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New results suggest that changes observed in the intrinsic toroidal rotation influence in the 
internal transport barrier (ITB) formation in the Alcator C-Mod tokamak [1E. S. Marmar and 
Alcator C-Mod group, Fusion Science and Technology 51, 261 (2007)].  These arise when the 
resonance for ICRF minority heating is positioned off-axis at or outside of the plasma half-
radius.  These ITBs form in a reactor relevant regime, without particle or momentum 
injection, with Ti≈Te, and with monotonic q profiles (qmin < 1).  C-Mod H-mode plasmas 
exhibit strong intrinsic co-current rotation that increases with increasing stored energy without 
external drive.  When the resonance position is moved off-axis, the rotation decreases in the 
center of the plasma resulting in a radial toroidal rotation profile with a central well which 
deepens and moves farther off-axis when the ICRF resonance location reaches the plasma 
half-radius. This profile results in strong E×B shear (>1.5x105 Rad/sec) in the region where 
the ITB foot is observed.  Gyrokinetic analyses indicate that this spontaneous shearing rate is 
comparable to the linear ion temperature gradient (ITG) growth rate at the ITB location and is 
sufficient to reduce the turbulent particle and energy transport. New and detailed 
measurement of the ion temperature demonstrates that the radial profile flattens as the ICRF 
resonance position moves off axis, decreasing the drive for ITG the instability as well.  These 
results are the first evidence that intrinsic rotation can affect confinement in ITB plasmas. 
 
 

 

  



 

 

I. INTRODUCTION 

Internal transport barriers (ITB) have been found in many toroidal plasma devices2,3 and  

provide regions of reduced energy, particle, and/or momentum transport in the plasma core.  

The enhancement of core plasma pressure typically seen in ITB plasmas is attractive as a 

means of optimizing the fusion power output of magnetic confinement based fusion reactors, 

but it is not clear if the necessary conditions to produce them can be achieved at reactor 

conditions.  Most commonly, transport barriers in the plasma interior are found in neutral 

beam heated plasmas4,5,6,7,8  where the beam provides a source of particles, momentum and 

energy to the plasma, which will not be feasible in reactor scale experiment due to the high 

densities required.  The neutral beam induces rotation in the plasma that generates sufficient 

electromagnetic shear to stabilize the ion temperature gradient driven instability (ITG) as has 

been observed in numerous experiments9,10,11,13.  In cases where ITBs are seen with balanced 

neutral beam injection (minimal external torque) early beam heat freezes reversed or weak 

magnetic shear and provides strong core fueling3,7,8,10. 

The Alcator C-Mod experiment provides a reactor relevant conditions in which to 

study ITB physics in several aspects.  The sole source of heating to the plasma other than 

from the ohmic current is provided by up to 8 MW of balanced ICRF power.  Thus there is 

neither momentum input nor particle input into the plasma.  The observed rotation arises 

spontaneously and is entirely intrinsic in origin14.  The C-Mod target plasmas used for these 

studies are very high density, typically 2 × 1020/m3 before the ITB is induced, and the ions 

and electrons are thermally equilibrated.  The q-profile is monotonic with qmin  less than one 

at the center, as evidenced by sawtoothing activity before and during ITB development15.   

Internal transport barriers induced by off-axis ICRF heating in Alcator C-Mod were 

first reported by in 200116, and it was noted then that a significant slowing of the intrinsic 

central rotation occurred in concert with the ITB development. Gyrokinetic simulation of C-



 

 

Mod plasmas demonstrated that the ITG mode fluctuations dominate the particle diffusion in 

the target plasmas used for ITB study17.  The ion temperature and rotation measurements 

available prior to 2007 lacked sufficient temporal and spatial resolution to resolve whether the 

change in the toroidal angular momentum was a cause or a result of the ITB formation. 

Subsequent experimental and gyrokinetic examination of the onset conditions for ITB 

development in Alcator C-Mod sought to answer this question. Initial gyrokinetic simulations 

concluded that the ion temperature profile that occurs with off-axis heating is broad enough to 

reduce the ITG drive term  that dominates the transport in these  high density plasmas18,19.   

The Ware pinch was shown sufficient to account for the slow density peaking that occurs over 

tens of energy confinement times19.  The work of Zhurovich et al.20 supported this conclusion 

and demonstrated how the change in ICRF resonance position affects the ion temperature 

profiles and resulting turbulence driven flux. Zhurovich was also able to demonstrate with 

gyrokinetic modeling that the small magnetic shear found in the core region of Alcator C-

Mod was not significant in suppressing the ITG instability in these plasmas.  Neither of these 

studies incorporated rotational shear in the analysis because detailed experimental profiles 

were not available.  Another weakness was that the ion temperature profiles used in both of 

these studies were not directly measured but were calculated with the power balance code 

TRANSP21, using the ICRF power deposition profiles from TORIC22 and matching the 

measured neutron rate. 

