
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

December 2012 
 
 

Plasma Science and Fusion Center 
Massachusetts Institute of Technology 

Cambridge  MA  02139  USA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was supported by the U.S. Department of Energy, Grant No.  DE-FG02-91ER-
54109 . Reproduction, translation, publication, use and disposal, in whole or in part, by or 
for the United States government is permitted. 
 
To be submitted for publication in the Contributions to Plasma Physics (2012) 

PSFC/JA-11-38 
 
 
 

Neoclassical theory of pedestal flows and comparison with 
Alcator C-Mod measurements 

 
 

Grigory Kagan, Kenneth D. Marr, Istvan Pusztai, Matt  
Landreman, Peter J. Catto and Bruce Lipschultz 

 
 
 
 
 



Neoclassical theory of pedestal flows and comparison with

Alcator C-Mod measurements

Grigory Kagan, Kenneth D. Marr, Istvan Pusztai,

Matt Landreman, Peter J. Catto and Bruce Lipschultz

(Dated: December 17, 2011)

Abstract

Neoclassical implications of the strong radial electric field, inherently present in an H-mode

tokamak pedestal, are considered. The main ion poloidal flow in the pedestal is predicted to be

reduced in magnitude, or even reversed, compared with its core counterpart. The resulting change

in the neoclassical formula for the impurity flow is shown to result in improved agreement with

boron measurements in the Alcator C-Mod pedestal. In addition, due to the ion flow being modified,

the bootstrap current is expected to be enhanced in the pedestal over conventional predictions.
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I. INTRODUCTION

Conventional neoclassical theories [1] are essentially built upon the original ion orbit

evaluation by Galeev and Sagdeev [2], which assumes that scale-length of background quan-

tities such as the plasma density or electrostatic potential are much larger than the orbit

width. For the main ion species, this assumption is found to break down in many pedestal

experiments. The pedestal width is often comparable to the poloidal ion gyroradius and

the variation of electrostatic energy over an ion orbit is then comparable to the ion’s kinetic

energy. As a result, the pedestal flow of main ions can be substantially different from its

core counterpart.

The short background scale of the pedestal does not have a similar impact on individual

motion of impurity ions and electrons. The former usually have a high charge number

and collide before drifting a distance comparable to their poloidal gyroradius. The latter’s

poloidal gyroradius is much less than that of the ions and therefore the pedestal width.

However, both electron and impurity ion species experience friction with background ions

and therefore their flows are modified as well. The associated discrepancy for the poloidal

impurity flow has been measured to be substantial for the banana regime high confinement

(H) mode pedestal of Alcator C-Mod [3].

We evaluate main ion orbits accounting for the radial electric field inherently present in

a subsonic H-mode tokamak pedestal. We are then able to carry out the kinetic calculation

to find pedestal modifications to the conventional neoclassical prediction for the banana

regime main ion flow [4]. This result, in turn, allows us to deduce the pedestal expressions

for the poloidal impurity flow and the bootstrap current. We then proceed by comparing

the revised formula for the impurity flow with the boron flow measured in banana regime

C-Mod pedestals to find that agreement between the theory and experiment is noticeably

improved upon accounting for the electric field effect on the main ion orbits [5]. This

comparison verifies the role of the electric field in modifying the main ion flow and supports

our conclusion that the bootstrap current is enhanced in a banana regime pedestal [6].
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II. PEDESTAL BASICS

The key pedestal feature can be recovered with the help of the pressure balance equation

for the main ion species [7]. That is, considering the radial component of this equation and

employing standard expressions for the tokamak magnetic field ~B = IOζ+Oζ×Oψ and the

net ion flow ~Vi = ωiR
2Oζ + K(ψ) ~B, where K(ψ) is a free function and 2πψ is the poloidal

flux, one obtains the leading order relation

ωi = −c dφ
dψ
− c

en

dpi
dψ
≈ −c dφ

dψ
− cTi
Zen

dn

dψ
, (1)

where ωi denotes a toroidal angular velocity of background ions, φ is the electrostatic poten-

tial, n is the plasma density and pi = nTi/Z. Also, ζ stands for the toroidal angle and I is

defined by the toroidal magnetic field Bt through I ≡ BtR, where R is the major radius of

the tokamak. The last term on the right side of Eq. (1) represents the ion pressure gradient

with the ion temperature gradient dropped. It therefore relies on the fact that in a banana

regime H-mode pedestal the main ion temperature scale is larger than the poloidal ion gyro-

radius scale-length of the density. This feature has been deduced mathematically in Ref. [7]

by assuming that the entropy flux from the pedestal region is negligible. In more collisional

pedestals or in the presence of a substantial entropy flux this equation can be challenged.

