ion gyroradius. The
lowest order distribution functions fis and fes need not
be Maxwellians for very low collisionality. The turbulent
fluctuations that can vary in the direction y, perpendic-
ular to both x and B, are ordered as small in δi = ρi/L.

The interesting feature of the slab is that it is sym-
metric along y in an average sense (the turbulence ob-
viously breaks the strict symmetry). Then, assum-
ing that there is no large scale current 〈J · x̂〉x across
the slab, y-momentum is conserved for reasons simi-
lar to those employed to prove conservation of toroidal
angular momentum in a tokamak. Here 〈. . .〉x =
(∆y ∆z)−1

∫
∆y

dy
∫
∆z

dz(. . .) is the flux surface average
in a slab, x̂ is the unit vector along x, and z is the co-
ordinate along the magnetic field. The conservation of
y-momentum is

∂

∂t
〈niMVi · ŷ〉x = − ∂

∂x
〈x̂· ↔πi ·ŷ〉x, (29)

with ŷ = b̂ × x̂. As in tokamaks, it is possible to ob-
tain the long wavelength contribution to 〈x̂· ↔πi ·ŷ〉x to
very high order without requiring a higher order ion dis-
tribution function via moments of the full Fokker-Planck
equation [28]. This was done for the low flow ordering
without collisions in Ref. 21. The transport of momen-
tum 〈x̂· ↔πi ·ŷ〉x must be found to order δ3

i pi in the low
flow ordering, and it is given by

〈x̂· ↔πi ·ŷ〉x = −
〈

c

B

∂φ

∂y

∫
d3v fiMv · ŷ

〉

x

− 1
2Ωi

∂pi⊥
∂t

+
1

2Ωi

∂

∂x

〈
c

B

∂φ

∂y

∫
d3v fiM(v · ŷ)2

〉

x

. (30)

The first term in this expression is formally of lower order
than the rest. Consequently the distribution function and
the potential are needed to order δ2

i fis and δ2
i Te/e.

Since the long wavelength electric field is related to
the y velocity through the E × B flow, it is necessary
to correctly solve for the transport of y-momentum to
self-consistently calculate the long wavelength electric
field. As in tokamaks, the relation between quasineutral-
ity and conservation of momentum is automatic if the
exact Fokker-Planck equation is used, but it will not be
satisfied if the Fokker-Planck equation is not solved up to
order δ3

i (Vi/vi)fisvi/L. Usual gyrokinetic formulations
in slab geometry assume low flows, Vi ∼ δivi, needing
the Fokker-Planck equation up to order δ4

i fisvi/L. Even
though slab gyrokinetics can be obtained to higher order
in δi than in more complex magnetic geometries, the slab
gyrokinetic equation is only good to order δ2

i fisvi/L; not
enough to recover the correct transport of toroidal an-
gular momentum. In Ref. 21 we proved that using the
classic formulation by Dubin et al [22] was equivalent to
introducing a non-physical momentum source in the y
direction, invalidating then any long wavelength velocity
profiles obtained using this method. However, the formu-
lation in Ref. 22 is not the only one for a slab. In this sec-
tion, we will study the variational formulations [26, 27].
These formulations are able to conserve y-momentum in
the slab, but the transport of momentum they predict is
incorrect. To see this, we will first review some of the
results in Ref. 21 that will help us explain the problems
that arise in the variational formulation. At the end of
the section we will prove that even though the varia-
tional formulation conserves y-momentum, it transports
momentum from one flux surface to the next incorrectly.

The gyrokinetic variables are defined up to second or-
der in δi. As an example of variables, we use the gyro-
center position R = r + Ω−1

i v× b̂ + R2, the gyrokinetic
parallel velocity u = v|| + u2 and the magnetic moment
µ = µ0 +µ1 +µ2 (the exact definitions of R2, u2, µ1 and
µ2 can be found in Ref. 21). In the absence of collisions,
the distribution function written in these variables will
be independent of gyrophase. Once the distribution func-
tion is found, it must be integrated over velocities to ob-
tain densities, temperatures or the transport of momen-
tum in Eq. (30), but this integral must be done holding
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the real position of the particle r = R−R1−R2 fixed. It
is then customary to Taylor expand around the variables
Rg = r + Ω−1

i v × b̂, v|| and µ0 to obtain, for the ions,
fi(R, u, µ, t) ' fig + fip, where fig ≡ fi(Rg, v||, µ0, t) is
obtained by replacing R, u and µ in fi(R, u, µ, t) by Rg,
v|| and µ0, and

fip = R2 · ∇Rg
fig + u2

∂fig

∂v||
+ (µ1 + µ2)

∂fig

∂µ0
+

µ2
1

2
∂2fig

∂µ2
0

.

