
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

October 2011 
 

Plasma Science and Fusion Center 
Massachusetts Institute of Technology 

Cambridge  MA  02139  USA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was supported by the U.S. Department of Energy, Grant No.  DE-FG02-91ER-
54109. Reproduction, translation, publication, use and disposal, in whole or in part, by or 
for the United States government is permitted. 

PSFC/JA-11-23 
 
Impurity Flows and Plateau-Regime Poloidal Density Variation 

in a Tokamak Pedestal 
 
 

M. Landreman,1 T. Fülöp, 2 and D. Guszejnov3  
 
 

1Plasma Science and Fusion Center, MIT, Cambridge, MA, 02139, USA 
2 Department of Applied Physics, Nuclear Engineering, Chalmers University of 

Technology and Euratom-VR Association, Göteborg, Sweden 
3Department of Nuclear Techniques, Budapest University of Technology and Economics, 

Association EURATOM, H-1111 Budapest, Hungary 



Impurity flows and plateau-regime poloidal density

variation in a tokamak pedestal

M. Landreman1, T. Fülöp2, D Guszejnov3
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In the pedestal of a tokamak, the sharp radial gradients of density and temperature

can give rise to poloidal variation in the density of impurities. At the same time,

the flow of the impurity species is modified relative to the conventional neoclassical

result. In this paper, these changes to the density and flow of a collisional impurity

species are calculated for the case when the main ions are in the plateau regime. In

this regime it is found that the impurity density can be higher at either the inboard

or outboard side. This finding differs from earlier results for banana- or Pfirsch-

Schlüter-regime main ions, in which case the impurity density is always higher at

the inboard side in the absence of rotation. Finally, the modifications to the impurity

flow are also given for the other regimes of main-ion collisionality.

I. INTRODUCTION

In a tokamak plasma with gentle radial gradients and weak toroidal rotation, neoclassical

theory [1, 2] predicts the density and temperature of each species will be nearly constant

on each magnetic flux surface. This equilibration occurs due to the fast streaming of par-

ticles along magnetic field lines. When the toroidal rotation speed becomes non-negligible

compared to the thermal speed of a species, the centrifugal force pushes that species to the

outboard side of each flux surface [3, 4]. In-out impurity asymmetry of this type has been
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observed in several tokamaks, such as ASDEX [5] and JET [6], that are driven to rotate

strongly by neutral beam injection. However, this centrifugal effect cannot explain the up-

down impurity asymmetry that has been observed in many tokamaks such as Alcator A [7],

PLT [8], ASDEX [5], Compass-C [9], PDX [10], and Alcator C-Mod [11–13]. The centrifugal

effect also cannot explain the impurity peaking at the inboard side seen in slowly rotating

JET discharges [14]. The asymmetries in these cases are likely driven by large radial gra-

dients of temperature and density: in conventional neoclassical calculations, it is assumed

that the ratio of poloidal gyroradius to gradient scale length is smaller than any other small

parameter, which is not necessarily the case in the plasma edge where radial gradients are

steep. In Refs. [15–17], neoclassical theory for an impure plasma was extended to allow

for larger gradients than are usually considered. Specifically, the gradients were allowed to

be sufficiently large that the friction between the bulk ions and heavy impurity ions could

compete with the parallel impurity pressure gradient, as is typically the case in the tokamak

edge. Mathematically, this means that the parameter ∆ ≡ δν̂iiz
2 was assumed to be of or-

der unity, but the poloidal Larmor radius of the bulk ions divided by the radial scale length

associated with the density and temperature profiles δ = ρθ/L⊥ was assumed to be small.

Here z is the impurity charge number, ν̂ii = L‖/λi is a measure of the ion collisionality,

λi is the bulk ion mean-free path, and L‖ is the connection length. It was shown that the

impurity dynamics then become nonlinear, and if the pressure and temperature gradients

of the main ion species are sufficiently steep, the impurities are pushed to the inboard side

of the flux surface.

