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1. Introduction

Experimental observations have shown that tokamak plasmas rotate spontaneously
without momentum input [1]. This intrinsic rotation has been the object of recent
work [1, 2] because of its relevance for ITER [3], where the projected momentum input
from neutral beams is small, and the rotation is expected to be mostly intrinsic.

The origin of the intrinsic rotation is still unclear. There has been some
theoretical work in turbulent transport of momentum using gyrokinetic simulations
[4,5,6,7,8,9, 10, 11, 12], and two main mechanisms have been proposed as candidates
to explain intrinsic rotation. On the one hand, the momentum pinch due to the Coriolis
drift [4] has been argued to transport momentum generated in the edge. On the other
hand, it has also been argued that up-down asymmetry generates intrinsic rotation
[7, 8]. However, neither of these explanations are able to account for all experimental
observations. The up-down asymmetry is only large in the edge, generating rotation in
that region that then needs to be transported inwards by the Coriolis pinch. Thus,
intrinsic rotation in the core could only be explained by the pinch. The pinch of
momentum is not sufficient because it does not allow the toroidal rotation to change
sign in the core as is observed experimentally [13].

In this article we present a new model implementable in 0 f flux tube simulations
[14, 15, 16, 17]. This model is based on the low flow ordering of [18], and self-consistently
includes higher order contributions. As a result, new drive terms for the intrinsic
rotation appear that depend on the gradients of the background profiles of density
and temperature and on the heating mechanisms.

We present two new effects, related to the ion-electron collisions and the heating,
that were not treated in the original work [18]. In addition, we recast the results from
[18] in a form similar to the equations in the high flow ordering [19, 20]. These are the
equations that have been implemented in most gyrokinetic codes that are employed
to study momentum transport. For this reason, the new form of the equations is
useful to identify the differences with previous models. Finally, we discuss how the new
contributions drive intrinsic rotation and we show that the intrinsic rotation resulting
from these new processes depends on density and temperature gradients and on the
heating mechanisms.

In the remainder of this article we present the model, developed originally in [18],
in a form more suitable for § f flux tube simulation. In Section 2 we give the complete
model, and in Section 3 we discuss its implications for intrinsic rotation. Appendix A
contains the details of the transformation from the equations in [18] to the formulation
in this article. In Appendix B we discuss the treatment of the ion-electron collision
operator.
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2. Transport of toroidal angular momentum

The derivation of the transport of toroidal angular momentum in the low flow regime,
including both turbulence and neoclassical effects, is described in detail in [18]. To
simplify the derivation, the extra expansion parameter B,/B < 1 was employed, with
B the total magnetic field and B, its poloidal component. In this section, we review the
results of reference [18], recast them in a more convenient form and add a collisional term
and a term that depends on the heating mechanisms that were not treated previously.

We assume that the turbulence is electrostatic and that the magnetic field is
axisymmetric, i.e., B = IV( + V( x V4, where 9 is the poloidal magnetic flux, ¢
is the toroidal angle, and we use a poloidal angle 6 as our third spatial coordinate.
With an axisymmetric magnetic field, in steady state and in the absence of momentum

input, the equation that determines the rotation profile is ((R& -P; -V)y)r = 0, where

lgi: [ &3 f;Mv'v’ is the ion stress tensor, M is the ion mass, R is the major radius, ¢
is the unit vector in the toroidal direction, (...), = (V') [dOd((...)/(B - V) is the
flux surface average, V' = dV/dy = [dfd¢ (B - VH)~! is the derivative of the volume
with respect to ¢, and (...)r is the coarse grain or “transport” average over the time
and length scales of the turbulence, much shorter than the transport time scale d; %a /vy
and the minor radius a. Here §; = p;/a < 1 is the ion gyroradius p; over the minor
radius a, and vy; is the ion thermal speed. Note that we use the prime in v’ to indicate
that the velocity is measured in the laboratory frame. Later we will find the equations
in a convenient rotating frame where the velocity is v = v’ — RQC& .

In reference [18] we derived a method to calculate ((R¢- 1‘5’1 Vb)) to order
(B/B,)d83p;R|V|, with p; the ion pressure. We present the method again in different
form to make it easier to compare with previous work in the high flow regime [19, 20].
In addition, instead of using the simplified ion Fokker-Planck equation of reference [18],

afz ’ Ze 1 ’
B vA AN - Bl - V.,f=C.(Ff 1
S Vit o (<Vo 4 VX B) Vs = Cul ) 0

where C}; is the ion-ion collision operator, ¢ is the electrostatic potential, Ze is the ion

charge, and e and c are the electron charge magnitude and the speed of light, in this
article we use the more complete equation

of, Z 1, .
aj; +Vv -V + ﬁe (—ng + VX B) Vo fi = Ci{ fi} + Cie{ fi, [} + S™, (2)

where Ci{f;, fo} is the ion-electron collision operator and S™ ~ 62 fvy/a is a source

that models the different heating mechanisms. Applying the procedure in reference [18]

to equation (2) we find two additional terms in the expression for ((R¢- EZ V) )T
that were not considered in [18].

In subsection 2.1 we explain how we split the distribution function and the
electrostatic potential into different pieces, and we present the equations to self-

consistently obtain them. In subsection 2.2 we evaluate ((R& - P; -V),)r employing
the pieces of the distribution function and the potential obtained in subsection 2.1.
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Table 1. Pieces of the potential.