(31)
The subindex p indicates that the integral over velocity
of fip is the polarization density. The expression fi =
fig + fip is good to order δ2

i fis if fig is found to that
order, but it is not valid to higher order because we have
not obtained the next order corrections to the gyrokinetic
variables. Similarly, if we were to keep only the first order
correction fip ' µ1(∂fig/∂µ0), we would be missing the
rest of the terms R2 · ∇Rg

fig + . . . ∼ δ2
i fis even for fig

good to order δ2
i fis.

Once fip is known as a function of fig, it is neces-
sary to obtain fig to the correct order. The gyrokinetic
Fokker-Planck equation that determines fi(R, u, µ, t) can
be used by simply replacing R, u and µ by Rg, v|| and
µ0 to obtain

∂fig

∂t
+ Ṙg · ∇Rgfig + v̇||

∂fig

∂v||
= 0. (32)

Full f gyrokinetics obtains the electrostatic potential
from quasineutrality. To simplify the problem we can as-
sume that the electrons are determined by a drift kinetic
equation

∂fe

∂t
+

(
v||b̂−

c

B
∇φ× b̂

)
·∇fe+

e

m
b̂·∇φ

∂fe

∂v||
= 0, (33)

leaving then the simple quasineutrality equation

Ze

∫
d3v fig + Ze

∫
d3v fip = e

∫
d3v fe. (34)

Here it is where different gyrokinetic formalisms differ.
Usually, the quasineutrality equation is written as

Ze

∫
d3v fig + Zenip = e

∫
d3v fe, (35)

where the polarization density nip =
∫

d3v f∗ip is differ-
ent from the integral

∫
d3v fip. Notice that employing

the incorrect polarization density nip =
∫

d3v f∗ip leads
to errors in the fluctuating potential, errors that may be-
come important in Eq. (30) where the potential is needed
to order δ2

i Te/e.

In Ref. 21, the quasineutrality equation (35) was stud-
ied for the formulation of Dubin et al, characterized by
a particular gyrokinetic equation (32) and a particular
choice of nip =

∫
d3v f∗ip. The procedure developed in

Ref. 21 is easy to extend to a general gyrokinetic equa-
tion (32) and a general f∗ip. Taking the time derivative
of Eq. (35) gives

∂

∂t

〈
Ze

∫
d3v fip

〉

x

− ∂

∂x

〈
Ze

∫
d3v figṘg · x̂

〉

x

=
∂

∂x

〈
Zec

B

∂φ

∂y

∫
d3v (fig + f∗ip)

〉

x

, (36)

where we have used Eqs. (32) and (33) to rewrite the
time derivatives ∂fig/∂t and ∂fe/∂t, and in the right
side of the equation we have employed the quasineutrality
equation (35) to write

∫
d3v fe =

∫
d3v (fig + f∗ip).

In Ref. 21, we found that, at long wavelengths,

∂

∂t

〈
Ze

∫
d3v fip

〉

x

− ∂

∂x

〈
Ze

∫
d3v figṘg · x̂

〉

x

= −∂Γ
∂x

+
c

B

∂

∂x

[
∂

∂t
〈niMVi · ŷ〉x − 1

2Ωi

∂2pi⊥
∂x∂t

]
, (37)