Recently, the in-out density asymmetry A = nH/nL was measured for boron impurities

in Alcator C-Mod [13]. Here, nH and nL refer respectively to the impurity density at

the high-field-side midplane and low-field-side midplane of a given flux surface. It was

observed that A could be either less than or greater than one. A comparison was made

to a theoretical model of impurity asymmetry in strong gradient regions [17] in which the

primary ion species was assumed to be in the Pfirsch-Schlüter regime of collisionality. This

model predicts that A must be more than one, and for the parameters of the Alcator C-Mod

experiments, the predicted A was systematically closer to unity than the measured ratio.

One factor which likely contributes to the discrepancy is that much of the data were taken

in a region in which the main ions were in the plateau collisionality regime rather than

the Pfirsch-Schlüter regime. Reference [13] therefore suggests that an analogous theoretical
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model should be developed for the plateau regime, and it is the purpose of this paper to

present such a model. Impurity asymmetry in the banana collisionality regime has been

analyzed previously in [15, 16]. Other than the collisionality, the present work uses the same

orderings as the previous models: ∆ ∼ 1, z ≫ 1, and δ ≪ 1.

The poloidal rearrangement of the impurities affects the impurity velocity due to the

requirement of mass conservation. In previous work on the banana and Pfirsch-Schlüter

regimes, this alteration to the impurity flow was not explicitly calculated. However, pedestal

impurity flows are measured routinely in experiments [13, 18], so impurity flows represent

an important point of comparison between experiment and theory. The measurements and

conventional neoclassical theory often disagree. In particular, when the main ions are in the

plateau or banana collisionality regime, the measured impurity flow is greater in the direction

of the electron diamagnetic velocity than predicted. Consequently, in this paper we give

explicit forms for the modified impurity flows, and we examine whether the modifications

are sufficient to reconcile neoclassical theory with the experimental measurements. It is well

known that sheared flows play a role in turbulence stabilization [19], so it is important to

understand how the edge plasma flow arises and how it may differ from the neoclassical

prediction.

The remainder of the paper is organized as follows. In Sec. II we describe the kinetics

of main ions in the plateau regime. In Sec. III we analyze the parallel momentum equation

for the impurities and derive an equation that governs their poloidal rearrangement. We

show approximate solutions in several limits and numerical solutions are also presented. In

Sec. IV we explore the modification of the poloidal impurity rotation due to the presence

of large gradients, discussing all regimes of main-ion collisionality. Finally, the results are

summarized and discussed in Sec. V.

II. KINETICS OF MAIN IONS IN THE PLATEAU REGIME

The plasma is assumed to consist of hydrogenic ions (i) in the plateau regime, collisional

(Pfirsch-Schlüter) impurities (z), and electrons (e). The calculation does not depend on the

collisionality regime of the electrons. The magnetic field is represented as B = I(ψ)∇ϕ +

∇ϕ×∇ψ, where ϕ is the toroidal angle and 2πψ is the poloidal flux. Throughout this analysis

we will use a poloidal angle coordinate ϑ which is chosen so that B · ∇ϑ is a flux function.
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This coordinate makes flux surface averages convenient to evaluate (〈Y 〉 = (2π)−1
∫

2π

0
Y dϑ

for any quantity Y ), and this coordinate is equivalent to the ϑ used in [15–17]. We assume

a model field magnitude b2 = 1 − 2ǫ cosϑ where b = B/ 〈B2〉1/2 and ǫ = r/R is the inverse

aspect ratio. We must assume ǫ≪ 1 from the beginning of the analysis in order for a plateau

regime to exist.

The gyroaveraged ion distribution function in the plateau regime is then given by [22]

f̄i = fMi + f̄i1 where

fMi = ni0(ψ)

(

mi

2πTi(ψ)

)3/2

exp

(

− miv
2

2Ti(ψ)

)

(1)

is a stationary Maxwellian and a flux function,

f̄i1 = −fMi
eΦ1

Ti
+Hi − fMiv‖

I

Ωi

(

p′i
pi

+
eΦ′

0

Ti
+
yb2T ′

i

2Ti

)

, (2)

pi = ni0Ti, Ωi = eB/mi is the ion cyclotron frequency, primes denote d/dψ, Φ0 = 〈Φ〉,
Φ1 = Φ− Φ0,

Hi = Qi

ν̂i sinϑ− x‖ cosϑ

x2‖ + ν̂2i
≈ Qi

[

πδ(x‖) sinϑ− cosϑ

x‖

]