Potential Size Length scales Time scales
Po(1, 1) Te/e ka ~1 9/0t ~ §7vy; fa
&1°(¥,6,t) (B/Bp)dile/e ka ~1 D)0t ~ §2v/a
2(,0,t)  (B/Bp)?6T. /e ka~1 d/0t ~ §2v/a
#P(r,t) P ~ §,T. /e kipi~1 /0t ~ vy /a

O ~ (B/Bp)6iT. /e kja~1

Before presenting all the results, we emphasize that our results and order of magnitude
estimates are valid for B,/B < 1 and for collisionality in the range 02 < qRv;; Jug <1
[18], where v;; is the ion-ion collision frequency and ¢ is the safety factor.

2.1. Distribution function and electrostatic potential

The electrostatic potential is composed to the order of interest by the pieces in Table 1
[18]. The axisymmetric long wavelength pieces ¢g(1,t), ¢1°(, 0,t) and ¢5¢(v),0,t) are
the zeroth, first and second order equilibrium pieces of the potential. The lowest order
component ¢q is a flux surface function. The corrections ¢7¢ and ¢3¢ give the electric
field parallel to the flux surface, established to force quasineutrality at long wavelengths
(the superscript "¢ refers to neoclassical because these are long wavelength contributions;
however, we will show that turbulence can affect the final value of ¢7¢ and ¢5¢). We need

>

not calculate ¢3¢ because it will not appear in the final expression for ((R¢- Py -Vb)y ).
The piece ¢*P(r, t) is turbulent and includes both axisymmetric components (zonal flow)
and non-axisymmetric fluctuations. It is small in §; but it has strong perpendicular
gradients, i.e., k1p; ~ 1. Its parallel gradient is small, i.e., kja ~ 1. The function
¢ is calculated to order (B/B,)6T./e, i.e., ¢® = ¢ + ¢ with ¢t ~ §,T./e and
oL ~ (B/B,)6T./e. It is convenient to keep both pieces together as ¢™ as we do
hereafter.

To write the distribution function it will be useful to consider the reference frame
that rotates with toroidal angular velocity Q¢ = —c 0y — (¢/Zen;)0yp;, where n;(1,t)
and p;(1,t) are the lowest order ion density and pressure. In this new reference frame it
is easier to compare with previous formulations [19, 20]. To shorten the presentation, we
perform the change of reference frame directly in the gyrokinetic variables. It is possible
to do so easily because we are expanding in the parameter B/B,, > 1. We first present
the gyrokinetic variables that we obtained for the laboratory frame and we argue later
how they must be modified to give the gyrokinetic variables in the rotating frame. In
[18] we used as gyrokinetic variables the gyrocenter position R =r+R;+ Ry +.. ., the
gyrokinetic kinetic energy E = Ey+ E1+ Ey+. . ., the magnetic moment p = pg+p1+. ..
and the gyrokinetic gyrophase ¢ = @g+@1+. . ., where Ey = (v')?/2 is the particle kinetic
energy in the laboratory frame, pg = (v )?/2B is the lowest order magnetic moment,
@o = arctan(v’ - &/v’ - &) is the lowest order gyrophase, Ry = Q7'v/ x b ~ &L is
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the first order correction to the gyrocenter position, By = Ze(¢p — (@) /M ~ &;v2 is the
first order correction to the gyrokinetic kinetic energy, and the corrections Ry ~ 2L,
Ey ~ 6202, g ~ d;v% /B and ¢, ~ §; are defined in [21]. Here Q; = ZeB/Mec is the ion
gyrofrequency, é;(r) and é,(r) are two orthonormal vectors such that &, x &, = b, and
(...)=@m) §do(...)|rEu is the gyroaverage holding R, E, p and ¢ fixed. When
the ion distribution function is written as a function of these gyrokinetic variables, it
does not depend on the gyrophase ¢ up to order (B,/B)dZ(qRvi; /vi;) fari [18, 21], where
fari is the lowest order distribution function that is a Maxwellian. For the magnetic
moment and the gyrophase, only the first order corrections p; and ¢; are needed because
the lowest order distribution function fj;; does not depend on p or ¢. Moreover, since
in [18] we expand on B/B, > 1, the distribution function need only be known to
order (B/B,)d2 fai. Consequently, the piece of the distribution function that depends
on the gyrophase, of order (B,/B)d?(qRvi;/vi) fai, is negligible, and the gyrokinetic
variables R, F, u and ¢ only need to be obtained to order (B/B,)é?L, (B/B,)d?v,
(B/B,)d;v%/B and (B/B,)d;, respectively, implying that the corrections Rg, Es, p11 and
1 are not needed for the final result. To change to the new reference frame, where
the velocity is v = v/ — RQC&' , the distribution function that is independent of ¢ has
to be written as a function of the new gyrokinetic variables R, ¢ and p. Note that the
gyrocenter position and the magnetic moment are the same in both reference frames
to the order of interest. The reason is that the toroidal rotation has two components,
one parallel to the magnetic field, RQ:C - b = IQ:/B ~ (B/B,)d;vy;, and the other
perpendicular, RQC\& —bb-¢ | = |VY[Q¢/B ~ 6;vy;, and the parallel velocity is larger
by B/B, > 1. Since in [18] the gyrokinetic variables R and u are to be obtained to
order (B/B,)6?L and (B/B,)dv%/B, and in R and u only the perpendicular velocity
v =v, + RQC(& — bb - &) enters, we can safely neglect the corrections due to the
change of reference frame because they are of order 62L and &;vZ /B, respectively. In
contrast, the kinetic energy E as defined in [18] cannot be used in the rotating frame
because it includes the parallel velocity v|’ =+ IQ:/B. We use a new kinetic energy
variable € that is related to the old kinetic energy variable by ¢ = E — IQ¢u’/B, where
u' = +£4/2(F — pB) is the gyrokinetic parallel velocity in the laboratory frame. It is

easy to check that u = i\/Q[e — uB + (I/B)*QZ/2] is equal to u = u' — Q¢ /B and it is
the gyrokinetic parallel velocity in the rotating frame. With this relation, we find that

another way to interpret the new energy variable
u? R2Qg

- B—-—=¢ 3
e=5tu 5 (3)

is realizing that it is the kinetic energy in the rotating frame plus the potential due to
the centrifugal force. To write expression (3) we have used that /B ~ R for B,/B < 1.
In Appendix A we rewrite the results in [18] using the new gyrokinetic kinetic energy e.