〈
Zec

B

∂φ

∂y

∫
d3v fig

〉

x

= Γg +
c

B

∂

∂x

[〈
c

B

∂φ

∂y

∫
d3v figMv · ŷ

〉

x

− 1
2Ωi

∂

∂x

〈
c

B

∂φ

∂y

∫
d3v figM(v · ŷ)2

〉

x

]
(38)

and
〈

Zec

B

∂φ

∂y

∫
d3v f∗ip

〉

x

= Γp +
c

B

∂

∂x

[〈
c

B

∂φ

∂y

∫
d3v f∗ipMv · ŷ

〉

x

− 1
2Ωi

∂

∂x

〈
c

B

∂φ

∂y

∫
d3v f∗ipM(v · ŷ)2

〉

x

]
. (39)

Here Γ, Γg and Γp are quantities with the dimensions of current whose exact expressions are not relevant; Γ
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depends on the exact form of Ṙg in Eq. (32) and Γp

depends on the particular choice of f∗ip. Substituting the
long wavelength results (37), (38) and (39) into Eq. (36)
and integrating once in x gives

∂

∂t
〈niMVi · ŷ〉x = − ∂

∂x
Π{fig + f∗ip, φ}+ Fy, (40)

where there is a non-physical force

Fy =
B

c
(Γ + Γg + Γp) (41)

and the transport of toroidal angular momentum
Π{fi, φ} is the functional of fi and φ defined by Eq. (30).
If fi and φ are the correct distribution function and po-
tential up to order δ2

i fis and δ2
i Te/e, Π{fi, φ} will be the

physical transport of momentum 〈x̂· ↔πi ·ŷ〉x.
In the work of Dubin et al [22], the polarization den-

sity nDubin
ip =

∫
d3v fDubin

ip ≡ ∫
d3v fip is obtained as

in Eq. (31), i.e., by Taylor expansion around the low-
est order gyrokinetic variables. The resulting ni =∫

d3v fig +
∫

d3v fDubin
ip and φ are correct up to order

δ2
i ne and δ2

i Te/e, good enough to calculate the transport
of y-momentum using Eq. (30). Unfortunately, problems
arise when using the quasineutrality equation (34). In
Ref. 21, we proved that the current densities Γ, Γg and

Γp in Eqs. (37), (38) and (39) do not cancel, thereby
giving a non-physical force Fy in Eq. (40).

In Ref. 21, we suggested that in order to make the non-
physical force Fy vanish, it would be necessary to add
a higher order correction to the ion gyrokinetic drifts.
There is another procedure that also cancels the non-
physical force, namely variational gyrokinetics [26, 27].
In the variational methodology, the polarization density
nvar

ip =
∫

d3v fvar
ip is not defined by Taylor expanding

around the lowest order gyrokinetic variables, but it is
obtained by extremizing an action with respect to the
potential φ(r, t). The same action is extremized with
respect to the gyrocenter trajectories to obtain the gyro-
center motion. It is then possible to use Noether’s theo-
rem to prove that certain quantities are conserved; among
them, y-momentum. Comparing this method with the
study in Ref. 21, it becomes obvious that the varia-
tional approach provides a different polarization density
nvar

ip =
∫

d3v fvar
ip than Dubin et al [22]. Using the same

notation as in Ref. 21, the variational approach gives

fvar
ip =

Zeφ̃g

MB

∂fig

∂µ0
− c

BΩi
(∇Rg Φ̃g × b̂) · ∇Rg

fig, (42)

while the approach by Dubin et al has additional second
order pieces,

fDubin
ip =

Zeφ̃g

MB

∂fig

∂µ0
− c

BΩi
(∇Rg Φ̃g × b̂) · ∇Rgfig +

Ze

MB

[
− Zeφ̃g

MB

∂〈φ〉g
∂µ0

+
c

BΩi
(∇Rg Φ̃g × b̂) · ∇Rg 〈φ〉g

+
Ze

2MB

∂

∂µ0
〈φ̃2

g〉+
c

2BΩi
〈(∇Rg φ̃g × b̂) · ∇Rg

Φ̃g〉
]

∂fig

∂µ0
+

Z2e2φ̃2
g

2M2B2

∂2fig

∂µ2
0

. (43)