Recently, installation of a high resolution imaging x-ray spectrometer system23 has 

allowed accurate and detailed measurement of core toroidal rotation and ion temperature 

profiles.  The results of these measurements obtained for ITB plasmas enhance the ability to 

perform meaningful gyro-kinetic simulation and to provide an understanding of the relative 

roles of ion temperature gradient drive and E×B shearing suppression of turbulence in these 

plasmas. 



 

 

In this paper we present details of the new experimental results with a focus on the 

generation of radial electric field and increased E×B shear in the ITB formation.  These 

results are used in both linear and non-linear gyrokinetic simulations to investigate the plasma 

micro-stability of the turbulent driven plasma transport.  Gyrokinetic results are compared 

with experimentally derived transport coefficients.  

II. ALCATOR C-MOD ITBs 

The ITBs that are observed in C-Mod plasmas (R=0.69 m, a=0.21 m) have highly 

peaked pressure and density profiles.  They arise after an enhanced D H-mode (EDA) has 

been formed in cases where the net central power is not peaked on axis, as occurs with off-

axis ICRF heating and often ohmic H-mode plasmas.  Once established, the ITB typically 

lasts for as much as 10 energy confinement times, until the H-mode plasma undergoes a back 

transition to L-mode.  Variation of the magnetic field is used to move the resonance position 

of the ICRF heating power, which is available at a fixed frequency.  For the experiments 

described in this paper the ICRF frequency was set to either 70 or 80 Mhz and the toroidal 

field was used to scan the resonance across the width of the plasma from r/a=0.57 (low field 

side) to r/a=-0.58 (high field side.)  The plasma current was varied with the magnetic field in 

order to maintain constant q95. It has been established24 that the ITB foot position moves 

inversely with changing q95, so it is important to hold this value constant when comparing 

stability of different discharges.  While the ITB foot is found near the ICRF resonance, its 

location does not correlate well with the position of the ICRF power deposition and rather  

corresponds most closely to the location of q=4/3. 

A. Density, Temperature and Pressure Profiles 

Fig. 1.a shows an example of the density profile from one of the ITBs used in this 

study measured with Thomson scattering, which is then fitted with a cubic b-spline routine in 

the core and a tanh function in the pedestal.   The peaking of the density indicates that a 



 

 

strong barrier to particle transport has formed.  The pressure profile also displays strong 

gradients as is seen in Fig. 1.b.   This implies that no loss in thermal energy is occurring as the 

core density rises and indicates that a thermal barrier exists in the plasma interior as well.     

 

Fig 1  a.) (Color on-line) Density profile in C-Mod ITB plasma with off-axis ICRF heating as 
the profile transitions from L-mode (purple •) to H-mode (blue ♦) then as the ITB develops 
(green  ■) to becomes established (red ▲). The dashed line represents the location of the 
ICRF resonance and the region where the ITB foot occurs is shaded.  b.)The electron pressure 
profile from Thomson scattering is shown at the same times as those Fig 1.a.  

 

 

Ion and electron temperatures, shown in Fig. 2, do not typically increase in the center 

with the ITB.  The fact that they do not decrease as the density rises indicates that the barrier 

that develops limits thermal transport as well as particle transport. The ion temperature 

profiles are derived from the broadening of argon and molybdenum lines recorded by an array 

of von Hamos type x-ray crystal spectrometers25 and an imaging Johann x-ray spectrometer 

system (HIREX)23.   The electron temperature profiles are from Thomson scattering, and the 

central Ti is obtained by inverting the global neutron rate using the Thomson electron density 

profiles and average Zeff. 

0.0 0.2 0.4 0.6 0.8
r/a

0.00

0.05

0.10

0.15

M
 P

as
ca

ls

ITB

ITB start

L-mode

H-mode
ITB foot
region

    ICRF
resonance

Electron Pressure 
increase with ITB

ElectronDensity 
increase with ITB

0.0 0.2 0.4 0.6 0.8
r/a

0.0

1.0

2.0

3.0

4.0

5.0

20
n e

 (/
m

3  x
 1

0 
   

) ITB

ITB start

L-mode

H-mode

ITB foot
region

    ICRF
resonance

(a) (b)



 

 

 

 

 

Fig. 2. (Color on-line) Ion and electron temperature profiles a.) at the start of an ITB and b.) 
after the ITB is established.  Ti from x-ray emission is given by black triangles (left), black X 
(right), dashed line fit to data.  Te is shown as green squares (left), red triangles (right), solid 
line fit to data. The solid black dot at the center of each plot is central Ti from neutrons.  The 
ITB foot location is marked by the band, and the ICRF resonance by the vertical black line. 
 

