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Abstract 

 

There is interest in decreasing the thermal load to the cryogenic environment from the 

current leads.  The cryogenic load is challenging both at the design current, as well as at 

part load operation, when the current is reduced or zero.  In this paper we explore the 

combination of a Peltier elements and a novel concept of configurable current lead. The 

use of Peltier element reduces the cryogenic load by about 25%.  The configurable 

concept is based on the use of multiple heat exchangers that allows the optimization of 

current leads when operating at various currents. When used together, 

Peltier/configurable current lead allows the reduction of the cryogenic load by a factor of 

4 in low current/idle conditions. We also explore the transient operation of the current 

leads, as well as overload capacity.  
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I.  Introduction 

Current lead optimization has been of interest recently since the development of 

superconducting magnets, as the cryogenic load from the current lead constitutes, in 

many cryogenic applications, the dominant thermal load. Means of optimizing 

conduction cooled current leads have been developed by McFee [McFee], and 

reproduced by Chang and van Sciver [Chang] more recently. The optimization consists 

of, for a given current and cross sectional area, finding the length at which the thermal 

load at the cryogenic environment is minimal.  For lengths shorter than this, the thermal 

conduction increases faster than the Joule dissipation decreases, while for shorted leads, 

the reverse is true.  Thus, an optimal configuration occurs, which is found to be given by 

the quantity I l/A, where I is the current, l is the length of the current lead and A is the 

cross sectional area. 

 

While the quantity I l/A depends on the materials choice, it has been shown that the 

minimum is not sensitive to the choice of materials. This is due the Wiedemann–Franz 

relationship between thermal and electrical conductivity. However, there are choices for 

different materials due to other considerations, such as transients and response to 

overcurrents. We have found out that aluminum alloys offer an advantage over copper 

[Bromberg1]. However, aluminum has problem with making reliable joints. We have 

used copper in the calculations in this paper.  

 

It is interesting to notice that, for full current and steady state conditions, there is no 

advantage in adjusting the cross section of the current leads.  The parameter of interest in 

that case is I ∫dx / A(x), where the integral is along the current lead, x. 

 

More recently, interest in optimization of current leads has been renewed by advances in 

high temperature superconductors, and applications to energy grid, such as power 

transmission and distribution, and energy storage.  For military applications, were size 

and weight are important [Haught.O’Rourke, Fitzpatrick], HTS offers a near term 

alternative to heavy copper bus bar. However, the electrical power requirements and the 

size and weight of the refrigerators represents a substantial parasitic load on the systems, 
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and as a consequence there is interest in minimization of the cryogenic load at full and 

partial load.  

 

We have developed configurations to minimize the cryogenic requirements, which are 

important for power transmission applications (both for the minimization of the 

cryoplant, as well as to decrease the power requirements for the refrigerators).  Previous 

work has used a multiple temperature stages, resulting in thermal loads intercepted at 

higher temperatures, where Carnot efficiencies (and corresponding thermal efficiencies) 

of refrigerators are higher. [Bromberg] 

 

An interesting approach has been developed by Yamaguchi and his colleagues [Sato], 

where thermoelectric elements are used in series with the current lead.  In this paper we 

investigate the characteristics of high performance thermoelectric elements, using 

properties developed by Research Triangle Institute [RTI].   

 

In this report we discuss options for minimization of the heat leak under conditions where 

the current is lower than design value. Section II discussed the Peltier current lead 

coupled to a configurable current lead.   

 

II. Peltier current lead 

 

The configurable current lead concept being investigated is shown in Figure 1.  The 

model includes a TE (thermoelectric) element at the warm temperature side of the current 

lead, and two heat exchangers.  The upper heat exchanger (HX upper) near the warm end 

of the current lead is inactive under low current operation, in order to extend the effective 

length of the current lead and minimize the heat leak.  Under these condition the lower 

heat exchanger (HX lower) is active. When operating at full or high current, the upper 

heat exchanger is active. The effective length of the current lead can be adjusted in order 

to minimize the heat leak at variable currents. It should be noted that there is an HTS tape 

that shunts the current lead between the upper and lower heat exchangers.  
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The effective length of the current lead can be adjusted by directing the flow to a selected 

heat exchanger.  The process involved some valving at the cryogenic environment, but 

otherwise is simple. 

 

The magnitude of the cryogenic load savings has been described before without the use 

of the TE element. [Bromberg] In this section, the impact of the Peltier TE element as 

well as current lead length on the cryogenic heat leak will also be presented. 

 

 

 

Figure 1  Current lead with Peltier element and multiple heat exchangers (but single 

cryocoolant). 