The different pieces of the ion distribution function are given in Table 2 [18]. In
this table, m is the electron mass. The functions fy;, HE, HX, H® HiS and HY are
axisymmetric long wavelength contributions. The Maxwellian f/;(¥(R),¢) is uniform
in a flux surface. The first and second order corrections H}° and H}¥ are neoclassical



Sources of intrinsic rotation in the low flow ordering 6

Table 2. Pieces of the ion distribution function.

Distribution function Size Length scales Time scales
fui(W(R),g,1) S ka ~ 1 /0t ~ 6%vy;/a
HE(O(R),0(R). 2, p1,t)  (B/B,)3ifr ka ~ 1 0/t ~ 82visa
Hy(W(R),0(R),e,1,t)  (B/By)*6; s ka ~ 1 9/t ~ 62y Ja
HRW(R),0(R),e,p,t) (B/By)(vi/qRvis)0} fars ka~ 1 00t ~ 5}vii/a
H5(¥(R),0(R), e, p,t)  (B/By)din/m/M fur ka ~ 1 9/t ~ 6%vy/a
HY()(R),0(R), e, p1,t)  (B/By)(vii/qRvi)S™a/vy  ka ~ 1 /0t ~ 6%vy;/a
(R, e, p,t) 2~ 0 fari kip;~1 /0t ~ v /a
2 ~ (B/By)d7 furi kyja ~ 1

Table 3. Pieces of the electron distribution function.

Distribution function Size Length scales Time scales
fue(p(R), e, t) fue ka ~ 1 9/t ~ 62vy;/a
HX((R),0(R),e,pu,t)  (B/Bp)difare ka ~ 1 d/0t ~ 62y /a
PR, e, ) f& ~ 8 fare kipi~1 /0t ~ vy /a

~ (B/Bp)éZ frme  kja~1

corrections, and they are not the functions F}° and F}¥° in [18] because we are now
working in the rotating frame. The function H is an axisymmetric piece of the
distribution function that originates from collisions acting on the ions transported by
turbulent fluctuations into a given flux surface [18]. The functions H and H that were
not included in [18] have their origin in the ion-electron collisions and in the heating
mechanism. The function f{* is the turbulent contribution. It will be determined
self-consistently up to order (B/B,)o? fari, i.e., fi* = fiP + fi with fiP ~ &;far and
[~ (B/B,)d2 fui- It is convenient to combine both pieces of the turbulent distribution
function into one function f.

The electron distribution function is very similar to the ion distribution function.
It will have its own gyrokinetic variables that can be easily deduced from the ion
counterparts. To the order of interest in this calculation, the electron distribution
function is determined by the pieces in Table 3. The long wavelength, axisymmetric
pieces fire and H[Y are the lowest order Maxwellian and the first order neoclassical
correction. The second order long wavelength neoclassical correction is not needed
for transport of momentum because of the small electron mass. The piece f' is the
short wavelength, turbulent component that will be self-consistently calculated to order
(B/B,)3 fu.

We now proceed to describe how to find the different pieces of the distribution
function and the potential. We use the equations in [18] but we change to the new
gyrokinetic kinetic energy e. The details of this transformation are contained in
Appendix A.
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2.1.1. First order neoclassical distribution function and potential. The equation for
H is

. Zepi© Me 5\ Tufy; OT; )
b | e 2, 3 - OOy = 1

where u = i\/Q(s — uB + R2QZ/2) ~ £1/2(e — puB) is the gyrokinetic parallel velocity

and C’Z-(f ) is the linearized ion-ion collision operator. The correction H* gives the parallel
component of the velocity [22, 23] W2 = b [d® Hiv = (keIB/Ze(B2),)d,T;,
where k is a constant that depends on the collisionality and the magnetic geometry.
Interestingly, the density perturbation due to HJ® is small for qRy;/v; < 1, ie.,
[ v HY ~ (B/B,)(qRvii/vii)dini < (B/B,)din; [18]. This will be important when
determining ¢}¢ below.

The equation for H is similar to (4) and it is given by [22, 23]

- epre 1 Jdp; 1 0p. Me 5\ 10T, Tufue
b . an i _ . - T
u VR{ el Te fMe ZTI,ZTe a?l) pe 677[) Te 2 Te aw Qe
—CO ) - OO H) = P )

where Q. = eB/mc is the electron gyrofrequency, E# is the electric field driven by
the transformer, C\? is the linearized electron-electron collision operator and Ce(f) is
the linearized electron-ion collision operator. The lowest order solution for H}Y is the
Maxwell-Boltzmann response (e¢}¢/T.) fare ~ (B/B,)difae. The rest of the terms are
small because they are of order (B/B,)0¢fre ~ (B/Bp)\/m/M6; fari < (B/By)di fare,
where §, = p./a is the ratio between the electron gyroradius p, and the minor radius a.
Finally the poloidal variation of the potential is determined by quasineutrality,

Z / & H™ + 7 / dio HD = 6?1 Ne, (6)
giving ei°/T, ~ (B/B,)(qRvii/vy)d;. We have included the density [d*v HY ~
(B/B,)(vii/qRv;i)d2n; because it becomes important for qRv; /vy < (f2/ fari)\/a/pi <
L with f{*/ far ~ pi/a [18].