Following the same reasoning as in Ref. 21 with fvar
ip in-

stead of fDubin
ip , it is easy to prove that Fy in Eq. (40)

vanishes, leading to conservation of y-momentum. Unfor-
tunately, the transport of momentum Π{fig + fvar

ip , φvar}
is now missing pieces of order δ3

i pi due to the differences
between fvar

ip and the physical definition of fip in Eq. (31),
and the differences between the fluctuating potential cal-
culated using the variational method φvar, and the physi-
cal fluctuating potential φ, found to O(δ2

i Te/e) using the
correct polarization density

∫
d3v fip. Thus, even though

having some form of conservation of momentum may be
arguably better than not having any, as in the formu-
lation of Dubin et al [22], the variational approach has
not solved the problem of the long wavelengths electric
field. It is necessary to obtain the gyrokinetic equation
to painfully high orders when using quasineutrality, and
even variational approaches cannot escape that fact. In-
deed, using a variational formulation may only hide the
problem in an incorrect transport of momentum. On the

other hand, variational formulations may be a possible
brute force approach to find the long wavelength electric
field using quasineutrality in slab geometry.

Finally, we emphasize that any improvements to gy-
rokinetics obtained by working only in slab geometry are
not easy to translate to more complicated geometries.
We believe that the solution to this problem does not lie
in gyrokinetic formulations that split magnetic geometry
and fluctuations (for which they use the slab results), cal-
culate the gyrokinetic Lagrangian for each independently,
and add them as if the problem were linear. To obtain
the correct radial electric field from quasineutrality, the
gyrokinetic equation has to be derived to an order as high
as δ3

i (Vi/vi)fMivi/a. Cross terms that involve both mag-
netic geometry and fluctuations will most likely matter.
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V. TOROIDAL ANGULAR MOMENTUM
TESTS

In Ref. 21 and in sections III and IV we have
demonstrated with several examples that employing the
quasineutrality equation at long wavelengths leads to
problems in the conservation of momentum. These calcu-
lations are not meant to cover all possible cases exhaus-
tively, but to show the extreme sensitivity of the toroidal
rotation to small errors in the gyrokinetic formulation.

It is possible to distinguish several cases:

1. There are gyrokinetic formulations that do not con-
serve momentum, like the formulation by Dubin et
al [22], studied in Ref. 21, or the drift kinetic ap-
proach studied in section III. These approaches
introduce a non-physical source of momentum that
will spin the plasma to an incorrect toroidal rota-
tion profile.

2. Some gyrokinetic approaches conserve momen-
tum, that is, the toroidal velocity satisfies an
equation of the form ∂〈RniMVi · ζ̂〉ψ/∂t =
−(V ′)−1∂(V ′Π)/∂ψ, but the transport of momen-
tum Π will not be the physical quantity 〈Rζ̂· ↔πi

·∇ψ〉ψ. Here, there are two possibilities, namely

(a) the momentum transport Π is clearly different
from 〈Rζ̂· ↔πi ·∇ψ〉ψ, as in Eq. (22); or

(b) the transport of momentum Π is seemingly the
same as 〈Rζ̂· ↔πi ·∇ψ〉ψ, i.e., Π is given by the
integrals in Eq. (37) of Ref. 23 [or its simpli-
fied version in Eq. (11)] of some approximate
fi and φ; however, the transport of momen-
tum Π is non-physical because the approxi-
mate distribution function and potential are
not calculated to the required order. A good
example of this last case are the variational
approaches studied in section IV.

With these cases in mind, we propose three tests for full
f simulations that will help determine if they achieve the
correct conservation of momentum. Passing these tests
is a necessary, but not sufficient, condition to obtain the
correct transport of momentum.

The three tests follow the evolution of toroidal angu-
lar momentum in the volume contained between two flux
surfaces ψ1 and ψ2 separated by more than an ion gyro-
radius, (ψ2−ψ1)/aRBp À δi. The volume should not in-
clude regions of the simulation where extraneous effects
are used to damp numerical oscillations. According to
Eq. (8), the time derivative of the total toroidal angular
momentum in the volume must be equal to the toroidal
angular momentum incoming through the boundaries. If
the difference between these two terms grows secularly in
time, either there is a non-physical source of momentum
or the transport of momentum through the boundaries is
incorrect. The three tests differ on how to determine the
transport of momentum through the boundaries.