Details of prior experimental and modeling analyses of Alcator C-Mod ITBs are 

summarized in a recent review paper26. 

 
B. Rotation and radial electric field profiles 

Toroidal and poloidal rotation data in the core (r/a < 0.7) of Alcator C-Mod are obtained from 

the Doppler shifted x-ray impurity lines of argon and molybdenum, most commonly 40Ar16  

using the spectrometers mentioned in the previous section.  Rotation data from active charge 

exchange recombination spectroscopy (CXRS) are in good agreement with the x-ray data 

when available.  The spontaneous plasma rotation in Alcator C-Mod  is typically in the 

counter current direction in L-mode, but becomes strongly co-going and centrally peaked after 

the transition to H-mode.  With a typical EDA H-mode plasma created with the ICRF 

resonance on-axis, this rotation remains centrally peaked and proportional to the plasma 

stored energy throughout the H-mode.  Placing the ICRF resonance off-axis tends to cause the 

0.0 0.2 0.4 0.6 0.8
r/a

0.0

0.5

1.0

1.5

2.0

ke
v

Ti, Te at ITB start

Ti neutrons
Te 
Te fit 

Ti HIREX

Ti fit
ITB foot
region

    ICRF
resonance

0.0 0.2 0.4 0.6 0.8
r/a

0.0

0.5

1.0

1.5

2.0

ke
v

Ti neutrons
Te 
Te fit 

Ti HIREX

Ti fit

Ti, Te during ITB

ITB foot
region

    ICRF
resonance

(a) (b)



 

 

toroidal rotation to peak off-axis.  If the resonance is at r/a=0.5 or larger, an ITB usually 

develops in the plasma, and the central rotation declines, forming a well in the core of the 

plasma.  This change in the velocity trend appears before the peaking in the density that arises 

with an ITB is evident.  A typical rotation profile from an ITB plasma can be seen in Fig. 3.  

The presence of the rotational well suggests that significant E×B shear could be developing 

with the ITB formation.  Error on the rotation is typically shown as that from the diagnostic 

counting statistics which typically range from 1% in the core to 15% in the region of r/a=0.8.  

There is also an absolute level uncertainty which is corrected either by comparison with a 

discharge containing a locked mode taken the same day, or by comparison with the frequency 

of m=1 sawtooth precursor oscillations.  The latter method was employed on the data used in 

this paper.  The offset uncertainty does not significantly affect the shearing rate calculation 

used for the simulations.  The increasing uncertainty with radius can result in 25 to 50% 

spread in the values of the shearing rate obtained at the ITB foot position over the range of 

time where the ITB is becoming established.  

 

 

Fig. 3 (Color) The toroidal rotation as a function of radius is shown for an off-axis heated 
plasma as an ITB develops, beginning at the H-mode transition (dark red) and proceeding 
until the ITB is established (bright orange). 
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The experimental parameters are used in the power balance code TRANSP20in conjunction 

with  the general geometry neoclassical code NCLASS27 to determine the rotation profiles of 

all remaining plasma species and to derive the radial electric field.  The resulting E×B 

shearing rate is then calculated.  

 The total radial electric field for a centrally heated H-mode plasma (no ITB) as a 

function of radius is displayed in Fig. 4.a including the contributions from the toroidal 

rotation, the neoclassical poloidal rotation, and the plasma pressure.  The largest of these is 

the toroidal rotation component. (These results were initially discussed in28,29. )  The poloidal 

rotation was less than the measurement threshold for the HIREX diagnostic, consistent with 

the neoclassical calculation.  The Er reaches a maximum value of 50 kV/m at r/a ~ 0.45.  In 

contrast, in an off-axis ICRF heated discharge in which and ITB has developed, the radial 

electric field is near zero at the center and rises to a value of 20 kV/m in (Fig. 4.b) off center 

at and outside of the foot of the ITB.  Again the component from the toroidal rotation makes 

up the dominant contribution to the radial electric field despite the increased peaking of the 

plasma pressure.  