2.1.2. Turbulent distribution function and potential. The turbulent piece of the ion

distribution function is obtained using the gyrokinetic equation

D ft
Dt

+ (ub+vas vo £ Vi) - Vaf = (08 {)) - (0 {nh i)

1 On; Me 3\ 10T, MIudf)

th i ! ; N N
= — . - = - o ‘ H
_ Zefumi Ze OH}F

T (b +var +vo ) - Va(e™) + T (ub+var) - V(o). (7)

where D/Dt = 0y + RQC& - VR is the time derivative in the rotating frame, u =
i\/Q [e — uB + R?QZ/2] ~ £/2(e — uB) is the parallel velocity in the rotating frame,
vir = (/)b x VrB + (u2/)b x (b - Vgb) are the VB and curvature drifts,
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ve = (2u€2 /)b x [(VR x ) x b] is the Coriolis drift, vi? = —(¢/B)Vgr(¢™) x b is the
turbulent E x B drift, C{”{h*} is the linearized ion-ion collision operator, C\” {tP_ ht?
is the linearized ion-electron collision operator, and (...) = (27)™' §dp (...)|rEput 1S
the gyroaverage holding R, E, ;1 and ¢ fixed. The ion-electron collision operator can be
approximated by

Ot by MeMVei(Te = T) (Mv* \ eg®™
Cie {hz 7he } — pzM 11@ 3 Te sz

e et Te 1
nninj\z V- (Mvvhﬁb + Vhﬁb) — —Z(FZ'ZD — nemue; W) - v fari, (8)
where v = (4v271/3) Z2e*n; In A/m'/?T? /2 is the electron-ion collision frequency, In A
is Coulomb’s logarithm, n,W" = [ d3v hiPv is the turbulent ion flow, and

2w Z%e*n; In A

F» = nomy WP —
m

/ d*ve Vi, Vo, Ve - Vb (9)

is the friction force on the electrons due to collisions with ions. The functions that enter
in the collision operators are

Ze(¢™ — (o)) Mfaio | OHT, | 1 0HY)
htb = ftb - - o 10
i ig + M T, * deg "B Ao e
and
1 A .
he = fig — = (vxb)-V 2§+%(be)'v¢tb- (11)

Qe BT,
Here the subscript 4 in fi = f{*(Ry,v?/2,v1/2B,t) indicates that we have replaced
the variables R, ¢ and g by R, = r + Q'v x b, v?/2 and v? /2B; similarly,
the subscript o in fuio = fui(¥(r),v?/2,%), fareo = fue(d(r),v?/2,1), Hio =
HIE (6(r), 0(), 022,03 (2B,0), HI, = HI(0(r),0(0), 0%/2,03 2B,1) and fif —
[ (r,v?/2,v% /2B, t) indicates that we have replaced the variables R, € and u by r,
v?/2 and v? /2B.

The equation for electrons is equivalent to the one for the ions, giving

Die : 1 On,
(v ¥E) St (00 () — (0 (1)) = v v [ L2
Me § iaTe ef]\/[e > ' b

+ < T. — 2) T. aw}fMe‘i‘ T (ub+VM> Vr(¢™), (12)

where C) is the linearized electron-electron collision operator and C’éf) is the linearized
electron-ion collision operator. If we were to neglect the effect of the trapped
electrons, the solution to this equation would simply be the adiabatic response f ~
(e6™) /T2 fare

Finally, the electrostatic potential ¢** is obtained from the quasineutrality equation

VA th tb M ; aHan 1 aHch
Z/dgv e(@™ — (™) [ M fuio n o 1 9Mito
M T; 860 B a,u()

—i—Z/d% Z-tgb:/d% . (13)
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2.1.3. Second order, long wavelength distribution function. The long wavelength pieces
HE, H® HS and HY are given by

ub - VgHS — CO{HS} = 8 — </d3v80‘

2Me Me 3 fori
1 3 SO _ 2 i 14
+<3Ti N“S(ﬂ 2)>M’ (14)

where o = nc, tb, ie, ht, and

nc ]\/[I’uf]\/[Z 894 C ne ~ M€ sz aﬂ
U= TR oy M VRY (vo = 5 Vol xb) - Vro T 2) T o
0 i nc Ze i N nc nc
v VRHS + MQ@?/;b Ve HI — TfM (ub.qusQ +vM.vR¢1)
Ze 1 apz 8an (nf)
= b - nc it 2 X HRe frne . 1
+ M (u VR¢ eni aw M VRw) 5 + <CM { il il >7 ( 5)
Ze |u| 0
St — _ |ul thtb Ze|uj o < tb( b ) th > (16
B VR " |<f B ) + M B o \Ju] fi7 (ub+var) - Vr(6™) . ; (16)
ie NeMVe; T nc nc U nc
S = i V, - Mvaﬂ +vVvH] — ZZ(F — NeMVe; Wi€) - b fasi, (17)
where n,W}¢ = b [ d*v Hfv)| is the axisymmetric long wavelength ion flow and
2 Z%*n; In A
F = nomue W — % / A0,V V00 - Vo H (18)

is the axisymmetric long wavelength friction force on the electrons due to collisions with
ions; and S" is the source in the kinetic equation that mimics the heating mechanism.
For radiofrequency heating, S™ can be obtained from the quasilinear models that are
widely used. It is also possible to use model sources. For example, in [24, 25] simplified
sources were employed to study for the first time the effect of radiofrequency heating
on transport of momentum.