The first test is the easiest. It is more convenient for
particle codes in which the trajectories of particles are
known. Then, it is possible to count the particles that
cross the boundaries and the momentum they carry. The
momentum balance must be performed taking into ac-
count the finite gyroradius size, in particular the varia-
tion of fi along the gyromotion. Indeed, the ion gyroki-
netic distribution function is fi = fig + fip, where fip,
defined in Eq. (31), is the piece of the distribution func-
tion that contains the effect of the potential variations
on gyroradius scales. The correction fip is important be-
cause upon integration over velocity space it gives the
polarization density and the E×B flow.

The second test is more involved, but works for both
particle and continuum codes. It will also provide more
useful information. Instead of obtaining the transport of
toroidal angular momentum from the motion of the par-
ticles through the boundaries ψ1 and ψ2, we propose to
use the expression in Eq. (37) of Ref. 23 [or its simplified
version in Eq. (11)]. The integrals are to be taken using
the numerical solutions for fi and φ.

Importantly, some variational formulations might pass
these first two tests and yet predict the wrong trans-
port of toroidal angular momentum because they do not
obtain fi and φ to high enough order (see the end of sec-
tion IV). In these cases, another possible test (although
probably unfeasible) is to extend the formulation to the
next order in δi. The new, seemingly negligible contribu-
tions would have an O(1) effect on the long wavelength
rotation profile. Since going to higher order is rarely
possible, for these cases we propose comparing with ac-
curate δf simulations that employ Eq. (37) of Ref. 23 [or
its simplified version in Eq. (11)] to obtain the transport
of toroidal angular momentum; δf simulations are now
available in the high flow ordering [30], and are underway
for low flows [23]. In the third test, the time derivative of
the total angular momentum in the volume between ψ1

and ψ2 is compared to the difference between the trans-
port of momentum evaluated by δf simulations at each
of the two boundaries. This is probably the most robust
test. The comparison must be obviously performed in
regions of the plasma where the δf approach is reliable,
i.e., outside of transport barriers or pedestals.

To summarize, the accuracy required to recover the
correct transport of toroidal angular momentum from
quasineutrality is daunting. The gyrokinetic equation
must be obtained to order δ3

i (Vi/vi)fMivi/a, requiring up
to 5 digit accuracy in the high flow ordering, and 7 digits
for low flow. We have shown several cases in which the
analytical model is not accurate enough to determine the
correct rotation profile, demonstrating that even in the
simple cases of drift kinetics and slab geometry, the con-
servation of momentum is very sensitive to errors. The
errors may manifest themselves as non-physical sources
of momentum, or incorrect transport of momentum from
one flux surface to the next. Accordingly, we have pro-
posed three tests that will help decide if full f simulations
are giving the correct toroidal rotation. Notice that these
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tests are not only benchmarking the gyrokinetic analyti-
cal model, but they also check if the stringent numerical
resolution requirements are satisfied.
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APPENDIX A: DETAILS OF THE CALCULATION OF TRANSPORT OF TOROIDAL ANGULAR
MOMENTUM IN DRIFT KINETICS

In this Appendix, we calculate the terms M〈∫ d3v f iv||b̂·∇i(Iv||/B)〉ψ and m〈∫ d3v fev||b̂·∇e(Iv||/B)〉ψ in Eq. (20)
to order δ3

i Rpi/a. To do so, we will integrate by parts three times, and then use Eq. (12) to write ∇i · (Jif iv||b̂) and
∇e · (Jefev||b̂) as a function of the other terms in the equation.