 

0.6 0.80.2 0.4
r/a

-20

-40

60

40

20

0

R
ad

ia
l e

le
ct

ric
 fi

el
d 

(k
V

/m
)

60

40

20

0

-20
0.6 0.80.2 0.4

r/a

R
ad

ia
l e

le
ct

ric
 fi

el
d 

(k
V

/m
)

H-mode, on-axis heating ITB, off-axis heating

       E   from 
V      (neoclassical)pol

r

       E   from 
V      (neoclassical)pol

r

    E   from
      V

r
tor

    E   from
      V

r
tor

E r

E r

E   from
pressure

r
E   from
pressure

r

(a) (b)



 

 

Fig. 4. (Color on-line) The components of the radial electric field derived from the impurity 
rotaion for a.) centrally ICRF heated EDA H-mode plasma and b.) off-axis ICRF heated EDA 
H-mode plasma with an ITB; total radial electric field (black), pressure term (red), poloidal 
velocity term (purple), toroidal rotation term (blue). 
 
 The resulting E×B shearing rate (Hahm-Burrell formulation30), displayed in Fig 5, 

demonstrates that the shearing rate is significantly higher in the region where the ITB foot is 

observed than at any radial point in the on-axis heated case.  The E×B shearing rate in off-axis 

heated H-mode plasmas that fail to develop an ITB is also lower than in ITB cases, as can be 

seen in Fig. 5.b. 

 
Fig. 5 (Color on-line) The E×B shearing rates for a) on-axis heated H-mode (red) and L-mode 
(blue) are compared with that from b) off-axis heated H-mode with ITB (red).  An off-axis 
heated discharge that did not form an ITB (black) is included in b). 
 
C.  The effect of temperature gradient on ITB development 
 
ITB development in Alcator C-Mod is coincident with reduction in the outward thermal and 

particle transport of ions and electrons in the region of the barrier foot.  The peaking of the 

density in the plasma center, inside of the barrier region is consistent with the magnitude of 

the neoclassical Ware pinch calculated for the experimental plasma parameters.  The 

dominant source of thermal diffusion in high density C-Mod plasmas in the ITB formation 

phase is expected to be micro-turbulent fluctuations driven by temperature gradients, 

especially the ion temperature gradient instability (ITG)19.   
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 Initial gyrokinetic simulations of the off-axis ICRF C-Mod plasmas that developed 

ITBs have indicated that a reduction of ion temperature gradient reduces the drive for the ITG 

and leads to a larger stable region in the plasma core20.  At the time these simulations were 

done, measurements of the full radial profiles of the ion temperature were not available, and 

the simulations were done either by substituting the electron temperature profiles for the ion 

temperature profiles or by using TRANSP generated ion temperature profiles that used 

feedback on the χi multiplier and the input power profiles to match the measured neutron rate.  

Both methods indicated that the temperature gradients were reduced as the ICRF resonance is 

moved off-axis. 

 In a recent experiment designed to explore the effect of the ICRF resonance position 

on the ion temperature and plasma rotation profiles, and ultimately the effect on the stability 

of the plasma, the ICRF resonance was moved across the plasma by scanning the toroidal 

magnetic field.  The ICRF frequency used was fixed at 70 Mhz, so that changing the magnetic 

field on a shot by shot basis from 5.5 T to 3.9 T moved the ICRF resonance position from 

r/a=0.57 (low field side) to r/a=-0.58 (high field side).  The plasma current was decreased 

with the magnetic field to maintain constant q95.  Standard EDA H-mode plasmas developed 

in all cases, but those with the ICRF resonance at |r/a| ≥ 0.5 developed an ITB after the H-

mode transition.   

 The ion and electron temperature gradients are reduced in the plasma core when the 

ICRF resonance is off-axis at |r/a| ≥ 0.4.  R/LTi (Fig 6.a) and R/LTe (Fig 6.b) in an off-axis 

heated discharge with an ITB to those of a standard centrally heated H-mode are compared.  R 

is the position in major radius while LTx is the temperature gradient scale length . 



 

 

 

Fig 6. (Color on-line) The dimensionless ion temperature gradient R/LTi (a) for on-axis heated 
H-mode plasma (blue) is compared with the off-axis heated H-mode plasma with ITB (red). 
R/LTe values for the same plasma are compared in (b).  Data are shown for multiple time 
points spanning 0.1 s in the discharge. 
  

To examine the effect of the resonance position on the temperature gradients for the 

full toroidal field scan, the data are averaged over the temporal extent of the H-mode or ITB.  