 

It is interesting to investigate the possibility of the two-stage configurable concept with a 

Peltier element.  The advantage of the Peltier element is that it is passive, although it 

complicates the assembly of the unit. A potential concern is performance of the Peltier 

element under over loads conditions.  Both of these issues are addressed in this section. 

 

There are a variety of Peltier elements available commercially and semi-commercially.  

We have considered high performance TE materials developed by Research Triangle 

Institute [RTI], materials that are referred to as to nanomaterials.  However, temperature 

dependence of these materials has not been measured.  We have assumed that the 
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temperature dependence of the RTI material is similar to that of the material properties 

measured by Kawahara and Yamaguchi [Kawahara].  The properties of Yamaguchi 

materials are shown in Figure 2, while those of the RTI materials (with known properties 

at 300 K) are shown in Figure 3.  Alpha is the TE constant, while eta is the electrical 

resistivity.  The thermal conductivity is 2.5 W/K m, relatively independent of 

temperature.  

 

 

Figure 2.  Measured temperature dependence of the Seebeck coefficient (alpha) and 

electrical resistivity (eta) for the material tested by Yamaguchi group [Fujii] 

 

 

α (V/K) ρ (Ωm) 
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Figure 3.  Assumed temperature dependence of the Seebeck coefficient (alpha, V/K) and 

electrical resistivity (eta, Ohm-m) for the RTI material. 

 

The formulation that we have used in this report is similar to that by Jeong. [Jeong]  The 

heat flow along the TE element, and the current flowing through it, are given by 

 

 

 

where α, ρ and k are the Seebeck coefficient, electrical resistivity and thermal 

conductivity of the lead material, respectively. A denotes the cross-sectional area and V 

denotes the electro-chemical potential. α is zero for both the metal and HTS. The sign in 

front of α is (+) for a p-type TE and (-) for an n-type TE. 

 

III. Full current operation 

 

The temperature profile and the heat load (q*A) along an optimized current lead are 

shown in Figure 4 for the case of 100 A.  As in the case of conduction cooled current 

leads, the cryogenic load is minimum when the gradient at the high temperature side 

(downstream from the TE), is 0. This condition means that there is no heat flow across 

the TE-metal interface.  Note that the temperature has a large drop across the TE element.  

It is assumed that the cross sectional area of the TE element and the copper lead is A = 4 

mm2 and a length of 300 microns. The corresponding length of the optimized current 

lead, for 100 A, is 16.3 cm.  The minimum power, from room temperature to 55 K, is 

0.031 W/A.  

 

Conventional current leads (single stage) have a heat leak of 0.42 W/A (for same material 

properties; see [Bromberg]) when using copper. Thus, when using a TE element, the 

cryogenic load is decreased by ~ 25%.  
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Figure 4. Thermal load and temperature profile for an optimized TE/current lead. Note 

the large temperature drop along the TE element. 

 

IV. Partial current and overcurrents. 

 

Next we address the question of the performance of an optimized current lead when 

operating at different currents than the optimum. We have found out that the performance 

is strongly dependent on the boundary condition at the high temperature side.  There are 

two types of boundary conditions at the warm end of the current lead:  clamping the 

temperature or having an effective heat transfer coefficient.  In the case of water cooling 

of the warm end of the current lead, the boundary condition is most likely to be constant 

temperature, while for air cooling, and in particular natural convection cooling in air, the 

effective heat transfer boundary condition (q = h A ΔT) is more applicable.  The issue is 

relevant both when operating at higher currents and at lower current (at design current, 

the thermal gradient at the warm end of the copper lead is zero.  With a clamped 

temperature, the peak temperature along the current lead during overcurrent is 

substantially reduced.  Figure 5 shows the temperature profiles for currents different than 

the optimal current, for CLAMPED temperature at both sides (300 K at warm end, and 

55 K at the cold end). The TE element provides cooling for currents less than 135 A, 

above that, the TE element results in heating.  For 150 A, the resistive heating of the TE 
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exceeds the cooling, and the temperature at end of the TE element is about 400 K, or 

about 100 K warmer than the boundary condition. 

 

The peak temperature along the current lead occurs near the middle, as there is 

substantial heat being transferred to the warm end.  It is this temperature clamping that 

helps control the temperature and allows for the large overcurrent. 

 

Figure 5. Temperature along the short section of the current lead, for currents other than 

the optimized current; current in steps of 15 A. 

 

Assuming a maximum temperature along the current lead of 600 K, with good cooling at 

the high temperature side it is possible to drive about 150 A. That is, the overcurrent 

capability is about 1.5, for steady state conditions, as long as the cryogenic system can 

support the increased heating.  Figure 6 shows the heat leak as a function of the 

overcurrent, corresponding to the currents in Figure 5. 