2.2. Calculation of the momentum transport

We obtain an equation for ((R¢- 52 -Vi))y)r similar to equation (39) of [18] by
employing the same procedure that was used in that reference, but starting from the
more complete Fokker-Planck equation (2). The final result is as in equation (39) of
[18] plus the new terms

_]2”ZQGC<</d3v’ Ciel fitR*(V' - {)? +/d3v'8ht(r,v’)R2(V’.&)2>w>T_ (19)

Adding these new terms to expression (39) from [18] and using that for B/B, > 1,
Rv - ¢ ~ Iv/B, we find

P Mc(R?),, 9p;
((RC-P; -Vp)y)r =TI, + TI57 + I1 +H“C+H”1+Hw+nht+$ai’

(20)
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Table 4. Contributions to transport of momentum.
II  Size [(B/B,)d}p; RV Dependences

Hﬂjl (Bp/B)Aud(Sl_l for Aud Z (B/Bp)él 6¢Q<, Qc, Auda a¢ﬂ, &me, awTe, aiT;
1 for Aya<(B/By)d;

Hgb 1 a¢ﬂ, awne, 6¢Te, aiT;, %ne, %Te

Hricl Aud(qRVm/Utz) fOI' Aud 2 (B/Bp)éz anQ Auda 81/1111'7 awnea aiT‘z
(B/By)(qRvii/vii) for Aya < (B/By)d;

HSC (B/Bp)(qRvii/vs) Oy Ty, Oyne, 05T,
Hlfl (Bp/B)(QRV”/Um>5;2\/m/M T, — 1T,
Iy (qRvii/ve)d; '/m/M OyT;, Opne, 0T, EA
I §72(S™a/vi far) Heating
with
~ IM
It = — ( { £(ve® x b)- w/d% b I MRS, , (21)
B 9 B o/

2 2

M?c 1 0
b _ v’ VP v 3 b I
HB__QZeV’aw << (Vo x b) ¢/d”:9 B2>>
T/ %

cl » th 5 My M?c 3, (@) g rrtb I%ﬁ
+<<Bb Vo dvfig B o/ 9 7e d’vCj, {Hi2, B2 wa (22)

ne M?c 0 ¢ rrne Iof
% = _% </d3 C( {H 0T 120 BQH ) (23)
P
nc M2C TLZ nc nc ]2Uﬁ
1_Io :_QZe </d3 ( {HﬂO?Hzl ?
v
M3z 1 9 PO £V
T 67202 W%V/ </d3” Cz'(z'){Hz‘l, _Bgu ) (24)
P
e, — neT;ZVei <R2 (1 + %)> (T; —T,), (25)
e v
e M2C 3 (5 ze 2 DeMCle; [2 3 nc ﬁ
(A e w
and
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Recall that the subscript , indicates that R, e and p have been replaced by R,, v?/2
and v? /2B, and the subscript o that they have been replaced by r, v?/2 and v? /2B. In
Table 4 we summarize the size of all these contributions compared to the reference size
(B/B,)8p;R|V|, and we write what they depend on. To obtain these dependences,
we use equations (4), (5), (6), (7), (12), (13) and (14). Most of the size estimates are
taken from [18], except for I1° , TI¥ and " that are trivially found from the results
here. We use A,y to denote a measure of the flux surface up-down asymmetry. It ranges
from zero for perfect up-down symmetry to one for extreme asymmetry. Notice that
for extreme up-down asymmetry, IT**, and 11" clearly dominate. The contribution I1%,
is formally very large for qRv;; /v, ~ 1, but since the ion energy conservation equation
requires that (T; — T,)/T; ~ (B/B,)(vi/qRv;;)02+/M/m, it will always be comparable
to (B/B,)0%piRI V.

3. Discussion

We finish by showing how this new formalism gives a plausible model for intrinsic
rotation. Until now, models have only considered the contribution I1*;, with f* and
#'* obtained by employing equations (7) and (13) without the terms that contain HZAS.
This is acceptable for R} ~ v;; or high up-down asymmetry A,q ~ 1. In this limit,
%, (0yQc, Q) ~ —vP0,Qr — T'™Qe + I, To obtain this last expression we have
linearized around 0yl = 0 and Q¢ = 0 for RQ¢/v,; < 1. Here v is the turbulent
diffusivity, T'*" is the turbulent pinch of momentum and TI'*, ~ A, ;62p; R|V| is the
value of TI*", at Q¢ = 0 and 9, = 0, and is zero for perfect up-down asymmetry when
equations (7) and (13) are solved without the terms that contain HJ [26]. Notice then
that imposing ((R¢- EZ V) ~ P = —1*9,Q, — IO, + IT'h, = 0 gives intrinsic
rotation only for up-down asymmetry or if momentum is pinched into the core from the
edge.