The value of R/LTi at two radial locations as a function of absolute value ICRF resonance 

position are shown in Fig. 7.  There appeared to be no difference in whether the data arose 

from an ICRF resonance position on the high field side of the plasma or the low field side, so 

the absolute value of the resonance position is shown here.  While the value of R/LTi is clearly 

reduced when the resonance is greater than |r/a| ≥ 0.4 at inner radii (r/a=0.25 is shown in 7.a), 

it is not obvious at higher radii (r/a≥ 0.4 in 7.b).  The ITB foot region in this case was at 

r/a≈0.6. Error bars in this figure represent the highest and lowest value of R/LTi in the time 

range that is used to calculate the average value, which is the data point.  Thus the error bars 

are not symmetric. 
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Fig. 7. (Color on-line) R/LTi as a function of the absolute value of the ICRF resonance 
position is shown for a) the plasma core at r/a=0.25 (blue diamonds) and b) at r/a=0.4 (red 
triangles).  The solid symbols indicate that the plasma had an ITB.  The shaded area 
represents the ICRF resonance positions where ITBs are expected to form in H-mode 
plasmas. 
 
 
III. RESULTS OF GYROKINETIC ANALYSES 

Several gyrokinetic codes have been used to assess the stability of the measured plasma 

parameters in the off-axis ICRF heated discharges with ITB and also on-axis standard H-

mode plasmas.  The goal is to examine the role of the ion temperature gradient drive for ITG 

instability in Alcator C-mod ITBs and also how the stabilizing effects of the spontaneous 

rotation affects the ITB development in these plasmas.    

The initial value gyrokinetic code GS231 has  been used in linear simulations to 

determine the maximum linear growth rate of the ion temperature gradient driven modes in 

the range of  0< <1  for the off-axis heated H-mode plasmas with ITB included in this 

paper.  An example shown in Fig. 8 demonstrates that the simulated growth rates are 

comparable to the E×B shearing rate determined from the measured rotation in the ITB case.  

The foot of the ITB in this case is found at r/a~0.6, which in this case is the radial position 

where the maximum linear growth rate and the E×B shearing rate are equal.  After the ITB 
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becomes established, the E×B shearing rate exceeds the maximum linear growth rate in the 

outer part of the plasma. 

 

Fig. 8. (Color on-line) The maximum linear growth rate from linear GS2 simulation compared 
to the experimental  E×B shearing rate in an off-axis heated ITB for a) for a case where Ti 
was calculated in TRANSP and for b) a case where measured Ti profiles are used in the 
simulation. Symbols at the time that the ITB starts (red diamonds), when the ITB is fully 
established (blue squares) and the solid lines that represent the E×B shearing rates at the same 
times. Fig 8.a includes an off-axis heated discharge with no ITB (black). 
 
 Similarly, the maximum linear growth rate was calculated using the continuum 

gyrokinetic code GYRO32,33  to compare the ITG stability in an on-axis heated H-mode 

discharge to that of the off-axis heated H-mode with ITB.  The maximum linear growth rate is 

found to be significantly higher in the plasma core for the centrally heated case, and is well 

above the E×B shearing rate found for that plasma.  Fig.9 shows the results for the on- and 

off-axis heated plasmas.  The results for the off-axis ITB case agree with GS2 calculations for 

the same plasma discharge. 
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Fig. 9. (Color on-line) The maximum linear growth rate for an on-axis heated H-mode plasma 
(dashed blue line) is compared to that of an off-axis heated ITB (dashed red).  The solid lines 
are the E×B shearing rates found in the same discharges. 
 
 Non-linear (local) simulation using GYRO for the off-axis heated discharge in Fig. 10 

was initially carried out with the plasma rotation input disabled.  The parameters used for 

input were the nominal values from the TRANSP processed experimental data without 

adjustment. The conditions at the time of the simulation are at t=1.0 s, which is when the ITB 

is visibly established in the data, but before strong peaking of the density profile has occured,  

and R/Ln =2 at the ITB location, so that the ITG is the dominant instability. Once the 

fluctuation level calculation converged, the plasma rotation was enabled with the 

experimentally measured value.  A substantial decrease in the simulated χi was seen in the 

simulation after the addition of the addition of rotation, as can be seen in Fig. 10.  The mean 

value of χi decreased from 1.2 m2/s to 0.57 m2/s, more than a factor of 2 when the rotation was 

turned on after 800 time steps. 
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Fig 10. (Color on-line) χi from non-linear (local) GYRO simulation with no rotation applied 
before t=800, and with the experimental intrinsic rotation applied at after t=800. 
 