, (3)

ν̂i = νiqR/vi is the normalized collisionality, x = v/vi, vi = (2Ti/mi)
1/2, and

Qi = fMi
ǫviIT

′
i

4ΩiTi

[

(2x2‖ + x2⊥)(2x
2 − 5) + yb2(2x2‖ − x2⊥)

]

, (4)

Here, y is a velocity-independent coefficient needed to ensure that collisions conserve mo-

mentum, which is equivalent to the requirement that the particle fluxes be ambipolar. In a

pure plasma this requirement leads to y = 1, but the presence of impurities will alter the

value. It can be shown that y must be a flux function in order for ∇ · (niV i) to vanish.

The formulae (2)-(4) may be derived using a Krook collision model, as in [22], or using a

pitch-angle scattering collision model, as in [23].

III. IMPURITY DYNAMICS

The parallel momentum equation for the impurities is taken to be

0 = −znze∇‖Φ− Ti∇‖nz +Rzi‖ (5)

where Rzi‖ is the impurity-ion friction. The parallel viscosity of the impurities has been

neglected since it was shown in Ref [15] to be smaller than the pressure gradient if δ/z3/2ν̂ii ≪
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1, which is usually the case in the tokamak edge. As also shown in that paper, the impurity

temperature is then equilibrated with the bulk ion temperature and is therefore constant

over the flux surface. The poloidal electric field −∇||Φ can be obtained from the quasi-

neutrality condition znz = ne−ni using ne = (1+ eΦ1/Te)ne0(ψ) and using the distribution

function (2) to calculate the ion density:

ni = ni0

(

1− eΦ1

Ti
+ ǫNs sinϑ

)

, (6)

where

Ns = −
√
πviIT

′
i

4ΩiTi

(

1 + b2y
)

. (7)

The result is
ze∇‖Φ

Ti
=

T0
2Tin0

∇‖

(

z2nz + zni0ǫNs sinϑ
)

, (8)

where 2n0/T0 ≡ ne0/Te + ni0/Ti. Equation (5) then becomes

(1 + αn)∇‖n+
ǫzT0ni0n

2Tin0

∇‖ (Ns sinϑ) =
Rzi‖

〈nz〉Ti
(9)

where n = nz/〈nz〉 is the normalized impurity density and α ≡ 〈nz〉 z2T0/(2n0Ti). In the

rest of the analysis we will order α ∼ 1, which is equivalent (for Te ∼ Ti) to the ordering

zeff − 1 ∼ 1.

Next, the ion-impurity collision operator Ciz is inserted in Rzi‖ = −mi

∫

d3v v||Ciz to

write

Rzi‖ = −
∫

d3v miv‖νiz

(

L(fi − fi0) +
miv‖
Ti

Vz‖fi0

)

(10)

where

L =
2v‖
v2B

∂

∂λ
λv‖

∂

∂λ
(11)

is the Lorentz pitch-angle scattering operator, λ = v2⊥/(Bv
2), νiz = 3π1/2/(4τizx

3), and

τiz = 3(2πTi)
3/2ǫ2

0
m

1/2
i /(nzz

2e4) is the ion-impurity collision time. To ensure ∇·(nzV z) = 0,

the parallel impurity flow velocity must have the form [15]

Vz‖ = −IΦ
′
0

B
+
Kz(ψ)B

nz

(12)

where Kz(ψ) is proportional to the poloidal velocity. Using the main-ion distribution func-

tion (2) we then obtain

Rzi‖ = − I

Ωiτiz

(

p′i +
yb2ni0T

′
i

2

)

− mini0KzB

τiznz

+Qr, (13)
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where

Qr = mi

∫

d3vνizv‖Qi

[

πδ(x‖) sinϑ− x‖
x2‖ + ν̂2i

cosϑ

]

. (14)

For ν̂i → 0 the integration results in

Qr = 3
ǫni0IT

′
i

τizΩi

cosϑ. (15)