The complete model described in this article includes contributions that have
not been considered before. On the one hand, the gyrokinetic equations (7) and
(13) have new terms with H}°, giving II'" ~ —u*9,Q, — I'*Qe + I + I,
where II', | ~ (B/B,)d¢p;R|V1| is a new contribution due to the new terms in the
gyrokinetic equation. On the other hand, there are the new terms I1¢, TIp¢, T1°¢,, TI¥¢
and II". As we did for II'", we can linearize 11" (94Q) around 940 = 0 to find
I ~ —v"0yQe + MG + 11", where ITNG ~ Au(B/B,)(qRvii/v)0;piR|Vi| and
1" o ~ (B/By)*(qRvii/ve:)0}p: R|V1p|. Combining all these results and imposing that

((RC- 1?’2 -VQb) )t = 0, we obtain

Hlnt P’ Ftb
Qe =-— @/) — exp A" ———
1[] I/tb _'_ v w w/ 1/} I/tb _'_ v w:w//
Ftb
+QC |'¢:wa eXp ¢ tb nc 9 (28)
o v +v -




Sources of intrinsic rotation in the low flow ordering 12

where ), is the poloidal flux at the edge, Q¢|y—y, is the rotation velocity in the edge
and I = TI, + I o + TP + IL3G 4 11 o + TI§° + I, + IIf + II". Notice that
this equation gives a rotation profile that depends on IT* that in turn depends on the
gradient of temperature and density, the geometry and the heating mechanism. The
typical size of the rotation is Q¢ ~ (B/B,)d;v;/ R for Ayq < (B/B,)d; and Q¢ ~ Ayquy /R
for Ay > (B/B,)d;.

This new model for intrinsic rotation has been constructed such that the pinch
and the up-down symmetry drive, discovered in the high flow ordering, are naturally
included. By transforming to the frame rotating with ¢ we have made this property
explicit.

Acknowledgments

Work supported in part by the post-doctoral fellowship programme of the UK EPSRC,
by the Junior Research Fellowship programme of Christ Church at University of Oxford,
by the U.S. Department of Energy Grant No. DE-FG02-91ER-54109 at the Plasma
Science and Fusion Center of the Massachusetts Institute of Technology, by the Center
for Multiscale Plasma Dynamics of University of Maryland and by the Leverhulme
network for Magnetised Turbulence in Astrophysical and Fusion Plasmas.

Appendix A. Equation for the distribution function in the rotating frame

In this Appendix we derive equations (4), (7) and (14) for the different pieces of the
ion distribution function, equations (5) and (12) for the different pieces of the electron
distribution function, and equations (6) and (13) for the different pieces of the potential.
These equations are valid in the frame rotating with angular velocity €2, and we deduce
them from the results in [18], obtained in the laboratory frame.

In reference [18] we showed that in the limit B,/B < 1, and neglecting the ion-
electron collisions and the effect of the heating, the ion distribution function is given by
fi(R7 E> 22 t) = sz(¢(R)7 Ev t) + Fzric(d)(R)v Q(R)7 Ev K, t) + FZ%C(@/)(R), Q(R)7 Ev K, t) +
fPP(R, E, u,t), where the size of these different pieces is F5¢ ~ (B/B,)di fari, Fi ~
(B/By)*d; fari and fi* = fiY + fiz, with f ~ &ifari and f ~ (B/B,)o7 fari The
equations for the different pieces were obtained from the gyrokinetic equation

R nsir BYE = (cul ), (A1)
where the time derivative R is

R = ubR)+ V), — %vR«p) b (A.2)
and the time derivative E is

B = —Z5Wh(R) + viy] - Va(d). (A.3)
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Here, v = +4/2(F — uB) is the gyrokinetic parallel velocity in the laboratory frame,
and

;M W) oot
Vi = b x VRB + 5 b x (b- Vgb) (A.4)

are the VB and curvature drifts in the laboratory frame. Equations (19) and (20) of
[18] for F}¢ and equation (24) of [18] for F} are obtained from the long wavelength
axisymmetric contributions to (A.1) of order §;fuvy/a and (B/B,)07 farivii/a,
respectively. Equation (25) of [18] for FY is also a long wavelength axisymmetric
component of (A.1). In particular, it is the contribution of order 67 fis;v4/a that does
not become of order (B/B,)0? farivi; when the equation is orbit averaged. Equation (55)
of [18] for ff* is the sum of the short wavelength components of (A.1) of order &; farvs:/a
and (B/B,)d2 farivii/ a.

In this article, we extend equation (A.1) to account for ion-electron collisions and
the effect of the different heating mechanisms. For this reason, we use

ofi | ¢ 20fi oy Ir bt
81% +Rvaz+EaE - <sz{fz}>+<cze{fz}>+8 ) (A5)

where Ci.{f;} ~ \/m/Muv;;f; is the ion-electron collision operator, treated in detail in
Appendix B. Moreover, we want to write the equation in the rotating frame, that is, we

need to use the new gyrokinetic variable ¢ = E' — IQ:u'/B. Thus, the new gyrokinetic
equation is

ofi | ¢ 0
R Vndi+ 2 (G + (Gl f) + S (A6)
The time derivative of the new gyrokinetic variable ¢ is
. . Oe
= =R - E—. A.
5 Vre + 5F (A.7)

In R, using v’ = u + I /B, with u = i\/2(5 — uB + R2QZ/2), leads to

R = ub+ 155 4 vy + CVr(@) xb+0 B 5o (A.8)
= U B Vm Vo B R BIQ; i Uti | :
with
1y uie b ot

the VB and curvature drifts in the rotating frame, and v = (2uIQ</BQi)B x (b-Vgb)
the Coriolis drift. To obtain this expression for R we have used (u/)? = u? +2IQu/B +
O[(B/B,)*67vi] to write vy, = vy + vo + O[(B?/B2)6}vy]. The usual result for the
Coriolis drift ve = (2uQ¢/Q)b x [(VrRR x ¢) x b] can be recovered by realizing that
for B,/B<1,b~(, b-Vgb~—VgR/R and I/B ~ R, giving

QIUQC ~ ~ ~ QUQC
5o, P x (b Veb) = =0

b x [(VeR x ¢) x b]. (A.10)