We will do the calculation for the ions only. The electrons are equivalent. For M〈∫ d3v f iv||b̂ · ∇i(Iv||/B)〉ψ, the
first integration by parts is done employing d3v = 2πJidεidµ0,

M

〈∫
d3v f iv||b̂ · ∇i

(
Iv||
B

)〉

ψ

= −
〈

MI

B

∫
2πdεidµ0 v||∇i ·

(
Jif iv||b̂

)〉

ψ

=
〈

MI

B

∫
2πdεidµ0 v||

[
∂

∂t
(Jif i) +∇i ·

(
Jif ivdi

)
+

∂

∂εi
(Jif iε̇i)− JiCi{f i}

]〉

ψ

, (A1)

where we have used Eq. (12) to obtain the second equality. From this form, it is straightforward to obtain

M

〈∫
d3v f iv||b̂ · ∇i

(
Iv||
B

)〉

ψ

=
∂

∂t

〈
I

B
niMVi · b̂

〉

ψ

+
1
V ′

∂

∂ψ
V ′

〈
MI

B

∫
d3v f iv||vdi · ∇ψ

〉

ψ

−M

〈∫
d3v f ivdi · ∇i

(
Iv||
B

)〉

ψ

−
〈

MI

B

∫
d3v v||Ci{f i}

〉

ψ

. (A2)

Realizing that electrons have a very similar form, and using that
∫

d3v Ci{f i}Mv|| +
∫

d3v Ce{fe}mv|| = 0, we find
Eq. (21). To obtain the final expression in Eq. (21), we have neglected terms small by the mass ratio m/M , and we
have used the lowest order result RVi · ζ̂ ' (I/B)Vi · b̂.

Next, again by integration by parts and using Eq. (12), the term Π = 〈(MI/B)
∫

d3v f iv||vdi · ∇ψ〉ψ is obtained to
order δ3

i piR|∇ψ|. Using that vdi · ∇ψ = v||b̂ · ∇i(Iv||/Ωi) + c(∂φ/∂ζ), we find

Π = Mc

〈
I

B

∂φ

∂ζ

∫
d3v f iv||

〉

ψ

+
M2c

2Ze

〈∫
d3v f iv||b̂ · ∇i

(
I2v2

||
B2

)〉

ψ

. (A3)

Integrating 〈∫ d3v f iv||b̂ · ∇i(I2v2
||/B2)〉ψ by parts and using Eq. (12), we find

Π = Mc

〈
I

B

∂φ

∂ζ

∫
d3v f iv||

〉

ψ

+
M2c

2Ze

∂

∂t

〈
I2

B2

∫
d3v f iv

2
||

〉

ψ

+
M2c

2Ze

1
V ′

∂

∂ψ
V ′

〈
I2

B2

∫
d3v f iv

2
||vdi · ∇ψ

〉

ψ

−M2c

2Ze

〈∫
d3v f ivdi · ∇i

(
I2v2

||
B2

)〉

ψ

− M2c

2Ze

〈
I2

B2

∫
d3v v2

||Ci{f i}
〉

ψ

. (A4)

“Transport” or coarse-grain averaging this expression gives

Π = Mc

〈〈
I

B

∂φ

∂ζ

∫
d3v f iv||

〉

ψ

〉

T

+
Mc

2Ze

〈
I2

B2

〉

ψ

∂pi

∂t
+

M2c

2Ze

1
V ′

∂

∂ψ
V ′

〈〈
I2

B2

∫
d3v f iv

2
||vdi · ∇ψ

〉

ψ

〉

T



11

−M2c

2Ze

〈〈∫
d3v f ivdi · ∇i

(
I2v2

||
B2

)〉

ψ

〉

T

− M2c

2Ze

〈
I2

B2

∫
d3v v2

||
〈
Ci{f i}

〉
T

〉

ψ

. (A5)

Here we have used that only the time derivative of the total ion pressure is large enough at long time scales that
cannot be neglected. The fast time derivatives due to turbulence average to zero under the “transport” average.

To finish the calculation, the term 〈〈(I2/B2)
∫

d3v f iv
2
||vdi · ∇ψ〉ψ〉T must be found to order δ2

i niv
3
i R2|∇ψ|. Em-

ploying vdi · ∇ψ = v||b̂ · ∇i(Iv||/Ωi) + c(∂φ/∂ζ) gives
〈〈

I2

B2

∫
d3v f iv

2
||vdi · ∇ψ

〉

ψ

〉

T

= c

〈〈
I2

B2

∂φ

∂ζ

∫
d3v f iv

2
||

〉

ψ

〉

T

+
Mc

3Ze

〈〈∫
d3v f iv||b̂ · ∇

(
I3v3

||
B3

)〉

ψ

〉

T

. (A6)