Next, utilizing the experimental observation that the characteristic radial density scale

in the H-mode pedestal is on the order of the poloidal ion gyroradius, the last term on the

right side of Eq. (1) is estimated to be comparable to vi/R, where vi ≡ (2Ti/Mi)
1/2 with

Ti and Mi being the main ion temperature and mass, respectively. Thus, for the term on

the left side of Eq. (1) to contribute the net ion velocity ωiR must be sonic. For a subsonic

pedestal, as is the case in many experiments, it must then be that the two terms on the

right side of Eq. (1) cancel each other to leading order; i.e. the main ions are electrostatically

confined.

With this result in hand it is straightforward to estimate the contribution of the E × B

drift to the poloidal motion of an ion to find that it is comparable to that of the parallel

velocity. In other words, the poloidal angular velocity of a pedestal ion is given by

θ̇ = [v|| + cIφ′/B]~n · Oθ, (2)

where ~n ≡ ~B/B and φ = φ(ψ). In contrast to the conventional core case, the two terms
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in the square brackets on the right side of Eq. (2) are comparable. Importantly, as long as

Bp << B, this feature does not require the E × B drift to be on order of the ion thermal

speed vi. That is, the E × B drift is much less than vi still and able to compete with v||

due to geometrical factors only, as illustrated in Figure 1 of Ref. [8]. Recalling that in the

conventional neoclassical theory ion orbits are evaluated from θ̇ = v||~n · Oθ, we therefore

conclude that this conventional theory is inapplicable in the pedestal.

III. ION ORBITS IN THE PRESENCE OF A STRONG RADIAL ELECTRIC FIELD

As deduced in the preceding section, to develop a neoclassical theory of a subsonic

pedestal one must calculate ion drift orbits accounting for a strong radial electric field,

inherently present in this tokamak region. To simplify the problem, we consider the case

of concentric flux surfaces and assume the inverse aspect ratio ε to be small. Then, the

magnetic field as a function of θ can be written in a relatively simple form

B(θ) = B0(1 + ε)/(1 + ε cos θ), (3)

where B0 ≡ B(θ = 0) and θ = 0 is taken to be at the outer equatorial plane. Equally

important, in the large aspect ratio case the ion can drift radially only by
√
ερpi that is much

less than the characteristic scale of the electrostatic potential, ρpi. Therefore, variation of φ

over the orbit is small and its Taylor expansion can be employed

φ(ψ) ≡ φ∗ + (ψ − ψ∗)φ′∗ + (1/2)(ψ − ψ∗)2φ′′∗, (4)

where

ψ∗ ≡ ψ + (Mic/Ze)R
2~v · Oζ ≈ ψ − Iv||/Ωi, (5)

where Ωi is the main ion cyclotron frequency. According to Eq. (5), ψ∗ is proportional to

the toroidal component of the canonical angular momentum and therefore conserved over

a particle orbit. Due to Eq. (4) the problem with a realistic potential becomes essentially

equivalent to that with a quadratic potential. Accordingly, in what follows we proceed as if

φ is indeed quadratic in ψ.
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Radial variations of B and I over the orbit are negligible and Eq. (2) transforms into

qRθ̇ = v|| + u = S(v|| + u∗), (6)

where q is the safety factor, u ≡ cIφ′/B and u∗ ≡ cIφ′∗/SB with S ≡ 1 + cI2φ′′∗/ΩiB being

the orbit squeezing factor. Then, using conservation of energy, canonical momentum and

magnetic moment µ gives

v|| + u = (v||0 + u0)
√

1− κ2 sin2 (θ/2), (7)

where

κ2 ≡ 4εS
(µB0 + u0)

(v||0 + u0)2
. (8)

In Eqs. (7) - (8) subscript ”0” indicates that the quantity is to be evaluated at the outermost

point of the particle trajectory, and under the square root we have neglected terms that are

small in ε. At a banana tip, ψ = ψ∗ − Iu∗/Ωi.

As seen from Eq. (7), κ2 < 1 and κ2 > 1 correspond to the passing and trapped regions

of the velocity space, respectively. In contrast to the conventional case, where the trapped-

passing boundary is a cone centered at the origin, Eq. (8) gives that in the pedestal the

trapped-passing boundary is curved and shifted so that v|| = 0 is no longer the axis of

symmetry. This change is solely due to the strong net electric field. As given by Eq. (8),

the electric field shear, which manifests itself through the orbit squeezing, is not capable

of qualitatively modifying the shape of the trapped-passing boundary. In the section to

follow we discuss complications introduced into the kinetic part of calculation by the just

mentioned change in the trapped-passing boundary and present a technique for handling

them.