To rewrite Eq. (9) in dimensionless form we introduce the ratio of the temperature and

pressure scale lengths η = piT
′
i/(Tip

′
i),

g = − miIp
′
i

eTiτiznzB · ∇ϑ, (16)

and

τ∗ =

√
πzT0τiznzviB · ∇ϑ

8Tin0B0

, (17)

where B0 = 〈B2〉1/2. Notice that g, τ∗, and (τiznz) are ϑ-independent, and the formal

magnitude of τ∗ ∼ (zν̂i)
−1 has not yet been fixed. Equation (9) now becomes

(1 + αn)
∂n

∂ϑ
= g

{

n+
ηynb2

2
− ǫη [3 + (1 + y)τ∗]n cosϑ+Kz

ni0eB
2

〈nz〉 Ip′i

}

(18)

where we have used ∂(Ns sinϑ)/∂ϑ ≈ 〈Ns〉 cosϑ. (Other terms of order ǫ have already been

discarded in deriving the distribution function (2).) Integrating Eq (18) over ϑ yields a

solubility constraint which can be used to determine the poloidal impurity rotation,

Kz =
〈nz〉 Ip′i
ni0e 〈B2〉

{

−1− ηy

2

〈

nb2
〉

+ [3 + (1 + y)τ∗] ǫη 〈n cosϑ〉
}

, (19)

and Eq (18) becomes

(1 + αn)
∂n

∂ϑ
= g

[

n− b2 +
ηyb2

2

(

n−
〈

nb2
〉)

+ [3 + (1 + y)τ∗] ǫη
(

b2 〈n cosϑ〉 − n cosϑ
)]

. (20)

The cosϑ terms above can be significant despite being proportional to ǫ, for the other drive

in the equation is the ϑ-variation in b, which is also O(ǫ).

To make further progress we will calculate the coefficient y by requiring ambipolarity.

Due to the smallness of the electron mass, the ambipolarity condition is approximately

Γi = −zΓz. As in the conventional plateau-regime calculation for a pure plasma, the main-

ion flux is

Γi ≡ 〈Γi · ∇ψ〉 =
√
πǫ2v3i I

2(B · ∇ϑ)ni0T
′
i

8Ω2

i0B0Ti
(y − 1) (21)
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where Ωi0 = eB0/mi. The impurity flux is driven by the impurity-ion parallel friction force

Γz ≡ 〈Γz · ∇ψ〉 =
〈

IRzi‖

zeB

〉

, (22)

where Rzi‖ is given by Eq. (13) with Kz from (19). We find

Γz =
miI

2〈nz〉p′i
ze2τiznz〈B2〉

(

1−
〈 n

b2

〉

+
ηy

2

[

〈nb2〉 − 1
]

+ǫη

{

3

〈

n cosϑ

b2

〉

− [3 + (1 + y)τ∗] 〈n cosϑ〉
})

. (23)

The condition for ambipolarity then gives

y =
zǫ2τ∗α

−1 + η−1(〈n/b2〉 − 1)− 3ǫ 〈nb−2 cosϑ〉+ (3 + τ∗)ǫ 〈n cosϑ〉
zǫ2τ∗α−1 + 2−1(〈nb2〉 − 1)− ǫτ∗ 〈n cosϑ〉

. (24)

The pure plasma limit y = 1 is recovered as α → 0.

The system (20) and (24) describes the poloidal rearrangement of the impurities. While

(20) is similar to the equations found if the main ions are in the banana [15, 16] or Pfirsch-

Schlüter regimes [17], (20) has several different terms, and also the radial scale length en-

tering g is different (i.e. only the pressure scale length appears, rather than a combination

of the pressure and temperature scale lengths.)

As in Refs.[15–17], g measures the steepness of the bulk ion pressure profile. In conven-

tional neoclassical theory g is assumed to be small, which implies that the friction force is

smaller than the parallel pressure gradient. We next examine how the integro-differential

equation (20) can be solved analytically in a number of limits.

a. Weak density variation. If n − 1 ∼ O(ǫ) then we can expand n = 1 + nc cosϑ +

ns sinϑ+O(ǫ2) with ns and nc both ∼ O(ǫ). The solution of Eq (20) is then found to be

ns = ǫg(1 + α)
2− η[3 + (1 + y)τ∗]

(1 + α)2 + g2(1 + ηy/2)2
, (25)

nc = −ǫg2(1 + ηy/2)
2− η[3 + (1 + y)τ∗]