Vo =
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In addition, using Ib/B = RC+bx Vip/B, ¢ = ¢+ +di+¢™. (¢g) = do((R), )+
O(07T./e), (#1°) = ¢i°(¥(R), 0(R), 1) + O[(B/B,)5}T. /] and (¢5°) = O[(B*/B;)d7vsil,

we can simplify equation (A.8) to

R = ub + RO + vy — . yTe) 81/1 VR¢?°><b
e lo™ x b+ O B 2 53 A1l
_E R<¢ > X + B2 iVt | - ( : )
The time derivative € in (A 7) can be written as
=F— ——R QR - — E. A12
e bR Vi -0k () - (A12)

To simplify this equation we use ¢ = ¢g + 1 + ¢3¢ + ¢, (do) = o
O(07T./e), (¢1) = di(W(R),0(R), 1) + O[(B/By)5; Te /e, {¢5°) = ¢5°((R), O(R), 1) +
Ol(B?*/B2)o;T./e], ' = u+ O[(B/Bp)divy] and

: Iu/ - Iu/ Tu c - I/
R Vg (?) =ub- Vg (F) +VM VR(B) _E(VR<¢> Xb)VR (F

Ze , Zel B
= va . VRQ/J + va . VR<¢> + 0 <§p(5?vi> . (A13)
With these results, we obtain
. Ze. -~ 1 8pl ne ne
€= —M[Ub(R) + v+ vel - (— Zen, 00 VRV + VRO + VR, + VR<¢tb>)
Tu 02, c tb - 6202
_§w< M_EVR<¢ ) xb) .VR¢+O( —= (A.14)

To obtain the result in (A.13), we have employed v/, - Vgt = u'b - Vg (It /);

_%(VR<¢> % b) - Vi (I“ ) _ Zd {Qﬁiﬁ X VB — %326 X Vg In (é)] - Vr(0)

B M B’
Zel | p - u)? R . B
~ MBu {ﬁib X VRB + (Qj b (b va)} -Vr(¢) + O ( p(svn)
Zel B
~ MBu /VM Vr{¢) + O < —20;v tz) ) (A.15)

where we have used I/B = R+O[(B}/B?)R] and b-Vgrb = —~VrR/R+0[(B,/B)R™"];
and

I ! T B2
v, VR(;) :%[VRX( W'b) — u'bb - vab] VR(;‘) —0(1325%) (A.16)

where we have used b - Vg x b ~ (B,/B)a™!, b - Vg(Iu//B) ~ Ruvy/qR ~
(B,/B)(R/a)vy; and Vg x (u'b) - Vr(It//B) = Vg - [u'b x Vr(Iu//B)] = Vg -
[(Iu'/B)Vr( X Vr(IW'/B)] + Vg - [(u'/B)(V( x Vi) x Vr(Iu'/B)] = Vi - {VR( X
Vr[I*(w/)?/2B°]} = O[(u'/R*B)VY - Ve (Iv'/B)] =
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With equations (A.6), (A.11) and (A.14), we can now easily obtain equations (4),
(7) and (14) for HA, f*, HE, HP Hi and HY. To obtain (4), we take the long
wavelength axisymmetric contribution to (A.6) to order §; fyrvy/a, giving
Ze anz ~ 1 apz
— b Vg — -V
M Oe (u ROT Zen; O Vi VRY

= CY{HX). (A.17)

)

ub - VR HE + var - Ve fari —

This equation differs from equations (19) and (20) of [18], and gives a function H}°
different from the function F}}° defined in [18]. The reason is that fy;(¢¥(R),e) + HYE
H}¥ must be equal to the function fu;(¢(R), E) + FA° + Fj° defined in [18] to the
order of interest, but how the terms of first and second order in §; are assigned to one
or the other piece differs depending on the frame. For this reason, we have changed
the name of the functions. The final result in (4) is obtained from (A.17) by using
var - VRY = ub - Vg (Tu/Q;) for u = i\/Q(s — B + R2Q2/2) ~ £1/2(¢ — uB).
Equation (7) is the sum of the short wavelength contributions to (A.6) of order

d; farivii/a and (B/B,)62vy;/a. The equation is almost straightforward if we apply the
same methodology as in [18]. Only two terms require some care. On the one hand,
the ion-electron collision operator that was not treated in [18] is now considered in
detail in Appendix B. On the other hand, in R there is a drift —(niMQZ-)_l&/,pi(f) X
V1) that is not included in (7). To study the effect of the perpendicular drift
—(niMQZ-)’l&ﬁpi(f) x V1)), it is better to consider the local approximation. In the
local approximation, the length scale of the turbulence is so small that the background
quantities can be represented by their local value and their local derivative, i.e., the
drift —(n; M%) '0ypi(b x Vi) is given by its value —(n; M) 8ypi(b X Vib)|y—y, at
the point 1 = 1)y around which we want to calculate the turbulent fluctuations and
the linear dependence — (1) — )8y [(ns M) "1 9yps (b X Vb)]|y—y,. The characteristic
scale of the turbulence is the ion gyroradius, giving ¢ — vy ~ p;RB, and —(¢ —
Vo) Oy [(n: M) 1 0ypi(B X V1b)]|yeyy ~ 02v4. Since we only need to keep terms up
to order (B/By)d} faivi/a, —(% — $0)du[(niMQ) " 0upi(b x V)]lymyo - VRS® ~
62 farivii /@ is negligible. Only the constant drift —(n; M€;) ™' 0pp;(bx Vib)|y—y, remains.
A constant drift does not change the character of the short wavelength structures and
can be safely ignored.