 The simulated χi can be compared with the experimental χi values determined with the 

TRANSP code.    The simulated value without rotation included is above the experimental 

value of χi = 0.4 m2/s and χeff =0.8m2/s  at t=1.0 s (because of uncertainty in the ion-electron 

exchange term when Ti ≈ Te, χeff should be considered as the thermal diffusivity, where

iiee
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  .  The inclusion of the spontaneous rotation reduces the 

simulated χi to 0.57 m2/s which lies between the experimental χi and χeff (Fig. 11). 
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Fig. 11. (Color on-line) TRANSP calculation of the thermal diffusivities for the off-axis 
heated H-mode with ITB that is used in the GYRO simulation of Fig 10 are  χi (dotted blue), 
χeff (dashed red) and χe (solid purple).  Simulated χi values (black dots) with and without 
rotation are included. 
 
From the time when the H-mode forms shown in Fig. 11  to  t=1.0s when the simulations have 

been done and the ITB has formed, the value of χi at r/a=0.65 decreases by a factor of 4.  

Examination of the value of χi determined for variations of several plasma parameters within 

the expected error of 10%  finds that χi lies between 0.2 and 0.5 m2/s.  The value of the 

neoclassical χi for several different formulations lies between 0.1 and 0.4 m2/s.  The χi thus 

achieved during the ITB is essentially at the neoclassical level.  

 

IV  DISCUSSION 

The formation of ITBs in many toroidal experiments is attributed to stabilization of ITG 

turbulence through induced E×B shear resulting from the application of directed neutral 

beams and the inherent toroidal rotation that arises.   Because there are no neutral beams or 

other external sources of momentum input to C-Mod, an explanation of the ITB formation 
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initially focused on the reduction the thermal gradients that drive the ITG, and it was 

concluded that this increased stability could account for the reduction of thermal diffusion that 

occurs in these plasmas.  Direct measurement of the ion temperature radial profiles through 

improved capability in the diagnostics indicates that the gradients are reduced in the off-axis 

heated plasmas that produce ITBs.  The linear growth rate calculations show that the 

instability growth is lower in ITB plasmas.  However,  the non-linear simulation using the 

experimentally derived parameters suggests that this reduction is not sufficient to reproduce 

the experimental diffusivity values observed in the ITB.   

 New measurement of the spontaneous plasma rotation profile indicates that it produces 

E×B shearing rates comparable to the maximum linear growth rate in the ITB foot region, and 

thus should be considered as a possible mechanism for stabilization of the ITG in the ITB 

plasmas.  Indeed the non-linear gyrokinetic simulation that includes this spontaneous rotation 

does allow reproduction of the experimental thermal diffusivity values. 

 It is likely that the appearance of the reduced diffusivity that is the hallmark of the ITB 

in C-Mod plasmas requires both the reduction of the ITG linear growth rate that results from 

the reduced ion temperature gradient and also the presence of the spontaneous E×B shearing 

rate arising from the intrinsic rotation. 

 

V. Summary and Future Work 

Alcator C-Mod is unique in displaying the presence of internal transport barrier development 

in H-mode plasmas with monotonic q-profiles (qmin ≤ 1) without the introduction of external 

torque or core fueling to the plasma.  A strong co-current intrinsic rotation develops in all C-

Mod plasmas following the H-mode transition, but decreases in the plasma center when the 

ICRF resonance and resulting heating is off-axis. The decrease in the center does not affect 

the rotation outside of the half radius so that a well in the rotation profile appears, which leads 



 

 

to increased E×B shear in the region where ultimately an ITB forms.  The observed shearing 

rate is 2  to 3 times higher than what is seen in on-axis heated H-mode discharges that do not 

form an ITB.  

 While a reduction in the maximum linear growth rate is seen in ITB plasmas due to 

flattening of the ion temperature profile and reduction of the ion temperature gradient, non-

linear gyrokinetic simulation suggests that it is not sufficient to produce the experimental 

thermal diffusivities, and that the additional stabilization provided by the spontaneous rotation 

profile is necessary. 

 Exploring these phenomena with further gyrokinetic simulations will be the focus of 

continued study in this area.  Examination of parametric dependencies of the stability within 

experimental errors are required to have complete confidence in the conclusions reached here, 

which requires a large investment in computational time. 

 Given the projections that have been made for intrinsic rotation in ITER, extrapolation 

of these results to ITER will be of great interest to the community. 
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