(1 + α)2 + g2(1 + ηy/2)2
. (26)

It can be noted from these expressions that as p′i becomes larger, the impurities first develop

an up-down asymmetry and then an in-out asymmetry. This same behaviour is found in

the banana and Pfirsch-Schlüter regimes. However, in the plateau regime the asymmetry is

proportional to the new factor 2−η[3+(1+y)τ∗], which means that the sign of the asymmetry

can be changed depending on the magnitude of η, τ∗ and y. If η > 2/[3 + (1 + y)τ∗], the

impurities will be pushed to the outside of the flux surface. This result is different from the
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analogous n−1 ∼ O(ǫ) ≪ 1 limits when the main ions are in the banana or Pfirsch-Schlüter

regimes. In these cases, in the absence of rotation, the impurities were pushed to the inside,

regardless of the ratio of the pressure and temperature gradients.

b. Large gradients. In the g ≫ 1 limit, corresponding to a large pressure gradient, we

can expand (20) in g−1. To lowest order, the right-hand side of (20) must vanish, giving

n ≈ ñ/ 〈ñ〉 where
ñ =

b2

1 + (ηy/2)b2 − ǫη[3 + (1 + y)τ∗] cosϑ
. (27)

In this case there is only in-out asymmetry. Expanding in ǫ then gives

n = 1 + 2ǫ(S − 1) cosϑ (28)

where S = η [3 + y + (1 + y)τ∗] /(2+ηy). (This same result can also be obtained by a g ≫ 1

expansion of (26).) The impurity density evidently may be higher at either the inboard side

(S < 1) or outboard side (S > 1). This finding too differs from the corresponding g ≫ 1

limits when the main ions are in the banana or Pfirsch-Schlüter regime. In these cases,

the impurity density is always greater at the inboard side (even when there is significant

rotation).

c. Numerical solution. For α ≪ 1, equation (20) may be solved numerically with

the following iterative procedure. A small number (5-10) of poloidal Fourier modes are

considered. An initial guess for n(ϑ) is used to compute y and the nonlinear term αn ∂n/∂ϑ.

An improved n(ϑ) is then calculated using (20), and the process is repeated until convergence

is achieved. Typical results are shown in Figure 1. Figure 2 shows the in-out asymmetry

factor

A =
n(ϑ = π)

n(ϑ = 0)
(29)

over a wide range of parameters.

Figure (3) shows the in-out asymmetry A for ǫ = 0.3, g = 10, and the trace impurity

limit y → 1. A nearly identical plot can be generated using the g ≫ 1 expressions (27) or

(28), although the precise value of A in the A < 1 region is somewhat different due to the

fact that ǫ = 0.3 is not much smaller than one.
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FIG. 1: (Color online) Normalized impurity density as function of poloidal angle, calculated by

numerical solution of (20) and (24). The parameters used are ǫ = 0.3, τ∗ = 0.5, z = 5, and

α = 0.25. Other values of α from 0 to 1 produce nearly indistinguishable results.
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FIG. 2: (Color online) Contours of the in-out asymmetry A, decreasing monotonically with η, for

(a) τ∗ = 0.1 and (b) τ∗ = 1.0. The other parameters are ǫ = 0.3, z = 5, and α = 0.25. Results

for α = 0 are nearly indistinguishable. Solid contours run from A = 3 to 1 in steps of 0.5. Dashed

contours decrease from A = 0.9 to 0.6 (a) or 0.2 (b) in steps of 0.1.

IV. POLOIDAL IMPURITY ROTATION

If the impurity density varies on a flux surface, the impurity poloidal rotation will be

different from the one derived in conventional neoclassical theory. Using (12) and (19), we
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FIG. 3: (Color online) Contours of the in-out asymmetry factor A in the g ≫ 1 and trace impurity

(y → 1) limit and with ǫ = 0.3. Solid contours range from 3.5 to 1 with spacing of 0.5, and dashed

contours range from 0.9 to 0.1 with spacing of 0.1.

can write

V pl
zϑ =

BϑKz

nz

= −X IBϑ

ne 〈B2〉

[

Ti
ni0

dni0

dψ
+

3

2

dTi
dψ

]

, (30)

where

X =
(

1 +
η

2

)−1 {

1 +
ηy

2

〈

nb2
〉

− [3 + (1 + y)τ∗] ǫη 〈n cosϑ〉
}

(31)

is constant on a flux surface. The definition of X was chosen above so that in the trace

impurity limit (α → 0, y → 1) and if nz is also uniform on a flux surface (i.e. g → 0), then

X → 1. This limit reproduces the conventional neoclassical result [2, 24].