Equation (14) is found from the long wavelength axisymmetric components of
(A.6) to order &2furvii/a. Note that to this order we have the time derivative
Oifari [18]. Using O fars = [n;'0ms + (Me/T; — 3/2)T, ' 0,T;] fur; and realizing that
oni = Y ([ dPvS8*)y and (3/2)0(nT;) = > ([ d*vS*Me),, where the summations
are over a« = nc, tb, de, ht, we find the final form in (14). The equations for
HE and HY are obtained in the same way as equations (24) and (25) in [18], i.e.,
the equation for Hy is the axisymmetric long wavelength component of (A.6) of
order (B/B,)0? farivii/a, and the equation for H is the axisymmetric long wavelength
component of order 82 fy;vy;/a that when it is orbit averaged does not reduce to a piece
of order (B/B,)6%v;i fari- The equations for HiS and HJY where not considered in [18].
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The equation for H is the axisymmetric long wavelength contribution that includes
the ion-electron collision operator that is treated in detail in Appendix B. The equation
for HY is the axisymmetric long wavelength contribution that has the source S™.

The equations (5) and (12) for the electron distribution function in the rotating
frame are derived in the same way as the equations for the ion distribution function. The
only differences are that the Coriolis drift v and the term in (A.14) that is proportional
to 0y are small by y/m/M and hence negligible, and that we include the electric field
E“ driven by the transformer, leading to a modified time derivative for the energy
) € » 4., €. n 1 Op;
€= —ub-E" 4+ —[ub(R) + vu] - (—Zeni 0

Finally, the equations for the different pieces of the electrostatic potential (6) and

VrY + VRO + VR<¢tb>) : (A.18)

(13) are easily deduced from the results in [18] by realizing that moving to a rotating
reference frame does not modify the quasineutrality equation.

Appendix B. Ion-electron collisions

In this Appendix we discuss how we treat the ion-electron collision operator, given by
M
Cz'e{fia fe} = Vievv : |:/ dgve nggg : (fevvfi - Efivvefe)] ) (B1>

where v, = 2nZ%*InA/M? g = v — v, and V,V, = (¢ 1 —gg)/g®. Both the ion
velocity, v, and the electron velocity, v., are measured in the rotating frame.

We must write the ion-electron collision operator up to order /m/Muvd; .
For the wavelengths of interest, between the minor radius a and the ion gyroradius,
fi(R7 €5 s t) = sz(¢(R)7 = t) + Hzric(qu)(R% Q(R)7 € s t) + fz‘tb(R7 € s t) + ... and
f-Rye, m,t) = fue(¥(R),e,t) + HEX(W(R),0(R), e, u, t) + fP(R, e, u,t) + ..., where
H2E = (1) T.) fare+Ol(B/By)d. fare] and £ = (e¢™/T.) frre+O (6. fure). The electron
distribution function is then a Maxwell-Boltzmann response (e¢/T.) fare ~ i fare plus
a correction of order 0. fye ~ \/m/MJ;fre that is smaller by /m/M. Expanding
the ion distribution function around R, = r 4+ Q7'v x b, v?/2 and v? /2B, we
obtain f; = fuio + Hy + hi®, where hi® = [ — [Ze(¢™ — (¢))/T] farip. For the
electrons, since we are considering wavelengths larger than the electron gyroradius, it
is possible to expand around r, v?/2 and v} /2B, giving f. = fueo + Hif o+ hi®, where
hb = fib —Q-1(v x b) - VI + [me(v x b) - V¢ /BT.] fareo. Here, the subscript o
i fario, fareo, Hiyo, HiYo and  indicates that the variables R, € and p have been

th
ig

replaced by R, =1 + Q; 'v x b, v /2 and v? /2. Using these expressions for f; and f.,

replaced by r, v?/2 and v3 /2B. The subscript , in indicates that R, € and p are

and the relation

1
VoVg =V Ve —v -V, V,, Vi ve 4+ O (ﬁ—) : (B.2)
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we find that

M e nc tb
Cie{fiafe} = - 7,—?/ VU : [(1 + 6?1 ¢ ) sz /dgve fMevvevveve]

+7ievv : |:(VUHznlc + vvh:b) : /d3ve fMevvevveve]

' vv . fMi/d3ve vvevveve ' (vveHéllc + vvehzb):|

M e nc tb
- 7 vv : 1 + egb €¢ sz /d?’ve fMevvevvevveve * Ve
T, I T,
M~; i
- T%e Voo |(H2 + hP)v - / e fu1eV, Vo, Vo, Ve - ve]
+0 ( Vil fMZ> . (B.3)

Here we have used that V,, fae = —(mve/T:)fre and V%Vveve v, = 0. Using
VoV ViU - Ve = =V, Vo ve and [ d*ve fae Ve, Vi, ve = (2/3) T [ dPve fare/ve =
(2v/2/3\/T)ner/m /T, 1, we find

nc tb 2
Cze{fzafe} = fe mj\ZeZ (1 + 6?1 =+ B;é ) (T - 1) (]\ng - 3) sz

NeMV; T,
(5 elvv . _e

(VL HEE + Vb +v(HS + hﬁb)]

1
——[Fg + ng) — Neme; (Wi + W?)] -V fmi

[

+0 ( Vi fMZ> . (B.4)

Here vy = (4v27/3)Z2%e*n; In A/m*/?T? /2 is the electron-ion collision frequency, Fr¢
is the long wavelength axisymmetric friction force on electrons due to collisions with
ions, given in (18), F' is the short wavelength turbulent friction force, given in (9),
W€ =n; b J d*v Hfv)| is the long wavelength axisymmetric ion average velocity in
the rotating frame, and W = n;' [(d3v hiPv is the short wavelength turbulent ion
average velocity.
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