 

150 A 

135 A 

120 A 

105 A 
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Figure 6.  Cryogenic heat load (to the 55 K environment), as a function of the current 

through a current lead optimized for 100 A.  At 100 A, the heat load is 3.1 W. 

 

The heat load at 150 A is about 5 times the heat load at 100 A. The heat load is 

substantially higher than just I2 (which would be a factor of about 2), because of the 

higher temperatures along the current lead results in higher Joule dissipation and the 

temperature gradients are higher, as the peak temperature occurs half way through the 

current lead. 

 

V. Configurable current lead 

 

When operating at lower currents, it is possible to place the HX at the location indicated 

in Figure 1 as HX lower, effectively increasing the length of the conformable current 

lead.  It is assumed that at the lower location of the HX, the lead is 0.6 m long.  The 

corresponding heat leak, when operating at 25 A, is 0.7 W, or about 1/3 that of the 

original 0.15 m current lead when operating at that same current (see Figure 6).   Figure 7 

shows the temperature profile along the current lead when operating over a range of 
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currents, from 10 A to 40 A, in steps of 10 A. At zero current, the thermal load is ¼ that 

of the shorter current lead. 

 

Figure 7.  Temperature profile along a long, reconfigured current lead. 

 

VI. Transients 

 

We have investigated the transient performance of the current lead, to learn about the 

limitations due to finite heat conduction along the current lead, separate from the 

limitations of the HX.  Thus, in this section, it is assumed that the temperatures at the 

boundaries of the HX adjust instantaneously.  The issue arises due to the fast change in 

current, from low or zero current to high current, and boundary conditions.  The 

temperature along the current lead is higher at the start of the transient, and we need to 

determine the conditions that result in stable lead operation and prevent burnout. 

 

There are different limitations on the upper stage and lower stage, when the current lead 

is re-configured. The short section of the current lead during a transient from low-

current/stand-by to high current operation can handle currents as high as 150 A, when the 

HX-upper is instantaneously cooled to 55 K when ramping up to high currents. The 

transient lasts about 10 seconds for 100 A and about 50 s for 150 A. 
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The main limitation of the transient performance of the current lead is due to the lower 

stage, recooling from the initial temperature distribution along the current.  For the lower 

stage, the maximum instantaneous current that recovers is about 70 A, as shown in Figure 

8.  The recovery time is on the order of 20 s, increasing with increasing current.  Higher 

currents would burn up the lower stage.  Thus, during transition, there is a brief limitation 

on maximum power through the current lead, about 10-20 s, during which a limited 

power can be transmitted, before full power can be engaged.  The delay to full power is a 

negative consequence from the use of the configurable current lead. 

 

Figure 8.  Transient on the lower stage of the current lead after a transient from low 

current to high current, operating at 70 A.  4 seconds between profiles. The x-coordinate 

is measured along the current lead, from the upper HX (on the left) to the lower HX (on 

the right).  

 

If the current during the transient is slightly higher than 70 A, the performance of the 

current lead is very different.  Figure 9 shows the temperature profiles along the current 

lead for a current of 80 A held constant.  The temperature increases over the bulk of the 

0 s 

4 s 

8 s 

40 s
36 s 

32 s 
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current lead, and keeps on increasing during the duration of the simulation. If it is not 

shut down, the current lead will burn out.  After the transient, full current (or overcurrent) 

can be established.  

 

Finally, assuming that the cable can tolerate overcurrents, by operating pulse it is possible 

to increase the operating current in the current lead.  Table 1 shows the results, assuming 

a maximum operating temperature of 600 K.  Substantial overcurrents are possible, 

limited by the HTS cable. 

 

Figure 9.  Temperature profile along the current lead for 80 A transient. Profiles are in 10 

s intervals, starting with a linear profile. The x-coordinate is measure along the current 

line, from the upper HX to the lower HX 

 

Table 1.  Time to 600 K (in seconds) for different pulsed currents (current lead optimized 

for 100A) 

current time to 600 K (s)
150 25
200 2.5
300 0.75
400 0.4  

0 s 
4 s 

40 s
36 s 

32 s 
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VII. Conclusions 

 

In this paper we have investigated the combination of PCL with configurable current lead 

as a means to reduce the cryogenic load during full and partial operation. We have shown 

that it is possible to decrease the load by about 25% at full load, and by about a factor of 

4 at partial/stand-by conditions.  

 

The transients during current-lead reconfiguration (from low current to high current), 

indicate that power is limited to partial power for times on the order of 1 minute, before 

full current/overcurrent can be established.  During this transition time, the current lead is 

limited to ~ 0.7 of full current.  
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