Figure 4 shows the scale factor X for various values of η, τ∗, and g. The figure was

calculated using ǫ = 0.3 and α → 0. It is evident that when g > 1, the poloidal flow

can be significantly suppressed compared to the conventional neoclassical result if η and τ∗

approach one. The situation is only slightly different when the relative impurity strength α

is nonzero, as shown in Figure 5. This figure is equivalent to Figure 4.a but with α raised

to 0.25 and z = 5. When τ∗ ≪ 1, the flow now becomes slightly enhanced compared to the

conventional neoclassical result.

When the main ions are in the banana regime, the poloidal impurity flow can be calculated
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FIG. 4: (Color online) The factor X which scales the poloidal impurity flow in the plateau regime,

calculated for α = 0. The horizontal axis is the same for all plots. Contour spacing is 0.05.
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FIG. 5: (Color online) The factor X which scales the poloidal impurity flow in the plateau regime

for α = 0.25 and g = 1. Contour spacing is 0.05.

using the Kz derived in Refs. [15] and [16]. The result is

V ban
zϑ =

KzBϑ

nz

=
Bϑ

n
u

(

〈

nb2
〉

+
1

γban

)

, (32)

where γban = eL⊥,ban 〈B2〉 u/Ti and L−1

⊥,ban = −I (p′i/pi − (3/2)T ′
i/Ti). In the limit of trace

impurities and large aspect ratio,

u = −0.33fc
I

e 〈B2〉
dTi
dψ

, (33)

and

fc ≡
3 〈B2〉

4

∫ λc

0

λdλ
〈

n
√
1− λB

〉 (34)

is the effective fraction of circulating particles. Therefore, in this limit,

V ban
zϑ = − IBϑ

ne 〈B2〉

[

Ti
ni0

dni0

dψ
+

(

−1

2
+ 0.33fc

〈

nb2
〉

)

dTi
dψ

]

, (35)

The expression for u in various other limits (arbitrary aspect ratio and high level of impu-

rities) is more complicated and is given in Ref. [16].

When the impurity density is nearly constant on a flux surface, (34) gives the conventional

result fc ≈ 1− 1.46
√
ǫ. For insight into how fc is modified when the impurity density varies

significantly on a flux surface, consider the limit n = δ(ϑ − π) in which the impurities are

strongly peaked on the inboard midplane. Then
〈

n
√
1− λB

〉

=
√
1− λBmax so fc ≈ 1−2ǫ.
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Similarly, when the main ions are in the Pfirsch-Schlüter regime, the poloidal impurity

flow V PS
zϑ can be calculated using the Kz derived in equation (26) of Ref. [17]. For trace

impurities, V PS
zϑ is found to be

V PS
zϑ = − IBϑ

ne 〈B2〉

[

Ti
ni0

dni0

dψ
+ 2.8

〈

nb2
〉 dTi
dψ

]

, (36)

It was found in Refs. [15] and [16] that when the main ions are in the banana or Pfirsch-

Schlüter regimes, the impurities tend to accumulate on the high field side, so 〈nb2〉 > 1. In

both regimes, this change decreases the signed Vzϑ, shifting the poloidal impurity flow in

the direction of the electron diamagnetic velocity relative to the conventional neoclassical

prediction. We can model the impurity density variation as n = 1− (A− 1)(A+ 1)−1 cosϑ,

implying 〈nb2〉 = 1 + ǫ(A− 1)/(A+ 1). As A increases above one, 〈nb2〉 increases from one

to 1 + ǫ. For the banana regime, this increase in 〈nb2〉 and the aforementioned increase in

fc both lead to a decrease in the signed Vzϑ, with the O(
√
ǫ) increase in fc being the larger

of the two effects.