IV. PASSING CONSTRAINT FOR MAIN IONS IN THE PEDESTAL

The entropy production analysis demonstrates that in the pedestal the leading order ion

distribution function is Maxwellian [7] fM . Thus, it is possible to write the distribution

function as in the conventional case [1]

f = fM −
Iv||
Ωi

∂fM
∂ψ

+ g, (9)
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where the second and third terms on the right side represent the diamagnetic drive and

neoclassical response, respectively. As in the conventional case, g = 0 for trapped particles,

and the problem is to find g for passing particles. To do so, the distribution function (9)

is inserted into the axisymmetric gyrokinetic equation [7] for ions and finite Larmor radius

effects are neglected to obtain

Cii{g − h} = 0, (10)

where Cii is the ion-ion collision operator, overbar denotes the transit average and

h =
Iv||
Ωi

Miv
2

2T 2
i

∂Ti
∂ψ

(11)

is the drive term. Written in this form, the passing constraint looks identical to the con-

ventional one. However, in contrast to the core case, transit averaging in the pedestal must

be performed at constant canonical angular momentum ψ∗ rather than ψ, and the average

must also account for the effect of the E × B drift on the poloidal ion velocity. Also, since

the problem is no longer symmetric about v|| = 0 in the velocity space, the drive term

as given by Eq. (11) is not convenient to employ and the pitch-angle scattering model for

the collision operator does not capture all the relevant physics. The former issue is easily

addressed by utilizing the number, momentum and energy conserving properties of the like

particle collision operator to redefine h by

h =
I(v|| + u)

Ωi

Mi(v
2 + u2)

2T 2
i

∂Ti
∂ψ

, (12)

thereby modifying Eq. (10) accordingly. The latter issue requires much more care and is

discussed next.

As demonstrated by conventional neoclassical calculations, it is the piece of the distri-

bution function localized around the trapped-passing boundary that plays the key role.

Practically, this is what allowed keeping only the pitch angle scattering component of the

full ion-ion collision operator, while having the energy scattering component dropped. As

pointed out in the preceding section, in the pedestal, the trapped-passing boundary is curved

and shifted. Thus, an ion can be taken across it by scattering the energy, as well as by scat-

tering the pitch angle, and a new model collision operator is needed. To develop this model,
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instead of the pitch angle and the kinetic energy employed in the conventional theory, we

introduce the new variables

W ≡
(v2
||0 + u2

0)2

2S
+ (µB2

0 + u2
0), (13)

and

λ ≡ µB2
0 + u2

0

W
(14)

as suggested by the form of the trapping parameter κ2 of Eq. (8). From Eqs. (8), (14) and

(13) it easy to find

λ =
κ2

κ2 + 2ε
; (15)

i.e. λ can be expressed solely in terms of κ2 and therefore Ovλ is perpendicular to the

trapped-passing boundary. In addition to this, it can be shown that Ovλ · OvW = 0 to

leading order in
√
ε. Hence, we assume that once the collision operator is written in terms

of these new variables, terms containing ∂/∂W can be neglected. We then start with the

Rosenbluth form of like particle collision operator to obtain the following model operator

C{δf} =
B0(v|| + u)

B

∂

∂λ

[
B

B0(v|| + u)
~Γ · Ovλ

]
, (16)

where

~Γ · Ovλ = fM
(v|| + u)2

S2W 2

[ν⊥
4
v2 +

(ν||
2
− ν⊥

4

)
u2
] ∂

∂λ

(
δf

fM

)
. (17)

The model operator defined by Eqs. (16) - (17) does not manifestly conserve momentum.

To restore this property we introduce an additional term inside the collision operator, namely

fM
σI(v||+u)

ΩiTi

∂Ti

∂ψ
, where σ is a free parameter. Adding a term of this form is valid due to

the conservation properties of the linearized Fokker-Planck operator and further modifies

Eq. (10). The value of σ is found after the passing constraint is solved by requiring that the

operator (16) - (17), twice modified as noted, conserves momentum when operating on the

first order correction to the distribution function f − fM as given by Eq. (9).

With the help of the approach outlined above, passing constraint (10) can be solved and

the main ion poloidal flow can be obtained by taking appropriate moment of the resulting

distribution function to find

V pol
i =

7IBpol

6ΩiMB

∂Ti
∂ψ

J(U2), (18)
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where U ≡ u/vi and

J(U2) = (5/2− σ + U2)/1.17 (19)

with

σ =

∫∞
0
dy exp (−y)(y + 2U2)3/2(ν⊥y + 2ν||U

2)∫∞
0
dy exp (−y)(y + 2U2)1/2(ν⊥y + 2ν||U2)

. (20)

In Eq. (20), ν⊥ = 3(2π)1/2νii[erf(x) − Ψ(x)]/2x3 and ν|| = 3(2π)1/2νiiΨ(x)/2x3 with x ≡

v/vi = (y2 + U2)1/2, νii = 4π1/2Z4e4niln(Λ)/3M
1/2
i T

3/2
i , Erf(x) = 2π−1/2

∫∞
x
dy exp (−y2),

and Ψ(x) = [Erf(x) − xErf ′(x)]/2x2. It should be noted that these expressions, as well as

other pedestal relevant results, can also be obtained with a more general formalism presented

in Ref. [9].