Integrating by parts and using Eq. (12), this result reduces to
〈〈

I2

B2

∫
d3v f iv

2
||vdi · ∇ψ

〉

ψ

〉

T

= c

〈〈
I2

B2

∂φ

∂ζ

∫
d3v f iv

2
||

〉

ψ

〉

T

− Mc

3Ze

〈
I3

B3

∫
d3v v3

||〈Ci{f i}〉T
〉

ψ

+
Mc

3Ze

〈
∂

∂t

〈
I3

B3

∫
d3v f iv

3
||

〉

ψ

〉

T

+
Mc

3Ze

〈〈
I3

B3

∫
2πdεidµ0 v3

||∇i · (Jif ivdi)
〉

ψ

〉

T

. (A7)

The last two terms in this equation vanish due to the “transport” average. In the time derivative, only the secular
terms with ∂/∂t ∼ DgB/a2 ∼ δ2

i vi/a contribute. In addition, the v3
|| moment of the lowest order Maxwellian

vanishes, giving (Mc/3Ze)〈∂〈(I3/B3)
∫

d3v f iv
3
||〉ψ/∂t〉T ∼ δ4

i niv
3
i R2|∇ψ|, negligible compared to the terms of order

δ2
i niv

3
i R2|∇ψ|. The integral (Mc/3Ze)〈〈(I3/B3)

∫
2πdεidµ0 v3

||∇i · (Jif ivdi)〉ψ〉T vanishes as well. Here only the
term ∇ · (JifMivdi) ∼ δifMivi/a could give a relevant contribution to order δ2

i niv
3
i R2|∇ψ|. The long wavelength

contributions of rest of the terms, including the turbulent term −∇i · [Ji(f i − fMi)(c/B)(∇φ × b̂)] ∼ δ2
i JifMivi/a

[8, 23], will be negligible, thus vanishing under the “transport” average. Since the contribution of the Maxwellian
to (Mc/3Ze)〈〈(I3/B3)

∫
2πdεidµ0 v3

||∇i · (Jif ivdi)〉ψ〉T is zero because the Maxwellian is even in v||, the last term of
Eq. (A7) can also be neglected.

Taking into account the cancellations of the last two terms in Eq. (A7) and substituting Eq. (A7) into Eq. (A5)
gives Eq. (21).

APPENDIX B: CALCULATION OF (v||/Ωi)∇i × (v||b̂) · ∇i(Iv||/B)

The expression (v||/Ωi)∇i × (v||b̂) · ∇i(Iv||/B) can be written as (v||/Ωi)∇i · [v||b̂ × ∇i(Iv||/B)]. Using Eq. (4),
this expression becomes

v||
Ωi
∇i × (v||b̂) · ∇i

(
Iv||
B

)
=

v||
Ωi
∇i ·

[
Iv||
B
∇ζ ×∇i

(
Iv||
B

)]
+

v||
Ωi
∇i ·

[
v||
B

(∇ζ ×∇ψ)×∇i

(
Iv||
B

)]
. (B1)

Employing ∇i · [(Iv||/B)∇ζ ×∇i(Iv||/B)] = ∇i · [∇ζ ×∇i(I2v2
||/2B2)] = 0, we rewrite this expression as

v||
Ωi
∇i × (v||b̂) · ∇i

(
Iv||
B

)
=

v||
Ωi
∇i ·

[
v||
B
∇ψ∇ζ · ∇i

(
Iv||
B

)]
− v||

Ωi
∇i ·

[
v||
B
∇ζ∇ψ · ∇i

(
Iv||
B

)]

=
R2Iv2

||
B2Ωi

∇ ·
(∇ψ

R2

)
∇ζ · ∇iv|| −

v2
||

B2Ωi
(∇ψ · ∇I)∇ζ · ∇iv||. (B2)

Finally, employing that the magnetic field in Eq. (4) satisfies B · ∇ × B = I∇ · (∇ψ/R2) − ∇I · ∇ψ/R2, we find
Eq. (25), where we have used that R2∇ζ · ∇iv|| = −(Ze/Mv||)(∂φ/∂ζ).
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