Note that in the method used in this section, the impurity pressure gradient p′z does not

appear in the formulae for the poloidal impurity flow for any collisionality regime (as it does

in, for example, equation (15) of [24]). In the conventional neoclassical formulae, the p′z term

is proportional to 1/z, so the term is formally small in our ordering. The absence of the p′z

term is related to the fact that the impurity diamagnetic flow was dropped in Eq. (12) in

order to make the analysis tractable.

V. CONCLUSIONS AND DISCUSSION

In this paper we have investigated the poloidal rearrangement of impurities in the pres-

ence of large gradients for the case of background ions in the plateau collisionality regime.

The results differ somewhat compared to other regimes of main-ion collisionality, and so

it is enlightening to review how the main ions affect the impurities in the three regimes.

Physically, the main ions affect the impurities both through their friction and through ∇||Φ,

since this poloidal potential variation depends on the poloidal ion density variation. First,

consider the frictional effect. (For trace impurities, the friction is given for banana-regime

ions by Eqs. (10), (20), and (26) of [17], for plateau-regime ions by Eqs. (13), (15), and

(19) of the present paper, and for Pfirsch-Schlüter-regime ions by Eqs. (22), (23), and (26)
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of [16].) In all three regimes, the impurity-ion friction can be expressed as a linear combi-

nation of I(Ωiτi)
−1dpi/dψ and Ini(Ωiτi)

−1dTi/dψ, but the dimensionless coefficients of the

linear combination are different in each regime. The coefficients also have different poloidal

dependencies. These differences are not due only to differences in main-ion flow in the three

regimes, for the velocity-space weighting in the integral (10) has an extra factor νiz ∝ 1/v3

compared to the integral for the mean flow. Now consider poloidal density variation of

the main ions. For banana-regime main ions, as found preceding equation (4) of [15], the

poloidal density variation is purely adiabatic: ∇||ni = −ni0(e/Ti)∇||Φ. For plateau-regime

main ions, the relationship is modified by the Ns term in (6), which gives rise to the τ∗

terms in the results herein. For Pfirsch-Schlüter-regime main ions, the effect of poloidal Φ

variation was neglected in [17], as explained following Eq. (24) of that paper. However, to

retain this effect, the ion density would be given by equations (12) and (21) of [17], showing

the adiabatic ion response is modified by a term ∝ T ′
i sinϑ, just as in the plateau regime.

The calculation presented in this paper shows that when the temperature scale length is

large compared to the density scale length (such that η < 0.4 − 0.6), the impurities accu-

mulate on the inboard side, whereas they accumulate on the outboard side in the opposite

case. In standard tokamak operating regimes, η < 0.5, so impurity accumulation at the in-

board side is more likely. However, η can be larger than 0.5 in the I-mode regime of Alcator

C-Mod [25], so the strong η-dependence of A predicted by the theory may be experimen-

tally testable. (Impurity asymmetry in I-mode has not been measured as of this writing.)

The sign and magnitude of the poloidal asymmetry has profound consequences for impurity

transport in general. In particular, in-out asymmetries have been shown to lead to a sign

change in the radial turbulent impurity flux if the asymmetry is sufficiently large [26].

One way in which the present calculation could be extended would be to account for

the large radial electric field Er which arises in the pedestal. It is found experimentally

that the radial electric field in the pedestal can be large enough to make the E × B drift

comparable to (Bθ/B)vi, and it was recently shown in [22] that under these conditions, the

plateau-regime ion distribution function can deviate from Eqs. (3-4). Although it would be

desirable to include this effect in the present calculation of impurity asymmetry, doing so is

not straightforward, for the following reason. Terms in the ion distribution function of order

(ρθ/a)ǫfMi affect the impurity asymmetry calculation to leading order, as demonstrated

by the term with a factor of 3 in Eq. (20), which arises due to the Qr term in Eq. (13).
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However, the ion distribution function in [22] is only determined to order (ρθ/a)ǫ
0fMi, and

to consistently determine all O(ǫ) corrections, the ion distribution function would need to

be found using the full linearized Fokker-Planck collision operator rather than a Krook or

pitch-angle scattering model operator.