Notice that at U = 0, J(U) = 1, so Eq. (18) reproduces the conventional core result

in the absence of the electric field. As U2 grows, J(U2) decreases and becomes negative

at U ≈ 1.2. Physically, this behavior means that in a banana regime pedestal the main

poloidal ion flow is in the direction opposite to its core counterpart once the radial electric

field goes beyond a certain critical value. We proceed by verifying findings summarized in

this section against available experimental data.

V. COMPARISON OF THE REVISED NEOCLASSICAL FORMULA WITH THE

C-MOD PEDESTAL MEASUREMENTS

Unfortunately, direct measurement of the main ion poloidal flow is very challenging.

What is usually measured instead is the impurity ion flow. Due to their high charge number

impurities are highly collisional, making it possible to relate their poloidal flow to that of

main ions through a simple expression [10]:

V pol
z = V pol

i − cIBp

eB2

(
1

ni

dpi
dψ
− 1

Zznz

dpz
dψ

)
, (21)

where Zz, nz and pz stand for the impurity charge number, density and pressure, respectively.

To write Eq. (21) only terms of the leading order in
√
ε are retained and the main ion charge

number Z is set equal to unity, as it is the case in Alcator C-Mod. Recent measurements

of the boron impurity flow in the C-Mod pedestal [3] provide V pol
z . Also, the electric field

profiles are available for the same shots, so the experimental check of Eqs. (18) - (20) can

be carried out.
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To do so a number of shots are considered. For each shot, the peak poloidal velocity is

chosen. This peak is usually located close to where the absolute value of the electric field

experiences a maximum and therefore the difference between the conventional and modified

neoclassical theories is the greatest. The scatter plot of Figure 1 is then created with the

theoretically predicted and experimentally observed velocities being the x and y coordinates

for each point, respectively. To place the banana regime comparison into a broader context,

similar plots for the Pfirsch-Schlüter (PS) and plateau regimes are presented. For the former,

the electric field should not have any effect, because a background ion can only drift radially

by a distance much less than the poloidal ion gyroradius before undergoing a collision. For

the latter, the electric field does modify the poloidal ion flow. The altered expression has

been presented in Ref. [11] and used here to create Figure 1b. Figure 1 essentially repeats

Figure 2 of Ref. [5] and is reproduced here for convenience.

As expected the conventional formula is in reasonable agreement with the experiment for

Pfirsch - Schlüter plasmas, as demonstrated by Figure 1a. Figure 1b shows that conventional

and modified theories give different predictions in the plateau regime, but it is unclear

which theory does a better job. Finally, according to Figure 1c the agreement between the

neoclassical theory and experiment is clearly improved upon accounting for the electric field

effect on main ion drift orbits in a banana regime pedestal.

VI. DISCUSSION

As the comparison of the preceding section demonstrates, finite electric field effects need

to be accounted for when evaluating main ion poloidal flow in a banana regime pedestal.

The resulting alteration in the impurity flow has been measured to be substantial in the

Alcator C-Mod pedestal. Importantly, the parallel electron flow, and therefore the bootstrap

current, should then be modified as well, as electrons experience friction with the main ions.

Since electron orbits are not affected by the electric field due to their small gyroradius the

bootstrap current can be calculated in the same way as in the conventional theory [1] with

Eq. (18) for the main ion flow in place of the usual formula. As a result, the pedestal

bootstrap current is found to be [6]
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FIG. 1: Comparison of predicted and experimental peak heights found near the separatrix in the

poloidal velocity profile for various collisionality plasmas: a) PS regime. b) Plateau regime. c)

Banana regime. Complete agreement is indicated by the dashed line. Positive velocities indicate

flow in the electron diamagnetic direction.

Jbs = −1.46
√
ε
cI

B

(Z2 + 2.21Z + 0.75)

Z(Z + 1.414)

[
dp

dψ
− (2.07Z + 0.88)ne

(Z2 + 2.21Z + 0.75)

dTe
dψ
− 1.17J(U2)

ne
Z

dTi
dψ

]
,

(22)

10



where ne and Te are the electron density and temperature respectively and p denotes the

total plasma pressure. In the conventional case, J(U2) = 1 and the last term in the square

brackets on the right side of Eq. (22) tends to lower the bootstrap current. As explained

in section IV, once the pedestal electric field is taken into consideration J(U2) becomes less

than unity and even goes negative provided the electric field is large enough. We therefore

conclude that the modified neoclassical theory described here predicts a higher bootstrap

current than the conventional one.
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