In all regimes of main-ion collisionality, the poloidal rearrangement of impurities results

in changes to the the poloidal impurity flow. These modifications to the flow are of interest

because when the main ion collisionality is in the plateau or banana regimes in Alcator C-

Mod, impurity velocity in the pedestal is measured to be greater in the electron diamagnetic

direction than conventional neoclassical theory predicts [13, 18]. When the ions are in the

plateau regime, the calculation in this paper shows the impurity flow should be multiplied by

the factor X relative to the conventional neoclassical prediction (in which the flow is always

in the electron diamagnetic direction.) To explain the observed flows, then, X must be > 1,

which can occur for τ∗ ≪ 1 (as in Figure 5.) When the ions are in the Pfirsch-Schlüter

regime, we find the poloidal impurity flow is indeed increased in the direction of the electron

diamagnetic velocity due to the increase in 〈nb2〉 above one. For banana-regime ions, the

flow is shifted in the same direction due to both the increase in 〈nb2〉 and also due to the

increase in fc. However, the shift in the flow is also proportional to the small numerical factor

0.33 in (35), so this effect is likely insufficient to explain the observed discrepancy between

the measured and predicted flows. A different calculation, including the Er effects discussed

above but neglecting the impurity asymmetry, is discussed in Ref. [18]; this calculation

can also explain some but not all of the discrepancy. In future work, it may be possible

to consistently account for both the Er and impurity asymmetry effects simultaneously to

achieve better agreement between the calculated and observed flows.

Acknowledgements

The authors gratefully acknowledge helpful conversations with Istvan Pusztai, Peter J

Catto, and Per Helander. Two of the authors (M L and D G) acknowledge the hospitality of

Chalmers University of Technology, where part of this research was carried out. This work

was funded by the European Communities under Association Contract between EURATOM

and Vetenskapsr̊adet and US Department of Energy Grant No DE-FG02-91ER-54109. The

views and opinions expressed herein do not necessarily reflect those of the European Com-



16

mission.

[1] F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys 48, 239 (1976).

[2] S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).

[3] J. A. Wesson, Nucl. Fusion 37, 577 (1997).

[4] M. Romanelli and M. Ottaviani, Plasma Phys. Controllled Fusion, 40 1767 (1998).

[5] P. Smeulders, Nucl. Fusion 26, 267 (1986).

[6] B. Alper, A. W. Edwards, R. Giannella, R. D. Gill, C. Ingesson, M. Romanelli, J. Wesson,

and K.-D. Zastrow, Proc. 23rd EPS Conf. on Plasma Physics and Controlled Fusion (Kiev,

Ukraine, 24− 28 June 1996) vol. 1, D. Gresillon, A. Sitenko, and A. Zagorodny eds. (Geneva:

EPS) p. 163.

[7] J. L. Terry, E. S. Marmar, K. I. Chen, and H. W. Moos, Phys. Rev. Lett. 39, 1615 (1977).

[8] K. H. Burrell and S. K. Wong, Nucl. Fusion 19, 1571 (1979).

[9] R. D. Durst, Nucl. Fusion 1992, 2238 (1992).

[10] K. Brau, S. Suckewer, and S. K. Wong, Nucl. Fusion 23, 1657 (1983).

[11] J. E. Rice, J. L. Terry, E. S. Marmar, F. Bombarda, Nuclear Fusion, 37 241 (1997).

[12] T. Sunn Pedersen, R. S. Granetz, E. S. Marmar, D. Mossessian, J. W. Hughes, I. H. Hutchin-

son, J. Terry, J. E. Rice, Phys. of Plasmas, 9 4188 (2002).

[13] K. D. Marr, B. Lipschultz, P. J. Catto, R. M. McDermott, M. L. Reinke, and A. N. Simakov,

Plasma Phys. Controlled Fusion 52, 055010 (2010).

[14] L. C. Ingesson, H. Chen, P. Lender and M. J. Mantsinen, Plasma Phys. Controlled Fusion,

42 161 (2000).

[15] P. Helander, Phys. Plasmas 5, 3999 (1998); The right-hand side of the last equation on p 4002

in this paper should be multiplied by a factor ǫ/q, and the right-hand side of the previous

equation (the expression for nc) should be multiplied by −1.

[16] T. Fülöp and P. Helander, Phys. Plasmas 6, 3066 (1999).
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